sqrt p.1
dokkdk This is only a draft. The algorithme listed in section B haven't been
sk feeted thoroughly. Please don't redistribute it.
®ioklok Authors: W. Kahan and K.C. Ng
*tkkk Date: S/6/86

Two algorithms are given in this document to implement V¥ in
software. Both supply V% correctly rounded. The first alogirthm (in
Section A) uses newton iterations and involves four divisions. The
second one uses reciproot iterations to avoid division, but requires
mare multiplications. Both algerithms need the ability to chop results
of arithmetic operations instead of round them, and the INEXACT flag
to indicate when an arithmetic operation is executed exactly with no
roundoff error, all part of the standard. The ability to perform shift,
add, subtract and logical AND operatiens upan 22-bit words is needed
too, though not part of the standard.

R. yX by Newton Iteration

o
|~
O
|

. Initial approximation

Let %y and %, be the leading and the trailing 32-bit words of a floating
point number x (in IEEE double format) respectively (cf section B of
REQUIRED SUPPORT FUMCTIONS):

1 11 52 ... widths
%o lsl e | f |
msb  Isb msb isb ... order
1 11 20 3z
®o- Il e i f, | Xy | {, |

By perfarming shifts and subtracts on %o and %, (both regarded as
integers), we obtain an @-bit approximation of v'% as fallows.

ko= (== 1)+0x 1 {{E0000;

Yo =k - TI31&(K>>15)]. ..y = % to & bits
Here k is @ 32-bit integer and T1[ ] is an integer array (see section C
for its values) containing correction terms. Now ragically the floating



sqrt p.2
value of y (y's leading 32-bit word is yy, the value of its trailing word
4, is unimportant) approximates V% to almost 8-bit.

) Iterative refinement

Apply Heron's rule three times to y, we have Yy approximates V¥ to
within 1 ulp (Unit in the Last Place):

y = (y+x/y)/2 ... almost 17 sig. bits
y = (y+x/y)/2 ... almost 35 sig. bits
y = y-(y-x/y)/2 .. within 1 ulp

Remark 1. Another way to improve y to within 1 ulp is:

y = (yex/y); ... almost 17 sig. bits to 2v/%
Yo = Up - 0X00 100006 ... almost 18 sig. bits to v/x
(x-y2ry
g =y o+ 2% —— . cwithin 1 ulp
3y?+x

This formula has one division fewer than the one above; however, it
requires more multiplications and additions. Also x rmust be scaled in
advance to avoid spurious overflow in evaluating the expression
Zyd+x. Hence it is not recommended unless division is slow. If
division is very slow, then ane should use the reciproot algarithm
given in section E.

Final adjustment

By twiddling y's last bit it is possible to force y to be correctly
rounded according to the prevailing rounding mode as follows. Let r
and 1 be copies of the rounding mode and inexact flag before entering
the square roat pragram. Also we use the expression ytulp for the
nexi representable floating numbers (up and down) of y. Mote that
yzulp = either fixed point y £1, or multiply y by nextafter(1,zeo)

in chopped mode.



(S

sqrt p.3
I := FALSE; ... reset INEXACT flag I.

R:=RZ; ... set rounding mode to rvwnd-{owad-IEw
2:= x4 .. Chogpey quatient, possibly inexact
If (not I) then { ...if the quotient is exact
if (z=y) goto Label;  .../% is exact
else z = 2 - ulp; ...special rounding
}
i := TRUE; .. VY% is inexact
It (r=RN) then z= z + ulp; ...round-teo-nearest
If (r=RP) then { ..round-toward- +eo
y= z + ulp; 2= z + Uip;
}
Yy =Ytz e SAOQpEI SUM
Ug := Yp~0x00 100000; o Y 1= 4/2 is correctly rounded.
Label:

I:=1; ... restore inexact flag
R :=r; ... restore rounded made
return v'% := y.

Special cases

Square root of +eo, 0, or NaM is itselt;
Square root of a negative number is Mal with invalid signal.

e by Reciproot Iteration

Initial approximation

Let xg and Xy be the leading and the trailing 32-bit words of a floating
paint number x (in IEEE double format) respectively (see sectian A).
By performing shifts and subtracts on Xy and xy, we obtain a 7.6-bit
approximation of 1//% as follows.

k = 0x5{eB0000 - (xy>>1);

yo =k - T2[63&(k>>14)). ..y = 1/yX to 2.5 bits
Here k is a 32-bit integer and T2[ ] is an integer array (see section 0
below for its values) containing correction terms. Now magically the
floating value of y (y's leading 32-bit ward is yg, the value of its
trailing word y, is unimpartant) approximates 1/4/% to almost
7.6-bits.



sqrt p.4
(2) Iterative refinement

Apply Reciproot iteration three times to y and multiply the result by x
to get an approximation z that matches v'X to about 1 ulp. To be
exact, we have -1 ulp < /% - z < 1.0625 ulp:

...5et rounding mode to Rownd-to-nearest
y = y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/v%
y = y*((1.5-2730)+0.5*x*y*y) ... about 29 sig. bits to 1/v/%
...special arrangement for better accuracy
2 1= x%y ... 29 bits to /%, and z*y<1
z 1= 2+0.5%2%(1-2*y) ... about 1 ulp to V% '

Remark 2. The constant 1.5-2739 is chosen to bias the error so that
(a) the term z*y in the final iteration is always less than 1;
(b} the error in the final result is biased upward so that
-1 ulp < /% - 2 < 1.0625 ulp
instead of |v/% - 2| < 1.03125 ulp.

(3) Final adjustment

. By twiddling 2's last bit it is possible to force z to be correctly
rounded according to the prevailing rounding mode as follows. Let r
and i be copies of the rounding mode and inexact flag before entering
the square root program. Also we use the expression yzulp for the next
representable floating numbers (up and down} of y.

R:=RZ ... SBt rounding mode to roung-{oward-sery
switch (r) {
case RN: ... round-to-nearest
if (% < 2*(z-ulp) ...chopoed ) 2 = 2 - ulp; else
if (% < 2%(z+ulp) ... chopped ) 2 = 2 ; else z=2+ulp;

break;
case RZ: case RM: ... round-to-zero or round-to- -
R := RP; ... reset rounding mode to round-to- +oo

if (% < 2%z ...rounded 4p) 2 = 2 - ulp; else
if (% 2 (z+ulp)*(z+ulp) ... rounded up) 2 = 2 + ulp;
break;

case RP: ... round-to- +co
it (%> (z+ulpy*(z+ulp) ... chopped ) 2 = 2+ 2*ulp; else
if (% > 2%2 ...choposd ) z = z+ulp;
break;



sqrt p.5
Remark 3. The ahove comparisons can be done in fixed point. For
example, to compare x and w=z*z chygped, it suffices to
compare X; and w, (the trailing parte of x and w), regarding
them as two's complement integers.

...Is z an exact square root?

To determine whether z is an exact square root of %, let 2y be the
trailing part of 2, and also let xq and x be the leading and trailing
parts of x.

If ( (2(&0x3(II{1f) 1= 0) ..not exact if trailing 26 bitsof z =0

I:=1; ...Raise Inexact flag: z is not exact
else {
ji= 1 - [(%g>>20)&1); ...j = logb(x) mad 2
k =2y >> 26; ..get 2's 25-th and 26-th fraction bits
I:=ior (k&j) or [ (k&(j+j+1)N=(x,&3) };
!
Ri=r ... restore rounded mode

return V¥ = 2.

If multiplication is cheaper then the foregoing red tape, the Inexact
flag can be evaluated by

I:=i

I:i=(z*z2!=x)ar L.
Note that z*z can averwrite I; this value must be sensed if it is
TRILIE.

Remark S. If z*z=x exactly, then bit 25 to bit O of 2, must be zero.

z¢ | fa l
bit 31 bit 0

Further mare, bit 27 and 26 of z,, bit 0 and 1 of X, and the
odd of even of logh(x) have the following relations:

bit 27,26 of z, bit 1,0 of ¥, ]ogh(x)
00 oQ 0dd and even
01 01 even
10 10 odd
10 00 gven

11 01 even




sqrt p.6

(4) Special cases

See (4) of Section A.



sqrt p.?

C. IEEE double vx using Newton iterations in pseudo C

/* Constants: */

static long TI[ I={ /* table lookup constants */
0, 1024, 3062, 5746, 9193, 13348, 18162, 23592, 29305,
36145, 43202, 50740, 58733, 671358, 75992, 85213, 83599,
71378, 60428, 50647, 41945, 34246, 27478, 21581, 16499,
12183, 8588, 5674, 3403, 1742, 661, 130, };

static int-
RZ =
RN =
RF =
RM =
jo =
it =

.. round-toward-zero

.. round-to-nearest

.. round-toward- +co

.. round-toward- -oo;

.. pogition of leading word

.. position of trailing word {see section B of REQUIRED

.. SUFPORT FUNCTIONS)

/* Main program */

double sqrt(z) double x;

double sea/5();

int riniteQ), rsnsn()

intng, i, r, e;

double y;

unsigned long Kk,
*px = (unsigned long *) &x, /* pointer to x */
*py = (unsigned long *) &y ; /* pointer to y */

2%

* filter out exceptions

*(/

if (1 rinite(x)

x <= 0.0 )

if ( /snan(x) Il x >= 0.0)

return x;
else

/* sgrt of NaM, +co, or +0 ig itself */

return (x-x3/(x-x);  /* sqrt{x<0) is NaN */

else {

/%
4

* Save, reset and initialize:

*'.f

=1
r:=R; R:i=R

save INEXACT flag I.
.. save rounding mode and



sqrip.&
... reset to round-toward-zero.
k = pxljol; /* k = the higher 32 bits of x */
nx = 0;
if ( k < 0x00100000 )
/*
* Subnormal number: scale up x by 25 and recompute X.
*/

{ nx = 27;
X = scalb(x,54); ... perform x = x*2°4
= pxljol;
}

/*
* Magic initial approximation to almost & significant bits
*/
k={k=>>1}) + 0x1{f§0000;
puliol = k - TI[ ( k =>19)&31 ];

/:r-
* Heron's rule thrice:
*'.'
y= 0.5%(y+x/y)
y= 0.5*y + x/y);
4= y-0.5%y - x/yk /* y = sqrt(x) to within 1 ulp */
/*
* Twiddle last bit for correctly rounded sqrt(x)
”

I := FALSE ... reset INEXACT flag I.

2 =x/y;  /* chopped quotient, possibly inexact */

if (not I) ... if quotient is exact then goto final if 2=y
if (z ==y) goto final; /* z is the exact sqrt(x) */
else z = z - uip; w Z2=2Z-ulp

i:=TRUE ...sgrt(x) is inexact.

switch (r) {
case RN:
2= 2+ Upy w2=2+ulp
break ;

case RF:
2= z+ ulp; w2 =2+ ulp
y= Y+ &p; W y=y+ulp
break ;



sqrt p.9

y = 0.5%(y+z); /* chopped sum */
/*
* final step: restore flags and offset scaling
*/
final: R:=r; I:=i; ... restore rounding mode and INEXACT flag.
if (nx1=0)
y = scalb(y,-nx); /* offset scaling for subnormal number */
return y;

}

D. IEEE double \/; using Reciproot iterations in pseudo C

/* Constants: */
static long T2 ]= { /* table lookup constants */
0% 1500, Ox2ef8, 0x4d67, 0x6b02, 0x57be, 013395, Oxbe7a, OxdGoA,
Oxf14a, Ox1091b, Ox11fcd, 0x13552, Ox 14999, Ox 15094, Ox16e34,
Ox 1 7e3f, Ox18d03, 0x19a01, 0x13545, Ox1aeda, 0x1bSc4, Ox1bba1,
Ox 1bfde, Ox 1c28d, Ox 1c2de, 0% 1c0Odb, Ox1ba?e, Ox1b11c, Ox1a4b3,
0% 1953d, 018266, 0x16be0, Ox1683e, 0x172d3, O« 15add, Ox 199392,
Ox 137389, 0x 10445, Ox1bf61, 0x1¢989, Ox1d16d, Ox1d?7b, Ox 1dddf,
Oxle2ad, Ox1eSbf, Ox 1e6eli, 0x 12654, 0x1e3cd, Ox1df2a, 0X1d63S,
Ox1ch16, Oxibe2c, Oxlaede, 0% 19bde, Ox186Ge, Ox16e2e, 0x1527f,
0x1334a, 0x1 1051, 0xe@S 1, OxbeO1, 0x8e0d, 0xS924, Oxledd};

static int
RZ = «. round-toward-zero
RN = ... round-to-nearest
RP = . round-toward- +e
RM = ... round-toward- -oo;
j0 = ... position of leading word
jt = ... pasition of trailing word {(see REQUIRED SUPPORT

.. FUNCTIONS)

/* Main program */
double sqrt(x) double x;



double scu/6();

int rreite), fonan();
int nx, i, r, e;
double y,z;
unsigned long Kk,

*px = (unsigned long *) &x, /* pointer to x */
*pz = (unsigned long *) &2z ; /* pointer to 2 */
I*
* filter out exceptions
*/
it (1 Zinite(x) I x <= 0.0)
if ( Zsnan(®) 1 x >= 0.0)
return x; /* sgrt of NaN, +oo, or +0 is itself */
else
raeturn (x-x)/(x-x);  /* sqrt(x<0) is NaN */
else {
/*
* Save, reset and initialize:
*/
=1 ... Save INEXACT flag I.
r:=R; R:= RN ... save rounding mode and
... reset to round-to-nearest.
k = pu(jol; /* k = the higher 32 bits of x */

nx = Q;
if { k < 0x00200000 )

;&

* Subnormal number: scale up ¥ by 2%% and recompute x.
* f
!

{ nx = 27;
x = scalb(x,54); .. perform x = x*2%
k = pxljol;

}

/*
* Magic initial approximation to aimost 7.8 significant bits
*/
k = 0x51e80000 - ( k >>1);
pyliol = k - T2[ (k >>14)&63 J;
-j*
* Reciproot iteration:
*/
| 4= u*(1.5 - 0.5*y*y*x);
4 = y*(1.499999999068677425 - 0.5*y*y*x);

sqrt p. 10



sqrt p. 11

2= U*x;
2= z+0.5%*%(1 - z*y); /*y = sqrt(x) to about 1 ulp */
/:«
* Twiddle last bit for correctly rounded sqrt{x)
*/
R:= RZ ... set rounding mode to rvund-toward-cerw
switch (r) {
case RN: ... round-to-nearest
if ( x < z*(z-ulp) ) 2 = z - ulp; else
if (X < z*(z+ulp) ) z = 2 ; else z=z+ulp;
break;
case RZ: case RM: ... round-to-zero and round-to- -
:= RP ... reset rounding mode to round-to- +eo
if (x<2z*z)z=2-ulp; else
if (%2 (z+ulp)*(z+ulp) ) 2 = z + ulp;
break;
case RF: «. Found-to- +oo
if (%> (zZ+ulp)*(z+ulp) ) 2 = z+ 2*ulp; else
it (x>2%2) z = z+ulp;
break;
}
If ( (2,&0x3(f{fff) 1= 0 ) ..not exact if trailing 26 bits of 2 1= 0
I:=1 ...Raise Inexact flag: z is not exact
else {
=1 - [(%e>>20)&1; «.J = logt(x) mod 2
Ki= 2y >> 26; «.get 2's 25-th and 26-th fraction bits
I:=ior (k&) or [ (K&(j+j+1))1=(%{&3) I;
}
/¥
* final step: restare flags and offset scaling
*/
Ri=r; ... restore rounding made,
if(nx!1=0)
= scalb(z,-nx); /* offset scaling for subnormal number */
return z;
}



