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NO PERIOD TWO IMPLIES CONVERGENCE, 

OR 

WHY USE TANGENTS WHEN SECANTS WILL DO?t 

W. Kahan 

Abstract: A familiar task is to solve f(z) • 0 given a contimioualy differen

tiable real function f. Newton' a iteration could be tried; so could the 

Secant iteration. Except when the derivative f' costs appreciably less to 

evaluate than does f, the Secant iteration tends in practice to converge 

ultimately more efficiently than Newton's whenever both iterations converge 

to the desired root. When will they both converge? We find roughly that 

whenever Newton's iteration converges from every starting point in an interval 

I, so must the Secant iteration converge from every pair of starting points 

in I provided only that f actually reverses sign in I. Thia is an 

unexpected way for the Secant iteration to dominate Newton's. 

The foregoing discovery was uncovered by techniques like those which 

produced the following one. Suppose cp(z) maps the closed finite interval 

I continuously into itself, and hence bas at least one fixed point : • cp(z) 

in I, perhaps several. The iteration :n+l • cp(zn) need not necessarily 

converge, but it will converge in 1 from every starting point :
0 

in I 

if and only if no two distinct points in I are exchanged by cp. Therefore 

the iteration converges only if it cannot be trapped in a cycle of period 2; 

on the other hand it is known that the enstence of a cycle of "Period Three 

Implies Chaos" (T.-Y. Li & J. A. Yorke, Amer. Math. Monthly 82 197S). These 

last results and more can be found in a little-lmown paper by A. N. Sarkovskil 

(1964) "Co-existence of cycles of a continuous mapping of the line into itself" 

(Russian) Ukrain. Mat. Z 16 #1 (Math. Rev. 28 (1964) 13121). 



§0. Introduction 

This work is presented in two parts. Part I deals with the iteration 

zn+l • ~(zn) when ~(:) maps an interval l continuously into itself without 

exchanging two distinct points of I. The theorem that then the iteration 

converges is proved here not because the theorem is new (a proof by Bashurov 

and Ogibin (1966) has been translated into English) but because that proof 

contains ideas that will be needed in part II and, besides, deserve to be 
better known. 
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Part II deals with Newton's and the Secant iterations for finding where 

a continuously differentiable real function f(z) vanishes. The results 

presented appear to be new and to provide further incentive, if any be needed, 

for preferring the Secant iteration over Newton's. 

This introduction includes a summary of all subsequent sections' contents 

in order to help the browsing reader locate more easily whatever interests him. 

All proofs are terminated by the □ sign in order to help the casual reader 

skip over them. 

Part I, §1 The No Swap Theorem 

The main result is stated here together with some of its history, but 

not proved until §4. The result is due principally to Sarkovskil. It 

is valid both on finite intervals and on infinite intervals regarded 

as line segments, but not valid on the projectively closed real axis 

(regarded as a circle) except in special cases. 

§2 Two Conditions Equivalent to the No Swap Condition 

These are technical details used only in §3. 

§3 The One-Sided Condition 

This condition, first articulated by Sarkovskil (196S), is the 

most potent equivalent to the No Swap Condition. 
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§4 Proof of the No Swap Theorem and some Applications 

Among the applications are validations of familiar conditions 

sufficient for convergence, and characterizations of the regions from 

which convergence is assured .. Newton's iteration is seen to be in one 

sense a special case, in another sense more general than the iteration 

discussed above. '?he No ~ap theorem is applied to show that Newton's 

iteration always converges when used to find a zero of a rational func

tion whose poles and zeros are all real, simple, and interlace. 

Part II, §5 Newton's and the Secant Iteration 

This is where significantly new results begin. The two iterations are 

described, and first mention is made of a pathological discontinuity 

that must complicate matters (it partially invalidates some of the 

claims in the abstract above) even if we begin with an infinitely 

differentiable function f(:J. The Secant iteration's sparse literature 

and history are sketched briefly, and then five examples are presented 

to give the reader some feeling for the possibilities with which our 

theory must cope. 

§6 Projective Invariance of Newton's and the Secant Iterations 

Old but unfamiliar results culminate in a Mean Value lemma which binds 

the two iterations together more firmly than can any hand-waving about 

the Secant iteration being a "discretization" of Newton's. 

§7 Inferences from N(1) ,S 1 

The hypothesis that N(:) = :-f(:) If'(:) maps an interval I into 

itself, a prelude to the assumption that Newton's iteration converges, 

has profound consequences ranging from the monotonicity of f to the 

Darboux continuity of N, all of them needed in the next section's 

proofs. 
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§8 The No Swap Theorem for Newton's Iteration 

Here are the necessary and sufficient conditions for Newton's iteration 

to generate from every starting point a sequence of iterates of which 

some subsequence converges to a zero of f(:). An example shows that 

the subsequence complication is theoretically unavoidable though prac

tically ignorable. One application of these conditions is a generaliza

tion of the familiar convexity conditions sufficient for convergence; 

we can allow at least one inflexion. Consequently certain financial 

calculations can be accomplished via Newton's (or the Secant) iteration 

with no need first to obtain safe starting values. Another application 

provides for rapid computation of all the real zeros of a sufficiently 

differentiable function (e.g. a polynomial) with no recourse to Sturm 

sequences. 

§9 The Secant Iteration 

Finally Part II's main result, which tells when the Secant iteration 

works as well as Newton's, is stated accurately and proved via a long 

sequence of ten propositions which exploit almost all that has gone 

before. A final example shows once again that subsequence complications 

are theoretically unavoidable though practically ignorable. 

§10 Bibliography 
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PART I 

§1. The No Swap Theorem 

4>(:) is a function which maps a closed finite interval I continuously 

into itself. Since :c - 4>(:c) cannot have the same non-zero sign at both ends 

of I it must vanish at least once in I; couequently cf, must have at 

least one and possibly several fixed points :c • cf,(:c) in I. A natural way 

to seek a fixed point is to iterate, 

but the iteration cannot always be expected to converge. For example, 

:cn+l • sin(2~=nJ almost never converges, the exceptions being a countable 

set of starting values : 0 from which one of the three fixed points :c • 0 

or z • ±.429368 ... is reached after finitely many iterations. 
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Theorem: The condition necessary and sufficient for the iteration :cn+l • 4>(:cn) 

to converge from every : 0 in I turns out to be 

The No Swap Condition: No two distinct points in I are exchanged 

by 4>; i.e. if : • 4>(4>(:c)) in I then :c • 4>(:c) too. 

This theorem will be vindicated below in stages designed to exhibit interme

diate results which will be useful in Part II. But first we digress to dis

cuss the condition's history and generality. 

The No Swap theorem is equivalent to the assertion that zn+l • cf,(:cn) 

converges from every : 0 in I if and only if no : 0 in I leads to a 

sequence of iterates cycling on two points :c2n • :c0 and :c2n+l • : 1 + z 0 • 

This theorem appears (not altogether correctly) in A.N. Sarkovskii (1960,1961) 

and is (correctly) elaborated upon in subsequent papers (1964,196S) wherein 

Sarkovskil proves, among other things, that the integers can be re-ordered 



thus 

3,5,7,9, ... ,2i+l, ... , 

6,10,14,18, ... ,4i+2, ... , 

... , 
k k k k k • 2 3,2 5,2 7,2 9, ... ,2 (2~+1), ... , 

... , and finally 
• • 1 

... ,i1,i1- , ... ,8,4,2,1 
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in such a way that if from some : 0 • :~m) the iteration :n+l • t(:n) cycles 

(m' J on m distinct points then there are other starting values : 0 • : 0 in I 

from which follow cycles of every length m' subsequent to m in the re-order

ing. I am indebted to Prof. Rufus Bowen for references to Sarkovskii's work, 

which seems to go beyond what has appeared recently in the English language; 

cf. Li and Yorke (1975), Stepleman (1975), and Bashurov and Ogibin (1966). 

In this paper only those parts of Sarkovskil's work that bear upon 

Part II will be repeated. 

The No Swap theorem is stated above for a continuous map t of a closed 

finite (i.e. compact) interval I to itself. Must I be both closed and 

finite? No; it could be neither. But a more general form of the No Swap 

theorem involves complications which obscure proofs already complicated enough. 

For instance, because the No Swap theorem neglects to mention that the itera

tion =n+l • ,(zn), when it converges, converges to a fixed point of f, 

the theorem remains valid whether or not I includes its end-points; the 

example ,(:) = : 2 on the open interval I - {O <: < l} illustrates the possi

bility of convergence to an end-point not in I. The reader who wishes to 

prove the No Swap theorem for non-closed intervals I may do so by first 

adjoining to 1 any end at which 1 im(,(:J -:) • 0 and then modifying in 

routine ways every reference to an end of I in §§2-4; fortunately no end 
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of I to which ~ cannot be continued continuously figures significantly 

in the theorem. 

1 does not have to be finite, but when 1 is infinite ambiguities can 

arise concerning the meanings of "continuous" and "convergent", and whether 

• can be a fixed point (e.g. of 4>(:) • :+l), and whether ~ differs f~om 

-m. To avoid these ambiguities and other circumlocutions in subsequent sec

tions of this paper we have assumed without loss of generality that I is a 

finite interval. Only in this section, §1, do we digress to justify that 

assumption by discussing infinite intervals. 

The No Swap theorem remains valid when 4> is a continuous map of an 

infinite or semi-infinite interval I to itself provided the word "converge" 

be understood to include possible "convergence" to m. This is so because 

a suitable change of variables will transform the infinite interval 1 into 

a finite one. For instance, suppose 4>(:) maps I = {O i= i +»l continuously 

to itself. The new variables y = (:-1)/(:c+l) and llJ(y) = (4>(:) -l)/(4>(:J +l) 

@ z • (l-t-y)/(1-y) exhibit the corresponding continuous map 1" of the 

transfomed interval J = {-liY < l} to itself. The example ♦ (:) = z-4-1 

with an attractive fixed point at : • .t,ao corresponds to ~(y) • (l+y)/(3-y) 

with an attractive fixed point at y • l; just as Yn+l • llJ(yn) converges 

to l, so must =n+l • 4>(:n) "converge" to .t,ao. The foregoing change of 

variables is an instance of a bilinear rational transformation appropriate 

when 4>(IJ's closure is not the whole real axis. Otherwise, when ♦ (IJ's 

closure is the whole real axis, non-rational changes of variables are more 

appropriate. One example is y • tanh: which maps the affinely closed real 

axis I= {-ao~:~.t,ao} onto the closed finite interval J = {-l~y~l}, and 

transforms a function ,<:) continuous at all real : into 

llJ(y) = tanh(4>(arctanh(y)JJ which is continuous at least in J's interior. 
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Hence the following ostensibly more general form of the No Swap theorem is true: 



If I is a line segment, including or not including its ends, 

finite or infinite, and if $ maps I continuously to itself, 

then the iteration =n+l • t(zn) converges from every : 0 in 

I if and only if $ exchanges no two distinct points of I. 

A line segment, which has two ends that may or may not be regarded as 

part of that line segment, is quite different from a circle which bas no end 

at all. The No Swap theorem is not generally applicable on a ctrcle, and 

consequently not generally applicable to real functions $(:) which, like 

rational functions, are continuous in an extended sense on the projectively 

closed real axis I = {all real numbers :} U {m}. The usual change of varia-
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bles is the Stereographic Projection c,1g. 1) y = 2 arctan(zJ mod 211' which maps the 

projectively closed real axis I onto the circle C = { -,r ~ (y mod 211') < 11'}, 

and transforms $(:) into ~(y) = 2 arctan(t(tan y/2)) mod 2,r which must 

map C continuously to itself whenever $ is a rational function or, more 

generally, whenever either t(z) is continuous or 1/,(z) is continuous at 

every real z, and either $(1/wJ or 1/,(l/wJ is continuous at w • O. 

But tp may lack a fixed point in C; take for example 1'J(y) = y+l mod 211', 

the transform of the rational function t(z) = tan(!+arctan zJ 

• (z + tan ·½> / (1 - z tan½> , which has neither cycle nor fixed point. Another 

violator of the No Swap theorem is ~(y) = -2y mod 211', the transform. of 

$(z) = 2:J:/(z2-1), which also swaps no two distinct points but does have 

three repulsive fixed points to which iteration converges only from a count

able set of starting points. A final example t(z) = z(:+2)/((1-z)(:2+2=+2)) 

never swaps two distinct points and has just one fixed point to which the 

iteration =n+l • t(zn) converges from most starting points, but the itera

tion defies the No Swap theorem by cycling through one set of eleven points 

starting at : 0 • -3.2956364 ... and through another eleven starting at 

: 0 ~ -4.2078536 ... (there are no shorter cycles). See Fig. 2. 
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Two useful special circumstances are known when the ~o Swap theorem may 

be applied to a continuous map ~ of the circle C to itself. One we have 

already discussed is the case when 1'J(C) is a proper sub-arc of C in which 

case C may be transformed into a line segment on which ~ is continuous 

by cutting C at any point not in ,rcJ. Such a case is exemplified by a 

rational function ,tz) = (z2m-l)/(z2rn+1-l) with m ~ 1 that maps the 

projectively closed real axis into the interval -1 < t(z) ~ 1 without 

swapping two distinct points, whence the No Swap theorem implies that 

zn+l • $(zn) converges from any : 0• The second special circumstance arises 

when w has in C at least one fixed point n • ~(nJ at which cutting C 

yields a line segment on which w remains continuous and therefore entitled 

to the No Swap theorem. Such a circumstance arises whenever w never winds 

past n, i.e. whenever the equation w(y) • n has no solution y other 

than perhaps y • n across which the expression 1'J(y) - n changes sign. 

One example is the rational function ,rz) = (:3+1)/(z-1) 2 whose unique 

fixed point m is approached from just one side as z + l; consequently 

the projectively closed real axis may be cut at m to produce the affinely 

closed real axis {-= i. z ~ -t-co} which , maps "continuously" to itself in a 

way which justifies the inference from the No Swap theorem that =n+l • t(:n) 
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+ +co from every real : 0. Another rational example is t(z) = (z27n-
1-l)/(:2m-1) 

with m ~ 1 which can be shown to map the projectively closed real axis one

to-one onto itself without swapping two points; moreover cf> has two fixed 

points, an attractive one between 2-l/(2m-l) and 2-l/(2m- 'J/2) and a 

repulsive one between -2 and -2l/Cm+'J/2>. After the circle is cut at the 

latter fixed point the No Swap theorem implies that =n+l • cf)(zn) will con

verge through the extended reals (possibly including one z • m and the next n 

zn+l • 0) to the attractive fixed point from every starting point z 0 except 

the repulsive fixed point. This example and the one before last will reappear 

in §5. 



Finally, note that no generality is gained by allowing the closed inter

val I mapped continuously to itself by , to be a subset of the real axis 

instead of all of it, because , could be defined outside I by extending 

f's graph horizontally from its ends. I is significant only in ao far as 

it represents that part of f's domain in which the Ro Swap conditi011 is· 

satisfied, outside which the condition might be violated. I's significance 

will become clearer in §4 during the discussion of catchment basins. 

Here ends the digression concerning infinite intervals. Henceforth 

until §5 assume I is a closed finite interval mapped continuously to itself 

by ,. 

§2. Two Conditions Equivalent to the No Swap Condition 

The first such equivalent condition to be considered is 

The No Separation Condition: No z in I can strictly separate ♦ (z) from 

♦ (♦ (z)); i.e. either ~(♦ (z)) ~ z ~ ♦(z) or ♦ (z) ~ z ~ ♦ (♦ (z)) in 

I implies ♦ (♦ (z)J • z • ♦ (a). 

Since the No Swap condition is an obvious implication of the No Separation 

condition, our task is to verify that the former condition implies the latter, 

so assume that the No Separation condition is violated by, say, 

f(♦ (z)J < z < ♦ (z) in I and we shall exhibit a consequent violator v of 

the No Swap condition. See Fig. 3. 

Since ♦ (:c) -,:c takes opposite signs at :c • . ♦ (a) and at :c • a, (f>(:c) 

must have a fixed point y • ,(y) strictly between a and f(aJ. Similarly, 

as :c runs down from z to I's left-hand end-point, ♦ ((f>(:c)) -:c runs from 

a negative value at :c • a to a non-negative value ( cp((f>(:c)) maps I's left

hand end-point into 1), so ♦ (cp(:c)) must have a first fixed point 

v = ♦ (♦ (v)) < a; by "first" is meant that ,P(cp(:c)) - :c < 0 for v < :c < z. 
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Can v • <f>(v)? No; otherwise <f>(:c) -y would be positive at .:c • a and nega

tive at .:c • v, in which case we should have ,<u) - y • 0 at some u 

strictly between v and a and then <t>(,(u)) -u • <f>(y) -u • y -u > 0 con

tradicting our choice of v as the first value of : < a for which 

<f>(,(:)) -= ~ O. Therefore v • ,r,(v)J + <f>(v) violates the No Swap 

condition. a 

The second condition equivalent to the No Swap condition will be called 

The No Crossover Condition: If ,rvJ ~ u ~ v ~ ,ruJ in I then 

<f>(v) • u • v • <f>(u) too. 

Since this condition obviously implies the previous two, our task now is to 

verify that they imply this one, which we shall do by inferring from a viola

tion <f>(v) < u < v < <f>(u) of the No Crossover condition that there exists a 

violation a of the No Separation condition. See Fig. 4. 

Consider <f>(<f>(v)). If <f>(<f>(v)) ~ v then v violates the No Separation 

condition. Otherwise, if <f>(<f)(v)) < v, we plot <f)(:J -v as : runs through 

<f>(v) ~ :c ~ u. Since <f)(.:cJ - v < 0 at .:c • <;(v) and <f>(:c) - v > 0 at : • u 

there must exist some a in <f>(v) <a< u with <f)(aJ • v, and this a 

violates the No Separation condition because 

<f)(<f>(a)) • <f>(v) <a< u < v • <f>(a) • □ 

We shall use the No Crossover condition in lieu of the No Swap condition 

to prove inferences from the latter. 
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§3. The One-Sided Condition 

We return now to the iteration :n+l • *(:n) and show that the No Swap 

condition is equivalent to another condition first articulated by Sarkovsldl 

(1965) and used also by Bashurov and Ogibin (1966, Lemma 2). 

The One-Sided Condition: Whenever : 1 • ,<:0) ~ : 0 in I all subsequent 

iterates =n+l • ,r:n) also differ from : 0 and lie on the same side 

of : 0 as does :
1

. 

Since the No Separation condition is an obvious inference from the One-Sided 

condition, our task is to infer the converse by assuming that : 0 violates 

the One-Sided condition and deducing that some subsequent iterates violate 

the No Crossover condition. 

Assume for definiteness that : 1 • *(:0) > : 0 but that some subsequent 

iterate z < : 0• We may take z to be the first such iterate and then m- m 

have : 1,:2, ... ,=m-l all greater than : 0 . Next let :k be the first of 

these iterates to satisfy :k > z 1; 
- m-

now : < =o < :k 1 <: 1 < :k, m- - - m- -

which exhibits =k-l and =m-l as violators of the No Crossover condition. 

□ 

The One-Sided condition has been interpreted above as a property which 

an iterating function ,r:J can possess if and only if $ also satisfies 

the No Swap condition. But the One-Sided condition can also be regarded as 

a property of sequences irrespective of their genesis: 

The One-Sided Condition is satisfied by the sequence {:0,:1,:2, .•• } 

whenever each member =n of the sequence lies on the same side of all sub-

sequent members =n+m' m > O; i.e. each = satisfies n 

= < = n n-+m for all m > O, 

or = > = n n+m for all m > O, 

or else =n • =n-+m for all m > O. 
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In particular, if the sequence =n+l • ,(:n) is generated by a One-Sided 

iterating function ,(:) then the sequence must be One-sided too. Such a 

sequence is the subject of the following lemma. 

No-Man's Land Lemna: If the sequence {:0,:1,:2, ... } satisfies the One

Sided condition, and if it is not ultimately monotonic*, then the 

sequence can be partitioned into two disjoint infinite subsequences 

one of which increases strictly monotonically to a limi.t : while 

the other decreases strictly mono~onically to a limit z, and 

Proof: The increasing subsequence consists of those =n which satisfy 

=n < =n+l and the decreasing subsequence consists of those =n which 

satisfy =n > =n+l· For instance, if =m is a local maximum and =i the 

subsequent local minimum in the sequence, so that 

(m < Z) 

then =m-l and =z are consecutive members of the ascending subsequence 

(note that =m-l < =z because of the One-Sided condition) while 

=m,=m+i•···,=z-l are consecutive members of the descending subsequence. 

Evidently each subsequence is strictly monotonic and bounded by the other, 

and consequently each subsequence converges to a limit which separates it 

from the other. If the limits : and : are different they are separated 

by a no-man's land which no member =n of the sequence may enter. □ 

* "ultimately monotonic" means that either :n+l ~=n for all sufficiently 

large n or else : +l < z for all sufficiently large n. 
n - n 
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§4. Proof of the No Swap Theorem and some Applications 

Theorem: Suppose I is a closed finite interval mapped continuously to 

itself by $. Then the iteration zn+l • ,rzn) converges in I from 

every : 0 in I if and only if any of the following equivalent condi

tions is satisfied. 

The No Swao Condition: If z • ,r,<zJJ in I then z • ,rzJ. 
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The No Separation Condition: Either ,r,raJJ ~a~ ,<aJ or ,<aJ ~a~ ,<,<aJJ 

in I implies $(,(a))• z • ,fa). 

The No Crossover Condition: If ,rvJ ~ u ~ v ~ ,ruJ in I then 

$(VJ• U • V • ,(u). 

The One-Sided Condition: Whenever z1 • ,rz0J + : 0 in I all subsequent 

iterates zn+l • $(zn) also differ from z 0 and lie on the same side 

of z 0 as does z1. 

Proof: The equivalence of these four conditions has already been 

established, and the necessity of the No Swap condition is evident since 

otherwise the iteration could cycle on two distinct points of I. All that 

is left is to show that these conditions suffice to ensure convergence. 

The sequence of iterates z must be a One-Sided sequence. Therefore, n 
according to the No-Man's Land lemma, it is either ultimately monotonic and 

therefore convergent in I, or else it can be partitioned into two disjoint 

infinite subsequences, one ascending to a limit : . and the other descending 

to a limit i > i. Is i > :? No. Those iterates z which belong to n 
A 

the descending subsequence that converges to z are followed by iterates 

zn+l • $(zn) which must, because , is continuous, converge to ,(z); 

and yet at least some of those iterates zn+l belong to the ascending 
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subsequence and must converge also to z. The1:efore z ~ ♦ (z), and simi-
V A 

larly : • cf)(:J. Finally the No Swap condition implies z • z and the 
V A 

theorem is proved; z + z • z. n 
□ 

The No Swap theorem may be applied in several ways to decide whether 

an iteration zn+l • 4>(:,:n) converges. One way is graphical; the graphs of 

y • cf)(:) and z • ♦ (y) are mirror images by reflection in the mirror 

y • z, and only if those graphs intersect nowhere but on the mirror is the 

Ro Swap condition satisfied by 4>. this technique was used to settle a 

conjecture by Stepleman (1975, p. 894) that 

z +l • :,: (s;n(l/: J -1/8) n n n 
(sin(radiansJ) 

would converge to zero from all : 0, or at least from all sufficiently 

The transformation X • 180/(~z) converts the iteration into 
n n 

an equivalent form 

X +l • X /(sin(X J -1/8) n n n 
(sinfdegreesJ) 

which is easier to deal with both numerically and graphically. Then we 

find cycles x2 • x0 ; x1 in abundance, for instance x0 • 1355.S094° .. . 

and x1 • -1209.865° ... , or x0 • 1723.154° ... and x1 • -1S68.269° ... , 

so Stepleman's conjecture is false. But his iteration appears always to 

converge in the presence of roundoff. 

Another way to apply.the No_Swap theorem is algebraic, applicable when 

♦(z) is a rational function. Then 1 + (♦(♦ (:,:)) - ♦ ( z)) / (♦ (:J -:) is also 

a rational function, and only if it has no zeros in l which are not also 

zeros of ♦ (z) - :c is the No Swap condition satisfied by ♦- Therefore the 

No Swap condition can be tested by removing some common divisors from cer

tain polynomials and then invoking Sturm sequences to decide whether the 
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polynomials change sign in I. The condition $(1) C 1 can also be tested 

by using Sturm sequences to see whether certain polynomials change sign in 

1. The details have been worked out by R.J. Fateman (1977), who has written 

a computer program that runs on M. I. T. 's MACSYMA system and realizes the 

following assertion: 

When $(:) is a rational function the question, whether =n+l • 9(:n) 

converges in I from every : 0 in 1, can be decided by a finite 

number of rational arithmetic operations without solving any poly

nomial equations. 

Other applications of the No Swap theorem include easy validation of 

conditions sufficient for convergence in I from every : 0, three examples 

of which are these: 

i) l$(u) -$(v) I < lu-vl for all distinct u and v in 1 separated 

by the (it turns out to be unique) fixed point of $ in I's 

interior. 

ii) -1 < ($(u) - $(v))/(u-v) for all distinct u and v in I 

separated by one of$ 's fixed points. 

iii) $ has in I just one fixed point that divides I into at most 

two sub-intervals at least one of which is mapped to itself by $. 

In all three cases I is presumed to be mapped continuously to itself 

by $. 

The reader is asked to verify that each of the foregoing three condi

tions implies the No Swap condition, keeping in mind that f must bave a 

fixed point between any two points of I that f swaps. Although the 

three conditions refer to ,•s fixed point(s) the conditions do not require 

that any fixed point's location be known; for example, if * is differen

tiable one of the inequalities 1,'I < 1 or $' > -1 or *' > 0 respec

tively would suffice. 
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A troublesome problem encountered frequently in practice arises when 

conditions somewhat like those above are known to be satisfied by , in 

some interval J which is not known to be mapped to itself by ,. This 

problem, locating a suitable sub-interval mapped into itself, is so impor

tant that we digress here to discuss how the Ro Swap theorem can abed light 

on it. 

First some terminology. The interval J is the domain of a continuous 

real function f(z). A sub-interval X of J is called an inte.?'VaZ 

attracted to ; whenever from every z 0 in X the iteration zn+l • f(zn) 

converges to the fixed point t • $(;) even though perhaps some iterates 

may lie outside X (but all lie in J); we do not insist that ,(XJ CX. 

The fixed point t • ,rt) is called attractive whenever it belongs to some 

non-degenera.te interval (one that contains interior points) attracted to t. 

The catchment basin X(;) belonging to an attractive fixed point t is 

the largest interval X containing t and attracted to ;. (When t is 

an end-point of its catchment basin most other writers would call t a 

one-sided attractive fixed point and reserve the unmodified term "attractive 

fixed point" for one which lies in its catchment basin's interior.) One 

property of X(;) is that 

this is true because X(t) is just that connected component containing t 

of the union of all intervals attracted to t, while f(X(t)) is one of 

the intervals attracted to and containing t in that union. That property 

does not characterize X{t) because other larger and smaller intervals 

possess the same property; given any sub-interval K CX(;), the smallest 

sub-interval X:, K with t e $(X) C X turns out to be 
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X • (convex hull({E;} U KJ Ucf,{convex hull({E;} UKJ J _C X(E;J 

as can be verified easily with the aid of the One-Sided condition valid 

throughout X(E;). (Cf. Theorem 2 of Bashurov and Ogibin (1966).) Conse

quently the problem of locating a suitable subinterval X mapped into 

itself in X ( E;) is reduced to the problem of deciding when a sub-interval 

K lies between the ends of X(E;J; the crucial questi011 is just 

Where in J are the ends of E;'s catchment basin X(E;)? 

Lemna: The closure of X(E;J is the largest closed interval containing E; 

whose every interior point : satisfies 

1) : lies inside J, and 

2) t(z) lies in J, and 

3) (t(t(cp(z)JJ - E;)/(cp(z) - E;) < 1 if cp(z) p E;. 

Consequently the ends of X(E;J lie among those points z which satisfy 

-1) z is an end of J, or 

-2) t(:) is an end of J, or 

-3) t(cp(cp(:))) • cp(:). 

Proo·f: X(E;) can contain no fixed point other than E; of ,f,(:) nor 

of cp(,t,(z)) nor of ,f,(cp(cp(z))J ... ; on the contrary the One-Sided condition 

satisfied by cp throughout X(E;J implies that both of cp(cp(:)) and 

cp(cp(,f,(:))) must lie 011 strictly the sam~ side of ,f,(:) as does t provided 

cp(:).; E;, and hence 3) is satisfied. Moreover each end of X(E;) which is 

not an end of J cannot be mapped by cp into X(E;)'s interior, but must 

be mapped onto either itself or the other end of X(E;), and hence must 

satisfy -2) or -3). 

This is a convenient place to tabulate the six ways by which the ends 

of ;'s catchment basin X(E;) may be recognized. We shall denote X(E;)'s 
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ends by n and t, not necessarily both different from. t. 

Cases 1-3: ta $(t) is a fixed point at one end of X(t) whose other 

end n is 

Case 1: an end n of J with f(nJ in X(tJ's interior, or 

Case 2: another fixed point n • f(nJ pt, or 

Case 3: mapped onto t • f(nJ. 

These three cases are the only ones which allow t to lie at one end Ct) 

of X(t). 

cases 4-5: t lies strictly inside the closed interval X(t) one of whose 

ends, t, is an end of J with f(t) in X(tJ's interior and the 

other end n is 

Case 4: also an end n of J with tfnJ in X(t)'s interior, or 

Case 5: mapped onto the first end t • tfnJ. 

Case 6: t lies strictly inside the open interval X(t) whose ends n • $(tJ 

and ~ • $(nJ are swapped by $. 

The lemma's proof will conclude with demonstrations appropriate to the 

six cases that X(tJ's closure cannot be a proper sub-interval of a larger 

intenal X whose every interior point satisfies 1), 2) and 3). Each case 

will be ruled out either on the grounds that any end of X(t) interior to 

X would then violate 1), 2) or 3) or else because some open neighborhood 

of an end of X(t) inside X would then be attracted to t contrary to 

X(tJ's definition as the largest interval containing t attracted to t. 

Suppose, then, that X(t)'s closure is a proper sub-interval of a 

larger interval X whose every interior point z (including at least one 

of X(t)'s ends) satisfies l), 2) and 3). Case 4 is ruled out by 1), 

case 6 by 3), and case 5 by the observation that any sufficiently small 

open neighborhood of n inside X that satisfies 2) must be mapped by $ 
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into X(;) and therefore ought to belong to X(;). Case 1 is ruled out 

either by 1) (so n is not inside X) or 3) unless C • ;; and case 2 

persists only if one of the fixed points at the end of X(;), say n, is 

an end of X too while the other end t • t is inside X; and case 3 

persists only if t •; is inside X too. In summary, the persistent 

cases are now these (see Fig. 5): 

Cases 1' & 2': ; • ♦ (;) lies at one end of X(;) and inside X, but the 

other end n of X(t) is an end of X too. 

Case 3': ; • (f>(;) lies at one end of X(;J, the other end n is mapped 

onto the first ; • ~(nJ, and at least one of these ends lies inside X. 

To dispose of these remaining cases introduce Y = 4>(X) UX(;). Evi

dently Y f X(;)'s closure; otherwise an open neighborhood around one of 

X(;J's ends would be mapped into X(;) and would consequently be attracted 

to ; contradicting X(;J's maximality. In fact, every open neighborhood 

around one of X(;)'s ends inside X must be mapped by ♦ onto an interval 

part of which lies outside X(;J's closure, and since each end of X(;) 

inside X is ~pped onto ; we conclude that Y contains some open 

neighborhood N around ;. Moreover, every y;; inside that neighborhood 

N must satisfy 

3') 
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. either because y lies in X(;) where ♦ is One-$ided or because y • ♦ {:) • 

for some : in X's interior where 3) is satisfied. If N be chosen 

small enough to keep 4>(4>(y)) no farther from ; • ♦ (♦ (;)) than n, 

inequality 3') above will force the iteration :n+2 • 4>(4>(:n)) to converge 

to ; from any =a in N either monotonically through N outside X(;) 
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or ultimately monotonically within X(;). (Note that O ~ <,(:) - t) / (x-t) < 1 

for all x inside X(;) in all three cases l', 2' and 3' because then , 

has no fixed point inside X(tJ.) Since , is continuous at t the itera

tion xn+l • ,(xn) must converge to t too, and from any x 0 in N, 

contradicting X(t)'s max:lmality again. a 

The reader may well wonder why the lemma's condition 3) was not written 

in the simpler form 

3') 

One reason is that the lemma so modified could be contradicted by a counter

example falling into case 3' in the proof; take t • O, ,(x) • x(l-x), 

n m 1, and the positive real axis for X in which 3') is satisfied. Ano .. 

ther reason is that conditions like 3) have already appeared in the litera

ture; one instance is 

Theorem 3.2 of Stepleman (1975, p. 891): Suppose ,(x) is continuous 

throughout some interval containing in its interior a fixed point 

~•,ft) but no other solution x of ,(x) • t; then t is a point 

of (two-sided) attraction for the iteration =n+l • ,(xn) if and 

only if 

throughout some open neighborhood around t. 

(The hypothesis that ,(x) p; whenever : pt in the interval camlot he 

dropped without abandoning the theorem to counter-examples which answer 

negatively Stepleman's "open question" following his Example 3.3 on p. 891. 

Incidentally, that example is wrong.) 
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None the less, the lemma is defective for practical _purposes in so 

far as it sacrifices Applicability to Elegance. Equation -3) could better 

by replaced by the pair 

-3') 

and inequality 3) by the pair 

3") and 

that attest to the One-Sidedness of cl> in X(t). The reader is asked to 

verify, by retracing its proof, the truth of the lemma when 3) and -3) are 

replaced respectively by 3") and -3'), noting that when 3") is satisfied 

throughout a non-degenerate interval containing f; so too 1111st 

(4>(:e) - f;) / (:e-f;) < 1 at every :e p f; in that interval. Replacing -3) by 

-3') improves the lemma because the latter's solution-set is never larger 

and often smaller than the former's, and therefore -3') usually costs less 

to solve than -3). And inequalities 3") cost less·to test than 3) partly 

because 4>(4>(4>{:e))) is such a mess. Finally, the modified lemma is accom

panied by convergence theorems, analogous to Stepleman's but simpler, of 

which the following is an example. 

Corollary: t • cl>(tJ is an attractive fixed point of the continuous real 

function 4> if and only if 3") is satisfied throughout some non

degenerate interval containing t; and t is attractive if it lies 

strictly inside an interval throughout which 3")'s first inequality 

is satisfied. 

Proof: 3") is necessary because cl> must be One-Sided throughout X(t). 

That 3") is sufficient too will follow after we find an interval l with 
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t e q,(I) CI throughout which (<f,(:r:J-t)/(:r:-;) < 1 if :r: Pt. Then ct, 

will have no fixed point in 1 except t and will satisfy the No Swap 

condition, and the iteration :r:n+l • <t,(zn) will have to converge to t 

from every :r:0 inside I. 

Let X be the non-degenerate interval containing t mentioned 1n the 

corollary and partition X into two sub-intervals •hich have only t 111 

common; say X • '\ U')t where '\ = {z ~ t in X} and \. = {z ~ t in X} 

and at least one of XL or ~ has interior points. l")'s first inequality, 

valid inside \, and ~, prevents any point of X except t from being 

a fixed point of ct,; consequently (<f,(z) - t)/(z-t) - 1 cannot change sign 

inside XL or XR and must be negative to avoid contradicting 3")'s first 

inequality in some neighborhood of ;. Thus, if X :> <t,(X), or if non

degenerate XL:> <t,(XLJ or XR :> q,(XR), the choice of I that completes 

the proof is obvious. Otherwise there are two cases to consider. 

The boundary case: Either XL• {t} or XR • {t}. Say the fonier; then 

; lies at one end of the non-degenerate interval XR but <f,(XRJ C ~• 

However, <f,(')tJ ~ (sup :r: in\.) because (<f,(z) - t)/(z-t) < 1 inside 

-\, _and also q,(cp(XRJ J ~ (sup z in XR) because of 3") 's first 

inequality. On the other hand, cp(q,(~)) ~ (inf z in <f,(\.J) because 

of 3") 's second inequality, which implies (<t,(z) - t) / (z-t) < 1 inside 
\ 

q,(XR). Choose I • _4>(')tJ U-\ to complete the proof. 

The interior case: t lies inside X, and only the first of l")'s inequali

ties is assumed by hypothesis to hold inside ~ and -\_. We have 

already dealt with the possibilities <t,(X) ,S X, <t,(XL) C XL or 

<t,(-"R,) C ~; the only possibility left that is compatible with the 

inequality (<f,(:r:) - t) / (:r:-;) < 1 valid inside ~ and -"R_ is either 

'\ C q,(XR) or XR C $(\.)· Say the former; then let the non-degenerate 
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-1 interval Y be that component of 4> (XL) n-'<a containing t, and 

let l = XL UY • q,(Y) UY C X, observing that 4>(1) ~ 1 because of 

3")'s first inequality valid inside Y. □ 

Here ends the discussion of the No Swap theroem for arbitrary continuous 

iterating functions ,. The rest of the paper concerns Newton's and the 

Secant iterations for solving a1:1 equation f(x) • 0. Contrary appearances 

notwithstanding, Newton's iteration :n+l • : - f(: ) If'(: ) 1s not just a n n n 

special case of the previously studied iteration :n+l • 4>(:n)• 

Proposition: Newton's iteration is ubiquitous; if tfx) maps the finite 

closed interval I continuously into itself, and if 4> bas just one 

fixed point ~ • 4>(z;J in I, then ,p(x) • x - f(x) If' (x) for some 

function f which is continuous in I, vanishes only at t in I, 

and is continuously differentiable in I except possibly at z;. 

In fact f(:r;) • c exp raz.,, (!J- t(wJ) where the constants c ~ 0 and the 

lower limit of integration are assigned different values for : on one 

side of t than on the other. The hypotheses concerning 4> ensure that 

x - t(x) has always the same sign as x - t, so the integral is properly 

defined for all x + t in I and f(z) + 0 as z + t. If f has non

zero one-sided derivatives at : • t the constants may be altered if 

necessary to make f continuously differentiable at : • z; too. □ 

More generally, the fixed points of tf x) • :c - f(:c) If'(:) that are 

not zeros of f turn out to be places where f'(z) • m. Rather than 

digress into generalities, let us consider the following useful application 

of the No Swap theorem to Newton's iteration. 
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Suppose f(z) is a rational function whose poles and zeros are all 

real, simple, and interlace, with one pole at z • m. Such a function has 
n 

the form f(z) • c(z - B- l w ./ (:-,r .) ) 
1 1, 1, 

with c + 0 and all w. > 0 and 
1, 

1r1 < 1r2 < ••• < ,rn; or it may have the form 

f(:J • det(:t-A)/det(:l-A) 

where A is an herm.:ltian matrix, A is obtained by striking off A's last 

row and column, and the l 's are identity matrices. Such functions f play 

important roles during, for example, the calculation of eigenvalues of 

hermitian matrices A; cf. Y. Saad (1974). Now we shall see why Newton's 

iteration almost always converges to a zero of f; we shall find that con

vergence to a zero can be precluded only if : 0 is one of a countable 

sparse set of starting points from which the iteration : +l • : - f(: J If'(: ) n n n n 

terminates at a finite pole ,ri of f after finitely many steps. 

n+l n 
Proof: Write f(z) = c II (:-l; .) /Il(z-,r .) where 

1 J 1 J 
t 1 < 1r1 < t 2 < 1r2 < ••• < tn < ,rn < ~n+l displays the interlacing poles ,rj 

and zeros z;. of f. 
1, 

Useful equivalent forms for f are 

n n+l 
f(:c) - c(:-s- I w./(:-1r.)) - cl r v./(:c-r_.) 

1 1, 1, 1 i. 1, 

where 
n n+l 

s - l 1r • - I r. . , 
1 J 1 J 

j•l ,r .-,; • n r;. -ff. 
n J i. ( ) ( ) II i.+ l J 0 (&) • - --- ff .-z; . r; . -,r . _......,_ > , 

J • 1 ff .-,r. J J J+l J ·+1 ,r .-'ff'. i.• J 1, • J 1, J 

j-1 c:.-ir. n+l ,r. ct. n+l 
• v . • II J i. II 1.- J > 0 and I v . • 1. Co-rresponding forms for 

J i•l tj-ti j+l l;i-z;;j 1 J 

the iterating function 4'(:) = : - f(:) If'(:) are 
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from which follow immediately the conclusions thatthera~ional function ~(:) 

is continuous for all real :, ~a fixed points and n. • ~(n.J, 
J J 

and maps the whole real axis onto the interval t 1 ~ ()(:) ~ r;n+i- Conse

quently Newton's iteration =n+l • ~(:n) will converge from every real : 0 

if and only if 4' swaps no two distinct values : and y. But if ~ did 

swap them we could rearrange the equations : • ♦(y) and y • ♦ (:), subtract, 
n+l 

divide out (:r:-y), and infer that I v. ( (:-r; .)-2 + (:-r; .)-1 (y-t .)-l + (y-t .)-2) 
1 J J J J J 

• 0 when in fact it must be positive. Therefore the iteration 11USt converge 

to one of t' s fixed points. Since each zero r; . is a strongly attractive 
J 

fixed point (t)'(tjJ • 0) but each pole vj is strongly repulsive {t)'(vj) • 2), 

convergence to a pole can occur only "by accident" after finitely many 

iterations, and even then rounding errors are likely to intervene in our 

favour and deflect the iteration to converge to an attractive fixed point, 

a zero of f. □ 
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PART II 

§5. Newton's and the Secant Iterations 

I is again a closed finite interval in which we now seek a zero t 

of a real function f(:J that is continuous in I and continuously once 

differentiable too except possibly at its zero t. The search for C begins 

at one or two starting approximations : 0 and : 1 in I and att~~• to 

improve them via one of the following iterations; 

Newton's for n • 0,1,2,3, ... or 

Secant = ~i • S(: ,: 1J for n • 1,2,3,4, .. . n"T"' n n-

where, as illustrated in Figs. 6 and 7, 

N(:J = : - f(:J If' (:J if f(:J P O , 

=: if f(:J • 0 no matter what happens to f'(:) , 

S(:,y) = :-f(:)(:z:-y)/(f(:)-f(y)) = S(y,:z:) if y P: and f(:) ii O, 

if y •: or f(z) • 0. 

Whether either iteration converges, and which iteration is the better, are 

important questions without simple answers; but the following theorem sheds 

some light upon them. 

Theorem: If N(:) is continuous in I, and if Newton's iteration converges 

in I from every starting point : 0 in I, and provided f not 

merely vanishes but actually reverses sign across its zero t in I, 

then the Secant iteration also converges in I from every pair of 
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starting points : 0 and : 1 in I. • 

Before embarking upon the theorem's proof we shall digress first to discuss 

the almost superfluous continuity requirement upon N, second to expose 



• 
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some of the Secant iteration's history, and third to exp~ore some examples. 

When N is continuous in I then, for reasons exposed in §7 and §9, 

the theorem's hypotheses imply that S is continuous too in I x I. ~s 

is the nomal state of affairs and arises, for example, when f is twice 

differentiable in I and f" reverses sign therein only finitely often 

(see §S's corollary's proof). However, even if f is infinitely differen

tiable in I, N can be discontinuous in I; an example is given in §7. 

N can be discontinuous only at r;, and then only if f' takes values 

arbitrarily close to zero in the neighborhood of r;. Despite this discon

tinuity of N, if it occurs, the theorem above perseveres nearly unchanged 

as follows. 

Theorem: If Newton's iteration generates from every z
0 

in 1 a sequence 

of iterates {z} of which some subsequence converges to r;, and n 

provided f not merely vanishes but actually reverses sign across 

its zero r; in I, then the Secant iteration also generates from 

every z 0 and z1 in I a sequence of iterates of which some sub

sequence converges to r;. 

This.statement of the Theorem includes the previous version above for 

·reasons exposed in §8 where conditions necessary and sufficient for conver

gence of all Newton iterates or a subsequence of them are exlu.bited. 

The possible discontinuity of N complicates proofs but can have no 

practical consequences if, as is customary in well-designed computer programs, 

two criteria are used to decide when to terminate an iteration designed to 

calculate a zero r; of f. Either stop when f(:n} is negligible, and 

then accept =n as the approximation to r;; or stop when several successive 

iterates ... ,z 2,: 1,z differ from each other negligibly and the values n- n- n 
... ,f (z 

2
J ,f(z 

1
; ,f(z ) 

n- n- n are not all of.the same sign, and then accept z . n 
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These criteria are equally applicable when only a subsequence of the 

iterates converges to t. Bence, for practical purposes the theorem says 

roughly that whenever Newton's iteration must succeed in finding a zero t 

at which f reverses sign, so must the Secant iteration succeed. 

Compared with Newton's iteration, the Secant iteration bas a apa~se 

literature. For a long time the Secant iteration : ..... 1 • S(: ,: 1J was n-,- n n-

not distinguished from the BEGULA PAI.SI :n+l • S(:n,:0), a far slower 

procedure. Consequently numerical analysis texts used to give it short 

shrift, favouring Newton's iteration instead; for instance take the volte-

face between the first and second editions of ''Modern Computing Methods" 

(1957 and 1961). The Secant iteration was first used on the earliest elec

tronic computers because their users calculated that a simpler (no need to 

compute a derivative) but possibly slow method executed on an electronic 

computer will usually yield a correct answer sooner than a complicated but 

faster (fewer iterations) method executed by hand. The first person to 

realize that both Newton's and the.Secant iterations run at comparable speeds 

when both are executed on the same computer appears to have been David Wheeler 

who (according to Wilkes, 1966) modified the Secant iteration cleverly to 

serve as a fast general-purpose zero-finder on one of the first electronic 

computers, EDSAC I at Cambridge; see program 12 in Wilkes, Wheeler and Gill 

(1951). We shall not digress into Wheeler's method beyond listing its order 

of convergence 3113 • 1.442 ... published by Wilkinson (1967) and by Dowell 
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and Jarratt (1971 - what they call "the Illinois Algorithm" is the ILLIAC I 

program transcribed from Wheeler's after he visi~ed the University of Illinois 

in the early 1950s). See also Dahlquist, Bjorck and Anderson (1974, pp. 231-3) . 

Wheeler's program is still widely used, for example as program STD14B distri

buted with the Hewlett-Packard shirt-pocket calculator BP-65 (1974). Better 

programs, faster, more reliable and, alas, more complicated, have been 



devised recently by Brent (1973) and by Bus and Dekker (1974). 

Most of the Secant iteration's literature dwells upon its local conver

gence properties. For instance, any iteration has an order of convergence 

defined as 

lim inf (-lnlz -tl>l/m > 1; 
z +l; m -
m 

the greater its order the faster its convergence. In the usual case when f 

is a smooth non-linear function with a simple zero t, i.e. f("f;) • 0 ,, f' (t) 

and_ f"(t.) P 0, Regula Falsi has order 1, Newton's iteration 2, and 

the Secant iteration (1 + Ts'> /2 • 1. 618... . This last number, first 

derived by Bachmann (1954), does not imply that the Secant iteration is 

3S 

slower than Newton's; on the contrary, as pointed out by Ostrowski (1960 et seq.), 

by Traub (1964), and (briefly) by Dahlquist, Bjorck and Anderson (1974), 

the Secant iteration is usually the faster unless the time consumed com-

puti~g f'(z) adds less than half to f(z)'s computation. 

Conditions sufficient to ensure the Secant iteration's convergence are 

found in survey texts like Ostrowski's, Traub's or Ortega and Rheinboldt's, 

and summarized in Householder (1970) or Dahlquist, Bjorck and Anderson (1974). 

Characteristic of all such sufficient conditions in the literature known to 

this writer is that they also suffice to ensure Newton's iteration's conver

gence. This characteristic might suggest that Newton's iteration converges 

whenever the Secant iteration does, but the facts are contrariwise as stated 

in the Theorem above and illustrated by our first example A below. 

The following five examples A to E all have only f(0) • 0, so t • O, 

and either f(-z) = -f(z) or else f(-z) = f(z). Moreover, f is( everywhere 

at least once continuously differentiable. 

• 



• 

• 

• 

Example A: f(z) = 23:c - 10:c
3 + 3=

5 • 

Despite that f(z) is strictly monotone increasing for all z, and despite 

that the Secant iteration converges to t from every real : 0 and : 1 , 

Newton's iteration will converge from : 0 if 1:01 < {23/27 • .9229S8207 ... 

but alternates with zn • (-l)n:0 if : 0 • t/23/27 . Worse, if 

/23121 < =o < 1.06977829 ... then n (-1) z + 1. n 

Example 8: f(z) = :(4 +Is+ l=I) / (1 + (4 + Is') l=IJ . 

Despite that f(z) is strictly monotone increasing for all :, the Secant 
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iteration fails to converge but cycles instead on four points, 

from : 0 • 2 + /s • 4. 23606797 ... , : 1 • l, : 2 • -:0 , : 3 • -:1 , • • • ; 

m 
=n+2m • (-1) =n, 

otherwise 

I conjecture that the Secant iteration converges from almost all starting 

points. Newton's iteration fares worse; it converges provided 

l=ol < ~ E (16 + ,rs - 2/2s + 5615) /11 • .1793S1475 ... , but otherwise diverges 

to a cycle on two points, with (-l)nz + ± (16 + 7/s + u'9s + S6./s) /11 n 

• 5.57564413 ... unless n 
(-1) = - ±! . n . 

The next three examples illustrate what can happen when f vanishes 

at ~ but does not reverse sign, ther.eby vindicating the proviso in the 

Theorem above. The change of sign can be essential for the Secant itera

tion's convergence though irrelevant for Newton's because the latter is 

unchanged when f(z) is replaced by (f(:JI. 

Example C: f(z) = =m+I for integer m ~ l. 

This example's analysis is facilitated by the observation that first 

and secondly 



m m+l where ~(y) = (y -1)/(y -1) has been discussed at the end of §1 above. 

Newton's iteration converges to t • 0 from every : 0. So does the 

Secant iteration when m is even, but when m is odd (then f does not 

reverse sign) the iteration converges from almost all : 0 and : 1. The 

exceptions are first when : 1/:0 coincides with the negative fixed point 

of f, in which case (-l)n:n diverges monotonically to infinity, and 

secondly when :
1
/:

0 
coincides with one of a countable set of values from 

which will follow an =n • 00
, :n+l • -=n-l' :n+2 • =n-ll (m+l) and 

subsequently : +.. + 0 as j + 00 • n 'J 

Newton's iteration converges from every :
0

• The Secant iteration converges 

if : 1: 0 ~ 0 and 1:11 < .365966339 ... but otherwise is likely to tend to 

cycle. One cycle on four points is 

Another is 

and this cycle is stable and attractive with a contraction factor per cycle 

near .278. 

Example E: f(:J = 1.0 - 3/(3+=2) . 

Newton's iteration converges to ~ • 0 2 from any : 0 with : 0 < 9, oscil-

lates with =n • (-l)n:0 if : 0 • ±3, and diverges alternatingly to ±co 

if =~ > 9. 
2 The Secant iteration converges if : 0: 1 ~ 0 and both : 0 < 3 

2 and : 1 < 3 but frequently diverges otherwise, and certainly diverges when 

37 

::~ ~ 9 and =i ~ 9; it can cycle on four points : 0 • /1s + 6/s • S.33070425 ••• , 

=1 • -/2.s - 6/s • -1.25840857 ••• , =2 • -=o, 3!3 • -=1, :n+2m • (-l)m=n· 
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Changing the constant LO in the last example to, _say, 1.000• • •0001 

illustrates how difficult in practice is the problem of determining where a 

function f{z) vanishes when it does not reverse sign. The difficulty is 

not caused entirely by roundoff. For example, even though the values of 

f{z) = (:- (5 - (:- (5-:))))
2 (Do not remove the parentheses!) 

and its derivative must be calculated, on any Borth American or Western 

European elctronic computer, precisely (i.e. with no rounding errors) for 

every z close enough to lj', none of those values of f{z) vanishes 

1 because the value z • 3j" • 3.333333 ... is never represented precisely in 

floating point. Consequently the Theorem's proviso might as well be taken 

for granted in practice. 

§6. Projective Invariance of Newton's and the Secant Iteration 

Projective transformations are those which transform straight lines 

into straight lines. They are pertinent to Newton's and the Secant itera

tions because tangents are transformed into tangents, secants into secants. 

The particular projective transformations useful here map the pair {z,f{z)} 

onto a p~ir {;,~(E:J} in such a way that either both or neither of f(z) 

and ,rtJ are linear functions of their respective arguments, and yet the 

mapping is independent of f and ,. Well-known results from Projective 

Geometry lead to the following formulas. 

Let t • p{z) = (=+S)/(y:+o) with atS- Sy • 1. Bence p{z) is 

invertible; z • p-1 (E;J • (S-tSt)/(yE;-a) or, more symmetrically, 

(y:+o) (a-yE;) • 1 • (a+ S/z) (15 - S/E:). Having transformed the variable : 

into ~ we further construct 
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cf>(t) = f(:r:) I (y:r: + 6) @ :r: • p -l (t) 

• (a- Yt)f((S- ot) / (y;- a)J 

as the corresponding transform of f. Now calculation suffices to verify 

that the transforms of N(:r:) and S(:r:,y) are respectively 

H(t) E t-4>{;)/q,'(t) • p(N(p-1 (t))) and 

Ift,nJ = t-cf><tJCt-n)/Ct<tJ-cf>fnJ) • p(S(p-1(~J ,P-1<nJJJ , 

whence Newton's iteration applied to cf) takes the form ~n+l • B(tn)' the 

Secant iteration is ;n+l • I(;n,;n-lJ. The projective invariance implied 

by these equations can be stated in words as follows. 

Projective Invariance: Let {:r:} be the sequence of iterates generated n 

when either Newton's or the Secant iteration is applied to f(:r:). 

Then the projective transformation 

maps the iterates {:r: } upon the sequence {t • p(:r: )} generated n n n 

respectively by either Newton's iteration from t0 • p(:r:0) or the 

Secant iteration from ;
0 

• p(:r:0) and t1 • p(:r:1J applied to cf)(;J. 

One application of projective invariance is that whatever convergence 

theory pertains to the iterations in finite intervals I may be extended 

with few changes to semi-infinite intervals p(IJ by virtue of an appro-

·priate choice for p. One of those few changes is a nuisance illustrated by 

the example f(:r:J = 1 +exp(-:r:J on the semi-infinite interval O ~ :r: ~ +-; 

both iterations converge to +:o but f(+oo) ~ O. Consequently semi-infinite 

intervals will not be mentioned again.in this paper. 
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A second implication is that natural hypotheses impiying the iterations' 

global convergence should also be projectively invariant. For instance, 

since the second derivative 

any hypotheses about the number of zeros f" has in I, or about. 

sign(ff"J • sign(C,,C,,"J, are invariant provided p(IJ remains an interval. 

Just such hypotheses abound in the literature (cf. Ostrowski (1960 et seq., 

ch. 9 and 10) or Dahlquist, Bjorck and Anderson (1974, p. 22S)) and are 

tantamount to the observation that the convexity of f's graph is a projec

tive invariant implying ultimately steady convergence of both iterations 

provided they do not first escape from I. More about this in §8. 

A third implication of projective invariance, the one most pertinent 

to our proof, is a kind of mean value theorem which relates the two iterat

ing functions N(x) and S(=,y) in a way more general than S(x,z) • N(z). 

Mean Value Lenma: If S(y,a) does not lie between y and a, (i.e. if 

f(y)f(a) > 0), if y; a, and if f is differentiable between y 

and a, ~hen strictly between y and a must lie some t for which 

either S(y,a) • N(t) or f(t) • f'(t) • 0. 

See Fig. 8. 

Proof: A projective transformation could be applied to push w • S(y,a) 

to m while preserving the interval between y and a, but the resulting 

calculat~ons would boil down to what follows. Let tlJ(z) = f(z)/(:-w), and 

observe that the equation w • S(y,a) is equivalent to 

tlJ(y) • w(a) • (f(y)-f(a))/(y-z). Since tlJ(z), like f(z), is differen

tiable between y and a, Rolle's theorem (cf. Apostol (1967)) provides 

that $'(t) • 0 at some t strictly between y and a. That t turns 

out to satisfy either f(t) = f'(t) • 0 or ~ • N(t). □ 
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In other words, just as N(z) • S(z,z) implies tha~ Newton's itera

tion cannot escape from an interval from which the Secant iteration cannot 

escape, the Mean Value lemma implies that the Secant iteration cannot escape 

from an interval from which Newton's iteration cannot escape unless f 

vanishes in that interval without changing sign. This implication will 

become clearer later. 

§7. Inferences from N(IJ c I 

Henceforth we activate two of the hypotheses of the Theorem of §5. 

First, I is a closed finite interval in which f(z) is continuous, and 

continuously once differentiable too except possibly where f vanishes. 

Second, N(z) maps I into itself. We do not yet assume that zn+l • N(zn) 

converges. What do these hypothesestell us about f and N? 

Lemna: f has just one zero t in I, and t divides I into at most 

two sub-intervals inside each_of which f(z) is strongly monotonic 

(i.e. f'(z) cannot vanish inside either sub-interval). 

Proof: At the outset we beg the reader to put up with an abuse of 

language; in the unlikely event that f vanishes throughout a non-degenerate 

sub-interval of 1 we shall count that sub-interval as a single zero t of 

f in I and write "z • t" when we mean": belongs to the interval r;". 

This perversion avoids circumlocution in dealings-with functions that are 

not analytic but merely differentiable . 

The essential hypothesis is that N (I) ,S I. Now f cannot have two 

or more distinct zeros in I because otherwise llolle's theorem would supply 

between two adjacent distinct zeros of f at least one : 0 where 

f'(:0) = 0 + f(:0) whence N(:0) • ~ would escape from I. Neit~er can 

f fail to vanish in I since otherwise f would take non-zero values 
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with like signs at I's ends, whereupon the Secant iteration started from 

I's ends would esc~pe from I to a place whither Newton's iteration, accord

ing to §6's mean value lemma, could escape too. Therefore f does have 

just one zero z; in I. If f were not strongly monotonic strictly 

between z; and either end of I, I would contain some :r:
0 

where 

f'(:r:0) • 0 P f(:r:0) so again N(:r:0) • m would escape from I. □ 

Corollary: No : ~ z; in I can separate z; from N(:J; i.e. 

(N(:,:) -:)/(z;-:) > 0 for every : in I except : • z;. And if Newton's 

iteration =n+l • N(:n) converges from some :
0 

in I it must con

verge to z;, the zero of f in I. 

Proof: (N(:,:) -:r:) I (z;-:) • -f(:,:) I ( (z;-:)f' (:,:}) is continuous and non

vanishing in I strictly between I's ends and z;, and therefore conserves 

the positive sign it enjoys at I's end(s) different from z;. And if 

=m = 1im :r: exists and if N is continuous at =m 
n~ n 

(else :,: • z;) then m 

f(:r: J • 1im f(:r:) • lim(:r: -: )f'(:,: J • O•f'(:r:) • 0 so =m • z;. □ 
m n+c» n n-+m n n+l n m 

The corollary foreshadows some technical arguments, the burden of the 

rest of this section,§7, concerning the continuity of N(:,:) at : • z; where 

f'('{;) has not been assumed to exist. Elsewhere N(:,:) • :r:-f(:r:Jlf'(:r:) is, 

like f(:,:) and f'(:), continuous. But at :,: • ~ we shall infer scarcely 

more than that N(:,:) is Darboux continuous, which means that N assumes 

in every sub-interval around z; all values between those N takes at that 

sub-interval's ends. Darboux continuity is an intermediate-value property 

possessed not only by continuous functions but also, far instance, by deri

vatives even when they are discontinuous. For more details see Bruckner 

and Ceder (1965). 
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The trouble with N is not necessarily caused by our failure to assume 

that f' exists and is continuous at l;. For example consider 

f(:J - (1+.c)exp(sin(l + 1/:J -1/:,:J 

= -exp(l/:J 

= 0 at : • 0. 

for O <:,: < 1 , 

for -1 <:,: < 0, 

This f(:) is infinitely differentiable in the interval I = {-1~:,: ~1}, 

vanishes only at :,: • 0 and is elsewhere in I strongly monotonic increas

ing. However 

N(z) • z(l- (:+l)COS(l+l/:z:J)/(z2 +:+l- (1+:)COS(l+l/:z:J) for O <:,: ~ 1 , 

• z(l+.:c) for -1 ~= < 0, 

• 0 at z • 0, 

behaves discontinuously as z + o+. None the less we may infer, after veri

fying first that -1 ~ N(:) < :z: for O < :z: < 1 and second that : < N(:,:) < 0 
. 

for -1 ~ :z: < 0, that Newton's iteration converges to O (slowly!) from 

every : 0 in I. 

Proposition: The functions N(:), N(:J -=, N(N(:,:)) and N(N(:,:)) -:,: are 

Darboux continuous everywhere in I including at t, and the first 

two are continuous everywhere in I except possibly at r;; this means 

that each of these functions assumes in every sub-interval of I all 

values between the ones taken at that sub-inuerval's ends . 

Proof: The proposition will be proved for B(z) first, for which we 

need only be concerned with sub-intervals of I that contain r;. And if 

such a sub-interval is divided at t into two parts for each of which the 

proposition is verified separately, the proposition will be verified for 

the whole sub-interval. 
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For definiteness choose any n < r; in I and let ~s verify the propo

sition for the closure of the unclo~ed interval J = { n ~ z < r;}. Since 

N(z) is continuous in J its image N(JJ is also an interval, and to verify 

the proposition we need only show that its closure contains r; • N(t). Now 

there are only two cases to rule out, namely r; < closure(N(JJ J and 

r; > closure(N(JJJ. 

If for some e: > 0 we found l; < z; + 2e: < N(z) throughout J, i.e. 

for n ~ z < r;, we should have to find that 

w(z) = 2f(z)/f(n) - (r;+e:-z)/(r;+e:-n) 

takes values of opposite sign at J's ends; 

w(n) • 1 > 0 > -e:/(r;+e:-n) • w(r;) , 

so 1'J must first change sign somewhere in J, say at t where 

w(t) • 0 ~ w'(t). But this would imply 2f(~)/f(n) • (r;+£-t)/(t+e:-n) > 0 

and -2f'(E)/f(n) ~ 1/(r;+e:-n) > O whence N(t) • t+ (f(t)/f(nJ)l(-f'(t)/f(nJ) 

~ t+ (r;+e:-t) • r;+e: < t+2e:! Therefore r; 1 closure(N(JJJ. 

On the other hand, if for some e: > 0 we found N(z) < r; - 2e: < r; for 

all n ~ z < r; we should have to violate the foregoing corollary's 

inequality O < (N(z) - z) / (r;-z) at z • max{z;-e:,n}. Therefore 

r;} closure(N(JJJ. 

Thus we conclude that N(z) is Darboux continuous. Consequently 

N(N(z)) is Darboux continuous too. Moreover, we shall now find that N(z), 

and then N(N(z)), belong to the first Baire class of functions, the point-
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wise limits of continuous functions. This is evident because we can approx!- • 

mate N(z) by a continuous function differing from N only in an open 

deleted neighborhood of r;, though both functions match at r; and at the 
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boundaries of the neighborhood, and then let the neighbo~hood shrink down 

onto z;. The first Baire class is significant because the sum of a Darboux 

continuous function in that class with a continuous function is known to be 

another Darboux continuous function in that class; see Theorem 7.5 of 

Bruckner and Ceder (1965, p. 109). Therefore N(:) -: and N(N(z)) -= 
are Darboux continuous and the proposition is proved. a 

This proposition is crucial; it allows Part I's Ho Swap Theorem to be 

generalized enough to cover N(:). One contrary implication of the Ho Swap 

condition that can be obtained almost immediately is the following, which 

shows that the last example above is typical of the kind of discontinuity 

that can befall N without precluding convergence. As is customary, we 

write : + t- to mean that : increases to the ltmit ,;, and z + ,;+ 

when : decreases to ~. Can N be discontinuous both as : + ,;+ and as 

:& + z;-? 

Aside: If N(:J swaps no two distinct points in I, N(z) cannot be dis

continuous on both sides of ,; but at most one; and as : + r; from 

the side opposite the discontinuity N(:J must ultimately lie between 

r; and :. 

Specifically, if N(:J + z; as : + r;- set n - lim sup N(:J > ,;; 
:+,;-

then z; ~ N(:J < = whenever ,; < z ~ n-

Proof: Suppose on the contrary that N(v) < r; and t < v < n. Since 

N is Darboux continuous at r; • N(,;J, N must, for any y <,; in I, 

assume all values between r; and n as : runs from y up to r;; there

fore N(u) • v for at least one u in y < u < r;. Therefore N(N(u)) -u 

= N(v) - u < N(v) -y < 0 provided y be first selected in N(v) < y < r.;; 

on the other hand N(N(:)) -= > 0 for : close enough to I's left-hand 
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end since N(IJ ~ I. Consequently, because N(N(:)) - : is Darboux continuous 

too, N(N(:
0
)) -:0 =- 0 for at least one :

0 
< u < ~ in I, and then 

: 1 • N(:0) > : 0 because of the Corollary above. So N would swap the 

distinct points : 0 and : 1 contrary to hypothesis. □ 

§8. The No Swap Theorem for Newton's Iteration 
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Theorem: Suppose I is a closed finite interval in which f(:) is continuous, 

and continuously once differentiable too except possibly where f 

vanishes. Let N(:) = : - f(:) If'(:) except N(:) = : when f(:) • O. 

Th~n Newton's iteration =n+l • N(:n) generates from every : 0 in I 

a sequence {:} of which some subsequence converges to a zero z; of n 

f, i.e. a subsequence of {f(:n)} converges to zero, if and only if 

N(IJ E 1 (and therefore z; is unique) and N satisfies any of the 

following conditions (they are equivalent). 

The No Swap Condition: If : • N(N(:)) in I then : • N(:J (• t). 

The No Separation Condition: Either N(N(a)J ~ a ~N(a) or N(a) < a ~N(R(a)J 

in I implies N(N(a)) •a• N(a) (• t). 

The No Crossover Condition: If N(vJ ~ u ~ v ~N(uJ in I then 

N(v) = u =- v =- N(u) (a z;). 

The One-Sided Condition: Whenever : 1 • N(:0) + : 0 in I all subsequent 

iterates =n+l • N(:n) also differ from : 0 and lie on the same side 

of : 0 as does : 1 (and z;). 

If also N is continuous, or if also either 

N(lim sup N(:JJ + z; or N(lim inf N(:J) + t 
:+ z;- :+ l;+ 

then any of the foregoing conditions implies that =n+l • N(:n) + l; 

from every : 0 in I. 

• 
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Proof: Only when N is not continuous need the proof involve a little 

more work than merely writing N(•··) in place of ,f•••J in part I. 

Having established in §7 that N(z), N(z) - z, N(N(z)) and N(N(z)) - z 

are Darboux continuous, we may infer as before that certain expressions 

must vanish somewhere between any two points at which they change sign, so 

most of Part I's arguments will not need revision. But arguments that for

merly depended upon 1 im ,(z) • ct,(1 im z) must be revised lest N(z) + t 

as z + t. The first such revision is needed to validate the No Separation 

condition; please turn back to and re-read §2 in conjunction with what 

follows. 

To show that No Swap implies No Separation assume the latter condition 

violated by, say, N(N(a)) <a< N(a) in I and seek a consequent violator 

v of the former. As ~efore, N must have a fixed point y strictly 

between a and N(a), but this time N(I) CI implies y • t is the 

unique fixed point of N, the zero of f in I (cf. §7). Also as before 

N(N(z)) has a fixed point v· < a in 1, but this time we don't care 

whether v is a "first" fixed point or not because v <a< z; so v 

cannot be N's unique fixed point r;. Therefore N swaps v and 

N(v) + v. 

The No Crossover and One-Sided conditions' proofs survive unchanged. 

The next revision is needed to adapt §4's proof that One-Sidedness follow

ing from the No Swap condition implies convergence, because now that impli

cation is invalid. 

As before, the sequence of iterates zn+l • R(zn) is a One-Sided 

sequence which is either ultimately monotonic and therefore convergent to 

t (cf. §7's Corollary) or else can be partitioned into two disjoint infi

nite subsequences, one ascending to a limit : and the other descending to 

a limit It is not possible for both limits to differ from z; 
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because then N would be continuous at both limits and §4's argument would 

make them both equal ,;. Therefore at least one of z and i equals t, 

as was claimed above. 

Moreover, suppose for definiteness that we conclude the 
,.. 

proof by showing that n = lim sup N(z) ~= > r; • N(n). Since some of those 
:r:+ r;- A 

ascending =n +: • l; are followed by =n+l • N(:r:n) + :+ > r; we must find 

l; <: ~ n. Moreover, since N is continuous at :, all those descending 

:r:n + z+ close enough to z comply with the No-Man's Land lemma (§3) by 

having =n+l • N(zn) + l;-, so N(:) • r;. But if any such :r:n lay in 

" z < =n ~ 11 we could infer from §7's last Aside that ,; ~=n+l • N(:r:n) < =n 

contrary to the last sentence; therefore no descending z lies in n 
A A 

z < z < 11 and hence z • n and N(n) • l; as claimed. n-
.., ,.. 

Here is an example to show that the phenomenon z < z analyzed in the 

last paragraph is possible albeit unlikely. Let I • {-1 ~ z ~ 3} and therein 

let 

f(z) = (Jz-2) 213 • for 1 ~= ~ 3, 

= : 2 for O ~ z ~ 1 , 

= -✓1-: exp(sin(-1/zJ + 1/zJ for -1 ~: < o . 

This f(z) is once continuously differentiable (it could be modified on 

0 < z < 2 to be made infinitely differentiable and substantially more com

plicated), it vanishes only at t = 0 in I and is elsewhere strongly mono

tonic. N(z) • :-f(z) If' (z) maps I into I and swaps no two distinct 

· points, and is continuous too except as z + r;-. If Newton's iteration 

=n+l • N(zn) is started at : 0 • -1/(2w) then : 2n • -l/(2n+lw) + t- but 

a 
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How ~Ya function f eligible for the application_of the No Swap 

theorem be recognized in practice? One way is to apply the contrapositive 

of the next lemma which exhibits some of the properties possessed by f 

when N violates the No Swap condition. Any f which lacks those proper

ties satisfies that condition. Pig. 9 illustrates these properties. 

Lenma: If N(:r:) • :r:-f(:r:Jlf'(:c) swaps the ends u and v of an interval 

J in which f is twice differentiable, then one of the following 

situations must arise. 

1. f(u)f(v) > O, and then f'(u.)f'{v) < 0 so f' must reverse sign 

somewhere inside J, and f" must take the same sign as f (u.) 

somewhere in J; if also f vanishes somewhere in J then ff" 

must take negative values in two open sub-intervals of J between 

which f" reverses sign at least twic;e. 

2. f(u)f(v) < 0 so f reverses sign at least once inside J, and 

then ff" takes ne&ative values at places inside J where f 

takes 00th positive and negative values; therefore f" reverses 

sign at least once, and at least once more if f' ever vanishes 

in J. 

Proof: This is a tedious exercize in curve-tracing whose object is to 

describe the ups and downs of f' in J. For definiteness assume u. < v 

and f(v) > 0, and re-write u • N(v) and v • N(u) > u in the forms 

f'(v) • f(vJ/(v-u) > O and f'(u.) • f(u)/(u.-v) . 

Case 1: f(u) > O. Now f' (u) < 0 < f' (v) and consequently f" must 

take positive values somewhere betwee~ u and v. If also at some n 

between u and v we find f(nJ • min f(:r:) < 0, then f'(n) • 0 and 
u<z<v 

f" > 0 somewhere in that neighborhood of n wherein f" ~ O; we find 

Sl 

• 

• 



• 

• 

further that, as z increases from u to n to v, f'(z) moves from 

f'(u) < 0 through some lesser value (f(n)-f(u))/(n-u) ~ -f(u)/(n-u) 

< -f(u)/(v-u) • f'(u) and then moves to a higher value f'(n) • 0 and on 

up through (f(v)-f(n))/(v-n) > f(v)/(v-n) > f(v)/(v-u) • f'(v) and back 

down to f' (v). Bence f' bas a negative minimum and positive max11N11l 

inside J, which means that f" reverses sign at least twice in J. As z 

increases from u to v, f' (z) bas to decrease before f(z) can vanish, 

and therefore ff"< 0 in some sub-interval before f vam.shes; similarly 

ff"< 0 somewhere between the last zero of f and v. 

Case 2: f(u) < 0. Now f(z;J • 0 at some first z; between u and v. 
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As z increases from u to z;, f'(z) moves from a positive value f'(u) 

through a larger value (f(z;J-f(u))/(l;-u) > -f(u)/(v-u) • f'(u), so f"(z) > 0 

somewhere between u and z;. Similarly f" < 0 somewhere between f's 

last zero and v. More precisely, f' has a positive maximum inside J at 

which f" reverses sign. If f' ever vanishes inside J then f' has a 

non-positive minimum at which_again f" reverses sign at least once more. 

a 

The next corollary is an advance beyond what was previously known 

because it deais with functions f whose graphs are not convex but may have 

at most one or two inflexions. As long as Newton's iteration cannot escape 

from 1 via the ends or the inflexion points of f's graph, the outcome 

turns out to be the same as if that graph were convex (cf. Dahlquist, Bjorck 

and Ander.son, 1974, p. 125). 

Corollary: Suppose ~ and z are the ends of a closed (possibly infinite) 

interval 1 in which f is twice differentiable, f' never vanishes 

except possibly if and where f vanishes, f" reverses sign at most 

once except possibly again if and where both f and f' vanish 



simultaneously, and at least one of f(7.,J) f(a), f(w)f"(1.,J) or f(z) f"(z) 

is positive. Suppose too that N(z) = :- f(:) If'(:) maps into I's 

interior both I's ends and the places if any where f" reverses sign. 

f" may vanish arbitrarily often without changing sign. ?hen f bas 

in I just one zero t and Newton's iteration :n+l • N(:n) converges 

to it from every : 0 in I. 

Proof: An argument similar to §7 's lemma shows that f must have just 

one zero t in I; more would violate a hypothesis by providing some z 

in I at which f'(z) • 0 p f'(z), and fewer would either do the same or 

violate a different hypothesis by forcing N to map at least one of I's 

ends outside I. 

A second argument proves N continuous in I; this is obvious from 

the formula for N when f' ~ 0, so only the possibility f'(l;) • 0 

needs further explanation. When : is confined to a small neighborhood 

of l; in which f" never re~erses sign except possibly at t, f' ( z) 

must be monotonic separateiy on each side of ,; and consequently 

0 < f'(y)/f'(:J ~ 1 for every y strictly between t and : in that small 

neighborhood. Since f(:) • f:t•(y)dy, 

N(:J • r; + r (1 -f' (y) If'(:) )dy ; 
l; 

consequently N(z) always lies between t and : in that small neighbor

hood. Therefore N is continuous at t • N(l;) and hence throughout I 

even when f'(l;) • O. 

The next task is to infer N(!) ~ I. Were this not so despite that N 

maps I's ends inside I, N would have to achieve either a maximum or a 

minimum value N(i) outside I at some i inside I, and that i Pl; 
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because N tr;) • l; lies inside I. Moreover, N' would have to reverse 
A 

sign at z or at the ends of that sub-interval of I containing 
A z on 

which N • N (:) • But N' • ff" I (f') 2 is prevented by hypothesis from 

reversing its sign in I except possibly at t and at most one other place 

also, by hypothesis, carried by N into I's interior. Therefore R(z) 

lies inside I after all, and hence N(1) CI. 

Now let us verify that N satisfies the No Swap condition. If not, N 

would swap the ends of some sub-interval J and the leaDa above would imply 

that f" changes sign at least once inside J, at least twice inside J if 

f'(z;) • 0, and at least once outside J between its end and that end of I 

where ff" > 0. Thus f" would vanish more of ten than allowed by the 

hypotheses. Therefore N does satisfy the No Swap condition, and Newton's 

iteration does converge to z;. □ 

Application 1: Suppose g(z) and h(z) are thrice differentiable for all 

z > 0 and g(0) • h(0) • 0 but g' > 0, g" ~ 0, g,,, > 0 - , h' > O, 

h" ~ 0 and h"' > 0 for all z > O; and let f(z) = g(z) -:h(l/z) be 

the function whose zero z; is sought. Such a computation is encountered 

in certain financial transactions in which : • 1 + i is related to the 

interest rate i, g(z) represents the present value of various past 

investments, zh(l/z) represents the prese~t value of anticipated returns 

from those investments, and f(z) is the net present value of the trans

action. t, where f(~) • 0, determines the putative rate of return on 

money invested in the transaction. 

Newton's iteration can be shown to converge to f's sole positive zero 

z; from every positive starting iterate : 0 by invoking the corollary above. 

Note that for all z > 0 

•1/z 
(zh (1/z)) ' a h(l/z) - h' (1/z) /z • J (h '(u,)-h' (1/z))cw ~ 0 

. 0 
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whence f' > 0. And f'" (:) • g"' (:) + 3: - 4h"(l/z) += -sh"' (1/z) .::, O so f" 

can reverse sign at most once for = > O. Moreover, for all z > O 

N(z) = =-f(z)/f'(z) =- (:g'(z)-g(z) +h'(l/z))l(g'(:)-(:h(l/:))') > 0 

because zg' (:z:) - g(:z:) • fa (g' (:z:)-g' (w))dl4 ~ O; therefore N maps the poai

•tive real-axis to itself. Finally observe that :h(l/z) + h'(O) > 0 as 

: + -t,a,, while lim (:h(l/:J) • lim h(y)/y • (either -t,a,·or limh'(y)) > O, 
:+0+ y++co y++m 

and consequently f(:) and :-N(:) must take negative values in the neigh-

borhood of : a o+, positive values in the neighborhood of : • +ao; and 

since f"' ~ 0 either f" = 0 for all : > 0 or else ff" must take 

positive values in at least one of those neighborhoods. Therefore f 

satisfies the corollary's conditions in some closed sub-interval 1 of the 

positive real axis. □ 

Application 2: Suppose t and n are two consecutive distinct aeros of 

f' between which f is twic~ differentiable, and suppose f(t)f(n) < O. 

Then strictly between t and n lies just one zero r; of f, and r;'s 

catchment basin for Newton's iteration : +l • : -f(: ) If'(: J in~ludes n n n n 

in its interior at least one place, also strictly between t and n, where 

f" reverses sign. 

Proof: The term "catchment basin" was defined near the middle of §4. 

Let N(:J = = - f(:} If'(:); it is continuous at t because f' (t) i, O. 

Therefore by restricting : and y to a sufficiently small neighborhood 

around l; we may ensure that I 1 - f' (y}/f' (:) I is as small as we please. 

Consequently (N ( :z:)-r;.) I (:z:-r;.) - r ( l - f, (y) If I ( :z:) > dy I (:z:-r;.) may be made as 
r; 

small as we please for all : close enough to r;, and hence r; is a 

strongly attractive fixed point of N, which bas no other fixed point 
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between t and n. By invoking §4's lemma, or otherwise, we deduce that 

the ends of t's catchment basin lie strictly between t and n, straddle 

t, and are swapped by N. The lemma above implies now that f" reverses 

sign at least once inside the catchment basin as claimed. a 

This result is significant because it permits all the real zeros of a 

function f in any interval to be calculated quickly via Newton's iteration 

provided first all the zeros of two consecutive derivatives f(n) and f(n+l) 

(n ~ 1) in that interval are known. Having straddled a zero of f(n-1) 

with two consecutive (approximate) zeros of f(n), compute f(n-l) at the 

enclosed zero(s) of f(n+l) to straddle the desired zero of f(n-l) more 

closely, and then start Newton's iteration from one of the straddling zeros 

Of f (n+l). Th i ( f ) e teration not just a subsequence o it must converge to 

the straddled zero of f(n-l), and must do so One-Sidedly and rapidly (faster 

than any geometric progression), when started from the right one of those 

(n+l) straddling zeros of f • The right one can be distinguished from the 

wrong one when iterates started from the wrong one straddle the right one. 

The rapidity of convergence, the fact that the precision of the computation 

need not ~uch exceed whatever is required to separate adjacent zeros (multiple 

zeros announce themselves first as simple zeros of a higher derivative), and 

the freedom from Sturm sequences are three reasons for considering the fore

going vaguely described algorithm as a potential replacement for others that 

have appeared elsewhere; cf. Heindel (1971), Collins (1974) and Verbaeten 

(1975) . 
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§9. The Secant Iteration 

Theorem: Suppose I is a closed finite interval in which f is continuous, 

and continuously once differentiable too except possibly where f 

vanishes in I. Suppose too that N(:,:), defined by 

N(:,:) = :,: - f(:,:) If'(:,:) except N(:,:) = :,: when f(:,:) • 0 , 

maps I into itself and satisfies the No Swap condition or one of its 

equivalents (see §8), as must be the case if Newton's iteration 

=n+l • N(zn) converges in I from every z 0 in I. Finally suppose 

f reverses sign across its (necessarily unique) zero t in I. Then 

the Secant iteration :,: +l • S(:,: ,:,: 1J, where n n n-

S(z,y) = S(y ,:,:) = :,: - f(:,:J (:,:-y) I (ff :,:J-f(y)) if y P :,: and f(:,:J P 0 

= N(:,:J if y •:,: or f(:,:) • 0, 

generates from every =o and =1 in I a sequence {:,:} of which n 
some subsequence converges to z;; i.e. a subsequence of {f(:,:n)} con-

verges to o. If also N is continuous then :,: + z;. 
n 

Proof: Our strategy is to identify certain subsequences of {:,:} 
n 

which converge monotonically to z;. The Mean Value lemma of §6 and the pro

perties of N and f exposed in §7 and §8 will be exploited heavily. For 

imtance, §7's lemma implies that in I f is monotonic, has just one zero 

r;, and is strongly monotonic except possibly at t where f' may vani.sh 

. or fail to exist but cannot reverse sign. Moreover N(:,:) is continuous in 

I except possibly at :,: • z;, and S(:,:,y) is continuous in Ix I except 

possibly at :,: •ya z;. These inferences are but the first of a long chain 

which has been organized into a list of propositions numbered for easier 

reference. Some of the propositions, like the first, have a proof so 
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straightforward that it is omitted. 

Proposition 1: : • S(:,y) for some : and y in I if and only if 

z • ~; consequently the Secant iteration :n+l • S(zn,=n-l) has every 

for n > 1 unless 

To avoid trivial nuisances we assume henceforth in the theorem's proof 

that all : ; ,;;. 
n 

Proposition 2: If =n and =n-l both lie in I so does :n+l • S(:n,=n-l), 

and therefore all Secant iterates : lie in I. 
n 
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Proof: Recall N{Z) ~ I and invoke §6's Mean Value lemma after observing 

that if lies between =n and =n-l so must :n+l since f(z Jf(: 
1
J < O. n n-

Proposition 3: If some subsequence of {zn+i-=n} converges to zero then 

the corresponding subsequences of {:n} and {:n+1} converge to z;;. 

Proof: Since S(:,y) -:. is continuous throughout the compact square 

Ix I except possibly at the one point : • y • z;;, and since S(z,y) -z • 0 

only on the line : • z;; according to proposition 1, =+1 -: •S(z ,z 1)-z n n • n n- n 

+ 0 implies ~n - z;; + 0 and hence =n+l + z;; as claimed. 

Definitions: An iterate : • S(: 
1
,: 2; is called a Variance whenever n n- n-

f(=n-l)/f(zn) < O, and then :n+l • S(zn,=n-l) and t must both lie 

strictly between : and : 1. 
n n-

. An iterate : • S(: 
1

,z 
2

; is called a Pemanence whenever 
n n- n-

ff=n-l)/f(:n) > l, and then =n+l • S(:n,:n;_,1) and C must both lie 

strictly on the same side of both =n and : 1. n-

Proposition 4: Every iterate =n • S(=n-l'=n_2J with n > 2 is either a 

Permanence or a Variance. 

See Fig. 10. 
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Proof: Only the proof that when n ~ 2 and ff=n-l)/f(zn) f O then 

requires as much effort as invoking the monotonicity of 

f in two cases, f(z 2Jlf(z 1J < 0 and f(z 2)/f(z 1) > O. n- n- n- n-

Proposition 5: If two consecutive iterates : • Sf: 1,z 2) and n n- n-

=n+l • S(zn,zn_1) are both Variances, then =n+l lies strictly 

between zn-l and =n' and =n+2 and l; both lie strictly between 

=n+l and zn, and 

See Fig. 11. 

Proof: Only the last inequality is an unobvious inference. By hypo-

thesis both f(zn_1J/f(zn) < 0 and f(:n)/f(:n+l) < O; and because zn+l 
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lies between =n-l and t, and f is strongly monotonic, f(zn_1J/f(zn+1J > 1. 

Therefore 

= -= n n-1 
=n+2 -=n+l 

(zn -=n-1) (ff=n+l) - f(zn)) -------------f(~n+1J <=n+1-=n> 

- (f(=n+l) - f(:n) )(f(zn) - f(=n-1)) 

f<=n+1Jf(zn) 

f(:n) f(zn-1) ff=n-1) 
-1--------------+---------

f(:n+l) f(zn) ff=n+l) 

~ 1 + 2{ff=n-l)/f(:n+l) + ff=n-1)/f(zn+l) 

> 4 • 

Proposition 6: If the Secant iterates z are ultimately (i.e. for all n 
sufficiently large n) all Permanences, or ultimately all Variances, 

they converge to t . 

Proof: If ultimately all : are Permanences they form a sequence 
n 

which is ultimately monotonic and bounded (by t) in I; therefore the 

sequence converges and, by proposition 3, converges to ~- If ultimately 
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all =n are Variances then the subsequences {:2n} and {:2n+l} are ulti

mately monotonic and convergent;; moreover I : 2n+l - :
2
n I • 0 at least as 

fast as some multiple of 

claimed. 

4-n because of proposition 5, so : • t as n 

Permanences are best thought of as punctuation marks separating strings 

of consecutive Variances, and the only significant property of each string 

is whether its length is even or odd. The significance of even length is 

suggested by the next proposition, whose straightforward proof is omitted. 

Proposition 7: If a Permanence : is followed by an even number 2k > 0 n 
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of consecutive Variances =n+l'=n+2, ... ,:n+2k before the next Permanence 

=n+2k+l' then the numbers =n-1'=n•=n+2•=n+4'···,=n+2k':n+2k+l'r;' 

=n+2k_1 ,••·•=n+J'=n➔ l are exhibited here in strictly monotonic order. 

(If 2k • 0 or 2 delete the appropriate right-hand-most :'s.) 

See Fig. 12. 
If at most finitely many strings of Variances have odd length the 

convergence properties of the sequence {:n} are relatively transparent, 

as the next proposition shows. 

Proposition 8: If ultimately no two Permanences are separated by an odd 

number of Variances then the Permanences converge to t; if also N 

is continuous at r; the Variances converge to t too. 

Proof: By re-numbering the iterates to discard some early ones if 

necessary, we may assume no two Permanences are separated by an odd number 

of Variances, in which case the previous proposition implies that the 

Permanences and their antecedent iterates constitute a monotonic bounded 

(by t) subsequence of the iterates. In other words, if the successive 

Permanences are : ,: ,: , ... then the numbers 
nl n2 n3 



are displayed here in strictly monotonic order. Obviously this subsequence 

of z's must converge and, by proposition 3, it must converge to t. Before 

we find out what happens to the rest of the iterates z let us invoke §6's n 

Mean Value lemma to define y n. as a solution of z +l • N(y ) between n. n. 
J J J 

z and the Permanence z n .-1 n. for j • 1,2,3, .... Evidently y + t too. 
nj J J 

If N is continuous at t we may infer first 

and then, from proposition 7, that all z + t n 

that z • R(y ) + R(t) • t n .+l n. 
J J 

as n + m. If N is discon-

tinuous at ~ there is some risk that z +l • N(y ) + N(t); this situa-n. n. 
J J 

tion arises with examples f one of which is exhibited at the proof's end. 

To complete the theorem's proof we need only deal with the possibility 

that infinitely many pairs of consecutive Permanences are separated by odd 

numbers of Variances. This possibility is awkward only because the notation 

required to deal with it is complicated. 

Let us invoke §6's Mean Value lemma again to define for every Permanence 

= n the solution y of N(y) • z +l between z and • n n n n = n-1 and closest 

to =n· These solutions yn were useful already during the previous propo

sition's proof, but they are crucial below because they provide the sole 

entree for N's No-Swap condition. Note that yn is so far defined not at 

every n but only at those n for which z n is a Permanence. 

Next define a Scout to be a Permanence z followed by an odd number . n 

of Variances, say =n+l'=n+l'=n+3, ••• ,=n+2k +l' and then another Permanence 
n 

=n+2k +2· That last Permanence might be a Scout too or it might not. Also 
n 

define =n+l to be a Guard whenever =n is a Scout. We shall think of 

each y as a part of a convoy with a. Scout ranging ahead of it and a Guard n 
bringing up the rear, and our last task will be to show that alternate convoys 

converge monotonically to t from opposite si~es. See Fig. 13. 
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Proposition 9: Suppose : and : are consecutive Scouts with m > n; n m 

then m > n + 2 and =n-l' yn, :m+l' z:;, ym, =n+l are displayed here 

in strictly monotonic order. 

See Fig. 14. 
Proof: For definiteness assume : 

1 
< : , whereupon it follows that n- n 

=n-l < Yn ~ =n < z:; < =n+i • Moreover we know that the Scout =n is followed 

by an odd number of Variances :n+l':n+2, ... ,:n+2k+l and then the next 

Permanence :n+2k+2, so m ~ n+2k+2 ~ n+2 and =n-l < Yn ~ =n < zn+2 < 

< =n+4 < • • • < =n+2k < z:; < =n+2k+2 < =n+2k+l < • • • < =n+3 < =n+1 • We also 

know that an even number of Variances separates every two consecutive 

Permanences between and z, m so proposition 7 implies 
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and then :m+l < z:; < :m ~ Ym < =m-l ~ =n+i • The only question left is whether 

or not yn < zm+1• If not, if instead zm+l • N(ym) ~Yn < z:; < Ym < zn+l 

• N(y }, then the No Crossover condition satisfied by N would be violated n 

contrary to the theorem's hypotheses. Therefore proposition 9 is proved 

and more; 

=n-1 < Yn _< =n < z:; and Y <: 1 < z:; < z < Y < z l <: 1 • nm+ m-m m--n+ 

Proposition 10: If the sequence of Secant iterates =n contains infinitely 

many Scouts then a subsequence of Guards converges to t, and all 

z + z:; if N is continuous. n . 

Proof: Let the integer sequence m(l) < m(2) < m(3) < •·· characterize 

consecutive Scouts =m(j)' Guards =m(j)+l and convoy's contents Ym(j). 

Assuming for definiteness that :m(l) < z:;, we infer from proposition 9 

et seq. that for j • 1,2,3, ... 

• 
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Ym(2j-1J < =m(2.j )+l < t < =m(2j) ~ Ym(2.j J < =m(2j J-1 ~ =m(2.j-l)+l and 

=m(2j)+l ~=m(2.j+l)-l < Ym(2.j+l) ~=m(2.j+l) < t < :m(2.j+lJ+l·< Ym(2.j) • 

By induction it follows that Ym(2.j+l) increases to a limit y and ·ym(2.j) 
A y 

decreases ·to a limit y ~ t !Y, and the same is true respectively for the 
A 

Guards =m(2.j )+l + U and =m(2;i+lJ+l + y, as i + •• (The Scouts =m(2j) 

and =m(2j+l) need not form monotonic subsequences.) 
y A 

The possibility that y < t < y can be ruled out because 

y • lim Ym(2.j) I z; would imply y • lim =m(2j)+l • 11m N(ym(2j)) • R(y) 
A y 

and similarly y • N(y) in violation of the No Swap condition satisfied 

by N. And if N is continuous at t a similar argument shows y • t • y; 
but in this case we soon infer that all iterates, Scouts included, are 

squeezed towards t by the Guards and hence converge to t. 

Propositions 6, 8 and 10 exhaust all possible ways for the sequence 

of Secant iterates to behave, and hence prove the theorem. □ 

Example: In this example f(:c) is infinitely differentiable throughout 

1 = {-1 ~= ~ -1/ (1-1/1 n 2) • 2.25889 ... }, vanishes only at : • t = 0, 

and is elsewhere in I strongly monotonic. Newton's iteration converges 

from every : 0 in I, but the Secant iteration suffers from an oscillation 

in which every third iterate :
3
n+2 • -1 though the remaining iterates 

{:3n and :ln+l} converge to z;. The construction of f is complicated 

enough that only an outline can be presented here. 

Start by defining for n • 0,1,2, ... the descending sequences 

t 3n =, 1/1n{n+2) and t 3n+l = Ct3n + t 3n+3)/2, while t 3n+2 = -m for all 

n > O. Next define 
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where 

,<tJ - ; exp(l/;J for -co~;< o 
_ 0 at ; a O, 

- (;3n-t3n+3)/2 for t3n+l ~; ~ tln' 

=an+ 6nar(2t-t3n+l-t3n)/(t3n+l-t3n+3)J for t3n+3 ~ t ~ t3n+l' 

an = (ct,(t3n+lJ + 4>(t3n+3J) 12 ' 

Sn = (,(tln+lJ - 4>(t3n+3J) /2 , and 

a(8J = tanh(tan(w8/2JJ if -1 < 8 ~ 1, 

- sign(8J otherwise. 

and : = t /(1-t ). n n n The tedious verifi-

cation of the claims made above for f are left to the reader. 

The theorem that has just been proved does not yet render Newton's 
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iteration obsolete. Rather it supplies a powerful incentive for replacing 

Newton's by the Secant iteration in those cases where, as in §S's Application 1, 

the caiculation of a derivative appears to confer no advantage. Many cases 

remain to be analyzed; for instance, we cannot yet say whether the Secant 

iteration works acceptably well on that rational function in §4 with inter

lacing poles and zeros on which Newton's iteration'works so well. 

A final warning; computer programs based upon Newton's or the Secant 

iteration rarely use an iteration in its pristine form. Programs usually 

incorporate extra "features" which modify the iterations in ways that their 

designers hope will effect some improvements. Sometimes those features do 

. yield an improvement, sometimes not; they almost always undermine the fore

going analysis. 

Acknowledgment: I am indebted to Professor B.N. Parlett for helpful discus

sions without which this paper would have been more nearly impossible to read. 
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