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Introduction 

CAN YOU COUNT ON YOUR CALCULATOR?* 

W. Kahan and B.N. Parlett 

Do you care whether your hand held calculator occasionally, very 

occasionally, gives completely erroneous results for innocent looking problems? 

It can happen; and sometimes the false answers look quite plausible. The 

victim of such a malfunction, if he is aware of it, 1s apt to lose confidence 

in the results of subsequent computations. When will Misfortune strike again? 
' A conscientious user may be driven to waste a lot of time checking answers 

which are, nearly always, quite correct. 

Nevertheless, in certain cases incorrect answers seem practically 

unavoidable because calculators, and large computers too, work with numbers 

represented by a definite number of digits, frequently 10 or 12 decimals, 

and this constraint imposes intrinsic limitations on what can be achieved 

with reasonable expenditure of time. Consequently, as we take precautions 

against being misled by rare miscalculations, should we not marvel that they 

do not occur more often? Perhaps the risk of occasional bizarre results is 

unavoidable? 

The problem is not so simple as may appear at first. We maintain that, 

despite its limitations a calculator need never deliver misleading answers. 

Calculators can be designed in such a way that if a user does encounter 

strange output he can be sure that it is not a consequence of anything capri

cious that his machine has done to him but must· be attributed to his.data, 
. 

his problem, or his procedures. What is more such a calculator can be 

designed at a reasonab1e cost; but that story is for another d~y. 

Our goal is first to alert the unscathed user to the fact that funny 

things can happen on even the best products currently available and, second 
*Research supported by Office· of Naval Research Contract ta00014-76-C-0013. 
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to convey a particular point of view which is the prime tool needed to 

extirpate anoma11es. Our method 1s to present three simple but pe_rplexing 

examples from a whole file of mangled computations. The discussfori of each 

example illustrates our approach. 

At this point another difficulty arises: our remarks are critical. 

All too easily can we alienate those whom we are most eager to reach, owners 

and designers of the more powerful calculators. In fact we are reminded of 

·the Viennese doctor Ignaz Serrmelweiss and his Scottish follower Joseph Lister 

who, 1n the 1860's,suggested that surgeons should wash.their hands before 

operating. Since cleanliness had not previously been acknowledged as a 

problem in medical practice, their suggestions were 111 received. Medical 

men of those days, especially those philosophically inclined, proclaimed 

that the risk of death was intrinsic in surgical in~ervention and therefore 

unavoidable. How right they were. And, as they uttered this truth while 

avoiding the extra costs of sanitary precautions. they made the truth more 

true. Now washing hands and donning a clean coat and boiling medical instru

ments all do cost something, but surely we may say that the cost is negligible. 

The cost of cleaner arithmetic, cleaner than has been customary in big computers 

as we11 as litt~e calculators. is negligible too. Unfortunately our analogy 

is imperfect because the benefits of sanitary precautions are now obvious 

in hospitals but still unobvious in calculators. Consequently our criticisms 

must be p·laced 1n the proper context. The advanced hand held calculators 

are triumphs of modern technology. The ones we mention below are among the 

best available today and are very good value for money. Next y~ar•s models 

-could be much better. 

I 
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Example 1. Non-Standard Deviation from the Strait and Narrow 

Several calculators are pre-progranrned to deliver the slope m and 

the intercept c of the straight line 

y • mx+ c 

which best fits k data points (x1,y1)~(~2,y2}, ..• ,{xk,yk) in the least

squares sense. O~r example consists of three sample points drawn from the 

line 

y • X • 666000 ; 

the fact that the points happen to lie exactly on the straight line is~ 
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what causes trouble. Many other examples could have been invoked to upset 

various calculators; our example's sole distinction is that it upsets so 

many simultaneously. 

Data: k • 3 X y . 
665999 -1 

666000 0 

666001 1 

Expected Answer: m • 1, c • -666000 

Answer Received: See Table 1. 

Table 1 

Number of significant 
Calculator decimals carried by 

the calculator 

Hewlett-Packard 22, 27, 10 91, ... 

Texas Instruments SR-51,SHI 12-13 
Conmodore SR 4190R, 5190R 12 
Texas Instruments 11 Business Analyst 

* H&'lett-Packard 65, 67, 97 10 
* Texas Instruments SR-52,56 12-13 

Result instead 
of m = 1 

11 Error 11 

Blinks 9 • s 
11 Error11 

m • -0.02 

"Error11 or Blinks 
Blinks 9 's 

• These are progranrnable calculators using the manufacturers' supplied 
software. 
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"Let him who has the mind for it calculate 
the number of the beast, for it.is a man's 
number, and his number fs six hundred 
sixty-six. 11 

• 

Book of REVELATION ch. 13 v. 18. 

Aside from this quotation we know no reason to fear the data points, 

especially when they are entered into calculators carrying at least twice 

as many digits ~s are specified in the data. Alas, the redundant 61s embarrass 

the textbook fonnula for the sample variance 

which 1s needed to calculate m. This formula is a natural one to use 

when sums like Ixj and Ixj2 are accumulated as the data is entered into 

the calculator. But in our example Ixj2• 1.330.668,000,002 must drop its 

last (13th) digit 2 if it is to fit into the 10-digit machines' registers,. 

and consequently a3
2 must be calculate~ as O instead of the correct value 1. 

A 13-digit calculator appears to be needed to get the right answer for our 

example; but why do those 13-d1g1t calculators fail? The TI SR 51 fails 

because it stores only 12 of the 13 digits it calculates for each entered 

datum. The TI SR 52 has no such excuse; it fails because its arithmetic 

occasionally mangles the thirteenth digit when operated as its manufacturer 

advises. 

Our example usually elicits two contradictory reactions, sometimes both 

from the same person. The first reaction is to protestthatunreasonable 

demands are being placed upon the accuracy of computation. After a11, 
. . 

accuracy fs only a means to another end, and no worthwhile end is served by 

this example except to demonstrate what happens when a calculator is applied 

to a problem outside its domain. We shall deal with this reaction later. 
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The second reaction is to point 9ut tricks by which the correct answer 

could be coaxed from the calculator. For ;nstance, all goes wel~ if any of 

the redundant leading 61 s are stripped off all the x-data and put:back at 

the end; this amounts to a translation of the x-origin into the midst of 

the data before calculation and a translation back afterwards. But the 

trick is a mixed blessing. Although the trick can be proved mathematically 

to be reliable a~d has reappeared 1n the literature recently (Hanns, 1976), 

it 1s not a trick we should expect calculator owners generally to know and 

trust since it is mentioned nowhere in texts nor is it touted as a "feature" 

of the calculators in their instruction manuals. Moreover, the trick entails 

the nuisance of extra thoughts, extra keystrokes, and extra opportunities 

to blunder. Did you remember to undo the translation at the end of the 

computation? What if the data (x1,yi) are generated by a program and 

cannot be scanned or predicted in advance? How does the trick handle the 

fit to a power curve y = Cxm when the x-data is closely clustered? All 

these questions can be answered; their answers miss-the point. 

The point of our example is that the foregoing fonnula fails on quite 

reasonable data. We would be free from troubles and tricks if the calculators 

had been microprogrammed to use a different and better algorithm like the 

one reproduced in Fig. 3. In other words, calculators which use the fore

going ok2 formula are capable of solving reliably only those problems 

whose data lie in an artificially restricted domain. 

Which brings us back to the first reaction: we should not use a function 

outside its domain. Where is the boundary of that domain? It _is not dis-

-cussed in texts nor in calculators' instruction manua1s. It is too compli

cated. In Appendix 1 we describe that domain in order to persuade you that 

the infonnation that has hitherto been denied you is infonnation you would 

prefer not to have to know. 
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None of the troubles or tricks-are necessary. As soon as statisticians 

and computer progranmers realized that the troubles were caused by their 

algoritflns and not by their data, they invented (and re-invented, from the 

··1930 1s onwards) better algorithms. One such algorithm is discussed in an 

elementary text by Forsythe et al. (1975), and we reproduce it in Fig. 3. 

This alter~ative scheme costs only a few extra arithmetic operations 

per datum, but it delivers answers accurat• enough for all statistical 

purposes no matter how many figures are specified in the data. If the 

mathematically correct answer 1s wanted (this will be~ accurate than 

nonnally needed for statistical purposes) there are other schemes which 

cost only a few more storaoe registers and a few more arithmetic operations 

(clean, not dirty ones). The benefit that justifies these schemes' extra 

cost is that their user need not fear that his answer might be wrong because 

of roundoff. His answer may be wren~ because of statistical or other 

methodological flaws, but not because of anything done to him by his 
• 

calculator.· 

The mistake made by the designers of the calculators listed in Table 1 

was their assumption that a standard formula found in many texts was the 

way to do the calculation. We know just how it feels to make that kind of 

mistake, so we won•t laugh nor jeer. Besides, some of our colleagues have 

published "improvements" of that fonnula which have turned out to be worse. 

We do hope that our examples will stimulate designers to think about their 

calculators' other functions (logarithmic, trigonometric, ... ) in a- clearer 

light .. Are bizarre results possible? If so, are they avoidable? If so, 

can they be avoided at a tolerable cost? 

The foregoing example concerned the question of findin~ tobust formulas. 

The next example concerns the care with which basic arithmetic operations 

and elementary functions are· carried out. 
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Example 2. A Financial Miscalculation 

Suppose n payments of SP apiece are deposited in a bank-·at the end 

of each of n periods dur;ng which interest accrues at the rate_·11 per 

period. Then these payments and their interest will accumulate to a "future 

value" SF which 1s given by 

F • P (yn -1 ) / (y-1 ) at y • 1 + . 01 i . 

Let us try the reasonable (though not nowadays realistic) values 

n = 365 days 

P = 10,000.00 

i c 3.6500364% per annum compounded daily 
3. 6500364 ot 

= 365 1o 

Various results are given in Table 2. It is important to know that, accord

ing to their owners' manuals, "11 digits are carried for each rJ!sult through

out all calculations" on the TI machine whereas the HP machine ''always com

putes internally using 10 digits," although these calculators nonnally dis

play 8 digits. Despite its extra digit of •accuracyn the TI machine has 

embezzled $27.93. This is not much in a sum of $3.7 million, but it is 

comparable with discrepancies through which gross computer-aided frauds 

have been uncovered. $27.93 is big enough to catch the bank examiner's eye 

and waste his time, big enough to undennine confidence that no bigger 

discrepancies lurk fn those little calculators. 

Although for larger interest rates the discrepancy would probably be 

smaller, for smaller rates it is often worse, and worse again on some earlier 
-

financial calculators; for instance, the obsolescent HP-80 would embezzle 

S37.78 here. 



( 

9 

Table 2 
--. 

Calculator (working accuracy) Calculated Future ~alue SF 

Texas lnstrumen15Business Analyst $3 717 213.88 -(11 sig. dee.) 
Hewlett-Packard HP-22 or 27 $3 717 241.83 (10 sfg. dee.) 
SF-correctly rounded to n~arest cent $3 717·241.81 
Each interest payment rounded to $3 717 241.85 nearest cent. 
Each interest payment chopped down $3 717 239.98 to next cent. 

Discussion 

Once again the point here is not to find a trick by which the correct 

answer could be teased out of a recalcitrant calculator. The point is that 

routine business calculations like these could have been completed satis

factorily by routine methods if the calculator's arithmetic had been imple

mented cleanly. Instead, avoidable arithmetic anomalies in the 11th figure 

have injected unnecessary noise into the 6th. Should the businessman trust 

all the figures displayed by his business calculator? If not all, then 

which? Must he take a college course to find out? The ghosts of Joseph 

Lister's medical colleagues might whisper (truly) that there are intrinsic 

and unobvious limits to what can be calculated with only 10 or 11 significant 

decimals, as if to suggest (falsely) that Example 2 lies beyond those limits. 

But today's calculator manufacturers wi11 have none of that lest those 

• whispers persuade businessmen to defer purchase until they can buy calculators 

carrying 16 or 20 or however many decimals are needed to get the right 

answers without reservations. 

Will 16 or 20 digits be enough? We hope our example has ·engendered a 

certain uncertainty and wondennent. How did the calculator with the extra 



10 

digit of accuracy get the worse, the significantly worse, answer? It is 

not a fluke. The error in the TI calculator arises out of two sources that 

have been extirpated from recent HP calculators: 

(f) Serious relative errors in logarithms of numbers very close to 1 

undennine the calculations for large n of y" • exp(nln(y)) 

at y • 1 + .Oli. For instance. this 1r digit calculator claims 

that 

ln(.99995) • -5.00016 00000 x 10·5 instead of -s.00012 50042 x 10·5 . 

An error smaller than this caused most of the embezzlement above. 

(ii) Anomalies introduced into the tenth and eleventh figures during 

basi~ arithmetic operations (see three examples 1n Appendix 1) 

undennine the rest of the calculation. 

Here we abandon Example 2 in favour of another which promotes 

the anomalies from the sixth significant decimal to the first. 

Because the next example concerns the 

same function as before, we hasten to assure the reader that we are not 

trying to get maximum mileage out of one troubleso~e function which we 

happen to have stumbled upon. This function was picked as the simplest way 

to show why neither intuition nor doctrine will protect us from the revenge 

_that roundoff errors can take when they are dealt with in an arbitrary or 

slighting manner. 
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Example 3. A Good Fonnula Tainted by Dirty Arithmetic 
-

The problem is to evaluate near x • O the function f(x) which is 

given to us 1n composite fom as f(x) • g(y), y • h(x) where 

is a tame 4th degree polynomial satisfying h(x) ~ h(O), and where 

{
{y127-i)/(y-1) for y, 1, 

g(y) •. 
127 at y • 1 

is another polynomial (of degree 126) despite appearances. Hence f(x) 1s 

a polynomial (of degree 504) which behaves quite mildly for -0.1 ~ x ~ 0.1 

as Fig. 1 shows. 

Although the function g(y) is perfectly smooth the formula given for 

g{y) has a singularity at y = 1 which is apt to distract attention from 

the smooth behavior of g(y) near y • 1. Therefore the function h(x} 

has been devised solely to ensure that y • h(x) will always be strictly 

less than 1 on every calculator. This is so because ½will be chopped or 

rounded down to 0.333 ... 333. Consequently the formulas defining f(x) 

never break down, although they may appear to flirt with disaster. 

Table 3 shows values calculated for f(O) by several calculators, 

Discussion 

Only the later HP calculators give the correct value 127; all others 

give very wrong answers but no warning. That behavior 1s typical of what 

- happens with all tiny x. For no values x in -1 ~ x ~ 1 do the later 

HP calculators deliver few~r than 5 correct significant decimals; this 

cannot be said of the others. 
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Table 3 

Number of significant -
Calculator decimals carried by Calculated f{O) 

the calculator -
. 

Hewlett-Packard HP 80 10 13 

Hewlett-Packard HP 21,25,45,55,65 10 127 
Hewlett-Packard HP 22,27,67,91,97 10 127 
Texas Instruments 11 100 Business Analyst 
Conmodore SR4190R, 5190R 12 12 
Texas Instruments SR-SO,SOA, 12-13 14 ·51,SlA 
Texas Instruments SR-52,56,51-II 12-13 128 
Monroe 326 13 12 

Despite appearances, Example 3 was not designed as a conrnercial plug 

for HP calculators. The example was intended to discriminate between calcu

lators that do and those that don•t provide correctly rounded or chopped 

basic arithmetic and nearly correctly rounded logarithms and exponentials, 

and to discriminate independently of the number of significant figures . 
* carried. 

A natural reaction against Example 3 is to declare that it is worse 

than artificial, that it is pathological. Our financial example and the 

performance of the newer HP calculators should scotch that declaration. 

One reader suggested that the use of the formulas for -f, g and h given 

above was asking for trouble, and that anyone misguided (or ignorant?) enough . 
to use them deserved wrong answers. We will forego comment on the attitude 

revealed by such sentiments though we do regret that.anyone should become 

so inured tn dirty arithmetic as to accept it as·natural law.· 
* -We did not fully succeed. The earlier HP calculators listed in Table 3 do 
not round quite correctly, neither do they provide nearly correct logarithms 
and exponentials; but their errors appear to cancel fortuitously for our 
example. The·Corrmodore SR4148R gets the correct answer too but via differ
ent and unlikely coincidences. 
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Another reaction 1s to devise alternative fonnulas for g(y) which 

will survive dirty arittlnetic. Here is one of its hidden cos~s. the need-. 
less exercize of ingenuity. Our example was not presented as ~:challenge to 

the reader to get the right answer somehow. Many an experienced progranrner_ 

can circumvent the roundoff errors via different fonnulas for g(y), but 

they all take much longer to evaluate than the natural fonnula and are more . 
prone to key stroke errors. The simplest alternative 1s 

but it costs over 250 keystrokes. A less obvious formula is 

but it is still much costlier than the natural fonnula 

g(y) • (y127_1)/(y-1) 

• 127 using any of the following ways to evaluate y 

y127 • y127 using the yx key 

• exp( 127 _1 n(y)) 

• ((((((y2)2)2)2)2)2)2/y 

• y(y(y(y(y(y(y2))2)2)2)2)2. 

The surprising thing about this example, quite contrary to intuition, 

is that 10 clean digits do signific_antly better .than 13 dirty ones, and you 

can prove it.· With clean arithmetic and a reasonably reliable logarithm, 
- 127 you can prove that any of the four foregoing evaluations of y in the 

natural fonnula for g(y) must yield values for f(x) • g(h(x)) correct 

to at least half the digits carried.* This is true both for tiny arguments 
*The 12-figure Tl SR-51-11 perfonns this well only if 1127 is calculated 

from one of the latter two evaluations without using yx. exp or ln keys. 
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like x + 10·8 and for not so tiny arguments like x t 10·2, althouqh 

different reasoning is needed 1n each case. For ways of attaining full 

accuracy fn the evaluation of g see Appendix 2. 

Let us glance briefly at what makes arithmetic dirty. The chief cul

prit 1n the production of many misleading answers, including those in 

Table 3, 1s lack of the internal guard digit needed to deliver correctly 

rounded results .. Here 1s an example to show what happens without this guard; 

when y•0.99 ... 99 those calculators must calculate 1-y as follows 

1 = 1.000 ... 000 

-y = -0.999 ... 999, 

1-y "=" 0.000 ... 0010 

... to the calculator's full precision 

... last 9 drops for lack of a guard digit 

... is 10 times too big 

To code around this kind of error the function 1-y may be replaced, for 

such calculators, by the expression (0.5-y) +0.5 or by 0.5+ (0.5-y) 
c,h\ 

except that only the latter expression works correctly on the\TI SR-52 

( try then for y • 3 x ½). Different more comp 1 ex tricks are needed to 

compensate for logarithms with low relative accuracy at arguments near 1. 

Multiplication and division without guard digits introduce phenomena (like 

Ax B , Bx A or l7 , ½> which matter only rarely, which is fortunate 

because the tricks required to compensate for those missing guard digits 

are prohibitively expensive. 

A few disconcerting results soon teach the wily engineer to program 

defensively against the idfosyncrac1es of his calculator. He may engage in 

pyrotechnical programning or he may practice respectable math!ffi!ltical analysis, 

-but the energy he expends and the satisfaction he gains by his exploits 

represent a hidden ·cost to the company that employs him primarily to do 

something else. 
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The Moral of the Story 

Our examples emphasize the contrast between calculators that do not 

and those that do try to perfom their arithmetic tasks as cleanly as i·s 

mathemat1ca11y possible despite that this cleanliness costs more to achieve. 

We have argued that clean arittvnetic costs less to use, that 1t 1s more 

forgiving, that it may be used straightforwardly with better prospects of 

success. and that when things go wrong the reason will be more susceptible 

to analysis and repair, less an artifact of an inscrutable physical device. 

We claim that the benefits far outweigh their costs. We wish we cou1d prove 

our c1a1m like a mathematical theorem, but we cannot. 

Alas, there does not exist any calculation that can be performed by 

clean arithmetic but not by dirty aritflnetfc; that i~ a theorem. The extra 

price that must be paid for always reliable computation with dirty arithmetic 

is the prior discovery by precise mathematical analysis of more than we 

wanted to know about our problem; this statement can be fonnulated as a 

theorem too. The cost of that analysis depends upon who does it, and how 

often, in ways that are best left unsaid. But this is how dirty arithmetic 

costs more to use than does clean. 

Important to any fair discussion of complex devices like calculators is 

the distinction between (a) blunders in the implementation of a given perfor

mance specification, and (b) 111-conceived perfomance specifications. 

There is much to be said about both topics, but not here. A few slightly 

• oracular COffll\ents on (a) are g·fven 1n the next paragraph. 

The thankless work of the Quality Assurance depart.~ent wj11 not likely 

improve in the near future as long as management sets so low a value on it 

as to begrudge the talent, the tools and the time for good work to be done. 

One obstacle to improvement is that quality assurance for calculators still 
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looks like.a hardware job whereas in fact it involves difficult mathematical 

software issues, but 1n disguise. Blunders of type (a), unlike those of 

type (b), are sometimes acknowledged by the manufacturer when he Fecalls 

the calculator for remedial action. A recent instance is proclaimed in 

Table 4. As painful as such action may be for both customers and manufac

turers, it reinforces rather than undennines confidence among present and 

future customers in the products' and producers' integrity, because acknow

ledged errors are the only errors from which we can learn to do better. 

Table 4 

X 
sin·1x radians sin-1x radians 

correct to 10 sig. dee. on HP 67 & 97 

3 X 10•6 3 X 10•6 3.02 X ,o-6 

4 X ,o-6 4 X 10•6 4.10 x 10·6 

5 x 10·6 5 x 10·6 5.20 X 10•6 

6 X 10-6 6 X 10•6 6.40x10-6 

7 X 10•6 7 X 10•6 7 • 58 X 10•6 

8 X 10•6 8 x 10·6 a. 92 x 10·6 

These six values x
1 

and their ,regatives, and the 
corresponding sin• and cos· values in radians, 
degrees and grads, are believed to be the only 
serious anomalies in early HP 67's and 97's. They 
were discovered by a customer, J.E. Dannenberg. The 
manufacturer fs actively pursuing a way to resolve 
this problem. 

This article has focussed on (b). It is a plea for what we call clean 

ir1thmetic; guard digits sufficient to yield correctly rounded il~ebraic 

operations, carefully evaluated elementary functions, and preservation of 
-

those mathematical relations whose violation would surprise a thoughtful 

customer (e.g. a+ b • b +a). We do not seek an unattainble perfection; 
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. . . 
the bibliography contains some 1tems·that show what can.be done. And when 

we say that the added costs of clean arithmetic are negligible ~e refer to 

the perfonnance penalty and to the added cost of production. The cost of 

designing cleaner arithmetic into calculators, especially the cost of pro

longed delay during development, will not become negligible until the 

designers are familiar with the appropriate mathematical technology, 

l'!'e necessary mathematical technology has been developed around some of 

the larger general purpose electronic computers. It 1s not so readily avail

able as we would like because it 1s scattered a111>ng a few individuals and 

some relatively obscure publications; only some of the more sophisticated 

large computer installations benefit from this technology. Many a large 

computer suffers from arithmetic and elementary functions fully ,s dirty as 

the worst sma11 calculator; cf. Kahan (1972). Moreover, most members of the 

mathematical conmunity are ignorant of the technology needed by the calcu

lator designer. Were he to seek advice indiscriminately he might well receive 

counsel of unattainable perfection. Worse, he could receive reaffinnation 

of those misconceptions which some of our colleagues taught him and still 

teach. An article in the Notices of the American Mathematics Society 

(December 1976) pp. 422-430, says 

It 1s inherent in any numerical computation on a machine 
retaining only a fixed number of digits, that subtraction 
of numbers agreeing in the first few digits is a very 
inaccurate operation, .... In numerical work, there 1s 
no real number zero. 

These statements are misleading, the mischief coming from various mean

ings of the word "number". We do not wish to launch into mat~ematical niceties 

- at this stage because 111 that needs to be said 1s that calculators work with 

digit strings of a prescribed length and these strings have no-intrinsic 

meaning whatever. They can be interpreted in various ways and that is where 

the difficulties begin. 
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. . 
The assertions quoted above are natural consequences of interpreting 

each digit string 1n the machine not as a definite real number but rather as 

1 sample from the interval of all those real numbers whose leading:digits coin

cide with the given string. This interpretation is neither true nor fa1se; 

it 1s simply a model, the so-called interval model. It leads its adherents 

to accept odd results (ab Iba) as inevitable; it is different enough from 

ordinary arithmetic that a business man will have to take ·time to absorb some 

of its implications if he is to accept a little embezzling as a predilection 

of certain ca~culators. The interval model does have its uses; the error 

lies in giving it the status of natural law. 

An alternative interpretation, in widespread use among numerical analysts, 

regards each digit string in the machine as representing the unique rational 

number obtained by appending to the given string infinitely many O's. The 

examples given above suggest that the choice of model is n~t simply a matter 

of taste; it provides the mental framework for fonnulating the crucial per

fonnance specifications which we have been discussing. We should choose the 

model which leads to the greater economy of thought. 
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"As you pass through life, brother. 
Whate'er be your goa1 
Keep your eye on the donut 
And not on the hole." 
(Sign in a coffee shop) 

We could fill these pages with a 11st of misconceptions and flaws 

r~vealed when trigonometric, hyperbolic, financial. ·statistical, navigational 

and numerous other functions are produced by various small electronic 

calculators. That would be a churlish way to acknowledge the calculator 

industry's magnificent accomplistvnent, especially when our intention is to 

help enhance it. We see the phenomenally widespread initial acceptance of 

these calculators ·as an unprecedented. opportunity, and therefore obligation, 

to take some of the mystery and more of the tedium out of mathenatics, and 

thus to improve one aspect of intellectual productivity. Most of that oppor

tunity, and obligation, lies exclusively in the hands of a relatively small 

band of calculator designers. Any defects in their conception of finite 

precision arithmetic will be visited on 111 users for generations to come. 

Provided they are not rebuffed by ignorance and indifference in the market

place, we trust they they will rise to the challenge once they know what it 

is. 

Acknowledgment: We wish to thank our friends for lending us their calcu
lators to be tortured and vilified. 



20 

Bibliography 

(including some recomnended reading) 

. 
Fike, C.T. (1968). Computer Evaluation of Mathematical Functions, Prentice

• Hall, New Jersey. 

Forsythe. Alexandra I., T.A. Keenan, E.I. Organick and W. Stenberg (1975). 
Computer Science--A First Course, 2nd ed,, Wiley, New York. See esp. 
pp. 600, 675, 691. 

Hanns, D.W. (1976). •Improved Algorithms: Making 23 • 8~ in Session 32 
'Advanced Pocket Calculators' of Electro 76, IEEE meeting in Boston, 
May 11-14, 1976. A Bowdlerized version appears on pp. 16-17 in the 
November 1976 Hewlett-Packard Journal, vol. 28, no. 3. 

Kahan, W. (1972) .. "A Survey of Error-Analysis," Information Processing 71, 
Proceedings of 1971 IFIP Congress, Ljubljana; North-Holland Publishing 
Co., pp. 1214-1239. 

Kaha.,, W. (1973). "Implementation of Algorithms," Parts I and II bound 
together and edited by David Hough, Technical Report 20, Computer 
Science Department, University of California, Berkeley. flow available 
from NTIS under DOC AD 769 124/9 GA. 

Knuth, D.E. (1971). The Art of Computer ProQramming, vol. 2 (2nd printing), 
Ch. 4. Seminumerical Algorithms, Addison Wesley, Reading, Mass. 

Osofsky, Barbara L. (1976). "Small Calculators for the Mathematician," 
Notices of the American Mathematics Society, vol. 23, no. 8 (December 
1976), pp. t2!-430. • 

Ris, F.N. (1976). "A Unif;ed Decima1 Floatinq-Point Architecture for the 
Support of High-Level Langua9es (extended abstract)," Report RC 6202 
(#26651) (September 14, 1976), IBM Research Center, Yorktown Heights, NY. 
Also in ACM SIGARCH Newsletter, "Computer ~:-chitecture News, 11 1976. 

Schmid, H. (1974). Decimal Computaiion, Wiley, New York. 

Sterbenz, P.H. (1974). Floating-Point Computation, Pr~ntice-Ha11, New Jersey. 

Walther, J.S. (1971}. "A Unified Algorithm for Elementary Functions, 11 

Proceedings 1971 Spring Joint Computer Conference, pp. 379-385. 



( 

21 

Aooendix 1. The Domain of the Standard Formula for ak2 
k • k 

For definiteness suppose {xJ and {xj2 have been accumulated using 

10 significant decimal arithmetic; for 12 significant decimal arithmetic 

replace 10·10 by 10·12 in what follows. Then roundoff could fore~ the calcu

lated value of ak2 to suffer from a ~elative error as large as 
-1ol 2 • 2 5 x 10 "I xj /ak roughly. In extreme cases, when that quotient exceeds 1 

roughly, the calculated value of ak2 might not be positive; otherwise the 

calculated values of slope m and intercept c can be no worse than if the 

x-data had been contaminated by not-quite-random noise whose standard 
k 

deviation 1s roughly 5 x 10·10 {x/1a/. Only when ak2 is small compared 

with {xJ2 can roundoff have a significant effect, but the appearance of 

squared tenns here implies that the effect will be si~n1ficant sooner than 

might intuitively have been expected. 

Certain frequently encountered special cases should behave better than 

implied by the previous paragraph. When the data consists of at most, say, 
k k 

100 pairs of at-most-4-decimal integers then the sums {xJ and {xJ2 are 

accumulated exactly; there 1s no roundoff, In these cases ak2' m and c 

could be delivered correctly rounded proJided they were calculated by aptly 

- chosen algorittrns, Unfortunately, there is evidence that some calculato.s' 

algorithms were not aptly chosen. For_ instance, try xj • 9966 + j, y j = j - 1 

for j • 1,2, ... ,32,33 (k • 33) on the Texas Instruments Business Analyst. 

Instead of m • 1, c • -9967 we get m • .9989983305 and c • -9957.00033. 

The discrepancies seem to be due to sloppy arithmet1ci although the Owner's 

Manual (p. 3) says "All calculations are made to 11 digits ...... the calcu-

-,. tor says that 1 0 ¼ 3 • 3. 3333333330 and (. 99999999999) 2 • . 99999999901 

and 1 - .99999999999 = .00000000010 so it really carries only 9 or 10 digits 

correctly. Another example, this time for the Hewlett-Packard HP 91, is 



x, • 1971 

y1 • 300 

22 

which calculates for y(x) • mx + c the value y(1974) = 375. 75 ·1nstead of 

y(1974) • 375 as correctly calculated by the HP 27 and others. See Fig. 2. 

The discrepancy here arises when an expression a•b + c•d is -evaluated as 

(a•b/c + d)•c. Neither of these algebraically equivalent expressions is 

appreciably more vulnerable to roundoff than the other except when all values 

happen to be integers and only the first is evaluated exactly. The calcu

lator's designer chose the second expression because he had only two internal 

registers to work with and the first expression needs three; his manager had, 

in effect, asked him to fit a size 13 foot into a size 10 shoe. 

I -
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Appendix 2. Attaining Full Accuracy for g. 

We cannot rejoice at the salvation of half the digits carried without 

mourning the other half's loss. even though so severe a loss almo~t never 

happens. For almost all the values of n and y that matter in financial 

calculations, the expression 

1s capable of producing correctly the 7 or 8 significant decimals displayed 

by the TI Business Analyst provided 1t be calculated with cleanly implemented 

11 significant decimal arithmetic. {Perhaps the TI engineer who chose that 

expression did so under the illusion that the arithmetic would be cleanly 

implemented.) Better accuracy (e.g. the error confined to the last digit) 

requires either higher precision or a different fonnula. One different 

formula is displayed in Fig. 4; it calculates gn(y) correct in all but 

the last digit carried for all n and y > O provided reasonably clean 

arithmetic, logarithm and exponential functions are used. Whether Fig. 4 

1s a trick or a treat we leave to the reader's.judgment after he has sought 

some better.procedure. Neither Taylor series nor the expansion 

g (y) • 1 +y+y2+ ••• +y"·2+yn-l can easily be exploited to match Fig. 4's 
n 

perfonnance, especially when n is huge; and if dirty arithmetic must be 

used the obstacles grow fonnidable. Besides, whether Fig. 4 is trickier 

than Taylor series depends on what you are used to. 

Of all the calculators mentioned in our article, only the HP 22, 27, 

67, 91 and 97 enjoy arithmetic clean enough to guarantee correet resu1ts 

from Fig. 4's procedure. Besides being far simpler to use than any other 
. 

we know, it can be proved correct in 1ess time than is needed mere1y to 

figure out, via Taylor series and other methods, the diverse procedures 
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that attain comparable performance on calculators with dirty arithmetic. 

(Watch out when ln(y-1)1 >> 1 >> IY-1I1) This example i~ just one of many 

where clean arithmetic costs significantly less than dirty to use. 
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q(y) • (y127_1)/(y-1) 



Figure 2 

linear Prediction with HP 91 

y 
,--HP's prediction 

75'--- t d~ • correc pre 1ct1on 

374 

350 

325 

.300 ...... ~---...------t------------ ◄1---->~ 
X 

1971 1972 1973 1974 



Figu~e 3 

More Accurate Mean and Standard Deviation 

Instead of accumulating Ixj and Ixj2• accumulate • 

k 
Mk• fxj/k (mean value). and 

. k 2·k 2 k 2· 
Qk • pxj-Mk) • ixj - Cf xj) /k .• 

via the. recurrences 

M1 • x1 , 

Ql • 0 , 

Mk • Mk-1 + (xk-Mk-1 )/k • k > 1 • 
• 2 

Qk • Q k-1 + ( x k -M k-1 ) ( k-1 ) / k • k > 1 • 

until all data has been entered, and then get 

2 ak • Qk/(k-1} • 

I 
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Figure 4 

A procedure to calculate 

for any n and y > O, with reasonably clean arithmetic. 

•• 1. Set v • y". • If y" underflows reset v • . 0; 1 f y" overflows skip 

to step 6. 

2. If v = 1 then gn(yJ = n and all subsequent steps must be skipped. 

Othen,ise (if v ~ 1) 

3. Set G • (v-1J/fy-1J. If G overflows so must gn(yJ. 

4. If I v-1 I .?.. 0. 1 • then gn (yJ • G except for its last digit, and time 

may be saved by skipping all subsequent steps. However, the next step 

does no ha nn. 

S. gn(yJ • G•(n log(yJ/logfvJ) except for its last digit; if overflow 

occurs here (or in step 3) it 1s practically unavoidable. 

6. This step is needed only to cope with the unlikely possibility that 

y" may overflow although gn(yJ does not. This can happen in only 

one way; if n > O then set gn(yJ = yn-l/(1 -1/y). Otherwise overflow 

is practically unavoidable. 


