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Abstract : Calculating M / N := A/ B ± C / D in lowest terms, given the integers A, B, C 
and D, is a task taught in Elementary schools; and it is an easy exercise in Computer 
Programming too provided the given integers must be less than half as wide as the 
widest integers that can be handled conveniently by the computer's hardware or by 
its programming language. But that program becomes much more complicated ( and 
slower) if it is naively expected to perform correctly whenever all six of our integers 
A,B,C,D,M and N are allowed to grow almost as wide as those widest convenient 
integers. This simple task illustrates why the art of programming entails sometimes 
a delicate balance between, on the one hand, the simplicity and aesthetic appeal 
of the specifications and, on the other hand, the complexity and efficiency of the 
implementation. 

Introduction: 
The obvious way to calculate 

M/N := A/B ± C/D in lowest terms 

is to first calculate 

M x k := A x D ± B x C and N x k := B x D 

and then divide them by their Greatest Common Divisor 

k := gcd(M x k,N x k). 

But the obvious way is no way to calculate 

31/1897 ,51872 = 1234 56799/123456 - 9882 97396/988291 

on a calculator that carries only ten significant decimals because first 

and 

M X k .- 1234 56799 X 988291- 123456 X 9882 9i396 

= 12201 12433 40509 - 1220112433 20576 

= 19933 

N X k := 123456 x 988291=1220104 53696 

would have to be calculated in order to reveal 

k := gcd(19933, 12 20104 53696) = 643. 

On that calculator, the two fifteen-digit products would both round to the same value 
(1220112433 00000) to ten significant digits, yielding zero for 1.vl x k; and N x k would get 
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rounded off too. However, because the desired final results M = 31 and N = 1897 .51872 
can be held exactly in that calculator, a way to compute them exactly ought to exist. An 
algorithm that does so without merely simulating arithmetic to at least fifteen digits.is the 
subject of this note. The algorithm is not simple, but it is far simpler than simulating 
multi-word arithmetic in BASIC . 

The Computing Environment: 
There are limits to the widths of the integers and floating-point variables supported con
veniently in programming languages like Fortran, BASIC, Pascal and C. Integers on some 
computers may be no wider than 16 bits, running from -32768 to 32767; on most other 
computers the tntegers occupy 32 bits, running from -21474 83648 to 21474 83647. Integers 
bigger than that lose their leftmost bits to Overflow, usually without any warning accessible 
to the higher-level language program. Floating-point variables, limited to 24 significant bits 
on some machines, to 53 or 56 on most others, can handle much bigger integers; but integers 
bigger than 

2.024 = 167 77216.0 or 

2.053 = 9 00719 92547 40992.0 or 

2.056 = 72 05759 40379 27936.0 respectively 

lose their rightmost bits to Roundoff, and consequently become multiples of powers of 2 
even when ideally they should have been odd. Similarly, on a typical ten-digit calculator, 
integers bigger than 1 00000 00000 get rounded off to multiples of powers of ten. Rounding 
errors occur without any warning to the program ( except on machines that conform to 
IEEE standards 754 and 8.54, which require that rounding errors signal Inexact.) That lack 
of warning obliges programmers to clutter some programs with tests of the magnitudes of 
all intermediate results lest incorrect final results be produced with no indication that they 
are wrong. 

Let A stand for the smallest positive integer beyond which some digit must be lost to 
overflow or roundoff; the previous paragraph tenders values of A appropriate for various 
machines. A is what is meant by "the widest integer that can be handled conveniently by 
the computer's hardware or by its programming language." The obvious way to calculate 
M / N described above would obviously work if I A x D I, I B x C I and I B x D I were all 
somewhat smaller than A, as would surely be the case if I A. I, I B I, I C I and I D I were all 
somewhat smaller than /A. The vagueness here implied by the word "somewhat" allows 
for sloppy implementations of floating-point arithmetic that, on some machines, introduce 
unnecessary rounding errors when integer results approach A too closely. Notwithstanding 
that vagueness, an algorithm will be presented that calculates 1\,f and N exactly whenever 
they and the given integers A, B, C and D are all somewhat smaller in magnitude than A 
rather than merely JX. 

Rem, gcd, and Lowest Terms: 
Our algorithm will require certain utilities which, if not already present in the programming 
environment, will have to be programmed from scratch. Reducing (lvl x k)/(N x k) to its 
lowest terms M /N requires that k = gcd(M x k, N x k) be computed; and the fastest ways 
to compute gcd's require that remainders be computed. Let 

rem(x,y) := x - y x (the integer nearest x/y) provided y ¥= 0. 
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This is consistent with the definition of the operation rem that must be present in pro
gramming environments that conform to the IEEE standards 754 and 854 for floating-point 
arithmetic. In other environments, rem must be composed from other primitives. In Fortran 
the generic intrinsic function MOD serves to define REM thus: 

GENERIC FUNCTION RE1vl(x,y) 
REM= MOD(x,y) 
IF ( ABS(REM) .GT. ABS(y - REM) ) REM= y - RElvl 
RETURN 
END 

Absent REM and MOD, the following procedure might be used: 

function rem(x, y): 
q := x/y; 
n := q rounded to the nearest integer; 
return rem := x - y * n; 
end. 

Both procedures can malfunction when x approaches or exceeds A in magnitude; the fol
lowing example will show how roundoff in x / y and y X n causes trouble. 

Suppose floating-point arithmetic is rounded to six significant decimals, for which A = 
1000000. Now take x = 999999.0 and y = 9901.0, whereupon x/y = 100.99979 80002 ... 
must round to q = 101.000. Then n = q, but y x n = A+ 1 must round to A, which wrongly 
returns -1.0 instead of -2.0 for rem. Similar rounding errors inside the implementation of 
MOD can return -1.0 instead of 9899.0 for MOD(999999.0, 9901.00). 

If the quotient x/y were chopped instead of rounded, no such malfunctions could occur. 
With rounding, they can be avoided by keeping I x I and I y I both smaller than A/2. If the 
error bound for floating-point division is vague, as it is for CRAYs, we can compensate for 
ignorance by further restricting I x I and I y I; that is why phrases like "somewhat smaller 
than A" have been uttered above. 

Having found a way to compute rem(x, y) well enough that 

(x - rem(x,y))/y is an integer exactly, and 
I rem(x, y) l:;I y I /2 roughly, 

we may use it to compute Greatest Common Divisors quickly thus: 

function gcd(x, y): 
while y -:/: 0 do { temp := y; 

y := rem(x, y); 
x :=temp}; 

return gcd :=Ix I; end. 

Besides the usual properties for positive integers x and y, namely 

gcd( x, y) is the largest integer such that 
x/ gcd(x, y) and y/ gcd(x, y) are both integers exactly, 
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this procedure gcd(x, y) has useful properties when its arguments are negative integers or 
zero; 

gcd(x,y) = gcd(I x 1,1 y I) and gcd(x,O) = gcd(O,x) =Ix I -
These properties simplify the explanation of the assertion 

"M / N is in lowest terms," 

which shall now be taken to mean that integers 1\tl and N satisfy 

"N 2: 0, and either gcd(M, N) = 1 or M = N = O." 

We shall abbreviate "in lowest terms" to "ilt" and use it not only as an adjective but also 
as an operator that maps pairs of integers to pairs thus: 

function Ilt(x, y): 
g := copysign(max{gcd(x,y),1},y); 
return flt:= (x/ g, y/ g); 
end. 

Now asserting that (M, N) = Ilt(x, y) means the same thing as 

M/N = x/y ilt. 

Idealized Rational Operations 
The mapping Ilt provides a unique pair of integers ( 1\tf, N) to represent each rational number 
M/N = x/y ilt, including also ±1/0 = ±oo, as well as a representation for the entity 0/0 
called "NaN" (for "Not a Number") in the IEEE standards for floating-point arithmetic. But 
those standards also specify how +0 and -0 will behave arithmetically in case a programmer 
chooses to distinguish them, something that cannot be done usefully on most machines 
that do not conform to those standards. Without a well-behaved signed zero, attempts 
to distinguish between ± oo would run afoul of identities like AI/ N = -1 / ( - N / AI) when 
M = l and N = 0. That is why we shall herein regard oo as unsigned, like 0, as if the ends 
of the real axis had been lifted and joined to form a circle out of it. Rational operations 
consistent with that picture are defined in a familiar way as follows: 

A/B ± C/D .- (Ax D ±Bx C)/(B x D) ilt respectively; 

(A/B) x (C x D) .- (Ax C)/(B x D) ilt; 

(A/B)+(C/D) .- (AxD)/(BxC)ilt; 

A/ B = Cf D just when Ax D =Bx C but I Ax CI+ I Bx D l;if 0. 

Thus, the set of all rational numbers, augmented by oo and 0/0, constitutes a system 
closed under the rational operations so defined. But the subset of rational numbers 1.ll / N 
representable conveniently on our computer, those for which I M I and I N I do not exceed 
A, does not constitute a closed system; instead it poses a challenge to implement the rational 
operations correctly for those operands and results that do lie within the subset. 

Implementations of multiplication, division and equality-testing are entirely straightforward, 
as follows below, provided all operands are ilt. In other words, the operands are presumed 
to be pairs of integers that will pass unchanged through the function Ilt, and the results 
will do the same provided their magnitudes are somewhat smaller than A. 
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function Product(A,B,C,D): ... to get (A/B) x (C/D) ilt 
k := ma..x{l,gcd(A, D)}; m := max{l,gcd(B, C)}; 
return Product:= ((A/k) x (C/m),(B/m) X (D/k)); 
end. 
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Note that if the final results are all somewhat smaller in magnitude than A then the same 
must be true of all intermediate results A/k,B/m,C/m and D/k, so the final results are 
right. 

function Quotient(A, B, C, D): ... to get (A/ B) x ( C / D) ilt 
return Quotient := Product(A, B, D, C); 
end. 

logical function Equal(A,B,C,D): ... does A/B = C/D? 
if (B = O and D = O) then { if (A= 0 or C = 0) then Equal:~ FALSE 

else Equal:= TRUE} 
else { if (A= C and B = D) then Equal:= TRUE 

else Equal := FALSE }; 
return Equal; end. 

This procedure Equal depends crucially upon the presumption that its arguments A./ B and 
C / D are ilt. Note also that 0/0 is not equal to anything, not even itself, since it's ~'Not a 
Number." 

Addition and subtraction are complicated procedures because they have to cope with ex
pressions like Ax D ±Bx C when their values are somewhat smaller in magnitude than A 
even though the individual products are not. The following subprocedure is needed. 

Coping with the Determinant x x t - y x z : 
The evaluation of expressions like XX t-y X z = det(: n when x, y, z, t and the determinant 
are all integers somewhat smaller than A in magnitude, even though x x t and y x z are 
both rather bigger, is a subtask that occurs often enough to deserve separate attention. 
Our approach is inspired by Gaussian Elimination except that, instead of seeking a biggest 
pivot in order to secure numerical stability, it finds the smallest element in the array (;;) 
and reduces some other element to half that size. The reduction process ends either when 
x x t and y x z differ in sign, or when they are both smaller than A, in which cases the 
determinant can be evaluated safely. 

function Det(x, y, z, t): ... to get det(; f) 
while x x t x y x z 2: A do 

{ if I z I > I y I then { s : = z; 
z := y; 
y := s }; 

if I x I> I t I then { s := x; 
X := t; 
t == s }; 

if I x I> I z I then { s := x; 
X := -z; 
z := s; 
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s := y; 
y := -t; 
t == s } ; 

... now I x l::;I z l::;I y I and Ix l::;I t I
n:= integer nearest y/x; 
y := y - x x n; ... = rem(y, x) 
t := t - z x n; ... = (Det + y x z)/x 
... now I new y 1::;I x/2 I and 

I new t 1::;I Det/x I+ I z/2 I
}; 

return Det := x x t - y x z; 
end. 

Addition and Subtraction: 
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Like the foregoing functions Product and Quotient, the following procedures act upon two 
pairs of integers that will pass unchanged through the function Ilt, and the results are pairs 
that will do likewise provided their magnitudes are somewhat less than A. 

function Sum(A,B,C,D): ... to get (A/B) + (C/D) ilt 
return Sum:= Di/ f(A, B, -C, D); 
end. 

function Di/ J(A, B, C, D): ... to get (A/ B) - ( C / D) ilt 
G := max{l,gcd(B,D)}; b := B/G; d := D/G; 
... Now we seek (Ax d - bx C)/(G x bx d) ilt, but first we 
... must cancel any common factor g hiding in G: 
a:= rem(A,G); c := rem(C,G); g := gcd(G,a x d- bx c); 
... Note I ax d - bx c 1::;1 d X G/2 I+ I bx G/2 I< A. 
N := ( G / g) x b x d; ... the desired denominator . 
... The numerator will be 1vl =(Ax d - bx C)/g ... 
a:= rem(a,g); c := rem(c,g); 
lvl :=(ax d- bx c)/g + Det((A- a)/g,b,(C- c)/g,d); 
... Note how I ax d - bx c I< A as before. 
return Dif J := (M, N); 
end. 

Are they worth the bother? 
It seems at first unlikely that a calculation of 

M/N := A/B ±C/D =(Ax D ±Bx C)/(B x D) ilt 

would start with integers A, B, C, D not much smaller than A and end with integers M, N 
no bigger than A. But, having programmed the foregoing procedures into various pro
grammable calculators including an HP-97 and an HP-71B, I have seen these unlikely events 
occur about as often as not. Perhaps this is merely evidence that I have been computing 
some things the hard way instead of the easy way, rather than evidence that anyone else 
will use the programs every day. 
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These programs are the simplest I know that exemplify a property more often found among 
numerical programs than others; their simple and natural specifications belie complicated 
and unnatural implementations. It may seem natural to demand that, if the data given a 
program and the output desired from it can both be represented exactly within the con
venient range of a computer's capabilities, the output actually delivered should be correct. 
But that demand implies that the program will find a path from the data to the output 
without first transgressing the computer's limitations despite that the path begins and ends 
only a step or two away from the edge. Such a path need not be obvious. 

Programs: 
Programs for the HP-67 /97 and HP-71B have been appended to these notes. The program 
for the HP-67 /97 requires very little change to run on the HP-41C or HP-l-5C. Although 
the HP-71B program is written in a kind of BASIC that looks as if it would run on diverse 
other machines, the program exploits the HP-71B's conformity to IEEE 8-54 in two ways. 
First, its rem operator ( called RED on the HP-71B) is built-in and allows the program to 
handle integer inputs as big as A= 100 00000 00000. Second, the Inexact signal accessible 
through FLAG(INX, ... ) permits the program to try obvious algorithms first and then, only 
if it encounters roundoff, resort to slower ones. Chained sequences of rational operations 
can be attempted in confidence because their results will assuredly be correct unless Inexact 
is signaled. 

Acknowledgements: 
Although prepared in this form for an Introductory Numerical Analysis class, these notes 
are based upon researches continued over an extended period. The author has used pro
cedures similar to Det in programs that solve linear and quadratic equations, precondition 
ill-conditioned problems to make them easier to solve accurately, and prepare test data for 
other programs. That work has been supported at times by grants from the Research Offices 
of the U.S. Army, Navy and Air Force under contracts numbered respectively DA.A.629-85-
K-0070, N00014-76-C-0013 and AFOSR-84-0158. 

Usage: 

HP-67/97 program to perform RATIONAL ARITHMETIC on pairs of integers in Lowest Terms 

The stack holds four integers X, Y, Z, T construed as two rational numbers Y /X and T /Z, both presumed to 
be in lowut term., (ilt). If not, pressing (E] will reduce Y /X to lowest terms while leaving T /Z unchanged. 
The four rational operations are performed by pressing one of the keys [AJ, [BJ, [CJ, [D] to invoke reliable 
programs, or (a], [b] [c] [d] to invoke obvious programs. The reliable programs accept integers as large as 
1,999,999,999 and deliver exactly coITect results up to 8,000,000,000 . Specifically, the programs ... 

Add: Press (A] or [a] to put Y/X:=(T/Z)+(Y/X) ilt, leaving T/Z unchanged. 
Subtract: Press [B] or [b] to put Y /X:=(T /Z)-(Y /X) ilt, leaving T /Z unchanged. 
Multiply: Press (CJ or [c) to put Y /X:=(T/Z) X (Y /X) ilt, leaving T /Z unchanged. 
Divide: Press [D] or [d) to put Y /X:=(T /Z) + (Y /X) ilt, leaving T /Z unchanged. 
Reduce: Press [E] to put Y /X:=(Y /X) ilt, leaving T/Z unchanged. 
GCD: Press (e] to put X:= Greatest Common Divisor of X and Y. 
REM: Press (GSB] (8] to put X:= Y-nX and n:= Integer nearest Y /X into reg. 8. 

The programs use registers 0 to 8 and I, and labels 2 to 8 too. 

Program: *LBL A CHS *LBL B GSB 7 X ~ Y RT STO 4 GSB e X=0? EEX STO 5 STO+o STO+4 RCL 1 X ~ Y 
GSB 8 RCL 4 x STO 6 RCL 3 RT GSB 8 RCL o STO 7 x RCL 6- GSB e STO+s RCL 1 X ~ Y 
GSB 8 RCL 4 STOx0 x STO 1 RCL 8 STO 6 RCL 3 RT GSB 8 RCL 7 x RCL 1 - X ~ Y + STO 1 
RCL 5 STOxO RCL 8 STO 5 *LBL 5 RCL 6 RCL 4 x ENTT ENTT RCL 5 RCL 7 xx EEX 1 o 
X>Y? GTO 4 RCL 6 ABS RCL 4 ABS X~Y? GTO 3 LASTX RCL 6 STO 4 X ~ Y STO 6 *LBL 3 RCL 5 
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ABS RCL 7 ABS X~Y? GTO 3 LASTX RCL 5 STO 7 X ~ Y STO 5 *LBL3 RCL 7 ABS RCL 4 ABS 
X <Y? GTO 3 RCL 6 RCL 7 GSB 8 STO 6 RCL 4 RCL 8 x STO-5 GTO 5 •LBL 3 RCL 5 RCL 4 
GSB 8 STO 5 RCL 7 RCL 8 x STO-6 GTO 5 *LBL 4 LASTX RT - STO+ 1 GTO 6 
*LBL e 3 CHS STO I R! X=0? GTO 2 GSB 8 GTO i (jumps back three steps to X=0?) 
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*LBL 8 STO 8 X ~ Y ENTT ENTT RCL 8 + DSP 0 RND STO 8 RT x - RTN •LBL 2 X ~ Y ABS RTN 
*LBL i STO 0 R! STO 1 Rt STO 2 R! STO 3 RTN 
*LBL E GSB i R! GSB e X=0? GTO 6 STO+0 STO+l 
*LBL 6 RCL 3 RCL 2 RCL 1 RCL 0 X>0? RTN CHS X ~ Y CHS X ~ Y RTN 
*LBL D X ~ Y *LBL C GSB i ST0 4 GSB e X;=0? STO+o X;=0? STO+4 RCL 1 RCL 2 GSB e 
X;=0? STO+t RCL 2 X ~ Y X;=0? + STOx0 RCL 4 STOxl GTO 6 
*LBL a. CHS *LBL b GSB 1 x X ~ Y RT STOx0 x - STO 1 GSB 6 GTO E 
*LBL d X ~ Y *LBL c GSB 7 STOxl RT STOx0 GSB 6 GTO E 

10 Listing of HP-71B program to perform RATIONAL ARITHMETIC 
20 upon pairs of integers in Lovest Terms conveyed as 
30 "Complex Variables" to represent R = M/N as (M,N) . 
40 The "Complex" functions herein are 
SO fnA(R,S) = R+S fnS(R,S) = R-S 
60 fnM(R,S) = R*S fnD(R,S) = R/S 
70 fnI(R) = R in lovest terms (ilt) 
80 Supporting Real functions include ... 
90 fnDO(R,S) = det(R,S) = Impt(Conj(R)•S) 
100 fnG(I,J) = Greatest Common Divisor of I and J . 
110 RED(I,J) = rem(I,J) = I rem J as in IEEE st'd p854 
120 RUN to sense FLAG(INX) and reset it to O; if that 
130 changes then a result has been compromised by roundoff. 
140 COMPLEX R,S, R1,S1, R2,S2, R3,S3, R4 1 S4, RS,S5, R6 
150 ! *************** 
160 DEF FNG(IO,JO) ! ... = GCD(IO,JO) 
170 IF JO=O THEN 190 
180 oO=JO O JO=RED(IO,JO) 0 IO=oO O IF JO#O THEN 180 
190 FNG=ABS(IO) 0 E~ DEF 
200 ! *************** 
210 DEF FNI(R6) ! ... = R6 IN LOWEST TERMS 
220 FNI=R6/MAX(1,FNG(REPT(R6),IMPT(R6)))•SGN(CLASS(IMPT(R6))) 
230 END DEF 
240 ! *************** 
250 DEF FNDO(RS,SS) ! ... = det(RS,S5) = Impt(Conj(RS)•S5) 
260 o1=REPT(RS) 0 o2=IMPT(RS) 0 o3=REPT(SS) 0 o4=IMPT(S5) 
270 oO=FLAG(INX,O) 0 oS=SGN(o1*o4)•SGN(o2•o3) 0 oO=FLAG(INX,oO) 
280 IF oO=O OR oS#l THEN 350 
290 IF ABS(o3)>ABS(o2) THEN o5=o3 0 o3=o2 O o2=o5 
300 IF ABS(o1)>ABS(o4) THEN o5=o1 0 o1=o4 O o4=o5 
310 IF ABS(o1)<=ABS(o3) THEN 330 
320 o5=o1 0 o1=-o3 0 o3=o5 0 o5=o2 0 o2=-o4 O o4=oS 
330 o5=RED(o2,o1) 0 o0=(o2-o5)/o1 0 o2=o5 0 o4=o4-o3•oO 
340 GOTO 270 
350 FNDO=o1•o4-o2•o3 G END DEF 
360 ! *************** 
370 DEF FNM(R4,S4) ! ... = R4•S4 in lowest terms 
380 o1=REPT(R4) 0 o2=IMPT(R4) G o3=REPT(S4) 0 o4=IMPT(S4) 
390 oS=MAX(1,FNG(o1,o4)) 0 oO=MAX(1,FNG(o2,o3)) 
400 FNM=((o1/oS)•(o3/oO), (o2/oO)•(o4/o5)) 0 END DEF 
410 ! *************** 
420 DEF FND(R3,S3)=FNM(R3,(IMPT(S3),REPT(S3))) ! 
430 ! ·····•·*•****** 
440 DEF FNS(R2,S2) ! ... = R2-S2 in lowest terms 

R3/S3 ilt 
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450 o1=REPT(R2) C o2=IMPT(R2) G o3=REPT(S2) C o4=IMPT(S2) 
460 oO=FLAG(INX,O) G o5=o1*o4-o2*o3 G o6=o2•o4 G oO=FLAG(INX,oO) 
470 IF oO=O THEN FNS=FNI((o5,o6)) C GOTO 530 
480 o9=MAX(1,FNG(o2,o4)) G o2=o2/o9 G o4=o4/o9 
490 o6=RED(o1,o9) C o7=RED(o3,o9) G o5=FNG(o9,o6*o4-o2*o7) 
500 o9=(o9/o5)*o2*o4 C o6=RED(o6,o5) C o7=RED(o7,o5) 
510 o8=(o6*o4-o2•o7)/o5 C o1=(o1-o6)/o5 G o3=(o3-o7)/o5 
520 FNS=(FNDO((o1,o2),(o3,o4))+o8, o9) 
530 END DEF 
540 ! *************** 
550 DEF FNA(R1,S1)=FNS(R1,(-REPT(S1),IMPT(S1))) ! ... = R1+S1 ilt 
560 ! *************** 
570 IF FLAG(INX,O)=O THEN DISP "Exact" ELSE DISP "Inexact" 
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