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This note discusses tw~ ways to assess the effects of rounding 
errors that occur during the calculation of a polynomial and its 
derivative in floating-point arithmetic. One way computes bounds 
for those effects during the computation of the polynomial and its 
derivative; the second way compares the rounding errors with 
hypothetical perturbations in the coefficients of the polynomial a 

Both ways have their uses, especially when computing the zeros of 
the polynomial and estimating their errors. 

Introduction: 
Given the coefficients a,1 
and a numerical value z , 
the derivative Q := A'(z) 

Horner's recurrence: 

of the polynomial 
we can compute both 
by means of ... 

A < x > = ~ a J }•: N- J , 

p : = A (z) and 

q := 0 p := ao; 
·for j = t to N do { q : = :z q + p ; 

p : = z p + a,1 } . 
To demonstrate the validity of the recurrence, we need merely 
assign subscripts to the successive computed values thus: 

q_ 1 : = 0 ; Po : = ao ; and P- s : = 0 ; 
f or j = 1 to N do { q .1 - s : = z q ., - 2 + p J - , ; 

P.1 : = z P.1-1 + a., } • 
Then, by substituting for a,1 , we find for all x that 

A (>t > = PN + <>:-z) ( qN-1 + (x-z > ]:N;2 qJ>!N-2 -J ) , 

whence it soon follows that the final values of p and q are 
PN = A<z> and qN-1 = A'<z> respectively. But no account has 
yet been taken of roundoff, to which this note is devoted. 

We presume that, in any arithmetic operation II x := y&z " , the 
value actually computed is x = (y8z) (1+-) where the Greek letter 
~ stands for a small rounding error about which we know only that 
£ > l~I ; here E denotes the relative uncertainty due to 
roundoff in the computer's floating-point arithmetic. We must 
introdµce similar Greek letters to stand for every rounding error 
committed during Horner's recurrence, after which we find that 
the computed values p and q actually satisfy the following 
perturbed recurrence: 

P-t = q-s = 0; Po= ao 
for j = t to N { q, - , 

p., 
and 

; ... and no= Ko= 0; 
= ( Z q .t -2 ( 1 +l7 .t -2) + p ,1 -1 ) / ( 1 +K .I •rt ) 

= C z p, - , ( l +t ., - , > + a, > / < t +n .1 > } ; 
~N-1 = t N = (> 

At this point we may either compute an upper bound for the effect 
of the perturbations upon the recurrence, or we may treat those 
perturbations as if they were equivalent to perturbations in the 
coefficients instead. Let us first attack the philosophically 
simpler though technically more intricate problem of computing 
bounds. 
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Computed Bounds upon Roundoff's Effect: 
From the perturbed recurrence, substitute for a, in the 
definition of A(x) to get, for all x , 
A ( X ) = PN + 1:= ( 1T .. >r-r., z ) p' X N-. -J + 

+ <x-z > ( qN-t + EN;• (K,1x->?,z) q.,xN-2 - 1 + (x-z) I:N;2 q,>,N-z-, > , 
whence it soon follows that 

A<z> = PN + 1:=<n,-t,>p,1zN-, and 
A'(z) = qN-t + EN;•< (K.,-ti,>q., + «N-j)n.,-<N-1-j>t,>p, )zN-t-J. 

Since no rounding error appears more than once in each of these 
formulas, the nonzero Sreek letters can be replaced by ±~ to 
get best-possible bounds for the accumulated effect of roundoff: 

I A(z)-pN 1/E < IPNI + 2,EN,• IP, lrN-.t + (pofrN where r := lz I 
I A' (z > -qN-1 I IE < I QN-1 I + 2!:Ni 2 I q, I rN-i-, + I qo I rN-t + 

+ ENi 1 C2N-2j-t) fp, f rN-t-.t + <N-1) I Po lrN-t • 

The right-hand sides of these inequalities are polynomials in r 
with coefficients derived from fp,1 and lq,f , so they can be 
computed by recurrence too. To do that, here is an 
augmented recurrence: 

r := lzl q 
for j = 1 to 

. - 0 . -
N do 

p ·-.-
{ q 

d 
p 

ao . 
!I e := lpl ; 

·- z q .. - + p ; 
·- r d .- + e + lq+ql - IPI ·- z p .. - + a, ; 

e : = r e + I p +p I } ; 
e := e - IPI ; d := d - fql . 

Now IA(z) - pl/E < e and IA'(z) - qf/E < d except for over/­
underflow and ignorable roundoff incurred during the calculation 
of e and d. Verifying that the last two inequalities do follow 
from the previous two is a challenging exercise in algebraic 
manipulation; that verification will confirm that the two sides 
of each inequality could approach each other arbitrarily closely 
in the event, albeit unlikely, that all the rounding errors had 
magnitudes ~ and appropriate signs. 

The augmented recurrence is most useful during the computation of 
a zero of A<x> . For instance, if z is approximately a zero 
of A then the error in z is approximately -A(z)/A'(z) , the 
next step of Newton's iteration. We may infer from the recurrence 
that IA(z) I < lpf+e~ and that IA'(z) I > fql-de:, whence follows 
1-A(z)/A'(z)I < (lpl+ee:)/(lqf-d:::) provided this is positive; 
otherwise roundoff so obscures A' that no such error bound for 
z can be estimated. 

Another instance arises during the iteration to compute a zero of 
A. That iteration has to be stopped when z is so close to a 
zero that roundoff makes further iteration probably futile. A 
good time to stop is when lpl < 2e::: ; this implies that (A(z) I 
cannot be much bigger than the roundoff that accrued during its 
computation. < The factor 2 is necessary to ensure that some 
machine-representable argument z exists so close to a zero of A 
that such an inequality can be satisfied. Without that factor, 
there would be some risk that fpl ~ ee for all arguments z , 
even those adjacent to a zero of A. On the other hand, the 
factor 2 is big enough because e~ exceeds the change in A(z) 
that would be caused by changing z to one of its neighbors. > 

During iteration to find a zero, the bound 
A'(z) is not very useful because substantial 

dE upon the error in 
errors i r, A' (z) 
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cause the iteration to misbehave in ways that are usually easy to 
recognize without d. Therefore, during the iteration, d can 
be omitted from the augmented recurrence, which then simplifies 
to a short form that runs significantly faster when N is large: 

r : = I z I ; q : = 0 ; p : = ao ; e : = r p I / 2 ; 
for j = 1 to N do { q := z q + p; 

p : = z p + a, ; 
e :=re+ lpl } ; 

e := e - lpl + e. 
After the iteration has terminated and z has been accepted as an 
approximate zero, an augmented recurrence like the one above can 
be run once to provide an estimate Clpf+ee)/(lql-de) of a bound 
upon the error in z. That estimate is not a rigorous bound: it 
was based upon an estimate -A(z)/A'Cz) that could underestimate 
the error in z • How badly? At worst by a factor 1/N 

Laguerre·s Theorem: The polynomial A(x) of degree N must 
vanish for s.ome x that satisfies l>:-z I ::: N IA<z)/A'(z) I . 

Proof: We know that A(:<) = ao (x-x1) (>:->:2> ( . . . ) <>:-xN-1 > (x-xN) • 

where x1, R2, ••• , XN-,, XN are the <unknown> zeros, real and 
complex, of ·A. Therefore 

IA'<z>IA<z> I = IEf 1/Cz-xJ> f ~ N/rninJlz->:,,I , 
with equality just when all N zeros of A are coincident. 

Therefore the error in an approximate zero z cannot exceed 
N < I p I +e E ) / ( I q I -d E > . 

This error bound is rigorous but, like Laguerre's theorem~ it is 
usually pessimistic by a factor near N, which is annoying when 
N is large. A rigorous error bound that is usually far less 
pessimistic costs slightly more computation and much more thought. 

The simplest thoughts arise when z approximates a real zero of a 
real polynomial A(x) . The sign of A(z) is the same as that of 
p+ee: and p-eE when they have the same signs; otherwise the sign 
of A(z) is obscured by roundoff, as it usually would be when z 
is the best available approximation to a zero of A<x> . Now let 
~ be any approximate bound for the error in z ; for instance, 
try - := ((pf+eE)/lql . We can check whether - truly bounds 
the error in z by running the short form of the augmented 
recurrence twice to see whether the signs of A(z-~) and A(z+~) 
are opposite, taking roundoff into account. Usually those signs 
do differ, and then we know for sure that A(x) vanishes between 
z-- and z+~ . Otherwise accept what Laguerre's theorem tells us. 

When complex zeros of a polynomial are being computed, error 
bounds better than are provided by Laguerre's theorem require a 
lot of thought. Because complex variables lie beyond the syllabus 
of this course, only a rough outline of those thoughts will be 
sketched here. They begin with the divide~ difference 

l:,f ( { X , y } ) : = ( f ( X ) - f ( y ) ) / ( X - y ) i f X ;! y , 
:= f'(y) if X = y ■ 

It resembles the derivative in many ways besides their similar 
definitions; they also figure in similar estimates for the zeros 
of a function. For instance, ... 
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Lemma= Let z be fixed at the center of some region I >:-z I ~ 8 
throughout which f(x> is continuously differentiable, and 
suppose also that l~f«x, z}) I > lf<z> 1/8 at every >: 
therein. Then f(x) must vanish at least once inside that 
region. ( It may be an interval on the real axis or a disk 
in the complex plane. And if also lbf ((>:, y}) I > 0 at all 
x and y in the region, then f<x> must vanish therein 
just once. > 

Proof: Construct the map Q) <x > := x - f <x > /~f < {x, z} > This 
map is inspired by Newton's and the Secant iterations. Since the 
divisor cannot vanish, (I) must be continuous throughout the 
region. Moreover, (l)<x>-z = -f(z)/1!.f({x, z>> , which implies 
IW<x>-zl < S throughout the region, which means that (I) is a 
continuous map of this closed bounded convex region into itself. 
By Brouwer's fixed-point theorem, Q) must have at least one 
fixed point x = (l)<x> in the region; that is where f(:d = 0 •• 

The derivative and the divided difference of our polynomial A(x) 

share another property; they can be computed without any divisio~ 
from a revised version of Horner's recurrence as follows: 

Q ·- 0 . p ·- ao . .- !I . - !I 

for j = 1 to N do { Q ·- y Q + p .-
p 

.. _ 
z p + a., } .- . 

The final values of p = A(z) and Q = 4:A({y, z}) woLtld be 

correct but for rounding errors which shall be ignored here to 
simplify the exposition. The recurrence cannot be executed anyway 
because we do not know y; it stands for the zero of A(x) that 
z approximates. What we can compute is q = A'(z) by means of 
Hcirner's recurrence. Moreover, using the subscripted values PJ 

introduced to explain that recurrence, we can infer that 
Q - q := <y-z) .EN; 2 p,.SN-1-.1 where 

S k : = ( z le -y k ) / ( z -y ) = Lie o t Z J y le - 1 - J • 

If we can find sorne s > ma>:< l:z I, lyl } , then Sk < k sk-t and 
I Q-q I < I y-z I £N; 2 <N-1-j) Ip., I sN- 2 -.1 ., 

= I y-z I R Cs> 
where R<s> in the last inequality is a polynomial in s that 
can be computed by another augmented recurrence similar to the one 
that computes d above. To determine s, we choose any known 
error bound - := N (lpl+eE)/(fqf-dE) ., say, and assume that 
ly-zl < ~ ; then s := Jzl + - . Then we run another augmented 
recurrence to evaluate RCs) , and deduce that for all ly-zf < ~ 

IM«y,z}) I = lq + CQ-q> I 2 lql - IQ-qi > lqf - ~ R<s> 
to within a small computable allowance for roundoff. If the last 
expression exceeds (fpf+eE)/- , as it usually does, then the 
Lemma tells us that A<x> vanishes somewhere in the region 

I x-z I < < Ip I +ee > / < I q I - ~ R < s > > ., 
which is usually much narrower than - . 

A number of details have been omitted from the foregoing account 
because they lie beyond the scape of this course. The important 
conclusions to be drawn from what has been presented so far are 
that we can compute a zero of a polynomial as accurately as we 
like if we carry enough precision, and that we can prove our 
result correct taking roundoff into account with complete rigor. 
Although it is possible to compute better error bound~ that come 
ever closer to the limits of uncertainty imposed by roundoff, 
such bounds are hardly ever worth their cost because other sources 
of uncertainty so often predominate over roundoff. 
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Interpreting Roundoff as Perturbations in Data: 
Let us return to the perturbed recurrence and express p, in 
terms of the rounding errors (the Greek letters) and the given 
coefficients a., . Instead of computing A<z> := ~ a.,zN-J , we 
can prove by induction that actually PN = A<z> := r= a,zN-J where 

a, = a., ( t +r J ) ( l +t .a+, ) ( ••• ) < 1 +r N-, ) / ( ( 1 +JT .a ) ( 1 +JT, +, ) ( ••• ) ( 1 +JTN > > 
= a, (t±,s:)~< 2 N-z,+o if j :I- 0 , otherwise ao<1±.~>~2 N • 

In other words, the computed value p, obtained instead of the 
desired value A<z> , is exactly what would have been computed 
without roundoff if each coefficient a, had first been perturbed 
to a nearly indistinguishable number a., • This is the sense in 
which roundoff committed during the computation of A<z> is no 
worse than a few rounding errors per coefficient committed before 
that computation. If the given coefficients are uncorrelatedly 
uncertain by as much as 2N units in their last significant 
digits, then that uncertainty in A<z> will dominate whatever 
uncertainty subsequently accrues to p because of roundoff. This 
view of the rounding errors is called a "Backi!.lard Error-Analy:..~i:..-::: 11

" 

Let us reconsider the computation of a zero of A<x> from this 
point of view. We shall accept z as a purported approximation 
to a zero of A when p , the computed value of A(z) , is 
deemed negligible; but that will actually mean that the perturbed 
polynomial p = A<z> is negligible, so z will actually lie 
close to a zero of the perturbed polynomial A. Because the 
zeros of a polynomial are known to be continuous functions of its 
coefficients, and because the coefficients of A and A are so 
nearly indistinguishable, one might hope their zeros are almost 
the same too. However, some closely neighboring polynomials A 
and A have surprisingly different zeros. For example, let 

A(x) := x12 - t2x 11 + 66x 10 - 220x• + 46Sx• - 792x7 +924x6 - 792xs + 495x4 - 220x 3 + 66x2 - 12x + I 
= (x _ tJ 12 , 

and let A(x) := A<x> - x•/106 • In other words, the perturbed 
polynomial A<x> is obtained from A(x) by replacing 924x• by 
923.999999x• , a change in the ninth significant decimal. Then~ 
although all twelve zeros of A are at z = t , two of the zeros 
of A are at z = 0.729843788 and z = 1.370156212. (These 
are the zeros of Cx-1) 2 - x/10, which you should confirm as a 
divisor of A<x> .) A similar but slightly more extreme example 
is constructed from the same A(x) := <x-1) 12 , but now perturb it 
to A<x> := ACx) - AC-x)/5,o9, changing each coefficient in its 
tenth sig. dee. or beyond. For instance, 12x gets changed into 
12.0000000024x , and 924x• into 923.9999998152x 6 • You should 
be able easily to compute the two real zeros z = t.36828744 and 
z = 0.73084059 of A<x> . 

The foregoing two examples may give the false impression that the 
zeros of a polynomial can be hypersensitive to tiny perturbations 
in its coefficients only if the zeros are repeated. Actually the 
truth is slightly but crucially different from that. Zeros can be 
hypersensitive to tiny perturbations in coefficients only if such 
tiny perturbations could cause the zeros in question to change 
their multiplicities. The proof of this assertion is too 
complicated to include in this note; instead, the assertion will 
be illustrated by an example. This example is similar to one 
discovered, and used for the same purpose, in the late 1950's 
by James H. Wilkinson. Let 
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ACx) != x 12 - 78x 11 + 2717x 10 - 55770x• + 749463x• - 6926634x 7 + 
+ 4499023tx• - 206070150x 5 + 657206836x 4 - 1414014888x~ + 
+ 193t559552x 2 - 1486442880x + 479001600 

= (x-1 > <x-2) Cx-3) < ••• > <x-10) Cx--11 > <x-12) 
= r<x>trcx-12> = <x-t>!l<x-13)! 

Its zeros, the consecutive integers from t to 12, do not seem 
especially close tog~ther, but in fact an extremely tiny change 
to its coefficients can change the zeros enough to make two of 
them coalesce. Specifically, A(x) != A(x) - A A<-x> has a 
double zero at z = 8.4835138 when A= 5.600278,o-10. Although 
the zeros of A are hypersensitive to roundoff, these numbers z 
and A can be calculated easily on a programmable calculator by 
means interesting enough to merit inclusion as the final item in 
this note. 

The double zero z of ACx> must satisfy A(z) = A'(z) = O; 
that means A(z) ~ A<-z> = A' <z> + A A' <-z> = O . Eliminating 
A produces an equation, A'(z)/A(z) + A'(-z)/A(-z) = 0, that 
identifies z as one of the 22 finite zeros of 

A'(>d/ACx> + A'C-x>/AC-x> = .El~,< 1/(>~-j) - 1/(>:+j) 
Every such zero lies between two consecutive nonzero integers 
between -12 and 12, so it is easy to compute accurately by 
Newton's or Secant iteration. Each such zero z determines a 
corresponding A = A(z)/A(-z> = r<z> rcz+t )/(r(z-12) r<z+t3> > a 

The smallest ~ and its z are the ones exhibited above. 

The foregoing examples warn us that some polynomials are so 
hypersensitive to roundoff in their coefficients that their zeros 
cannot be determined without carrying extravagant precision that 
may be unjustified if the coefficients are intrinsically uncertain 
by as little as a few rounding errors. In such cases, we should 
try to find out where the polynomial came from; it may have come 
from a problem that determined its roots quite accurately until it 
was transformed into an explicit polynomial equation. For example 
A(x) = (1-~)x 12 

- 78(1+A)X 11 + 2717(1-A)x• 0 

- ••• + 479001600(1-X) 
has zeros which, for tiny values of A , cannot all be computed 
from this expression without losing at least about 9 of the sig. 
dee. carried during the computation, whereas the same zeros can 
be computed from r<x> rcx+l)/Cr<x-12> r<x+t3>> - x to at least 
about half as many sig. dee. as are carried. 
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