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ABSTRACT 

The Remes algorithm is a widely used iterative method for 
finding polynomial or rational best {minimax) approximations to a 
given real function on a given interval. But the algorithm is equally 
effective for other. kinds of approximations, not necessarily 
rational, when provided with a sufficiently close first guess; subse
quent convergence is very fast. • 
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The Remes algorithm in question pur?orts to determine coefficients 

C';,:l.i•···•'l.n in a given forrauta F(z,a. 1,ri 2 , ... ,1..) 30 .is to be3t. apr_:)roxirnate ~:. 
s_?ecifiecl r~al fundi.on / (x) :::m a .3pcci:i:-!d i:!t~r-✓?.l ;£ ~ x ~ x. .Also S!Jeciti::d. i ~ 
some measure E(.:: ,a1,a2 , ... ,a,...) of the error between F and/. For the sake of 
notational economy let us write a in place of a 1,a.2, ... ,fln. Then examples of 
E(:r: ,a) can be exhibited thus: 

E(:r:,a) = /{z) - F(%,a) 
E(z,a) = 1 -F(z,a)/ /(z) 
E(z ,a) = ln (/ {z )/ F(z ,a)) 

... absolute error 

... relative error 

... relative error 
E(:r: ,a) = {/ {:r:) - F(:r: ,a)}/ W(z ,a) ... weighted error. 

However E may be specified, the best value a of the coefficient vector a is that 
which 

minimizes 
a 

I E(:i: ,a) I. 

Let that minimized maximum be denoted by 

I e I = max _ I E (:r:. i} I 
~~%~% 

Then there will usually exist n + 1 "alternating extrema" i, which satisfy together 
a set 0f interpolating conditions 

~ ~ %0 < %1 < • • • < Zn-1 < Zn ~ % and 
(I) 

for i = 0,1,2, ... ,· n-1, n 

L1 other w :rd;, lee er· ·tr E ,t•ill usually a::~:e,·'2 it~ extrerre -.ralnes ~1.t n.+1 r.on
seculive points in the interval~ ~ x ~~ at which the extrema alternate in sign. 

Moreover, the inter.:1al extrema must occur where B~ E change::s sign, so 

(i, - ~)(i,i - !f) BBz E(z, .a) = 0 for i = 0, 1.2, ... ,n. (M). 

These equations (M) and (I) motivate the Remes algorithm, which is an iterative 
procedure for solving these 2n+2 equations for 2n+2 unknowns z0,z1,· ··,Zn ,i 
and the elements a1,a2 ,· • • .~ of the n-vector a . Normally equations (M} and 
(I) define their solution uniquely, but prudence demands that any solution be 
tested by examination of the graph of E(x, i) plotted against :r: over~ ~ :r; ~ to 
be sure that extrema of I E I beyond Ii I have not been overlooked. This pre
caution could be incorporated into what follows but will be omitted to simplify 
the exposition. 

The Remes algorithm is an iteration. Given a set of guesses z, respectively 
close enough to x, and ordered similarly, so 

x ~ zi < : 2 <· • • <z~-1 < %~ ~ z . 
the first step is to solve equations like (1), namely 

(-l)i+1e' + E(:cl ,a') = 0 for i = o. 1,2, ... ,n. (I') 
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for coefficients e' and a' presumed to be close to e and a respectively. These 
equations could be solved iteratively via, say. Newton's iteration provided the 
partial derivative 

~8 E(z,a) = f ..;:..-E
8
8 (z)a), -

8
8 E{:.a),· • ·, -!-E(z.a) I 

va 0-i a.2 vlJ.n 

is computable and slowly varying, provided the Jacobian matrix of first partial 
derivatives whose i'h row is 

[ (-1)H1
, iJ~ E(:z:; ,a')] !or i = 0, 1,2, • • • ,n 

is nonsingular, and provided an initial guess a close enough to the solution a' of 
(I') is available. {Since e' appears linearly in (I') its initial guess is irrelevant.) 

After {I') has been solved for e ' and a• the next step is to locale new 
extrema :,, ordered so that~~ z'i < z 2 < • • • < :e~ ~ :, by solving iteratively 
-an uncoupled set of equations like {M), namely 

(:r'l - ~)(xi - f) ~8 E(:i:i ,a') = 0 for i = 0,1,2,· • • ,n. (M') 
u% • 

Each such equation can be solved iteratively \"ia, say, the secant iteration start
ing from, say. z; as a first guess. The calculated values :i: 'l replace the respec-

• tive values zl and then the Remes iteration is repeated until convergence 
becomes evident. 

But will the Remes it~ration converge? 

The purpose of this paper h to prove convergence provided three conditions 
are fulftlle d: 
Condition 1: 

Condition 2: 

Condition 3: 

. . 

E(.z ,a) is a real analytic function of all its variables in the neigh
borhoods of each z = z, and a = a, which means that E is 
infinitely differentiable and represented locally by its Taylor 
series expansion in every such neighborhood. This condition is 
usually evident in practice. 

!he {n + 1) x {n + 1-) Jacabian matrix of first derivatives 
J = J( li, J. a) (this notation will be explaiIJe6. later) whose it\ 
row is 

(c-1)HI, 8~ E(i,,8.)] fori = 0,1,2, ... n , 

is nonsingular and therefore invertible. This condition can fail in 
practice, in which case Newton's iteration may fail to converge 
to a solution {e '.a') of (I'): but such failure is rare and, when it 
happens, may indicate that F(z.a.1,a2,· • • ,Etn) is no better than 
some simpler {fewer coefficients a.,) approximation to / {.z }. 
Certainly the failure of this condition undermines confidence in 
the uniqueness or finiteness of the best approximation's 
coefficient-vector a. Conversely, when the best approximation's 
coet!icient-vector a is known in advance to be unique, perhaps 
because of a Haar condition or "unisolvence" (Rice [ 1964]), then 
condition 2 is most likely to be satisfied. 
The minimized maximum I e I is strictly positive; and every root 
zi of {U) is a place where (-l)i E(x ,a)/e achieves its local max
imum 1 as x varies in some neighborhood of i, in ~ ~ x ~z. 

'When~< xi < !f this condition means that (-l)i B~ E(x,a)/e 
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must change sign from positive to negative as % increases 
through i, , and hence ~ 

( ) • a2 ( .... ) .... 
-1 '{Jz2 E .:z: ,a / e ~ 0 . 

And the second derivative could vanish without invalidating our 
conclusion. Here is where this paper differs from those of previ
ous .vrit.ers li~e Veidinger [1960], Werner [1962-3], Ralston 
(1965] ::t:-1d Dt:nha.rn [1959], who a::;~um!::!d th~l tl-.te s~conc <ler~va
ti.-Je; mt!sl not vanish at interior routs zi ; cf. !~t~indarc.u.s [1~57, 
p. 111 and p. 151]. 

The foregoing three conditions imply that the Remes iteration 
will converge superlinearly from any set of starting values (xi I 
and a close enough to l i, J and a respectively. Here "super
linear convergence" means that each iterate's • number of 
correct decimai digits is an ultimately exponentially growing 
function of the number of iterations: in particular, convergence 
is quadratic if every 

• I IJ~2 E(i,,i)I + I ::,; E(i,,ii) I ~ 0. 

This conclusion will be proved below after the proof has been outline~. . 
By studying the Taylor expansion of E(x,a) in powers of z-i,, we are able 

to cope with the· possibility that the graph of E(x ,a) may be very nearly flat near 

those interior stationary points Zt where both LE and 
62

2 E v~nish. Because 
oz_ Bz .... ~ 

E is real analytic, the difference between E(z ,a) and its extreme value ±e is 
approximately proportional, when I zi - z;, I is small enough, to (.:z:, - z, t' for 
some ki ~ 2. 

A similar study of lhe Taylor expansion of E(z ,a) in powers of :r.-zi and 
a -a implies that solving (I') will produce an approximation a' to a with a' - a 
very nearly a linear combination of pow·ers (zi-ztti where k;, ~ 2 was intro
d 1ced a\.;o-"a. TI-an soh.:ng {l.t} proc,.u~es ne"',V' e~t;.matP.s z, for vrNcb 
(:z: '; - z,)~'-1 

is very nearly a linear functional of a' - a. Consequently each 
(z '-i - i.JJ:<-l is nearly a linear combin3tion of the powers (xj - E j t 1 , whence bl
lows superlinear convergence. 

Now for the details. 
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Condition 3, which·says that (-1)" E{.z,a)/e achieves a local maximum 1 at 
:z = ii . says something about the Taylor series 

• 

where 

Here the positive integer ~ and the nonzero coefficient 

v, = -( 
8
8 )~ E{z,.a) / k"! must be constrained as follows to ensure that the local • 
%· 

maxim:um is achieved at : = ii : 
Ifz, =~ then (-1)-£ vi/ e > 0 andk, ~ 1 andi = 0. 

If~< i, < z then (-1)" ii, I e > 0 and ki is even {so k, =!=: 2). 

If ii=% then {-1)Ht«vi / e > 0 and ki ~ 1 and i = n. 
By differentiating the Taylor series we find that 

~/J E{z,a) = ~ (z -zi)k-l { 
0
6 )k E(zi,a)(·(k-1)! 

u% . t~~, Z 

which will be useful when the solution of {M') is analyzed. 

The eflect of varying the ~econd argu.rnent a in .E(z,a) can be summarized 
by writing • 

for all b, ,vhere 

J.1 a - .... 
E'(:z:,b)= 

0 
oa E(x,a+t(b-a))dt 

= Aa E{: .a) + O(b - a) as b ➔ a . 
. ua 

1f a.a and b are regarded as column vectors then E'(:z:,b) is a row vector, all 
with n elements. For any set fZ(J of n+l values satisfying 
~ :S zo < z 1 < • • • < Zn-l < Zn ~ z. and for any n-vector a there exists an 
(n+l) x{n+l) malrix 

whose i '" row is 

((-l)Hl• E'{Z&,a) ) . 

Recalling conditon 2 above we observe that 

J(lz,d,a) ➔ j = J(ixd,a.) as all Zi ➔ zi and a ➔ a. 
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and since j-t exists the same must be true for 

J{(.:z:,d.a)-1 ➔ j-1 as all .xi -+ i, and a ... a. 
This fact will be useful when we analyze the solution of {I'). 

Now let l.:rn be a given set of close approximations to (z, J ' so close as to 
ensure the truth of all subsequent statements known to be true when all 
I .:rl - ii I are sutiicienUy small. In particular, assume 
x ~; .:::; < z; < · · · < z~-t < :r~ ~ x . By substit:Jting the foregoing definitions of 
-u/~) ar:d J into (I'} ·.,ve obtain 

so 

0 = (-l)i+le' + E(x;.a ') = (-1)-i+lg" + E(xi,a) 

= (-l)i+l(e' - e) + E{x,.a') - E{:rl.a} + E(.:z:l_'a.) - E{zi,a) 

= (-1)Hl (e' -e) + E'{.:r;,a') · (a' -a) - 11,.{zl) 

(A) 

where v{f .:z:J J) is the (n + 1)-vector whose iu,. component is vi {.:z:,l). Although the 
last equation appears to express e' and a' in terms of f:z:JJ, it has a' on both 
sides. However, the implicit function theorem can be invoked here to ensure 

• that equation (I'} has a unique solution a' in a neighborhood of a for every fxH in· 
a small enough neighborhood of l ii J , because equations (!) and (I') are continu
ous perturbations of each other and the derivative matrix J is invertible. Conse
quently a' - a = O{l.:rl - Zin as all x,l ... %,: by virtue of the implicit function 
theorem alone, and then from {A) above we deduce 

~: = ru : ( j-l + ooxi - zd) )vc°f=lO as all :z:J ➔ z, 
where vOxl !) is the (n + 1)-vector whose i th. component is 

vi(xl) = (x; - xiti v, = v,{.:z:D{l + 0{:rJ -i,)) 

Ha·.;inr; computed ~ :) . we tur.n tC\ !-.he calculation of a. new s~t of extrema 
f.:z:'.H satisfying (M') and close to lxd respectively. Do such extrema ::c'l exist? 
Yes, and they can be found as follows: 

Pr~vided all I :z:j -i; I are tiny enough, in which case ~· -:. a _!fill ~e tiny too. 
all (-1)~ E{x,l,a') = e' must be as close as one likes to (-1)~ E(z,,a) = e • so close 
that e' iJI! 0 too; then E(z ,a'}/ e' must reverse sign as z increases from z,l_1 to xJ. 
Therefore for each i = 1,2, ... ,n some yJ can be found such that zi-l < 'Yt <%'and 
{-1)' E(:z: ,a')/ e' changes sign from negative (its sign when z = .:z:[_1 ) through 
zero at z = yJ to positive {its sign when x = x[) as z increases through y,l. Let 
y; = ~ and 'Y~+l = x to simplify the next sentence. Then for each i = 0,1,2 .... ,n 
at least one place z = x'l can be found in y,i ~ z ~ Yl+i where (-l)iE(x,a')/ e' is 
locally maximum, and these plac~s z 'l lie among the roots of equation {M') as 
well as satisfying~ s z~ < .:z: 1 < • • • < :r:;_1 < :r:; :!= z . Whatever iterative method 
might be used to solve {M') for zt, it could proceed from xJ as a first guess. 

The foregoing procedure might not determine each z',l uniquely, but this 
does not matter. The following analysis will exhibit. for each i = 0, 1,2, ... ,n a 
radius p, > 0 , independent of x; and a', such that whenever all I z; - zi I/ Pi 
are tiny enough then every root x ';, of (M') that lies in I x 'l - z, I < p;, must lie ~ 
much closer to xi than within p, . ln other words, spurious roots x'i cause no 
confusion because. if every x{ is close enough to x, respectively. each root xi 
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close enough to z; is even closer to i, . as we shall see. 
To simplify the exposition, temporarily drop the double prime on z 'l and 

drop the subscript 1, everywhere. This simplifies the equation {M') satisfied by % 

thus: 

And to further economize on subscripts, let us introduce certain norms for ro~r 
e1nd ,::o1 u:nn vectors: let !Ir;! staild fc.-r the s;__:r~ of the n1J-1gn~tu,:! ~s of the corn -
poni::nls ::..>f any row n-vc::cLo:- r , and let l;c -~ st.ind for tt"!e h1.rgesl of t.h?. rn=.gni· 
tudes of the componenls of any column n-vector c. Then the scalar product r c 
is bounded thus: Ir c I ~ llr II· lie II- . 

The third factor of the simplified version of {M') in the previous paragraph 
can be rewritten 

::r; E{z,a') = 8~ E{:r:.a) + a~ E'{z,a') • (a' - a) , 

in which ::r; E' is a row vector and, as z ➔ z and a• ➔ a , 
8 E'( ') a E'( ... ... ) a2 E( .... ... ) 8:r: % ,a ➔ Bz .z,a = oz oa :r:,a • 

However, ::r: E is a scalar which, as we have seen earlier, can be written 

B
B E{:r:,a) = - k(:r: -i)!:-~ (v + O(z -z)) as z ➔ z 
% ~ 

_for some integer le ~ 1 and nonzero constan.t 

V = - ( B~ )" E(z,a)/ k! 

Therefore some positive radius p must exist such ·that 

I ::,; E(:,; ,ii) ! ;;,, .I: I:,; -% 11:-i IV I / 2 as long as I :,; -i I :,; p 

providel! ~ ~ z :.; z luo or ~ourse: i..: {z -~} ~z -x) i C we ~ hall cL>o~a 
p < minf.z -~, !f -iJ too. Within that radius p of z ·we may define the row vector • 
function 

r{.:z:,a) = - (z - z)t-i :z E'(z.a)/ a~ E{.:z:,a) 

= - (k -1)! :: E'(z,a) / ( :z )A; E{z.a) 

if o < Ix -i I ~ p 

ifz =z. 
This row vector is a continuous function of .:z:, and therefore a real analytic func
tion of .:z: and a in the neighborhood of :r: = z and a= a at which it takes the 
finite value 

( ...... , ( ) a2 ( ....... } ( ~t c- ... ) r z,a = - k -1 ! B:r:Ba E x,a I W E z,a . 

This row vector figures in an equation 

(:z: -~){.:z: - z)[(z. - z)l-l - r(x,a•)·(a' - a))= 0 
N 

(M) 

which is the form that the simplified equation {M') takes after it is multiplied by 

a factor {z - x)J:-l / :: E(x ,a} that is finite and nonzero provided 
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0 < I x - z I ~ p. Therefore equations (M) a.~d (M') simplified have the same 
roots z lying within the dislane;e p of x. We ·wish to show that as a' ➔ a at least 
one root z ... i but the rest of the roots stay away from z at le asl thal positive ,~ 
distance p independent of a' . 

Because r{:r ,a) is continuous for Ix -i l ~ p and all a close enough to a, we 
can define for all sufiiciently small positive a the function 

R(a.) = max llr(x,a) II for I% -i I< p. = ~ = ~ !f and Ila-a!!~ a. 

Evide::t.Jy R(a) :s a mcnotor.ic non-decr';a~~;~ 5 ~u.r.:..:tion of a, an,J t.~1e:-~for-e ::;orr:~ 
positive a can be chosen to satisiy 

a R (a) < pi=-l 

We shall assume II a I - a II ~ a in what follows. 
• - • 

Every root :r of (M} must cause at least one of the three factors of that 
equation to vanish. There are two cases to consider, according as (i-~)(i-:) 
vanishes or not. 

If~< i < x_tben every root% of (M) within I z -x I~ p must cause only the 
third factor of {M) to vanish because we chose p < min 1 z -~, z -z J. And tha.t 
third factor 

{:r - z)t-l - r{:r ,a ')·(a' - a) 

must have at least one root%. with I%. -i l ~ p as long as. II a' - a II~ a for t~o 
reasons. First, k -1 is odd because~< x < z. so {z -i)k-1 reverses sign as z 
runs from z -p to i + p. Second, • 

l r(z.a'}·{a'-a) I~ llr(:t,a')ll·lla'-all 

~ R(a) · a < pJ;-l 

so the third factor must reverse_sign too at least once as z runs from i -p to 
i + p. Therefore every root :r of {M) with I z -i I ~ p satisfies 

I :r -z !'=-1 = I r{x,a')·(a' -a) I~ R{a)·lla'-all 
... 0 as a' ➔ a, 

as claimed. 

On the other hand, if .x = z_ then z = x is one root of (M) ~nd any othe?- r0et 
with I :·-z I ~ p, if such a root exists, must make the third factor vanbh. But 
now k-1 could be even, perhaps zero. so the third factor need not vanish any
where in I :r -i I ~ p . although if k > 1 and the third factor does vanish then the 
conclusion at the end of the previous paragraph remains valid. A similar argu-
ment. dispatches the case z = x. • • 

Let us now ·restore the subscript i and the double prime to :r '.l , and sum
marize what is known so far. For every i = 0, 1,2, .... n there exist positive con-
stants P(, Cl( and R, ~ p:•-1 I a-£ about which the following may be said. Provided 
all l z;, - Zi I / Pi are tiny enough, equation (A) and its immediate consequences 
ensure that equation (l') will possess just or.e solution a' so near a that every 
~ > Ila' -all. Then every root z'i of (M') within I %,-ii I ~ p, must satisfy 
either z, = z, whe·n ki = 1 or I :ti -ii I 1:,-i ~ R., II a' -i II when ki > 1. Since 
equation (A) and its conseq~ences imply lhe existence of some positive constant 
s depending upon ✓-1 and the coefficients ii, such that 
II a' - a II~ s ·max;! l z; -xi IJ:1 J provided ~u ! :tJ -ii 11 Pi are tiny enough. we 
can now relate the new set of differences l z 'i - z, I lo lhe old (zj -i J J: 
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Provided all I :z:, -zi 11 Pi be tiny enough. either 

ki > 1 and I :z: i ~ z, ( ~ -i ~ Ri • s · max; ( I :z: j - z J I t 1 J , 
or 

1 d 
,, ... 

k, = an :.: " = z, . 

All that remains is to show why the last inequality implies superlinear conver
gence of the Remes iteration. 

• • • ,. ••• 'I ~ 

.!"-.lte?:" cverv 1ter-a~e z,i has ~~:1roa.ched ~:.s :-:S"'.)~ct:ve Hrn!:1i'lg Vc!rue z, c.:bs:::1v 
er: . ;::;h. ua subs~quent iterates .. ; 'i will stid~ ~t ;-; -= x~ for ea;:.~h k;, = 1. Th:r;. 
fore restrict the index i henceforth to those of the integers 0,1,2, ... ,n for which 
ki > 1 and define 

We assume k > 1 since convergence must be very sudden otherwise. We shall 
use 

µ'=>-.·max; I zJ - is (ti and µ"=A· m~ I:'[ -Ei IA, 

to measure the error in the respective sets I zJ J and l z i J of iterates. The previ
ous paragraph's inequality implies: 

A I z'; - z, It,~ A (R1, ·s·µ' I At'/(t,-l) 

= ((R;. ·St'/ A )1/(t,-t) (µ•t</(A:,~l). 

~ (µ•ti/ (t,-1) 
' so 

µ'' ~ {µ')·tl(t-1) 

provided µ/ be tiny enough. Similarly, if µ"' r.:ea.sures the error in the set fz 'i J 
of iterates .that f.ollow (z ,J , 

µ"' ~ {µ,").I:/ (.t-1) ~ {µ.")'t/ t.t-1))2 . 

More gensrc..uy, tt,e m. :Ii s~t nf iter?les after 1::j J c-an have if:.it.i error me~.::'...lrP. rn 
bigger than 

(µ,') (~/ (:;-1))"' 

which converges to zero superlinearly as m ➔ =, as claimed . 

. The foregQing proof is not altogether reassuring to the Numerical Analyst 
because it includes the possibility that k might be quite large, in vrhich case the 
equation (M') to be solved for the roots l.:z: 1 J might be very nearly an equation 
some of whose roots have multiplicities as large as k-1: Therefore some roots 
:r9l might be very ill-conditioned, in effect practically impossible to determine 
accurately. Closer scrutiny of the proof will show that that ill-condition afflicts 
only the nearly multiple roots : 'i ; the coefficients a and e are not degraded by 
the inaccuracy to which zi can be calculated. This is • so because the error 
z'i - x, influences the next iteration, where it has been renamed z,l - z" . mainly 
by its appearance in equation {A)'s right-hand side- terms 

vi(xi) = (-t)ie - E(xI,a.) = {zl -xi)~(v" + O(xl -z,)) . 

The proof above shows that these terms converge to zero superlinearly, which 
means in practice that these terms soon become small comparable to the 
roundoff th3t accrues during the evaluation of E{x;,a'). Consequently, the 
implementor of t.he Remes iteration should not expect successive sets fzH lo 
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settle down numerically, but should test some olher variables lo decide when to 
stop. • 

A better way lo monitor convergence is via comparison of successive values 

I e' I = I E(zl,a') I for i = 0,1,2, .... n 

{obtained-when (I') is solved ) ?tith corresponding values 

I rl' I = max I E(!!! t,a') I o,ver i = 0, l~~•···n 

obtqini,!:>lt: -.··:.er (M') has be:!ll ::;olved. PrO\ided precautions have been taken to 
cm:·=,nee th~-- prospect that = = xi is wt:~~e (-l)i E"(:.-=.a') / e' achieves its mc1x
i.·rm;n value for zi-t ~ :r: ~ ziH {with the understanding that x.:.1 = ~ and 
:z:;. 1- :. = !f) there is every reason to expect I cl' I > I e ' 1- Normally successive 
iterations will produce convergent sequences of values I rl' I decreasing towards 
Ii I while I c • I increases towards I i I. Indeed, this monotonic behavior is 
guaranteed if the family of functions E(z ,a) possess a local Haar property 
(Meinardus, [1967, p. 142]). Therefore a reasonable lime to stop the Remes 
iteration is when I rl' I and f e' I approach each other so closely that I i I, which 
probably lies between them, is determined accurately enough for practical pur
poses. 
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