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ABSTRACT

The Remes algorithm is a widely used iterative method for
finding polynomial or rational best (minimax) approximations to a
given real function on a given interval. But the algorithm is equally
effective for other. kinds of approximations, not necessarily
rational, when provided with a sufficiently close first guess; subse-
quent convergence is very fast. '
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The Remes =algorithm in question purports to determine cozfficients
05:2,.....0, in a given forruula Flz.a,.a,...20,) 30 as to best approxirnate w
specified real function f{z) on a specitizd interval £ <z < %. Also specifizd is
some measure £(z.a,,as,...,a,) of the error betwe n F and f. For the sake of
notational economy let us write a in place of a,,a,,....a,. Then examples of
E(z,a) can be exhibited thus:

E(z.,a) = f(z) — F(z.a) ... absolute error

E(z,a)=1-F(z,a)/ f(z) ... relative error
E(z.a) =In(f(z)/ F(z.a)) ... relative error
E(z.a) =(f(z) - F(z.a))/ W(z.a) ... weighted error.

Kowever E may be specified, the best value a of the coefficient vector a is that
which

minimizes maximum | E(z,a) |.
a TZszsZX

Let that minimized maximum be denoted by

-~ _ max -
181 =, 2% 188
Then there will usually exist n+1 "alternating extrema" Z; which satisfy together
a set of interpolating conditions

Z<ZTp<Z, <" <Zp_1<Zp, <X and

. )]
E(z,.2)=(-1)e - fori=0,12,...,0n-1,n

1n other w:rd;, tke er-cr E will usually azhleve its extremre ralues 4t n+1 ron-
secutive points in the interval z < z <Z at which the extrema alternate in sign.

X d .
Moreover, the internal extrema must occur where -a—;E' changes sign, so

(3, -2z)(E -2) a—";z(s( &)=0 fori=012..n (M)

These equations (M) and (I) motivate the Remes algorithm, whxch is an iterative
procedure for solvmg these 2n +2 equations for 2n+2 unknowns Zg, T, * - ,Zp, .8
and the elements @,,a5, - ' .d, of the n-vector a . Normally equations (M) and
(I) define their solution uniquely, but prudence demands that any solution be
tested by examination of the graph of E(z, a) plotted against £ over £ < z <Z to
be sure that extrema of | E | beyond |e| have not been overlooked. This pre-
caution could be incorporated into what follows but will be omitted to simplify
the exposition.

The Remes algorithm is an iteration. Given a set of guesses z{ respectively
close enough to Z; and ordered similarly, so

2=z <T3< K21 <ZTp<FE,
the first step is to solve equations like (1), namely
(-1)*'e' + E(z{,a')=0 fori=0,12...n, (I)
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for coefficients ¢' and a' presumed to be closz to 2 and 2 respectively. These
equations could bhe solved 1t.erat1vely via, say. Newton's iteration provided the
partial derivative .

-——E(z.a) = { —B—E(z.a). ~—a——E’(z.a).° ce, FB——E(z.a) }
is computable and slowly varying, prov1ded the Jacobian matrix of first partial
derivatives whose i** row is :

(=1)t, LE(zi ,a’) fori =0,1,2,

da

is nonsingular, and provided an initial guess a close enough to the solution a' of

(I') is available. (Since e’ appears linearly in (I') its initial guess is irrelevant.)
After (I') has been solved for e' and a' the next step is to locate new

extrema zY{, ordered so that z <z|<z% <--- <z} <Z, by solving iteratively

an uncoupled set of equations like (M), namely

(z% —z)=zt - 7) a—a; E(z}.a')y=0 fori =012, -,n (M)

Each such equation can be solved iteratively via, say, the secant iteration start-
ing from, say, z; as a first guess. The calculated values z; replace the respec-
"tive values z{ and then the Remes iteration is repeated until convergence
becomes evident.

But will the Remes iteration converge?

The purpose of this paper is to prove convergence provided three conditions
are fulfilled:

Condition 1:  E(z,a) is a real analytic function of all its variables in the neigh-
borhoods of each r = Z; and a =&, which means that E is
infinitely differentiable and represented locally by its Taylor
series expansion in every such neighborhood. This condition is
usually evident in practice.

Condition 22 The {(n+1)x(n+1) Jacabian matrix of first derivatives
J = J({z;}, a) (this notation will be explainec later) whose i
row is

(=1)t, %—E’(Ee.ﬁ) forsi = 0,1,2,..n ,

is nonsingular and therefore invertible. This condition can fail in
practice, in which case Newton's iteration may fail to converge
to a solution (e’,a’) of (I'); but such failure is rare and, when it
happens, may indicate that F{z,a,,a5. - .a,) is no better than
some simpler (fewer coefficients a;) approximation to f (z)
Certaxnly the failure of this condition undermines confidence in
the uniqueness or finiteness of the best approximation's
coeflficient-vector a Conversely, when the best approxlmatxop s
coefficient-vector a is known in advance to be unique, perhaps
because of a Haar condition or "unisolvence" (Rice [1964]), then
condition 2 is most likely to be satisfied.

Condition 3: The minimized maximum |2] is stnctly posmve. and every root
: z; of (¥) is a place where (—1)!E(z,a)/¢e achieves its local max-
imum 1 as z varies in some neighborhood of z; in £ < z <Z.

When z < z; < T this condition means that (-1)* ;;E(x.ﬁ)/'é'
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must change sign from positive to negative as z increases
through Z; , and hence

2
(-1)} 5%—2—5(:.5)/2 <0.

And the second derivative could vanish without invalidating our
conclusion. Here is where this paper differs from those of previ-
ous writers like Veidinger [1380], Werner [196’-’-3] Ralston
[1985) and Durharn [1988], who assumed thal the second derlva-
tive must not vanish at interior roots Z; ; cf. Mzindacdus [1357,
p- 111 and p. 151].

Conclusion: The foregoing three conditions imply that the Remes iteration
will converge superlinearly from any set of starting values {z;}
and a close enough to {Z;] and & respectively. Here “super-
linear convergence” means that each iterate’s ‘number of
correct decimal digits is an ultimately exponentially growing
function of the number of iterations; in particular, convergence
is quadratic if every

~ o~

z;.a) | #0.

0
oz
This conclusion will be proved below after the proof has been outlined.

_ By studying the Taylor expansion of E(z.2) in powers of z—Z; , we are able
to cope with the possibility that the graph of E(z,a) may be2Very nearly flat near

those interior stationary points Z; where both -%_—E and —-F vanish. Because

E is real analytic, the difference between E(z,a) and its extreme value -l-e is
approximately proportional, when |z; —Z;| is small enough, to (z; —z,)‘ for
some k; = 2.

A similar study of the Taylor expansion of £(z,a) in powers of z-Z; and
a-a implies that solving (I') will produce an approxlmatmn a' to a with a'-a
very nearly a linear combination of powers (z{ -z‘) * where k; = 2 was intro-
diced a:o"* Tren soivngz (M') produces new estimates z|{ for which
(zy - x‘) T very nearly a linear functional of a' - a. Consequently each
(= - z,) *7! is nearly a linear combination of the powers (z} — :j)k’ . whence »l-
lows superlmear convergence.

Now for the details.
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Condition 3, which says that (—1)* E(z,a)/ € achieves a local maximum 1 at
z = Zz; , says something about the Taylor series

E(z.3) = E(5.3) +$ (z-5,)* (a—i-)k E(Z.8)/ k!

= «{—1)‘3 -y(z) where
vz} = -% (z-2 (D FED/ &

= (z —it)b‘ (U, +0(z —-Z,)) as z -7

Here the positive integer K and the nonzero coefficient
vy = —( -a%é_k‘E'(&.a) / k;! must be constrained as follows to ensure that the local
maximum is achieved at z = Z; : '
IfZ, =z then (-1)* 5,/ >0 and k; = 1 and i = 0.
. Ifz <Z, < Z then (-1)} ¥,/ € > 0 and k; is even (so k; = 2).
IfZ; =z then (-1)"**5, /€ >0andk;=1andi =n

By differentiating the Taylor series we find that

—-E'(z.a) = ¥y (&-z)" (-—)" E(z;.2)/ (k-1)!

kxk

= -)c,;(z ~2) V(@ +0(z-5,)) as z » 2, .
which will be useful when the solution of (M ) is analyzed.

The eflect of varying the second argument a in E’(_..a) can be summarized
by writing

E(z.b)=co(z.a)+ F{z.b) - (b - 3)

for all b, where

E(b) = [, L-B(za+ (b - )at

= -a%—E(z.E)-l-D(b—ﬁ) as b-a .

If a.a and b are regarded as column vectors then E'(z,b) is a row vector, all
with =# elements. For any set {z] of n+l values satisfying
Zszp<2) <" <2y <2, <Z, and for any n-vector a there exists an
(n+1) x(n+1) matrix

J (!zi; . a)
whose it* rowis

(GRS A ENY

Recalling conditon 2 above we observe that

J(iz:3.a) » T = J({%;],3) asallz; »Z; anda » @,
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and since J ! exists the same must be true for
J({z;l.a)'»J! asallz; %, anda - a.
This fact will be useful when we analyze the solution of (I').

Now let §z;] be a given set of close approximations to {Z;] , so close as to
ensure the truth of all subsequent statements known to be true when all
|z} — = | are sufficiently small. In particular, assume
=z <2/ -+ -<zy_ <zp<ZE . By substituting the foregoing definitions of
1;{2) and J into (I') we obtain

0= (-1)"*le' + £(z{,a’) = (-1)**'e + £(Z;.3)
= (-1)’*(e’ - ) + E(z{.a') — E(z{2) + E(z{a) — E(Z;.8)
= (=1)t*! (e’ =€) + E'(z{.a") - (@' - 8) - v(z)
SO

28] = s(tzita) v (i) (4)

where v({z{}) is the (n+1)-vector whose i** component is v;{z{). Although the
last equation appears to express e’ and a’ in terms of §{z{], it has a' on both
sides. However, the implicit function theorem can be invoked here to ensure
- that equation (I') has a unique solution a' in a neighborhood of a for every {z{ in-
a small enough neighborhood of {Z;} . because equations (1) and (I') are continu-
ous perturbations of each other and the derivative matrix J is invertible. Conse-
quenily a' —a = 0(fz{ — ;) as all z{ » Z; by virtue of the implicit function
theorem alone, and then from (A) above we deduce

128 = (7 + otz -2 Jotad) asanz 3,
where ¥({z{l) is the (n+1)-vector whose i**

vi(zi) = (= - 20, = ”i(zi)(l + 0{z{ - Z;)) .

component is

-

Havinz computed [:'] . we turn to the caiculation of a new set of extrema

{z{} satisfying (M') and close to §Z;] respectively. Do such extrema z{ exist? -
Yes, and they can be found as follows:

Provided all | z; -E,- | are tiny enough, in which case a' — a will be tiny too,
all (~1)*E(z{,a’') = e' must be as close as one likes to (-=1)*£(Z;,a) = & , so close
that e’'# 0 too; then E(z,a')/ e’ must reverse sign as z increases from z{_, to z;.
Therefore for each i = 1,2,...,n some y; can be found such that z;_; < y{ < z{ and
(-1)!E(z.a')/ e' changes sign from negative (its sign when z = z/_, ) through
zero at z = y{ to positive (its sign when z = z{) as z increases through y{. Let
Yo =z and Yp,., = Z to simplify the next sentence. Then for each i = 0,1,2,....n
at least one place z = z{ can be found in ¥{ < z < y{,, where (-1)!E(z.a")/ e'is
locally maximum, and these places z{ lie among the roots of equation (M') as
well as salisfyingz <z7 <z <-:'<zj_; <zj <Z.Whatever iterative method
might be used to solve (M') for z{, it could proceed from z{ as a first guess.

The foregoing procedure might not determine each z{ uniquely, but this
does not matter. The following analysis will exhibit for each i = 0,1,2,....n a
radius p; > 0, independent of z{ and a', such that whenever all |z; - Z; | / p;
are tiny enough then every root z} of (M') that lies in |z} — z; | < p; must lie
much closer to Z; than within p; . In other words, spurious roots z/ cause no
confusion because, if every z; is close enough to Ei respectively, each root zy
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close enough to z{ is even closer to I; , as we shall see.

To simplify the exposition, temporarily drop the double prime on z{ and
drop the subscript i everywhere. This simplifies the equation (M%) satxsﬁed by z
thus:

(z -z)(z - %) -é-az—E(z,a‘) =0.

And to further economize on subscr'pts let us introduce certain norms for row
and column vectors: let lr' stand for the sum of the magnitudes of the com-
povnents of any row n-vecior r , and let |’} sta ﬂd for the largest of the roagni-
tudes of the components of any column n-vecior ¢. Then the scalar product rc

is bounded thus: |{re| < |c||-|le]l-.

The third factor of the simplified version of (M) in the previous paragraph
can be rewritten

—;E(z.a‘) = -6-2—5'(:.3) + E—E'(z.a') - (a'— =) ,

. . 0 . -~
in which -5;-1‘2" isarowvectorand,asz »zanda'-»a,

azE'(xa)-o 2 pEa) = a — E(33) .

o
However, Faz_E is a scalar which, as we have seen earlier, can be written
a—i—E’(z.ﬁ) =—k(z-zZ) 1 (0 +0(z-Z)) asz »Z

for some integer k¥ = 1 and nonzero constant
§ =~ (2 E(z.8)/ k!
oz
Therefore some positive radius p must exist such that

| ;;-E(x.a)[zk |z -Z|¥1|5]|/2 aslongas |z-Z|<p ,

. - = " .o a~ ¢~ —
provided z =z :Z too of course; ii {£x-z)—-Z)7s C we :thall chlooue

p <min{Z —z , £ =z} too. Within that radius p of Z we may define the row vector
function

= = —oyw-1 0 .E_ a 3 Il o
r{z.a) (z - %) rye E'(z.,a)/ Py E(z.a) ifociz -2 |<p
8 -~ a -~ A -
=={k -1}t Z—p k ife =z .
(e —1)! 92 E(z,a)/ (—%62 E(z,a) ifz =z

This row vector is a continuous function of z, and therefore a real analytic func-
tion of z and a in the neighborhood of z =2 and a = a at which it takes the
finite value

r(z.a) = - (k —1)!

a ~ 0 k ~ A
P E(z.a)/ (5;9 E(z.a) .
This row vector figures in an equation
(z -2)z - Bz -2 - rza)@ -B) =0 @)

which is the form that the simplified equation (M') takes after it is multiplied by
a factor (z —Z)"1/ Eaz—E’(x.E) that is finite and nonzero provided
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0<|z -Z|<p. Therefore squations (M) and (M) simplified have the same
roots z lying thhm the distance p of . We wish to show that as a' » a at least
one root z - Z but the rest of the roots stay away from z at least thal positive
distance p independent of a’

Because r(z.a) is contmuous for |z —Z | < p and all a close enough to a, we
can define for all sufficiently small positive a the function
-
R{a) = max|ir(z.a)l] for |z-Z|<p, =<z <Zand|la-allsa
BEvidently R{a) is a monotoric aon-decreasing lunction of &, and Lthersfore some
positive a can bz chosen to satisiy

a R{a) < p*?
Ve shall assume |ja’ - ﬁll < o in what follows.

Every root z of (M) must cause at least one of the three factors of that
equation to vanish. There are two cases to consider, according as (z-z)(z-%)
vanishes or not.

If z < Z < £ _then every root z of (M) within |z -Z I< p must cause only the
third factor of (M) to vanish because we chose p <min {Z—z , £ —Z }. And that
third factor

=3

(z -z)! = r{z.a")(a’' — a)

must have at least one root z.with |z -z:] <p as long as Jla' = 2|l = a for two
reasons. First, k-1 is odd because £ <Z < %, so (z -z)* -1 reverses sign as z
runs from Z —p to z +p. Second,

r(z.a’)(a'-2)| <|r(z.a)||la’-2]
< R(a) - a <pF?

so the thxrd facter must reverse _sign too at least once as z runs from z-pto
Z +p. Therefore every root z of (M) with | z =2 | < p satisfies

|z -z |*7' = | r(z.a")(a’' -3) | = R(z)|la'~2a||
-0 asa-»a..

as claimed.

On the other hand, if T = z then z = Z is one root of (m) and any other root
with | z'=Z | < p, if such a root exists, must make the third factor vanish. But
now k-1 could be even, perhaps zero, so the third factor need nol vanish any-
where in |z —Z | < p, although if k>1 and the third factor does vanish then the
conclusion at the end of the previous paragraph remains valid. A similar argu-
ment dispatches the casez = Z.

Let us now restore the subscript i and the doublé prime to z{ , and sum-
marize what is known so far For every 1 =0,1,2,...,n there exist positive con-

stants pq, X and K; < p‘ 1y a; about which the following may be said. Provided
all |z - Z;| / p¢ are tiny enough, equation (A) and its immediate consequences
ensure that equation (I') will possess just ore solution a' so near a that every
o; > |la'—a]. Then every root z{ of (\{) mthm |2y —Z; | < p; must satisfy
either zy=%; when k, =1 or |zy-%; |%'< R, la'—2a| when k; > 1. Since
equation (A) and its consequences imply the existence of some posmve constant
s dependmg upon J 1 and the coef'ﬁments -vi such that
la'—2|l < s-max;{| z} -z, | ks J provided all |z - -z, |/ p; are tiny enough, we
can now relate the new set of differences §{ z7 —z; | to the old {z; —z41:
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Provided all | z{ ~Z; | / p; be tiny enough, either
k>1 and |z4=Z, [ sk -5 - max; § | z} —z; 13,
or
ki =1 and z{ = z;
All that remains is to show why the last inequality implies superlinear conver-

gence of the Remes iteration.

after ﬂ‘very iterate z{ has agproached ils -:e:!wct:-: limiting vaiue T, closz!
:gly, il subsequent iterates = will stick 2l =7 = Z; for each k; = 1. Th-r-
fore re mct. the index i henceforth to those of the mtegers 0.1,2....,n for which
k; > 1 and define

.'1

A=max; (R -s)® and k =max k .

We assume k > 1 since convergence must be very sudden otherwise. We shall -
use

K = \-max; |z} - Z; ¥ and px'=A-max |z{-5 &

to measure the error in the respective sets {z; ] and {z{] of iterates. The previ-
ous paragraph's inequality implies:

Azy =2 M A(R-suw/ N

= «& ‘s )k‘ / )\)V("Vl) (p_.)kgl(b,-l),

Eg/ (kg-1)

S (’L')kﬁ/ (k‘-l) . so

T < (p:)k/ (k-1)

provided p’ be tiny enough. Similarly, if '’ measures the error in the set {z'}
of iterates that follow {z ¢

”vu < (“u)k/(k-l) < (l-l'")(k/ (b—l))z

More generaily, the m** set of iterates after {= .j, can have its error measure ro
bigger than

(u)“‘""‘”"‘

which converges to zero superlinearly as m - =, as claimed.

. The foregoing proof is not altogether reassuring to the Numerical Analyst
because it includes the possibility that ¥ might be quite large, in which case the
equation (M’) to be solved for the roots §z%} might be very nearly an equation
some of whose roots have muitiplicities as large as k—1. Therefore some roots
z'{ might be very ill-conditioned, in effect practically impossible to determine
accurately. Closer scrutiny of the proof will show that. that ill-condition afflicts
only the nearly multiple roots z % ; the coefficients a and e are not degraded by
the inaccuracy to which Z; can be calculated. This is so because t.he error
z'{ — 7; influences the next iteration, where it bas been renamed z{ — Z; , mainly
by its appearance in equation (A)'s right-hand side terms

vy(z!) = (-1 8 = E(z.8) = (z{ — Z)¥ (@ + 0(={ - %)) .

The proof above shows that these terms convesrge to zero superlinearly, which
means in practice that these terms soon kscome small comparable to the
roundoff that accrues during the evaluation of E(z/,a'). Consequently, the
implementor of the Remes iteration should not expect successive sets {z{! to
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settle down numerically, but should test some other variables to decide when to
stop. )

A better way to monitor convergence is via comparison of successive values
le'| = | E(z{a’)| fori=0.12...n
(obtained-when (I') is solved ) with corresponding values
|d'| = max | E(z{.2")| over £=0,1,2,..n .

obiainable .ier (M) has beun solved. Provided precautions have been taken to
entance the prospect that = = 27 is where (-1} £{=,a')/ e’ echieves its max-
iimum value for z/_,<=z <=z, (with the understanding that z., =z and
_ zp.:=Z) there is every reason to expect |d’| > |e'|. Normally successive
iterations will produce convergent sequences of values | d'| decreasing towards
|e| while |e'| increases towards |e|. Indeed, this monotonic behavior is
guaranteed if the family of functions E(z.,a) possess a local Haar property
(Meinardus, [1967, p. 142]). Therefore a reasonable time to stop the Remes
iteration is when | d'| and | e'| approach each other so closely that | g |, which
probably lies between them, is determined accurately enough for practical pur-
poses.
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