KurmACRIT WORE. in PROGRESS June 7, 1788

An Experiment with ACRITH

Frof. W. kahan and Dr. Fing Tak Tang
Univ. of Calif. and Arqonne National Labs.

Abstract:

We compare two paradigms for managing multi-precision floating-
point arithmetic. The first is the Kulisch-Miranker paradigm as
implemented in IBM's ACRITH library of High-Accuracy Arithmetic
subprograms; the novelty here is the prohibition of any explicit
reference to multi-precision variables while scalar products are
computed as if to infinite precision. The second paradiam is a
conventional one that declares some multi-precision variables into
existence in a way analogous to Double-Frecision declarations in
contemporary languages. However, to prevent the comparison of
paradigms from being confounded by irrelevant differernces in their
implementations, the second paradigm is implemented using only
the same resources as are available for the first, namely thocse
provided by ACRITH. And the problem chosen to be soclved by both
paradigms is one that must once have been thought to favor the
first paradigm, since it figured in a brochure to promote ACRITH.
(That brochure has since been withdrawn.) Our results illustrate
why the FKulisch-Miranker paradigin is so much slower, more
complex and less powerful than & conventional paradiam.

Introduction

L. Kulisch and W. Miranker a&and their followers advocate & novel
approach to multi-precision interval arithmetic in two books (1980
and 1981) and several papers (1986). Their paradigm underlies
the IEBM ACRITH library of High-Accuracy Arithmetic (1983 -
1987) and two extensions, Fascal-SC and Fortran-S8SC (1987), of
well-known higher—-level proaramming languages. We shall begin
with an unauthorised summary of their paradigm in our own terms.

Let us use ordinary letters x, vy, 2, ..., A, B, C, ... for
floating-point variables in working—-precision; this is IBM Z70
double—-precision for our experiments with ACRITH. -“Let us use
italic letters x, Ye =y vv., A, B, C, ... fOr multi-precision
floating-point variables. For the present we do not distinguish
interval arithmetic variables from ordinary ‘'one-point" floating-
point variables. On am IBM J70, a DEC VAX or an HF Spectrum
series machine, the multi-precision variables defined within the
machine’s architecture are actually quadruple-precision variables,
Arbitrarily high but finite precision is available to progtammers
in T. E Hull’'s Numerical Turing language (198%), in K. Brent’'s
MF package (197x), in MACSYMA's PRigfloats (197x), etc. FEut
the multi-precision variables in the Kulisch-Miranker scheme are
restricted to sums of products of working-precision variables,
which sums must be accumulated exactly. These multi-precisicon
variables, called "DOT PRECISION" variables in Fortran-SC, cen
be added, subtracted and compared, but not otherwise combined
arithmetically; and they can be rounded to working precision.
They are most conveniently implemented in something called a
"super-accumulator” but that’'s an inessential detail. Fortran—-8C
makes no provizion +or =rrays of DOT PRECISION variables, eech
of which can consuns & areat deal of memory if the floating-point

1



[

KumACRIT WORE. in FROGRESS June 9, 1988

exponent range is large, so0 a program is expected to refer to at
most a few of themn.

DOT PRECISION variables figure in the implementation of matrisx
products with only one rounding error per element. For example,
to compute the product A = BeC oOf two working-precision matrices
rounded Jjust once to working precision, one DOT FRECISION
variable & might be used thus:

for i =1 to1l1 do
for j =1 to Jd do
{ & = 0.0 ;
for m=1%to M do & /= 5 + bsjaeCay exactly
é&14 += & rounded to working precision 3} .

The FKulisch-Miranker paradigm takes such an implementation for
granted, so every product of two working-precision metrices can
be presumed to have been computed with just orme rounding error per
elemernt. AN important special case is a sum s = I¥ %a o which
may be regarded as a matrix product of a row (x, {2 esas Xn)

by a column of 1's evaluated with one final rounding etrror.

How can DOT FRECISION variables be used to compute anything else
than one matrix product accurately? The crucial observation is
that any polynomial can be evaluated to within less than one ulp
(unit in the last place) of working precision by using 1Iterative
retinement, a technique to be discussed in & moment. A rational
function can be transformed intc a ratio of two polynomials, so
it can be calculated correctly to within a few ulps. And an
algebraic function is the sclution of & polynomial eguation that
can be solved by Newtorn‘'s iteration to within an ulp provided
multiple rocts do not get in the way. Therefore, any algebraic
function can be computed to within & few ulps, except too close
to its singularities; and, provided neither exponent over/
underflow nor memcry exhaustion intervenes, that can be done
without any other kind of multi-precision arithmetic than
once-rounded matrix multiplication. But there is a catch. ...

Iterative Refinement to multiply several matrices:

In its place, there is nothing wrong with iterative refinement,
But the kulisch-Miranker paradigm uses it almost everywhere,
and that turns out to be a bad idea. Here is how it goes:

Suppose that we wish to compute an expression =z that turns out
to be & polynomial of total degree N in working-precision data
a, by, €y «ea o« For example, z = (a + becle(d + fev) 1is of total
degree N = 4., Then there exists a way to express z &5 a matrix
product 2z = Agefge...*Ay in which all elements of each matrix

An are simple integer constants or else data items. For our
example, z = (a b)e(l)e(d ) (}) . Many other matrix products can
serve equally well except for the amount of work entaileds the
trick is to find & matrix product representation of the polynomial
that minimizes the work. Aside from that consideration, we see
now that the computation of any polynomial is & special case of
the problen of computing a product ouf several matrices.

Im the obvious recurrence to compute tho product of N matrices

-
[



we cbserve that cach intermediate product appears only linearly:

My = Ay § X2 = 1eAz2 § M3 = MHaeAs I .. 2 T MNN T Mn-10An .
Therefore this recurrence can be interpreted as a way to solve a
linear system of equations XeA = B whetre

X = ( ¥4 MNa & 3 as e Nn ) 2
B= (A O O ... 0) , and
(1 Az O ‘ee 0 )
A = ( -1 As O e 0 ) .
¢ -1 P
( ces  ama o )
{ -1 An )
( -1 )
For our example, B = (a b 0 O O 0) and
(1 O 1 )
¢ 1 ¢ )
A= -1 d ¥ ) €0
( -1 0 )
( )
( )

1
-1 v
1

X = (a b a+bc (a+bc)d (a+bc)f = ) .
Yy »Na Ns Ha

Since A is an upper triangular matrix, the equation XA =B
can be solved for X 1in the obvious way: but rounding every
product xa-1¢A, once to working precision hardly ever yields &
final »n computed accurately to within an ulp. Let Xo be the
estimated X computed that way and then compute B = (B — XgeA}
rounded once. The equatiorn X,«A = B, can be sclved for X, in
the same way, and then Ey = (B — XgeA - X,¢A) can be computed
rounded once if needed. In general, until the once-rounded value
of (Xo + Xy + X2 + ... X«) converges to X within an ulp, as
can be ascertained with the aid of interval arithmetic in & way to
be discussed later, we compute repeatedly the residual

EBe = (B = XoeA = XieA = XazeA = ... = XueA)
rounded once to working precision, and then compute another term
Xuer by "solving" Xue1¢A = B, . This is Jiterative refinement,
aleo called "the method of deferred corrections." When used to
compute polynomials z in this way it alwayes converges in at most
a finite number k of steps unless over/underflow intervenes.

What is wrong with iterative refinement? It is too slow for three
reasons. First, because we cannot save arrays of DOT PRECISION
variables, the residual B, must be computed from the formula
above at a cost of k+! nmultiplications by the matrix A instead
of from the algebraically equivalent recurrence
Rey = B 3 Re = Reey — XueA exactly §: Ex = R« rounded

at a cost of just one multiplication per step. Consequently X.
costs (k+1) (k+2)/2 multiplications by A instead of just 2k+1.

Second, iterative refinement creeps up on the precision required
to compute X accurately enough instead of jumping to it directly
as does the more conventional paradigm to be described presently.
When (Xo + Xy + X2 + ... + X« 1is accurate enough tc round once
to X within an ulp, it occupies at least as much menory as &
{(k+1)-timees working—precision computation would cccupy, and cost

-
e



in

KumACR1T WORK. in FROGRESS June 9, 1988

at least about (k+1)/2 as much time (as we shall see), vyet
must be less accurate because each deferred correction term X.
adds less than one working-precision word of accuracy to the sum.

Third, the requirement, that DOT FRECISION sums be accumulated
exactly instead of merely to somewhat more than the (k+1)-times
working-precision that is actually needed, must retard progress
to some extent. This retardation is difficult to gauge without
knowledge of implementation details that may well vary from one
machine to another, so we shall not try to take it into accourt.
Instead, we shall implement multi-precision arithmetic orn top of
DOT FRECISION, so that each of our multi-precision operations
will take at least as long as the corresponding DOT-FRECISION
operation would have taken if that operation were available. In
doing so, we bias our comparisorn in favor of the Kulisch-Miranker
paradigm, which is the conservative thing to do.

The worst aspect of the HKulisch-Miranker paradiam is not that it

rurs slower than ordinary multi-precision arithmetic, but that it
is more complicated. Compare the foregoing algorithm to multiply
several matrices with the one that follows.

Multi-Word Precision multiplication of several matrices.
Recalling that any polynomial of total degree N can be expressed
as & product of N matrices, we turmn now to the computation of
such a product Z = AjefAze...eAy with the aid of several k-times
working-precision variables Sz, S35, ..., S 4 where k is a
parameter that cam be varied, within limits, at run-time. The
only operations that will be performed upon these k-tuple
precision variables here will be addition, multiplication by a
working-precision variable, and rounding to working-precision,
each of which consumes time proportional to k at worst. At the
start we set k =1 or 2 § 1later the computation will be repeated
with as large a value of k as appears necessary. The algorithm
that multiplies N matrices is a natural generalization of the
case N = 2 described above, but now we have so many subscripts
that the exigencies of typography force a Fortran-like notation
for them. We denote the element of A, in its it" row and jt*
column by Axli,jl for 1 i £ I, and 1 £ Jj < Iney « Let

us first review the ordinary algorithm to compute a product of two
matrices, Z = A;+A2 , in that notation:

for i =1 to I, do
for j =1 to Is do
{ 82 = 0 3
for m =1 to I do &a2:= Sa2 + Ali,mleA2lmn,jl ;
ILli 31 = S2 3. . Z = ArefAz .

Here the product A li,mleAz2lm,j] must be evaluated exactly as a
k-tuple precision number whern k > 1 , which costs no more work
when k > 2 than when k = 2 , before being added to &2 . For
a product Z = A;sAzeAy of three matrices, a product Sze¢Aszlm,jd
must be rounded to k-tuple precision before it is added to
another k-tuple precision number &3 in the following prograin:



KumACRIT WORK in PROGRESS June 9, 1988

for i =1 to I, do
for J =1 to I, do
{ & 1= 0 3
for m = 1 to Is do
{ 82 1= 0 3
for 1 =1 to I. do Sa2:= §2 + A [i,13eAz201,m] ;
33 .= Ss + SzOAsrng‘J > H
ZLi L33 = & 3. con Z = AyeAzeAs .
A product of N matrices A, , with variable N > 2, requires

& recursive program like this:

procedure MatxFrod( N, Acal,3, I¢3, ZL,], Sea,y k ) 3

integer N, Inei1y k 3 ess I¢y 1is an integer array.
real ZzZC,1, Aul,] eee An must be I, by Iney -
real extended*k Sy 3 ees B is k-tuple precision.

{ integer i, J i

recursive sub-procedure WideAdd( n, J ) 3

integer n, J 3 ees N > 2 .
{ integer m
Ea = 0 3
if n =2 then e { k-tuple precision )
{ for m =1 to Iz do 53 o= &2 + A;[i,fﬁ]'Az[m,jJ >
else

r

{ for m =1 to I, do
{ call WideAdd( n-1, m ) 3
Ea 2= 8n + Sa-yeAnlm,Jil > 2 3

return i _ “ e { k—tuple precision )
end WideAdd ; ’

if < 2 then

{ print "ERROR: MatxFrod( N, ...) expects | < N = ", N
STOF 3 3
else
{ for i =1 to I, do
for J =1 to Ino( do

{ cell WideAdd( N, j )
Zli,331 = 5n rounded to working ("real") precision i
return 3} 3
end MatxFProd . e Z = AyefAze.,.oAN

Of course, if N is a constant known in advance. the recursive
call upon WideAdd can be expanded in-line so that recursion may
be removed; the reader should try this for N =3 or N =4 to
be reassured first that the program is correct and, second, that
otherwise recursion is practically unavoidakle. ( No wonder that
programs like this are not written in Fortran !)

How does the speed of MatuPFrod compare with that of iterative
refinement as used for matrix multiplication above? That depends
upon the time taken to multiply (working prec.)s (k—tuple prec.)
and to add (k-tuple prec.)+(k-tuple prec.) numbers. BEoth take
times proportional to k and rather longer than the time for one
exact (working prec.)s{(working prec.) + (DOT FRECISION) operation
in the iterstive refinement process. A conservative assumption is
that each k-tuple precision multiply-add takes no more than
times es long as this exact DOT FRECISION multiply-add. With

o

[[]



KumACRIT WORK. in FROGRESS Jurne ¢, 1988

this assumption, the recursive program takes less time than did
the k" step of iterative refinement. Invoking MatuFrod first
with k =2 , at a cost roughly equal to the first step of
iterative refinement, produces an estimate of 7 whose accuracy
can be assessed either by means of Interval Arithmetic or by a
conventional running error-analysis; details will be supplied
later. Iterative refinement requires the same kind of assessment
and can get it the same way at the same cost. Then, if the
accuracy is deemed inadequate, MatxFrod will have to be rerun
with a larger value of k . That value need only be large enough
that reducing the error assessment by a factor g2 |, where =«
is the relative error bound for each working-precision arithmetic
operation, would render the error negligible to working
precision. This k can be no larger than the last k needed for
iterative refinement, so the rerun of MatxFrod will consume no
more time tham the last step of iterative refinement. That is why
iterative refinement take about (k+1)/2 times as long as two
calls upon MatxFrod to deliver a product Z within about one
ulp of working precision.

These estimates of comparative speed are comsistent with results
reported by Kahan and LeEBlanc (1983), who found that ACRITH's
version of iterative refinement took more than ten times as long
than what they called "a renegade algorithm” ( an algorithm like
the one described above using DOT FRECISION variables to
simulate k-tuple precision arithmetic ) to compute the product
of three 4 by 4 matrices. Now we understand why ACRITH is so
slow; but it is not so slow as to be unusable. Normally & does
not get very big, rarely bigger than 2 , s0 speed can be an
important issue only on rare occasions when very high precision is
necessary. If this were the only thing wrong with the Kulisch-
Miranker paradigm, it would not be worth complaininag about.

T O L I TR Ry I TR I IS LT LT
The crucial defect in the FKulisch-Miranker paradigm is *
that programs like MatxFrod can evaluate more diverse *
products than iteative refinement can. Folynomials exist #
whose values, and all the intermediate values generated *
during their evaluation, are entirely innocuous: and *
programs like MatxFrod can compute them, but iterative *
refinement cannot. And some of these polynomials have *
appeared among the erxamples used to promote ACRITH and the *
Kulisch-Miranker paradigm, but they were not evaluated at =*
arguments that would have revealed this defect. *
39696 9696 36 336 B I 0 0 I I A6 I 0 I I I 6T I 26U I F 6 I I 6T I3 T I KKK

* 3k k ok ok ok sk sk k kK

We shall exhibit some of those polynomials and expl&in their
behavior. TO BE CONTINUED





