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We compare two paradigms for managing multi-precision floating­
point arithmetic. The first is the Kulisch-Miranker paradigm as 
implemented in IBM's ACRITH library of High-Accuracy Arithmetic 
subprograms; the novelty here is the prohibition of any explicit 
reference to multi-precision variables while scalar products are 
computed as if to infinite precision. The second paradigm is a 
conventional one that declares some multi-precision variables into 
existence in a way analogous to Double-Precision declarations in 
contemporary languages. However, to prevent the comparison of 
paradigms from being confounded by irrelevant differences in their 
implementations, the second paradigm is implemented using only 
the same resources as are available for the first, namely those 
provided by ACRITH. And the problem chosen ta be salved by both 
paradigms is one that must once have been thought to favor the 
first paradigm, since it figured in a brochure to promote ACRITH. 
(That brochure has since been withdrawn.) Our results illustrate 
why the Kulisch-Miranker paradigm is so much slower, more 
complex and less powerful than a conventional paradigm. 

Introduction 
U. Kulisch and W. Miranker and their followers advocate a novel 
apprc,ach to multi-precision. interval arithmetic in two books (1980 
and 1981) and several papers (1986). Their paradigm underlies 
the IBM ACRITH library of High-Accuracy Arithmetic (1983 -
1987) and two extensions, Pascal-SC and Fortran-SC (1987>- of 
well-known higher-level programming languages. We shall begin 
with an unauthorised summary of their paradigm in our own terms~ 

Let us use ordinary lettet-s x, y, z, ... , A, B, C, . . . for 
floating-point variables in working-precision; this is IBM 370 
double-precision for our experiments with ACRITH. ·Let us use 
italic letters x, y, z, ... , A, B, C, ... for multi-precision 
floating-point variables. For the present we do not distinguish 
intervci.l arithmetic variables from ordinary "one-po·int" floating­
point variables. On an IBM 370, a DEC VAX or an HP Spectrum 
series machine, the multi-precision variables defined within the 
machine's architecture are actually quadruple-precision variables. 
Arbitrarily high but finite precision is available to programmers 
in T. E Hull's Numerical Turing language (198x>, in R. Brent's 
MP package (197x), in MACSYMA's Bigfloats (l97x>, etc. But 
the multi-precision variables in the Kulisch-Miranker scheme are 
restricted to sums of products of working-precision variables, 
which sums must be accumulated exactly. These multi-precision 
variables, called "DOT PRECISION" variables in Fortran-SC, can 
be added, subtracted and compared, but not otherwise combined 
arithmetically; and they can be rounded to working precision. 
They are most conveniently implemented in something called a 
"super-acc.umLtl ato~- •· but that's an inessential detai 1. Fortran-SC 
makes no pr·ovis,r:m +ar t:'t-rays of DOT PRECISION var-iables, ee.ch 
of wr,ich can coi',st.,i,1~ a greai-. deal of mernc,ry if the float~ny-point 
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exponent range is large, so a program is expected to refer to at 
most a few of them. 

DOT PRECISION variables figure in the implementation of matrix 
products with only one rounding error per element. For example, 
to compute the product A= B•C of two working-precision matrices 
rounded just once to working precision, one DOT PRECISION 
variable S might be used thus: 

for i = t to I do 
for j = 1 to J do 

{ s ·- 0.0 ; .-
for m = 1 to M do s ·- ~ + b,.•C•J exactly . .- ~ ~ 

a,~ ·- s rounded to working precision ) .- . 
The Kulisch-Miranker paradigm takes such an implementation for 
granted, so every product of two working-precision m~trices can 
be presumed to have been computed with just one rounding error per 
element. An important special case is a sum s := n xft , which 
may be regarded as a matrix product of a row <x1 X2 xN> 
by a column of l's evaluated with one final rounding error. 

How can DOT PRECISION variables be used to compute anything else 
than one matrix product accurately? The crucial observation is 
that any polynomial can be evaluated to within less than one ulp 
(unit in the last place) of working precision by using iterative 
refinement, a technique to be discussed in a moment. A rational 
function can be transformed into a ratio of two polynomials, so 
it can be calculated correctly to within a few ulps. And an 
algebraic function is the solution of a polynomial equation that 
can be solved by Newton's iteration to within an ulp provided 
multiple roots do not get in the way. Therefore, any algebraic 
function can be computed to within a few ulps, except too close 
to its singularities; and, provided neither expon~nt over/ 
underflow nor memory exhaustion intervenes, that can be done 
without any other kind of multi-precision arithmetic than 
once-rounded matrix multiplicatioh. But there is a catch .... 

Iterative Refinement to multiply several matrices: 
In its place, there is nothing wrong with iterative refinement. 
But the Kulisch-Miranker paradigm uses it almost everywhere, 
and that turns out to be a bad idea. Here is how it goes: 

Suppose that we wish to compute an expression z that turns out 
to be a polynomial of total degree N in working-precision data 
a, b, c, .... For example, z = (a+ b•c>•<d + f•v> is of total 
degree N = 4. Then there exists a way to express z as a matrix 
product z = A,•A2 • •••• AN in which all elements of each matrix 
A" are simple integer constants or else data items. For our 
example, z ~ (ab>• <A>• (d f>•<I> . Many other matrix products can 
serve equally well except for the amount of work entailed; the 
trick is to find a matrix product representation of the polynomial 
that minimizes the work. Aside from that consideration, we see 
now that the computation of any polynomial is a special case of 
the problem of computing a product uf several m~trices. 

!nth& obvious recurrence to compGte the product of N matrices 



we observe that l:ach intermediate product appears onl, linearly: 
N t = Al ; X 2 = N l • A2 ; >: :S = >: 2 • A:1 ; • • • ; Z = }·~ N = ){ N- I • AN • 

Therefore ~his recurrence can be interpreted as a way to solve~ 
linear system of equations X•A = B where 

X = ( >,, N2 >t:s XN ) , 

B = ( A, 0 0 0 > , and 

( 1 A2 0 0 ) 

A = ( -1 A:s 0 0 ) 

( -1 A4 ) 

( (> ) 

( -1 AN ) 

( -1 ) 

For our e:-~arnpl e., B = ( a b 0 0 0 C> ) and 
( t 0 t ) 

( 1 C ) 

A = ( -1 d f ) so 
( -1 () t ) 

( -1 V ) 

( -t ) 

X = ( a b a+bc (a+bc:)d (a+bc)f z ) . 
>: • X2 >~ :s x. 

Since A is an upper triangular matrix, the equation X•A = B 
can be solved for X in the obvious way~ but rounding every 
product Xn-,•An once to working precision hardly ever yields a 
final XN computed accurately to within an ulp. Let Xo be the 
estimated X computed that way and then compute Bo= <B - Xo•A> 
rounded once. The equation X,•A = Bo can be solved for X, in 
the same way, and then B, = CB - Xo•A - X,•A> can be computed 
rounded once if needed. In general, until the once-rounded value 
of <Xo + X, + X2 + ... Xk) converges to X within an ulp. as 
can be ascertained with the aid of interval arithmetic in a way to 
be discussed later, we compute repeatedly the residual 

Bk= (B - Xo•A - X,•A - X2•A - ••• - Xk•A> 
rounded once to working precision, and then compute another term 
Xac., by "solving" Xk•1•A = Bk . This is iteratiFe re1·inement, 
also called "the method of deferred corrections." When used to 
compute polynomials z in this way it always conver~es in at mo5t 
a finite number k of steps unless over/underflow intervenes. 

What is wrong with iterative ~efinement? It is too slow for three 
reasons. First, because we cannot save arrays of DOT PRECISION 
variables, the residual Bk must be computed from the formula 
above at a cost of k+1 multiplications by the matrix A instead 
of from the algebraically equivalent recurrence 

R-, = B; Rk = Rk-1 - Xac•A exactly; Bk= R1c rounded 
at a cost of just one multiplication per step. Consequently Xk 

costs (k+l) (k+2)/2 multiplications by A instead of just 2k+l. 

Second, iterative refinement creeps up on the precision required 
to compute X accurately enough instead of jumping to it di~ectly 
as does the more conventional paradigm to be described presently. 
When <Xo + X, + X2 + ... + Xk, is accurate enough to round once 
to X within an ulp, it occupies at least as much me~ory as A 
(k+t)-time~ working-precj~ion computation would cccupf~ 8n~ cost 
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at least about (k+t)/2 as much time (as we shall see>, yet 
must be less accurate because each deferred correction term Xk 

adds less than one working-precision word of accuracy to the sum. 

Third, the requirement, that DOT PRECISION sums be accumulated 
exactly instead of merely to somewhat more than the (k+t)-times 
working-precision that is actually needed, must retard progress 
to some extent. This retardation is difficult to gauge without 
knowledge of implementation details that may well vary from one 
machine to another, so we shall not try to take it into account. 
Instead, we shall implement multi-precision arithmetic on top of 
DOT PRECISION, so that each of our multi-precision operations 
will take at least as long as the corresponding DOT-PRECISION 
operation would have taken if that operation were available. In 
doing so, we bias our comparison in favor of the Kulisch-Miranker 
paradigm, which is the conservative thing to do. 

The worst aspect of the Kulisch-Miranker paradigm is not that it 
runs slower than ordinary multi-precision arithmetic, but that it 
is more complicated. Compare the foregoing algorithm to multiply 
several matrices with the one that follows. 

Multi-Word Precision multiplication of several matrices.· 
Recalling that any polynomial of total degree N can be expressed 
as a product of N matrices, we turn now to the computation of 
such a product Z = A,•A2••·••AN with the aid of several k-times 
working-precision variables S2, s~, ... , SN , where k is a 
parameter that can be varied, within limits, at run-time. The 
only operations that will be performed upon these k-tuple 
precision variables here will be addition, ·multiplication by a 
working-precision variable, and rounding to working-precision, 
~ach of which consumes time proportional to k at worst. At the 
start we set k = 1 or 2; later the computation will be repeated 
with as large a value of k as appears necessary. The algorithm 
that multiplies N matrices is a natural generalization of the 
case N = 2 described above, but now we have so many subscripts 
that the exigencies of typography force a Fortran-like notation 
for them. we·denote the element of An in its i th row and j~h 

column by Anti,jJ for 1 ~ i ~ In and 1 ~ j ~ In+t • Let 
us first review the ordinary algorithm to compute a product of two 
matrices, Z = A,•A2 , in that notation: 

for i = 1 to I, do 
for ~ = 1 to Is do 

{ S2 ,._ 
0 . . - ' for rn = 1 to I 2 do S2:= S2 + A, C i , rn J • A2 C m , j J . !I 

ZCi,jJ ·- S2 } . z = A, •A2 .- . . . . 
Here the product A,Ci,mJ•A2Cm,jJ must be evaluated exactly as a 
k-tuple precision number when k > 1 , which costs no more work 
when k > 2 than when k = 2, before being added to s~. For 
a product Z = A,•A2•A~ of three matrices, a product S2•AsCm,jJ 
must be rounded to k-tuple precision before it is added to 
another k-tuple precision number S3 in the following program: 

4 
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for i = t to 
for j = t to 

{ Ss ·- 0 .-
for m = t 

{ S2 ·-.-
for 
Ss ·-. -

Zti,jJ ·-.-

I, 
I-1 

to 
(> 

1 = 
S:s 
Ss 

do 
do 

Is do 

t to I2 do 
+ ::~ z • A:s r rn , j J 

)-. . . . 
S2:= S2 + A,Ci,lJ•A2Cl,mJ 

} ; 
Z = A, •A2•As 

A product of N matrices An , with variable N ~ 2, requires 
a recursive program like this: 

procedure MatxProd( N, A,,c,J, 
integer N, IN+1, k; 
real Zt,J, ANC,J; 
real extended*k SH 
{ integer i , j ; 

ZC,J, Sn, k > ; 
is an integer array. 

must be In by In., . 
is k-tuple precision. 

recursive sub-procedure 
integer n, j ; 

Wi deAdd < n, j > 
n .2:. 2 • 

{ i r1teger rn 
Sn ·- 0 . . - ' if n = 2 then < k-tuple precision 

{ for rn = t to 12 do S2 := S2 + A,Ci,mJ•A2Cm,jJ} 
else 

r for rn = "\. 1 to In 

retLtt-n ; 
end WideAdd; 

if n < 2 then 

do 
{ call 

•"' ·-~•n .-
■ a I ( 

WideAdd( n-t, m) ; 
Sn + Sn- 1 • An [ rrt, j J J· J· ; 
k-tuple precision) 

{ print "ERROR: Mab-:F'rod < N, ... ) e>:pects < N = " N 
STOP l ; 

else 
{ for i = 1 to I, do 

for j = 1 to IN+1 do 
{ call WideAdd( N, j 

ZCi,jJ := SN rounded to working ("real") precision}; 
return J-; 
end MatxProd. Z = A,•A2••··•AN 

Of course, if N is a constant known in advance. the recursive 
call upon WideAdd can be expanded in-line so that recursion may 
be removed; the reader should try this for N = 3 or N = 4 to 
be reassured first that the program is correct and, second, that 
otherwise recursion is practically unavoidable. < No wonder that 
programs like this are not written in Fortran !> 

How does the speed of MatxProd compare with that of iterative 
refinement as used for matrix multiplication above? That depends 
upon the time taken to multiply (working prec.>• (k-tuple prec.) 
and to add Ck-tuple prec.)+(k-tuple prec.) numbers. Both take 
times proportional to k and rather longer than the time for one 
exact (working prec.>• (working prec.) + (DOT PRECISION> operation 
in the iter~tive refinement process. A conservative assumption is 
that each k-tuple precision multiply-add takes no more tha,, ~ 

times as long as this exact DOT PRECISION multiply-add. With 
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this assumption, the recur$ive program takes less time than did 
the kth step of iterative refinement. Invoking MatxProd first 
with k = 2, at a cost roughly equal to the first step of 
iterative refinement, produces an estimate of Z whose accltracy 
can be assessed either by means of Interval Arithmetic or by a 
conventional running error-analysis; details will be supplied 
later. Iterative refinement requires the same kind of assessment 
and can get it the same way at the same cost. Then, if the 
accuracy is deemed inadequate, MatxProd will have to be rerun 
with a larger value of k. That value need only be large enough 
that reducing the error assessment by a factor ek-2 , where ~ 
is the relative error bound for each working-precision arithmetic 
operation, would render the error negligible to working 
precision. This k can be no larger than the last k needed for 
iterative refinement, so the rerun of MatxProd will consume no 
more time than the last step of iterative refinement. That is why 
iterative refinement take about (k+t)/2 times as long as two 
calls upon MatxProd to deliver a product Z within about one 
ulp of working precision. 

These estimates of comparative speed are consistent with results 
reported by Kahan and LeBlanc (1985>, who found that ACRITH's 
version of iterative refinement took more than ten times as long 
than what they called 11 a renegade algorithm'' ( an algorithm like 
the one described above using DOT PRECISION variables to 
simulate k-tuple precision arithmetic> to compute the product 
of three 4 by 4 matrices. Now we understand why ACRITH is so 
slow; but it is not so slow as to be unusable. Normally k does 
not get very big, rarely bigger than 2, so speed can be an 
important issue only on rare occasions when very high precision is 
necessary. If this were the only thing wrong with the Kulisch­
Miranker paradigm, it would not be worth complaining about. 

***********************~***************************************** 
* The crucial defect in the Kulisch-Miranker paradigm is * 
* that programs like MatxProd can evaluate more diverse * 
* products than iteative refinement can. Polynomials exist * 
* whose values, and all the intermediate values generated * 
* during their evaluation, are entirely innocuous; and * 
* programs like MatxProd can compute them, but iterative * 
* refinement cannot. And some of these polynomials have * 
* appeared among the examples used to promote ACRITH and the* 
* Kulisch-Miranker paradigm, but they were not evaluated at * 
* arguments that would have revealed this defect. * 
***************************************************************** 

We shall exhibit some of those polynomials and explain their 
behavior. TO BE CONTINUED 




