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Abstract: A pragra■ ta solve a real cubic equation efficiently and as 
accurately as the data deserve is not yet an entirely cut-and-dried affair, 
An iterative ■ethad is th• bast found sa far. This ■athod plus same other 
issues, like accuracy, scaling, preconditioning and testing, are 
discussed in these natas in enough detail ta convey an i ■prassian a, what 
Nu■erical Analysis is about. 

t. Intrac:luctian1 
Closed-form formulas for solving the real cubic equation 

Ax 3 + Bx 2 + Cx + D = 0 
in terms of its coefficients A, B, C, D were discovered in the 
sixteenth century by Italian mathematicians, but their triumph 
turned into disappointment when they discovered an irreducible 
case1 the real cubic with three irrational real roots. This case 
entails unavoidably the computation of trigonometric functions and 
their inverses during the evaluation of cube roots o~ a complex 
number. Nowadays trigonometric func~ions and complex numbers seem 
unobjectionable in a procedure that solves a cubic,. ··so they have 
been used freely in a modern version of the ·Italians' formulas 
presented below in 12 of these notes. Alas, the modern formula 
is disappointing ~00, because it is potentially unstable in the 
face of roundoff. Indeed, coe-fficients abound for which sorne of 
the roots computed from the formula are quite incorrect; several 
instances appear among the examples presented in §10. 

Whether a slight modification could protect the Italians' formulas 
from the worst effects of roundoff remains an open question. The 
simplest stable version of those formulas I know is tantamount to 
evaluating them twice, as is mentioned near the end of §2. Two 
evaluations take long enough to make plausible the possibility 
that another approach might be faster. 

Newton pioneered another approach when he first used the iteration 
that now bears his name to salve a cubic. Computers can follow 
his approach provided certain details like where to start and when 
to stop are mechanized. Those details are the subJect of ij3, a 
long discussion that culminates in a·brief but entirely automatic 
procedure presented as a program QBC 1n §4. That discussion 
provides merely a motive for the program, not a proof of its 
correctness. A thorough proof would be far too lengthy to include 
in these notes. Instead, the issues that such a proof would have 
to address will be eKplored and its conclusions summarized. 
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The most difficult issue is inaccuracy caused ~Y roundoff. Error 
analysis proves that every root computed by QBC is no more in 
error than if it had been computed exactly from a cubic whose ~ 
coefficients differ from those given each by a few units in its 
last digit carried by the computer's floating-point-arithmetic. 
This kind of - Backward Error Analysis was first published in the 
late t950's by James H. Wilkinson. It suggests that inaccuracy 
introduced by the process of solving the cubic is unlikely to be 
appreciably worse than inaccuracies previously introduced when the 
coefficients·were-computed and ~ounded off. Therefore, if roots 
obtained from QBC turn out too inaccurate for some ulterior 
purpose, the trouble may lie not so much with QBC as with the 
proce59 that generated the coefficients. Thus does backward error 
analysis excu~pate the programmer- of QBC. And it• does rnore. 

The uncertainty contributed to the computed roots by roundoff in 
QBC can now be assessed by analyzing the effects upon those roots 
of tiny perturbations of the cubic's coefficients, regardless of 
the internal details of QBC. Even without those details, tlie 
analysis is tedious; only its conclusions are summarized in §5. 
Computed roots turn out normally to be accurate in all but their 
last few digits; but in worst cases, when all three roots of the 
cubic almost coincide, the computed roots can lose as many as .two 
thirds of the figures car~ied. Examples in §5, §7 and §10 bear 
out thi9 gloomy prediction, to which we shall return later. 

Beside9 being too long to include in these notes, the proofs of 
the foregoing claims to accuracy are at least as vulnerable to 
error as the shor:-t program they are supposed to vindicate.. Such ~ 
claims deserve credence only if they are. supported by numerical . 
experiments. But rounding errors committed during the experiments 
can confound the test results and obscure their implications. §6 
discusses such issues and offers a partial remedy in the form of a 
program REVAL that combines the evaluation of a cubic polynomial 
with the simultaneous calculation of a rigorously correct bound 
for the effect of roundoff upon that evaluation. REVAL is based 
upon prior knowledge of a bound for the rounding error in every 
floating-point arithmetic operation; that bound is characteristic 
o-f the computer- and deducibia from attributes like the nurnber of 
significant digits it carrieg. REVAL and programs like it permit 
the error in a computed root, regardless OT its provenance, to 
be overe9timated with ease as rigorously as one likes and without 
eMcessive pessimism provided the root lies far enough away from 
all the• others. Clustered roots are a little harder to handle. 

The previous t~o paragraph5 may suggest <and it's widely believed> 
that clustered roots of a cubic cannot be calculated accurately 
unless arithmetic is performed carrying about.three times as many 
significant figures as will be assuredly correct in the computed 
roots. That is untrue. Also untrue is another widely believed 
myth about numerical· computation, namely that numerical error i~ 
caused by cancellation. In fact, on almost all modern computers, 
no new error is·generated when subtractive cancellation occ:urs; 
the principal exceptions are CRAVs, CVBERs and UNIVACs. On IBM 
370's, DEC VAX's, SUN's, APPLE Macintoshes and Hewlett-Packard ~ 
calculators, to mention just a few, subtractive cancellation is 
exact. This fact can be exploited to Precondition a cubic with 

2 



Cubict WORK IN PROGRESS Nov. t O, t 986 

clustered roots, transforming it into a new cubic with relatively 
well separated roots that are easy to calculate and transform back 
into fully accurate roots of the original equation. A simplified 
version cf preconditioning, applicable principally to cubics with 
integer coefficients, is described in §7 with examples that may 
suggest how the process would work in general. Thus have we 
confronted two myths about roundoff and cancelled them both. 

After roundoff, the second hazard to be overcome during numerical 
computation is spurious over/underflow, an event that occurs when 
intermediate results would be so huge or so tiny as to lie outside 
the range of numbers normally representable in the computer even 
though the desired final results lie within range. This hazard is 
encountered only rarely, and then it can be overcome by Scaling, 
which is described tn IS. 

The final few sections of these notes are archival. §9 presents 
a collection of cubics with known zeros that help to test programs 
like QBC or its competitors. !tO eKhibits selected but typical 
results obtained from our versions of the ltalians· formula and o-F 
Newton's iteration <QBC> programmed into an HP-tSC handheld 
calculator. The program for QBC is supplied in §tt, and the 
running times for both methods are compared briefly in §12. 

2. A Formula in •c1ased Farm" 1 

A cubic polynomial A>e 3 + 9>< 2 + Cx + D has three zeros x = x,, 
><a, Ks that can be expressed explicitly in terms of its given 
c.oefficients A, B·, C, D in many ways. The formula chosen below 
is one of the better ones, and has been arranged in the form of 
an algorithm that can easily be programmed into a computer: 

A, B, C and D are given real numbers. 
If A= 0 

then < ><s : = CI BI + IC I + ID I> /A ; • • • ca or· 0/0 • 
p :- -C/2; ••. NeKt solve BK 2 - 2px + D 
q := v<p• - B D> ; .•• possibly an imaginary 
if q is Real •.. , in which case q l O, 

= 0 
number. 

then< r :• p + sign<p>q; .•• = p ~ q 
if r • 0 

then< ••. Zeros are O or m or 
>< t : • D/B ; >< :a : = -x, } 

else C ><, := D/r; ><2 := r/B > 
else< x, := p/B + q/S; X2 :~ p/B - q/B 

else ( b := -(B/A)/3; c := C/A; d != D/A; 
• • • New solve xs - 3bx 2 + cx + d = <) 

s : =- 3 b 2 - c J 
t : = < s - b2 > b - d ; 
••. Now >< = b - y whe~e 
if s = 0 

sy - ys = t 

... 
()/() 

} 

then C y, ! • -t • r:s ; • • • the real cube root. 
Y:a := y, <-t + &v-3) /2 ) 

else Cu!= v<4s/3) ; ... possibly imaginary. 

} 

v != arcsin((3t/s)/u)/3; ... rnay be cornpleH. 
w := (n/3)sign<Re<v>> - v; ... = ~n/3 - v ... 
y, := u sin <v> ; Y2 := u sin <w> } 

)( I : = b - YI ; X 2 ! = b - Y2 ; X :S ! = YI + Y2 + b 
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This algorithm was programmed into an HP-13C calculator without. 
difficulty. On many another machine programming might be impeded 
by the absence of complex sin and arcsin from its library of 
elementary functions. Then the following formulas may help: 

If z 2 > l then arc:si n <z > = Cn/2. - 1 arcccsh < I z I > > z / I z I . 
If z is real, arc:sin < ,z > = z arcsinh Cz > , 

cos < iz > = c:osh < z > , and 
sin < ,z > = z si nh < z > . < , = 1'-1 > 

With the aid cf these formulas and some algebraic manipulation, 
the algorithm can be freed from all nontrivial complex arithmetic, 
but only at the cost of introducing more case analysis. In place 
of the formulas involving complex arcsin and sin, there will 
be three cases. One case handles s < O . If s > <) C in whi cli 
case u > 0 too>, there are two more c:ases according to where 
13t/Csu> I lies relative to 1 . But multiplying cases can only 
exacerbate the first of thre~ ~laws that mar the algorithm: 

First, the algorithm is complicated, and thereTore vulnerable to 
oversights. Have all singularities been considered and handled 
correctly? 

Second, the algorithm is vulnerable to over/underTlow. Even when 
all three zeros lie well within range, ~ver/underflow can blight 
the intermediate quantities q, r, sand t. The natural deTense 
against over/underflow is scaling, another complication. 

Third, the algorithm is vulnerable to roundoff, particularly 

~ 
• r 

when the zeros are of wildly difTerent magnitudes; then the zeros ~ 
o-F smaller magnitude tend to be computed rei"atively inaccurately. • 
<Examples of inaccuracy can be found at the end of these notes.) 
All figures can be lost in any zero whose magnitude is smaller 
than a rounding error in b. One way to calculate the tiniest 
zero mare accurately is to obtain it as the reciprocal o~ the 
biggest zero of A+ Sz + Cz 2 + Dz 3 , which is tantamount to 
running the foregoing algorithm a second time. To compute the 
zero of middle magnitude, divide -DIA by the other two zeros. 

Another way to improve the accuracy of a zero is to use some kind 
o-F iteration that improves approximate zeros by exploiting the 
cubic's behavior near them; a short step past this thought finds 
us contemplating whether the cubic might be better solved by an 
altogether iterative method than by e><plicit formulas. Just such 
an iteration is the newt topic discussed in these notes. 

3. NeN1:an" s Itara1:ion1 
Biven the real ~ubic polynomial Q(x) := Ax~ +·B,c 2 + Cx + D, we 
may use iteration x ... , := x .. - Q(X,.)/Q·cx .. > for n = o, 1, 2, ... 
to Tind a real zero of Q(x) provided we can solve four problems: 

How shall QCX)/Q·<x> be calculated eTTiciently? 
- Where is a good place to choose the starting iterate Xo 7 

When should the iteration be stopped7 
Having found one zero, how do we find the other two? 
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The following scheme computes Q(X) and Q'(X)" at the cost o-f 
4 multiplications per iteration: 

Qo : = AX ; q a : = qo + B ; q2 : a q I X + C ; 
Q• CX> := Cqo + q1 > X + q:z ; Gl(X) :::: q2X + D • 

Three preliminary divisions of all the coefficients of Q(x> by 
A could subsequently save one multiplication per iteration, but 
doing so would exacerbate roundoff and raise questions about over/ 
underflow, questions best answered by scaling all coefficients cf 
Q(x> in advance in a way to be discussed in IB below. 

Finding a good starting iterate Xo is a balan-cing act among many 
contending considerations. First comes the numerical stability of 
the de~lation proc~ss by which, after a real zero has been 
computed, it will be removed from the cubic to yield a quadratic 
whose zeros are the remaining two zeros of the cubic. The process 
of deflation is numerically stable unless the zero being removed 
is much tinier than one zero of the quadratic but much bigger than 
the other. Xo can be chosen to avoid that unstable situation. 

A second consideration is speed. Newton's iteration converges 
very quickly if started close enough to a simple zero, but 
converges very slowly to a multiple zero. Therefore, Xo should 
ideally be extremely close to a triple zero, if Q(x> has one, 
or else much closer to a simple zero than to a double zero if 
Q(x) has both of those. Here is a way to choose such an Xo: 

Assuming AD - 0, let b := -CB/A)/3; r := fQ(b)/Al'' 3 2 0; 
and s := signCQ(b)/A) • ±1 • If Q'Cb)/A ~ 0 then Xo := b - sr 
else Xo := b - t. 324718 s ma>< <r, 1'<-Q' Cb> /A)> . WhY. does this 
choice work? The .. next paragraph will. explain. To better follow 
its argument, read it repeatedly with reference to the graphs of, 
say, x~ +ex+ 2 for f = -9, -3, -1, o, 1 and 3 superposed 
upon each other to show how its leftmost real zero increases with 
e. That leftmost zero is the goal of the iteration. 

Why start iterating at Xo? Observe that Q•Cb) = 0; therefore 
M • b at the inflexion on the graph of QCx> , and furthermore 
Q(b-y) = QCb> - Q•(b)y - Aya. If Q'(b)/A > 0 then this cubic 
is strictly monotonic with Just one real zero y that must lie 
between y _= 0 and y = sr; otherwise the real zero y farthest 
from O lies beyond ya sr and beyond y m s1'(-Q'(b)/A) too, 
but not beyond both ~sr and ~svc-Q•<b>IA> , where A is the 
real root ~ = 1.32471 79572 44746 ... of ~3 = ~ + 1 . Since the 
desired real zero X lies between the starting iterate Xo and 
the inflexion point b , and the cubic is monotone between X and 
Xo, Newton's iteration converges monotonically and rapidly to the 
desired real zero. In the special case that Xo = b no further 
iteration will occur because then b is the cubic's triple zero. 

When should the iteration Xft., := Xft - Q(Xft)/Q'CXn> be stopped? 
Except when Xo = b, we would expect sign<Xn•• - Xn> = s for 
all n; but that expectation cannot persist indefinitely in the 
face of roundoff. Ultimately roundoif must cause Xn•• - X" to 
vanish or take the wrong sign, or cause Q'CXn> to vanish; in 
either case we shall set X != Xft and accept it as a real zero of 
the cubic. Since any iteration could take too long to home in to 
X = O, which occurs if D = O, that case is segregated. And 
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th~ quotient Q/Q• must be replaced by (Q/~)/1.OOO ... O01 to 
overcompensate for roundoff that could otherwise carry Xn too 
far beyond its goal. When X is extremely tiny, that extra ~ 
division prevents Xn from jumping over X to O, as otherwise 
it would in one of the examples in §10. Roundoff c:an cause yet 
another kind of overshoot when the cubic•s three zeros a~e closely 
clustered; Xn can fall between two zeros. We avoid the worst 
effects of this overshoot by accepting X = Xn instead of Xn•t • 
Our policies for handling roundoff and gtopping the iteration are 
not the only possibilities, but they are among the simplest. 

• With one real zero X in hand, the ne><t task is tie1'·lation to 
obtain the quadratic Ax 2 + B1x + C2 whose zeros are.the two 
remaining zeros of the cubic. Here are the deflation formulas: 

If I X3 1 > ID/Al then ( C:a :=- -DIX ; B, := <C2 - C) /X } 
else < S, : :::s AX + B J Ca : = S, X + C J· 

• • . C recal 1 q, and q2 above ) ... 
One formula for Ca comes from the product of the cubic:'s zeros, 
-DIA= XCa/A. The choice for B1 was derived from an error
analysis that looked at the sum of the zeros, -BIA= X - B1/A, 
and at the sum of their reciprocals, -CID= 1/X - B1/C2 , tc 
find out which is least perturbed by the error in X. Of course, 
different formulas have to be used when A :::s O or D = 0. 

Finally, formulas for solving a quadratic equation are taken from 
the algorithm presented earlier. 

4. Iterative Algarii:hm. QBC 1 . . . ~ 
The following· a-lgcrithm, arranged to facilitate programming, 'is 
complete except for scaling precautions against over/underflow. 
It is broken into subprocedures that make it easier to understand. 

Real 
• • • 
••• 
• • • 

Function DISC (a, b, c:) !=- b2 - a c ; 
Later, during the discussion of Preconditioning in §7 
another version of DISC will be presented that is more 
accurate when a, b, c are all integers and not too big. 
End DISC. 

Procedure QDRTC( A, B, C, X,+1Y1, X2+1Y2 >: 
••• Given real coefficients A, B, C, this procedure delivers 
... the two zeros X,+iv, of the quadratic Ax 2 +Bx+ C. 

b :• -B/2 J q :=- DISC<A, b, C> ; 
If q < 0 

. th en < X 1 : =- b / A ; X 2 : • X, ; 
V, :=- v'C-q> /A ; Y2 :=- -Y, ) 

else< Y, :~ 0; Y2 := 0; 
r := b + sign(b)~q; ••• = b ~ yq 
If r = 0 

then { x, ·- C/A • X2 ·- -x, } . - ' .-
else ( x, ·- C/r ; Xa != r·/A J-.-

Return . End GIDRTC • ' 
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Procedure EVAL( X, A, B, C, D, Q, g•, B,, C, ): 
..• Given real X and real coefficients A, B, C, D of the 
... cubic Q(x> = Ax 3 + B><2 + Cx + D, this procedure c:ornputes 
••• Q != Q(X) 9 g• := g•cx> t B, !=AX+ 8 and C2 := B,X + C • 

qo : = AX I B, : = qo + B ; C2 : = B, X + C ; 
Q' := (qo+B, > X + C2 ; Q != C2X + D ; 
Return; End EVAL. 

Procedure QBC( A, B, C, D, X, X,+,Y,, X2+cY2 >: 
.•• Given real coefficients A, B, C, D of the cubic 
•.. Ax 3 + Sx 2 + Cx + D, this procedure computes a real zero 
... and two complex zeros X,+cY, of the cubic. 

If A= 0 then ( X :- m J A:= BJ b, := C; C2 := D 
go to -fin> ; 

If D = 0 then C X !m O I b, := B; c2 := C; 
go to -fin); 

X ;a -CB/A)/3; call EVAL<X, A,B,C,D, q, q', b,, c:2> ; 
t := q/A I r := 3 tlltl ; s := signet> ; ••• = ±1 • 
t : m -q' / A ; i f t > 0 -:..i en r : = l • 32471 8 max Cr , vt > ; 

Mo!= X - sr; if ><o = X then go to -fin ; 
Do ( X := ><o ; call EVALCX, A,B,C,D, q, cf, b1, c2> ; 

if q' = 0 then ><o != X 
else ><o := X - fq/q')/t.000 .. 001 } 

B><o ~ sX ; ••• stop when ><o • X. 
> ID/XI 
( C2 : = -D/ X ; b, : = ( C2 - C > /X } ; 

QDRTC( A, b,, C2, X,+cY,, X2+zY2) ' 

until 
If IAI X2 

then 
-f.in: cal 1 

Return ; ~nd QBC. 

S. Accuracy: 

X 

A rigorous assessment of the effects of roundoff upon QBC would 
be too complicated to include in these notes, but the conclusions 
from such an assessment will be stated here, followed later in 
16 <"Testing Considerations"> and 17 <"Preconditioning"> by 
some suggestions about what can be done about those effects. 

Provided over/underflow does not intrude, gsc·s combination o~ 
iteration and deflation always produces re5ults scarcely worse 
than if the cubic•s coefficients had each been perturbed by a few 
rounding errors at the start. In the worst case, when the three 
zeros of the cubic are all relatively nearly coincident, they may 
be correct to as few as a third of the figures carried; such a 
loss of accuracy also may afflict the closed form formula in that 
case. The phenomenon is illustrated by the following example: 

Consider the cubic x3 - 3x 2 + 3K - (1-e> , where t-e is the 
number next less than 1 representable in the floating-point 
format used during computation. The zeros of this cubic are the 
three values of 1 - 1 1 ' 3 • For instance, if 12 sig. dee. are 
carried during computation, 1-e = 0.9999 9999 9999 and the real 
zero 1 - 1 1 ' 3 • 0.9999. Changing the coefficient 1-s in its 
t2•ft sig. dee. to t changes all three zeros in the 4•h to 1 . 

In other examples, 
far from the third, 

with two nearly coincident zeros relatively 
about half the figures carried c:an be lost 
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regardless of how the cubic is solved. But QBC never loses all 
the figures carried, as the closed-form formulas can. Examples 
to show what can happen will be presented later. Here is a ~ 
summary of the conclusions that can be drawn from error analysis: 

Each zero Z computed by QBC•s combination of iteration and 
deflation is accurate almost to whichever is the largest of ... 

as many figures as were carried less the sum of the numbers of 
figures to which the other two zeros agree with Z, or 

half of the excess of the number of figures carried over the 
number of figures of agreement between Z, one of a pair 
of coincident or nearly coincident zeros, and a third zero 
relatively different from the pair, or ... 

a third of the figures carried, if all three zeros are 
coincident or nearly coincident with Z. 

No way is known to calculate the zeros of a cubic more accurately 
than if its coefficients had first been perturbed by roundoff, 
unless part of the calculation is performed eKactly with no 
roundoff at all. That eMact calculation is part of a process 
called "Preconditioning", which will be described later in §7. 

6. Tasting Cansidarati0ns1 
The obvious w~y to test QBC is to supply it with arguments for 
which accurate results have been calculated by some other method, 
and then compare. On reflection, this test procedure is not so 
obvious. What other method will give accurate results? Cubics 
can be constr.ucted. with small integer .cceff i ci ents an9 at 1 east (""'\ 
one zero expressible as a ratio OT small integers; but small 
integer input data might fail to stimulate typical rounding 
errors. And if results differ from what might ideally have been 
expected, how does one decide whether the differences are 
tolerable consequences cf unavoidable rounding errors, or 
symptoms of a defect in the program that must be repaired? 

A simple procedure that seems at first free fram the dilemmas is 
to reconstruct the cubic from its computed zeros X, Y, Z by 
expanding A<x-X>Cx-V><x-Z> in powers of x . If the cubic so 
reconstructed matches the given cubic well enough, the program 
that computed the zeros cannot be too wrong. But how well is 
"well enough"? Presumably the reconstruction need match no more 
accurately than if X, V and Z were c:orrect zeros each rounded 
off to working precision <though actually they might be far less 
accurate than that>; and the rounding errors that accrue during 
the reconstruction process have to be allowed for too. It's not 
90 simple after all. • 

Program testing is fraught with anxiety unless one can estimate 
mathematically how big the errors should not be. Such an estimate 
of uncer~ainty can be very difficult; I would much rather have to 
write a program than have to analyze its ~rrors or test it, 

The program REVAL below computes a rigorous and fairly sharp 
bound ~ for the contribution of roundoff to the computed value ~ 
Q of a cubic QCz> != Az~ + Sz 2 + Cz + D at the same time as it r ' 
computes Q. REVAL requires knowledge about bounds for every 
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rounding error committed by the computer in r-esponse to statements 
lika O s :• x+y; d :• K-y r p !• X*Y; " in a progr-am. 
Thesa assignments store in the computer's memory values s, d and 
p slightly di·f"ferent from the ideal sum, differ-ence and product 
desired. Almost avery modern computer's arithmetic has its own 
characteristic tiny constants I and S .that satis-fy 

I 9 - he +y) I ;S_ S I s I , I d - C x-y > f ~ S I d f , I P - >< *Y I ~ £ f x *Y t 
for all non-pathological values x and y representable in the 
computer < ignore m and over/underflow for now> • Ideally 

3 • • • < 1 • 000 ••• 001 - 1 • 000 ••• 000 > /2 , 
but some computer arithmetics are somewhat worse, and many sufTer 
larger valu•s o4 1 for complex multiplication than for real. 

To apply tha foregoing inequalities to the error analysis OT any 
program that computes Q, first dacompose the program into a 
sequance of simpl• assignments like 

qo : • A•z I qt : • qo + 8 ; • • • ; qs : • q2*Z t Q : ~ q:, + D • 
Then replace them by the inequalities they actually satisfy: 

I qo - Az I i • I Az I ; I q, - <qo+S> I ~ S I q, f ; • • • 
• • • J I q:s - q2z f :S. • I qa z I ; I Q - < q:s + D > I f 8 f· tJ I • 

These several .inequalities boil doNn to one of the form 
IQ - < Az~ + Bz 2 + Cz + D > I ~ 6 

Nherein 6 is ■xprassed in t9rms of I and S and various 
computed valu■s. Henca, 6 can be computed too thus: 

Procedur■ REYAL< Z, A, B, C, D, Q, 6 >: 
... Given real coefficients A, B, C, D, this procedure yields 
• • . an approxim•tion Q to Q<Z> :• AZ=-+ ez• +CZ+ D and a 
•• ~ bound ta.~ .IQ - QCZ> I , which ·would be zar:o ·if no roundo-F-F. 

·••• occurred. Instead, constantg 8 and I that reTlect the 
••• computer's roundoTf must be put into the program. A bigger 
••• 1 may be needed for complex arithmetic than for real. 

• :- I A I I/ ( I +S ) ; 
q, :•AZ+B; • :• IZla+(qd; 
q:a : • q, Z + C ; a : =- I Z I e + I q2 I ; 

Q : • q:a Z + D ; 6 : • < 1 +8 > I Z I • + I Q I 8 ; 
Return I End REVAL. 

How might REVAL ba testlld? Mter proving that no computed value 
of Q can differ from an accurate evaluation oi Q<Z> by mere in 
magnitude than 6, we have to show also that the error bound ~ 
is not so pessimistic as to be useless. Among large collections 
of trial data, 6 should sometimes barely exceed IQ - QCZ> I ; 
the anly N•Y to verify this 19 to compute Q<Z> more accurately. 

This procedure REVAL can serve to test the quality of Z as an 
approximata zero of the cubic; computa the quotient (QI/A. A 
quotient no bigger than ·2, say, indicates that no substantial 
improvement in the accuracy· of Z is likely to be achieved 1.mless 
arithmetic is carried out to higher precision. Of course, if vou 
believe QBC Narks correctly you must believe that fQI/~ will 
be fairly small at every computed zero, in which case you'll not 
bother to compute that quotient. But REVAL. has another l_lSe. 
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A bound upon the error in any approximate zero Z can be derived 
from REVAL's bound A 2, IQ - Q(Z> I , among other things, no 
matter what the pr-ovenance of Z . If Z is accurate enough, one ~: 
step of Newton's iteration from Z to Z - QCZ)/Q'CZ> nearly 
doubles its number of correct digits, in which case Q(Z)/Q'CZ> 
must appr-oximate the err-or in Z fair-ly closely. That quotient 
is never- much smaller- than the er-ror- because, in general, Q<z> 
must have a <possibly complex> zero z no farther from Z tlian 
3(Q(Z)/Q'(Z>J , according to a theor-e~ of Laguerre. REVAL's 
fQ(+O overestimates (QCZ>I ; and an estimate of Q'(Z) comes 
either fr-om AZ2 + q, Z + q:z , as in EVAL, or- from A< z-x > < Z-Y> 
where X and Y appr-oximate the other two zeros of the cubic. One 
way or another, (IQl+O)/IQ'CZ> I provides at least a rough bound 
for the err-or in Z. 

A rigorous error bound derived from Laguerr-e's theorem requires 
a rigorous lower bound for fQ'CZ> I , which could be obtained 
from an augmented version of REVAL that accounted for roundoff's 
contribution to Q'CZ> as well as to Q(Z) . Alternatively, i~ 
approximate zeros X, Y, Z are in hand, three calls to REVAL 
would help overestimate the right-hand sides of the inequalities 

Ix-XI ~ 31QCX) 1/IA<X-Y> CX-Z> I , 
ly-YI ~ 31QCY> 1/IA<Y-Z> <Y-X> I and 
I z-z I S.. 3 I GI< Z > I/ I A< Z-X > <.Z-Y> I , 

which rigorously bound the true zeros x, y, z of Q unless they 
are clustered so closely that thesa thr-ee estimates overlap. But 
rigorous bounds differ significantly from the previous paragraph's 
r-ough bounds only when zeros are clustered, and then time spent 
to get rig~rous but p~obably dismal bounds might be better s_pent ~ 
c0mputing mare accurate zeros with the aid cif preconditioning. 

7. Prac:anditi0ning1 
Since error bounds are so often pessimistic, one might suspect 
that error analysts are pe5simists too. Actually, error analysts 
ar-e less interested in over-estimating error than in diminishing 
it. One way to diminish roundoff err-or is preconditicming.~ a 
pr-ocess that transforms a problem hypersensitive ta roundoff into 
a problem that is similar but far less sensitive. 

The simple9t illustration oi the process concerns a quadratic 
equation in the form 

ax• - 2bx + c = O, 
a form more convenient for our ?urpose than the usual fcrm 
Ax 2 +Bx+ C • 0 from which wa get the desired form by setting 
a:~ -2A, b :a Band c :~ -2C. This equation is hypersensitive 
to rounding err-ors and alsa to any other perturbations of its 
coefficients jc.,st when its roots are relatively nearly coincident, 
in which case computed roots can be inaccurate in almost half the 
figures carried. For instanca, when a = tc)c)002 , b = 10<)<)<)1 
and c = t 00000 , the true roots >< = 1 and }< = c). 9999800004 •.. 
differ in their 3•ft digits from the double root x = 0.9999900002 
computed on a 10-digit calculator using the familiar formula 

x m Cb~ y(b2 -ac))/a ; 
but the computed roots are just what would have been obtained in ~ 
exact arithmetic had the coeTficients band c first been altered • 
in digits beyond their to•• to b m tOOOOt.00000 00004 and 

10 



Cubic2 WORK IN PROGRESS Nov. 8, 1986 

c • 100000.00001 00005 99996 00008. Such tiny perturbations are 
anough to cause relatively serious errors in ~<b•-ac> , errors 
•voidable only by carrying in worst cases twice as many sig. dee. 
in our computations and honoring twice as many sig. dee. in the 
coefficients as we wish to guarantee correct in computed roots. 

When are the coeificients likely to be known so accurately? Most 
likely when they are known exactly, and then most likely when 
they are integers. Therefore, let us consider the case when a, 
band c are all integers and, to simplify the exposition, let 
us assume that they are representable exactly in floating-point 

• with a digit to spare. This means intagers with no more than 9 
digits on a 10-digit calculator, no mora than 23 bits on a 
computer that perform• bin•ry floating-point with 24 sig. bits. 
If the coefficients were r•ther smaller than that, so small that 
the products b• and ac were both representable axactly, then 
the discriminant q :• b•-•c would be fully accurate enough to 
produce entirely ••tisfactory results from• program like QDRTC 
above. That state of affairs is the goal of the preconditioning 
function DISC presented below. Without ch•nging q • b 2 -ac, 
it successively diminishes the integers a, b, c until either ac 
is negative or it differs enough from b• that DISC:= b• - ac 
can be computed contaminated only relatively slightly by roundoff. 

Real Function DISC<a, b, c>: 
••• Giv•n tntegers a, b, c all small enough to fit exactly 
••• into floating-point with at least a digit to spare, return 
••• DISC• b• - ac Nith roundoff confined to its last sig. dee. 

If a c > 0 then 
< a :- I a·r • C :- IC I ; 

loops if a< c then swap<a, c> ; ••• now O < c ~a. 
n :• integer nearest b/c ; • • • In - b/c I < t /2 . 
if n-. O then ... < else b• < c•14·~ ac/4 > 

( • : • a - n b ; • • . ex act if • > -a 
if Cl ~ -• then • • • < else 2b• > Sac > 

< b : :a b - n c I • • • I b I ~ c/2 
a !• Cl - n b I 
if • > 0 than go ta loop>>>; 

Return DISC :• b• - a c ; End DISC . 

After •ubstituting this pr•conditioning function DISC for the 
function DISC that accompanies the procedure QDRTC above, we 
can comput■ th• d•sirad roots x,+1v, of our quadr•tic to nearly 
full accuracy by calling QDRTCC a, -2b, c, X1 +cv,, Xa+1Ya > . 

When applied to our aMampla above, DISC(100002, 100001, 100000> 
finds n • 1 and raduces a, b, c successiv•ly to 
• • 100002 - t 00001 • 1 , b • t 0000 t - t 00000 • t , a • t - 1 = 0 
and then returns DISC• 1 correctly having exploited ma5sive 
canc•llation without error. Here are some more examples: 

t t 
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a b C crude DISC rafi nad DI SC true b2 -ac: 
3234424085 1160927B37 416690270 398000000000 397448345600 397448343619 
3234413351 1160928203 416690636 -a,000000000 -89060331630 -89060331627 
8952751441 1:557625 271 0 114 1 t 4 
8952751442 1557625 271 0 -157 -157 
5309162499 2301700899 997864924 -6000000000 -SttOS7687S -5110876873 
5309162499 2301700899 997864923 0 198283624 198283624 
5309162499 2301700899 997864922 5000000000 5507448123 5307448123 

All calu■ns but tha last ware obtained fra■ varsians of DISC progra■aad into 
th• HP-tSC, a tan-figure calculatar. Th• last calu■n caaes fra■ the HP-7tS, 
a twelve-figur1 ••chine, using a faster version af DISC th•t exploits the 
INEXACT flag pravid1d by IEEE stand•rd p854, ta which the HP-718 c:anfar~9: 

DEF FNq<1,b,c> ! ... q 1• bA2 - a•c aara accurately. <in BASIC> 
10 • FLAS(INl,OJ ! ... IIYas and r111t1 INEXACT flag. 
·1aap•1 bO • b•b I 10 • a•c ! ... Ari they exact? 

IF FLAS<INX,10>•0 DR aO<•O THEN SOTO 'fin' 
IF ABS<c>>ABS(aJ THEN a0•a I a•c I c•aO ... swap<a,c> 
bO • RED<b,cJ I n • IROUND<Cb-bO)/c) ! ••• RED is IEEE raa 
ii• FLAS<INX,OJ ! ••• ~esets INEXACT flag. 
10 • <• • n•b> - n•bO 
IF FLAl<INXJ•0 THEN 1 • 10 I b • bO I SOTO 'loop' 

'fin's FNq • b•b - a•c I END DEF 
---~~----------~--,_..._~---------------~-------~-----------

~ 

An idea similar ta that in DISC, but applied very differently, ~ 
serv~s to precanditian th• cubic equation 

q<x> :• aMs - 3bx 2 + 3cx - d • 0 
when all its coefficients except perhaps d are integers 
repres•ntable exactly in floating-paint with at least a digit or 
two to spare. QSC will calculate· the equation's ~oats but, in 
the light of Etf""ror analy9es mentioned above, we must e~pect the 
calc:ulatad roots ta suffar badly from roundoff whenever they ~re 
c:lustared. Fortunately that possibility, clustered rocts,- can 
be recognized aasily without any call upon QSC; if all three 
roots ara nearly coincident than all thre• quotients b/a, c/b and 
d/c must ba na~rly coincident too. In fact, a little algebraic: 
manipulation suffices to prov• that the quatient9 match ta beyond 
twic:a as many sig. digits as are common ta tha roots. To exploit 
this phenomenon, chaos• A ta approximate all three quotients 
rounded to no more sig. digits than are left unoccupied by the 
first three coefficients; this means that ~11 three products Aa, 
Ab and AC will be computed exactly in floating-point arithmetic. 
Next replace M by ~+y in the given equation to get a new cubic 

q ('-.+y) • a~ - 3b'ya + 3c•y - d• :a ,) 
which QSC c:an salve for roots y, whence x ~ A+y, much more 
accurately th~n before. New coefficients must be calculated thus: 

d• : :a d - AC: ; c:' : =- c - Ab ; b 1 
: :a b - Aa ; 

d· : = d' - AC:' ; c• : :a c· - Ab, ; 
d• ! • d• - AC 8 

• 

Cancellation will occur in the fir9t row without error; and if 
rounding arror9 do occur later they will be far tinier than what ~ 
QBC would likely inflict upon the original coefficients. When 
all three roots· M are extremely close, so close that all three 
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roots y must be relatively nearly coincident·too, no rounding 
errors will occur during the calculation of the new coeTficients 
b', c:• and d•, and then the foregoing transformation may be 
repeated advantageously with a new tinier A. 

When two roots are nearly coincident but relatively far from the 
third, the three quotients above must be replaced by two values 

<112> (be - ad>/ Cb 2 - ac> and ~::v< <c:2 - bd) / (b2 - ac> > . 
They can be shown to match to about twice as many sig. digits as 
are in agreement between the two nearly coincident roots; and A 
must approMimate those two values rounded to at most half as many 
digits as are ie-ft unoccupied by the first three coefficients, so 
that all three products ~2 a, ~•band ~c will be computed exactly 
in floating-point arithmetic. Then the new coefficients and the 
roots M ~ ~+y may be calculated as above except when d turns 
out to be small compared with a~s. In that special case, the 
third root will be rather smaller than the two that are nearly 
coincident, so it may well be computed more accurately from the 
original coefficients than from the new ones. Moreover, in case 
d is small and not an integer, the formulas for d', d' and d• 
should be changed as follows far better accuracy in the nearly 
coincident roots ~•y: 

D :• integ_er nearest d ; 8 := d - D ; 
• d' !• D - ~c I d• !• d' - ~c• ; d• != (d• - ~c•) + S • 

A detailed explanation to justify the foregoing procedures is too 
complicated to include in these notes. Instead, a few examples 
will illustrat~ the schemes· efficacy. 

These examples were all worked aut an an HP-t5C calculator, which carries 10 
sig. dee. First the zeros x af each given cubic q(x> were obtained fram a 
program like QBC, listed at the end of these notes, ta see haw inaccurately 
it caaputas clustered zeros. Then quotients of coefficients were examined to 
det1r■in1 1 choice of 1 fro■ which new coefficients af qC1+y> were derived. 
The inter ■ediate results af this ca■putatian are displayed below with strings 
af l11ding •o•s• ta denat1 digits that cancelled off. Then QBC was rerun 
to co■puta the zeroB ·y of q (Uy) , fro■ which Hre abtai ned i 11proved zeros 
x • l+y whose correctness MIS verified an an HP-71B carrying 12 sig.dec. 

g (ic) • ,sax~ - 190t25x• + 1831t811x - 587898164 
QBC1 X • 96.2,7 1 96.341, 96.305 
b/a • 96.3145B967 c/b • 96.31458777 d/c • 96.314585B2 A ·- 96.::S ,-
I• 658 b • 6337S C ;a 6103937 d • 587898164 

b' a 00009.6 c' • aaaa924.S d' = 000089030.9 
c• II 000.02 d• = aaoot.55 

d• • -a.376 
Q(l+y) m 6S8y~ - 28.8y 2 + 0.06y + 0.376 
9BC: l+y ~ 96.22963933, 96.35706483 t 0.06974973204, 

13 
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Q(x) s 22t211lx~ - 73449x 2 + Stlx - l 
QBC1 x = 0.01109692,,s, 0.011053099,1 t o.00020090214s1, 
b/a = 0.0110677 c/b = 0.0110689 d/c = 0,0110701 A := 0.0111 
a a 2212111 b = 24483 c a 271 d = 3 

b' = -oao71.4l21 c' = -ooa.7613 d' = -0.0081 
c• • 0.03159631 da = 0.00035043 

d• = -o.0000002a9041 
Q<i+y> = 22121tty~ + 2t4.2963y 2 + o.o947S&93y + o.0000002s9041 
QBC1 1+y • 0.01109693006, 0.01105309791 t 0.0002009034814, 

l is nat critical, nor is a saall rounding error in d•. Here is the 
previous exa■ple repeatad Nith a different A := 0.01107 1 
a~ 2212111 b = 24483 c = 271 d = l 

b' = -oaaaS.06877 c' • -oaa.02681 d' = a.oaool 
c• • 0.0293012B39 d• = 0.0003267867 

d• • 0.0000024214872 •• 
Y1t QBC delivers practically the sa■e final results A+y as before. 

Q<x> 2 61ttx~ - 31792x 2 + 109737x + 0.00623 
QBC1 X • •5,677209907,o-S, 40237477594, 4.237131105 
Cbc-ad)/(2(b2 -ac>> =- fC (c 2 -bd)/Cb 2 -ac) > = 4.237604349 >. != 4.24 
a• 6111 b • 17264 c a 36579 D =- 0 S = d = -0.00623 

b• • -08646.64 c• • -36620.36 d' =- -135094.96 
c• • ooo4t.3936 d• • 000175.3664 

d• • -aoo.148694 
Q(l+y) • 6tt1y~ + 25939.92y 2 + l24.18O8y + 0.148694 

-QBC1 1+y_a -a.ooooaao56, 4.237583786., 4.237624911 
d. ls s~ tiny that the isolated root is best calculated direct! y. from Q (x >. ,~ 

.The foregoing discussion may promote a misleading impression that 
preconditioning is worth while only if the data <cceTficients> are 
given eMac:tly. Other circumstances de exist when preconditioning 
helps, however. For aMample, the errors in the data could be 
correlated in a way that is known to mostly cancel in the results. 
Or the coefficients, though unc:orrelatedly erroneous, may figure 
subsequently in several related contexts among which consistency 
oi soma kind is essential even though ultimate accuracy is not. 
For instance, suppose a program uses the zeros cf the cubic and 
also OT its derivative; Rolle's theorem implies that the latter 
zeros should lie between the former when they are all real, and a 
theorem·due to Gauss places the latter inside the convex hull of 
the former when they are complex. If those relationships are 
violated by clustered approximate zeros computed too inaccurately, 
the subsequent logic OT the program could malfunction. Adapting 
that logic: tc disordered zeros can be far mere complicated than 
preconditioning in a way that protects their order from roundofT. 
However, preconditioning procedures appropriate for noninteger 
data gc far beyond the scope of these notes. 

14 



Cubic3 WORK IN PROGRESS Nov. 1 0 , 1 986 

a. Scaling InvariAnc■ vs. Dvar/Underflaw: 
The factored form of the cubic 

A ,cs + B x 2 + C >< + D = A <>< - X> <x - V) <x - Z> 
provides a factorization for the scaled cubic 
<o-A>><s + <a-Be>>< 2 + c"'ce 2 >>< + cvo~s, = o-A <>< - ~x> <>< - eY> <:< - ~Z> • 
If the scale factors ~ and e are powers of the radix < 10 for 
a decimal calculator, 2 for a binary computer), then the scaled 
coefficients o-A, o-Be, o-Ce 2 , o-De~ will have the same significant 
digits as the original coefficients A, B, C, D; only the 
decimal or binary points will have shifted. Therefore the same 
should be true of the scaled zeros eX, eY, ez, even in the face 
of roundoff. Of course, the relationship between the scaled 
zeros and the original zeros X, v, Z must break down when the 
scale factors are so big or so tiny that the scaled coefficients 
or zeros over/underflow; ideally the relationship should not 
break down for any other reason. In practice, most algorithms 
ara vulnerable to spurious over/underflow. For instance, the 
discriminant q in QDRTC and the quotients rand t in QBC 
can easily over/underflow even though the coefficients and zeros 
lie well within range. Conscientious programmers introduce scale 
factors into their programs either to forestall undeserved ever/ 
undarflows or to recover from them. The task is not eased by the 
absence from most programming languages of any reference to over/ 
underflow other than an implication that the crime will be 
punished by termination of the program's execution. 

Here is how a scale factor o- can be chosen to prevent spurious 
over/underflow during the solution of a quadratic equation 
AK 2 + B>< +.Ca O. If• A~ 0 or C = 0. the sol~tion is obvious. 
Otherwise choose ~ to be a power of.the radix near YIAI vlCI , 
and so chosen that neither A/o- nor Cl~ can over/underflow. Then 
ICA/o-) (C/r)I cannot be orders of magnitude larger or smaller than 
t • Next compare IBI with er; if IBI is so much bigger than 
er that 181 + o- rounds to IBI , then the quadratic's roots are 
approximated accurately enough by -C/B and -BIA. Otherwise 
call QDRTCCA/cr, Bio-, Cler, X, + 1V,, X2 + &Y2 ) , allowing 
underflows to flush to O if nothing better is available. No 
undeserved overflow will occur. 

Similar ideas can help suppress spurious over/underflows when 
solving the cubic. Roughly speaking, when A/B is very tiny, 
much tinier than roundoff in_ numbers near t , but B/C is not 
tiny at all, then the cubic~s biggest zero must be very nearly 
-BIA, and the other zeros can be found by setting A:= O and 
solving the resulting quadratic equation. And when DIC is very 
tiny but C/B is not, the tiniest zero is very nearly -DIC, 
and so on. When neither A/B nor DIC is very tiny, the cubic 
and its zeros can be scaled and computed in ,the ordinary way. 
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9. Same Trial Data far Cubic Equation Solvers• 

Notation: ~ 
Coe-f-ficients A, B, C, D of cubic A>e 3 + Bx 2 + Cx + D are input. 
Output are real zeros X, Z,, Z2 or compleK zeros Z • 
Parameters: M is a small integer; N is a big integer; ~lsually 

(NI is almost as big as possible without roundoff. 
u := M/N; v := 1/(2N) • 
t is a tiny number; 1000 ~ t rounds to 1000 • 
h is a huge number; h ± 1 rounds to h D 

Fall• the faraulu far calfflcients EIACTLY; rcunding th11 cauld change zeras drastically, 

Cubics with small integer coefficients: 
A ::a t ' B = D = -6 ' C :a 1 1 • X :s 3 ' z I = 1 ' Z2 = 2 • 
A a D mt , S ~Cm O. X • -1 , Z • 0.3 ± iv0.73. 
Am -D mt , B • C = 0. X m 1 , Z m -0.~ ± ,v0.75. 
Am O, B = t , C = 3, D • 2. X • m, Z, = -1 , Z2 = -2 
A :at , B = -3, C • 2, D ~ 0. X = 0, Z, = 1 , Z2 = 2. 
A a D = 1 , B = C = 3. X = Z, = Z2 = -1 • 
A=- -B = -C = D a 1 . X ~ -t , Z, • Z2 = 1 . 
A=t, s~-3o, c~299, o~-19eo. x = 20, z = 3 + lv'74. 

Cubics with zeros of very different magnitudes: 
A=t, s~-30, C~299, Dm-t. X • t/299, Z • 15 ± lt'74. 
Am -D at, -Ba Ca h. X al , Z, • t/h , Z2 *hit. 
A• t , 8 • -h, C = -t, D a ht. X = h, Z = ~vt. 
A = D ::s t , B ::a C. • t - N - 1 /N • X = 1 /N , ~, =- -1 , Z2 = N • 

Cubic9 with ill-conditioned zeros: 
A= -Ca N+1 , D = -B • N-t . -X =- Z, = 1 , Z2 = 1 - 2/CN+t> • 
A• -D = N, Ca-Ba 3N+2M. X ~ t , Z = t+u ~ v<2u+u2 > . 

. AmB=3C, C ~ 9N3 , D a t-N3 • X = <1-2v>l3, Z = l+v ~ tvv3 ~ 
A=D• N2 +M2

, B=C=- 3M2 -N2
• X=-1, i =- 1-2u2

/ ( 1 +u2
) :!:. 2 lU/ ( l +u2

) • 

A=-D=N2 +M2

, -B=C=3N2 -M2

• X=t, Z = t-2u2 /(l+u2

) ~ 2,u/(1+u2

) • 

to. Selactacl Results from th• HP-t~C: 
Botll ilgaritlla illavt, an, using tll1 Fcrlll1• Nitll caapl11 arcsin, on, lik1 DBC that iterates ta 
tolvt I cultic, b1v1 b• pragra•I inta tflt HP-IZ calcalitar alang Mith a pragn■ like REVAL ta 
caaput1 Q(1J anti 6 , TIit rHUltl tulllited btlGII sfla• tll1 catfficients A, B, c, D af th, cubic Qfx) 
and tht zrn I, Y, Z afltainld first frat th, pragraaed Farauli, secand frn eiact calculation an 
anatll1r NCbint, third fraa th, iterativ1 Nthad ac. B1!011 ac•s results are sha• carrespanding 
quatiants 1GflJl/4CIJ, IO(Y)l/4(Y>, IO<ZJl/4(ZJ as caaputed by a progra■ like REVAL. 
The HP-151: raund1 aritllNtic ta 10 sig. dee., carrespanding to I :s 1 • :St-10. 

A :a I Farauli I • I y. 2 Z • 3 
8 • -6 Correct I • I y. 2 Z • l 
C :a ll Iter'YI I a t Y•2 Z • l 
D ~ ·6 111/6 0 0 0 

A :a ·1 Fanuli I • -I Y :1 0.4999999999 + 0.96'0254037 i 
8 s 0 Correct X s ·l Y = 0,5 ! 0.866025403784 r 
C = 0 lter·ve l • ·l Y = o.s t 0,8660254038 i 
D = ·I lfl/6 0 0 
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A • t 
8 • 3 
Ca3 
I • l 

A • l 
8 • 0 
C • -2 
D • -S 

A• t 
8 • -3 
C•2 
D • 2.~19 

A • I 
a• -799"""9 
C • ·8000000002 
D • 16000000000 

A• 16000000000 
J • -8000000002 
C • ·7999999999 
D • I 

A • l 
B • ·9ffl9.0000I 
C • •99999.00001 
D • I 

WORK IN PROGRESS 

Fonull I • • I a Y • Z 
CarrKt I • • l • Y • Z 
lter'vt I• ·I ::s Y • I 

Nov. t (), t 986 

101/4 0 .•• , so tht progran •rk at ~east SOHti■es. 

Far111l1 I = 2,09ffll48l Y = ·1,047275741 + l, 135939889 r , •• Newton's 
Correct I• 2,0945514815 Y • -t.047ffl7408 t t.1359398891 r Olln 
lter'YI I • 2.094551481 Y = -1.047275741 + l.135939889 t . enaple. 
10114 0.21 0.1s 

Faraul1 I• 4e-l0 
Correct I• O 
Iter've I• 0 
lfl/6 0 

Far111l1 I• 41-10 
Carrect I• -t.17e-89 
lter'vt I• -1.111-89 
IOI/& 0 

Far111l1 I• 7999999998 
Correct I• 8000000000 
lttr'YI I• 8000000000 
101/4 0 

y • I 
y • I 
y • I 

0 

y • I 
y s I 
y • t 

9.41-81 

Y • 43545 
y • 1 
y • I 

0 

Z • 2 ... I Is o■inous. 
Z • 2 
l • 2 

0 

l • 2 .•• 
Z = 2 
Z•2::: 

2.9e-8I 

I is wang. 
This is why UC has 
1.000.,001 in it. 

Z • -43545 • • • Y ud Z ire very wang. 
Z • -2 
Z • -2 

0 

Far•l1 I • l,Oe-lO 
CcrrlCt I • I.Zt-tO 
Itar'vt I • l,2St-lO 

Y • 0.9999999999 Z • -0,4999999999 ... Y and Z ue D. K, 
Y • 1 Z • -o.s nw, but I isn't, 
Y • I I• -0.5 This cubic is the 

111/4 0 0 0.1 previous on~ reversed. 

Fcr1Ul1 I• 99999.99fl7 Y • -t.0443 Z • 0.04433 , •• Y and Z are Nrang again, 
Correct I• 100000 Y • •I l • 0,00001 and r1,ersing the cubic 
Itar'v1 I• 100000 Y • -I Z • 0,00001 IIGft't i1Prave V. 
101/6 0 0.1 0 

A• O.Ot Fcr1111i I• 1,0lt-4 - 2e-6 1 Y • 14999,99995 ! 8602.325194 t 
B • -300 Carnet I• t.000000010031-4 
C :s 2990000 lttr'YI I • t.OOOOOOOIOl-4 
D • ·299 101/6 0 
Thi Fonula' s vl1111 I 11 wang in the •st NYI 

Y • 14ffl,9999S ! 8602.32517986 l 

Y • t4999.9fflS ± 8602.32518 t 

0.00015 
wang enougll tD utter, but not abviously Nrong. 

A• -3 Faraula r • 0,3333333333 • Y • z 
8 = l Carrect I• 0,333178613706 Y • 0.3334l069ll47: 0.000t3399tt2B129, 
c = -1 Itar'v1 r • 0,3333333333 Y • 0.33333&6667 z = o.33333 
D • 0,1111111111 IQ(/& O O • 0 
Bitter results cannot bt expected frn calcuhtians carried out to 10 sig, dK,, since as ■any as bo 
thirds of the figur11 carried can be last if all thrN zeros 1r1·n1arly coincident. 

A • 10000000000 Far11l11 X • -0. 99"'99997 Y • O, 999999999, ! 0.00001721325932 r 
8 • ·9999999998 Correct I• ·l Y • 1 Z • 0.9999999998 
C • -A Iter'v1 I• -I Y • 1,000014142 Z • 0.99998585B 
D = -8 101/6 O,OS7 0.27 0 
letter r1S1lts cannot be expected fro■ calculations.carried out to 10 sig,. dee., since as ■any as half 
ttae figures carried can bt last if tNO zeras are nearly coincident but hr froa the third. Note that any 
pravu that caaputes l, Y, Z 11 11111 as can be expected should produce values far lfl/6 suller than 
I ar 2, but the Hillness af thit quotient does not by itself tell how accurate a ca1puted zero ■ay be, 
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tt. A Program far tha HP-15C: 
This program deals with cubics Q(x) =ax~+ bx 2 +ex+ d 
quadratics rx 2 + sx + t. Function keys CAJ, CBJ, CCJ, 
and Ctl are invoked via CGSBl CAJ etc. Stack register 
normally displayed; to see the other registers Y, Zand 
the CR•l, CRtJ or CXIYl keys. Here is what the program 

and 

CAll 

CBJ1 

CEl1 

CCl: 

Ctla 

. 
CDl1 

CDJ, CEJ 
X is 

T , t.lSe 

does: 

a CENTER] b CENTER] c CENTERJ d CAJ stores a, b, c, d 
in cells #3• #4, #5, #6 resp. for ••• 

Using coeificient9 a, b, c, d stored by CAJ , solves 
Q(x> m O for roots X, Y, Z by means OT a 
formula involving complex arcsin. Scratches 
cells #7, #8, #9. 

Using coefficients a, b, c, d stored by CAl , solves 
Q(x> • 0 for roots X, Y, Z as QBC does by 
iteration and deflation. X is real and also 
in cell #9 J Y and Z are complex
conjugates. Scratches cells #7 and #8. 

Using coefficients a, b, c, d stored by CAJ , copies 
X into Zand T, writes IXI into cell #7, 
writes Q(X> over X and an error bound for 
Q(X> onto Y. X may be complex. Cf. REVAL. 

Using coefficient9 a, b, c, d stored by CAl , writes 
X into Zand T, Q'(X> into Y and QCX) 
over X; and if X was real, then leaves 
aX+b in ca·11 #7 , <aX+b)X+c:. in #8 • 

r CENTER] s CENTERJ t CD] solves a quadratic equation 
rx 2 + sM + t = O for its roots X and Y, 
which may be complex. r ~ 0. Cf. ~DRTC. 

Program Texts 
LBLCA] ST06 Rt S11J5 Rt ST04 Rt STD3 RTN LBLCBl CF8 RQ.4 RCLl l=O? &TD9 f l CHS + STD7 12 STOS l x RCL5 
RCU3 - S109 Ra.-a RCI.J7 RCL6 Ra.¼3 - Ra.9 l=O? &TOO T l I RCL9 • 7' T SF& (I. T LSTX rn sr1- 1 l f CFO I<O? SFO 
• l + FO? CHS llY - Lffl SIN Rt I IU SIN Rt 1 &TD2 LBLO ll'f CHS l 1/1 SFB 'f" ENTER ENTER I CHS LSTX yx CHS 
1 LBL2 Ra.7 llY • RCl.7 LSTI Rt + RCt.+7 llY Lm - Rnt LBL[C] ABS ST07 4,006 STD[ LSn RCLl ENTER ABS 2 
¾ LBL3 RCl.x7 Rt x RCL+m ENTER ABS Rt + IS&I &T03 Lffl + 2 EEi 9 ¼ IU RTN LBLCDl CFB UY 2 CHS + CFO 
l<O? SFO STOI 12 Rt I LSTI llY Rt • CHS ltO? 8TD4 CHS fl Rt ♦ EJtTER CHS Ra.I LSTI + llY fl ENTER Rt fI Rnt 
LBL4 fl FO? afS RCL+t 1-o? RTI ¼ LSTI Rt f RTI LBLCEl CFB EEi CHS 9 1• ST09 RCl.6 l=O? ST06 RCL4 RCU 
1=0? 6T09 + l CHS + SSII RCUl CFO 1(0? SFO All 3 1/1 Y" llY RCU3 CHS l{O? 8TIIS fl l>Y? llY CU 1.325 1 EHTER 
LBLS CU + FO? CHS· X•Y? &TD7 LBL6 &S81 llY 1-0? &T07 ¼ RCU9 - l•Y? &TD7 LSTI FO? CHS l>O? &TIJ7 Rt STD6 
LBLC t l EITER ENTER RCLxl ENTER RC1.+4 ST07 + x rn RCLx7 RCL+5 STD8 + XlY LSTI x RCL+6 RTH LBL7 Rt Rt 
STD9 l=O? &TUI 12 RCl.xl ABS RCL6 RCU9 ABS l>Y? &TD8 LSTI CHS STDI RCL-5 RCl.¼9 S107 LBLS RC.l RCL7 RCLS STD5 
LSL9 I TANH- 1 ST09 RCU RCU RCIJ LBLS 6SBD Ra.9 RTN C 303 steps J 

12. Program Timings• 
For the selected results from the HP-t5C exhibited above, the 
closed-form formula ·program CSJ took about 14 sec. on average; 
the iterative QBC program CEJ averaged roughly 27 sec. But 
program CBJ wa9 inaccurate at times; to get results as reliable 
as CEJ's, program CBJ would have to be run twice, the second 
tirne with coefficients reversed, and then the two sets of results ~ 
would have to be combined with some additional arithmetic. Thus, ' 1 
the iterative pr.ogram runs faster on the HP-t5C than would a 

ta 



Cubic3 WORK IN PROGRESS Nov. 1 O, 1"986 

reliable program based upon closed-form -formulas despite that the 
compleM inverse trigonometric functions available on that machine, 
but an few others, promote the implementation of the formulas. 

13. Annotated Bibliography: 
An old encyclopaedia like the Britannica is as good a place as 
any to look up the Italians Scipione Ferro, Tartaglia <Nic:c:olo 
Fontana> and Hieronimo Cardano, and the Fre.nchman Franciscus 
Vieta, who first produced closed-form solutions for the cubic 
equation. Their formulas can be found there too under the heading 
"Equations, Theory of 11

; or in handbooks like the Handbook of 
Ch~mistry and Physics, the Chemical Rubber Publishing Co ■-, 
Cleveland; or the Handbook o~ Mathematical Functions edited by 
M. Abramowitz and Irene Stegun, #55 in the Applied Mathematics 
Series published in 1964 by the u. s. National Bureau of Standards 
but obtainable now reprinted by Dover, N. Y. The algorithm QBC 
presented in 13 and §4 has not been published before. 

The genesis of rounding errors on older electronic computers is 
described well by Patrick H. Sterbenz in his book Floating
Point Computation, published in 1974 by Prentice-Hall, N. J. 
A better arithmetic design is specified by the IEEE standards 
754-1983 and p854, to which many of the newest computers conform; 
these standards have been described by w. J. Cody et al. in "A 
Proposed Radix- and Word-length-independent Standard for Floating
Point Arithmetic 11 in IEEE HICRO, August 1984, pp. 86 - 100. 

An elementary overview of error analysis is provided in parts of 
the HP-t5C Advanc~d Functions Handboqk, Hewlett-Packard par~ no. 
00013-9011, 1982. Backward e~ror analygis in particular is the 
subject of Rounding Error$ in Algebraic Processes by James H. 
Wilkinson, Prentice-Hall, 1963. The error analysis summarized in 
15 • has not been published yet; its approach is si mi 1 ar to that 
in Brian T. Smith's ''Err-or Bounds for Zeros of a Polynomial 

-~ Based Upon Gerschgorin's Theorem" in the .Journal of the ACl·t 
vol. 17 (1970>, pp. 661-674, wherein may be found also the proof 
of the claims for the three inequalities near the end OT §6 .. 

Io's procedure REVAL is similar to one presented and explained 
in 11 A stopping criterion for polynomial r-oot-·Hnding" by Duane 
A. Adams, Communications o~ the ACM vol. 10 (1967>, pp. 655-658. 
The preconditioning techniques in §7 and the scaling techniques 
in 18 are new although similar in spirit to techniques described 
in the author's lecture notes since 1963. The theorem by Gauss 
that rel ates the zeros of a polynomial and of its· derivative., a1,d 
Laguerre's theorem mentioned in 16, can both be found in 
Geometry o~ Zer,,s by M. Marden (1966), American Mathernatics 
Society, Providence, R. I. 
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