0

Cubict WORK IN PROGRESS Nov. 10, 1986

To Solve a Real Cubic Equation
(Lecture Notes for a Numerical Analysis Course)

W. Kahan
Mathematics Dep’'t
University of California
Berkeley CA 94720
Nov. 10, 1986

Abstract: A program to solve a real cubic equation efficiently and as
accurately as the data deserve is not yet an entirely cut-and-dried affair.
An iterative method is the bast found so far. This msethod plus same other
issues, like accuracy, scaling, preconditioning and testing, are
discussed in these notes in enough detail to convey an impression of what
Numerical Analysis is about.

i{. Introduction:
Closed-form formulas for solving the real cubic equation

Ax3 + Bx2 + Cx + D = 0O
in terms of its coefficients A, B, C, D were discovered in the
sixteenth century by Italian mathematicians, but their triumph
turned into disappointment when they discovered an Iirreducible
case: the real cubic with three irrational real roots. This case
entails unavoidably the computation of trigonometric functions and
their inverses during the evaluation of cube roots of a complex
number. Nowadays trigonometric functions and complex numbers seem
unobjectionable in a procedure that solves a cubic, . so they have
been used freely in a modern version of the Italiang’' formulas
presented below in 82 of these notes. Alas, the modern formula
is disappointing too, because it is potentially unstable in the
face of roundoff. Indeed, coefficients abound for which some of
the roots computed from the formula are quite incorrect; several
ingtances appear among the examples presented in 810 .

Whether a gslight modification could protect the Italians’ formulas
from the worst effects of roundoff remains am open question. The
simplest stable version of those formulas I know is tantamount to
evaluating them twice, as is mentioned near the end of 2 . Two
evaluations take long enough to make plausible the possibility
that another approach might be faster.

Newton pioneered another approach when he first used the iteration
that now bears his name to solve a cubiec. Computers can follow
his approach provided certain details like where to start and when
to stop are mechanized. Those details are the subject of 8% , a
long discussion that culminates in a brief but entirely automatic
procedure presented as a program GBC in 84 . That discussion
provides merely a motive for the program, not a proof of its
correctness. A thorough proof would be far too lengthy to include
in these notes. Instead, the issues that such a proof would have
to address will be explored and its conclusions summarized.

Cubict WORK IN PROGRESS Nov. 10, 1986

The most difficult issue is inaccuracy caused by roundaff. Error
analysis proves that every root computed by G@BC is no more in
error than if it had been computed exactly from a cubic whose
coefficients differ from those given each by a few units in its
lasgt digit carried by the computer’'s floating-point - arithmetic.
This kind of Backward Error Analysis was first published in the
late 19280's by James H. Wilkinson. It suggests that inaccuracy
introduced by the process of solving the cubic is unlikely to be
appreciably worse than inaccuracies previously introduced when the
coefficients were computed and rounded off. Therefore, if roots
obtained from GBC turn out too inaccurate for some ulterior
purpose, the trouble may lie not so much with GBC as with the
process that generated the coefficients. Thus does backward error
analysis exculpate the programmer of GQBC. And it does more.

The uncertainty contributed to the computed roots by roundoff in
@BC can now be assessed by analyzing the effects upon those roots
of tiny perturbations of the cubic’'s coefficients, regardless of
the internal details of GBC . Even without those details, the
analysis is tedious; only its conclusions are summarized in 85 .
Computed roots turn out normally to be accurate in all but their
last few digits; but in worst cases, when all three roots of the
cubic almeost coincide, the computed roots can lose as many as two
thirds of the figures carried. Examples in 85, 87 and 810 bear
out this gloomy prediction, to which we shall return later.

Besides being too long to include in these notes, the proofs of
the foregoing claims to accuracy are at least as vulnerable to
error as the short program they are supposed to vindicate. Such
claims deserve credence only if they are. supported by numerical
experiments., But rounding errors committed during the experiments
can confound the test results and obscure their implications. §b
discusses such issues and offers a partial remedy in the form of a
program REVAL that combines the evaluation of a cubic polynamial
with the simultaneous calculation of a rigorously correct bound
for the effect of roundoff upon that evaluation. REVAL 1is based
upon prior knowledge of a bound for the rounding error in every
floating—-point arithmetic operation; that bound is characteristic
of the computer and deducible from attributes like the number of
significant digits it carries. REVAL and programs like it permnit
the error in a computed root, regardless of its provenance, to
be overestimated with ease as rigorously as one likes and without
excessive pessimism provided the root lies far enough away from
all the- others. Clustered roots are a little harder to handle.

The previocus two paragraphs may suggest (and it's widely believed)
that clustered roots of a cubic cannot be calculated accurataly
unless arithmetic is performed carrying about three times as many
gignificant figures as will be assuredly correct in the computed
roots. That is untrue. Also untrue is another widely believad
myth about numerical computation, namely that numerical error is
caused by cancellatien. In fact, on almost all modern computers,
no new error is generated when subtractive cancellation occurs;
the principal exceptions are CRAYs, CYBERs and UNIVACs. On IRM
370's, DEC VAX's, SUN's, APPLE Macintoshes and Hewlett-Fackard
calculatars, to mention just a few, subtractive cancellation is
exact. Thig fact can be exploited to Precondition a cubic with

2

Cubict WORK IN PROGRESS Nov. 10, 1986

clustered roots, transforming it into a new cubic with relatively
well separated roots that are easy to calculate and transform back
into fully accurate roots of the origimal equation. A simplified
version of preconditioning, applicable principally to cubics with
integer coefficients, is described in 87 with examples that may
suggest how the process would work in general. Thus have we
confronted two myths about roundoff and cancelled them both.

After roundoff, the second hazard to be overcome during numerical
computation is spurious over/underflow, an event that occurs when
intermediate results would be so huge or so tiny as to lie outside
the range of numbers normally representable in the computer even
though the desired final results lie within range. This hazard is
encountered only rarely, and then it can be overcome by &caling,
which is described in 88 .

The final few sections of these notes are archival. 8§89 presents
a collection of cubics with known zeros that help to test programs
like @BC or its competitors. 810 exhibits selected but typical
results obtained from our versions of the Iltalians' formula and of
Newton’'s iteration (@BC) programmed into an HP-15C handheld
calculator. The program for @GBC is supplied in 8§11, and the
running times for both methods are compared briefly in 8§12 .

2. A Formula in "Closed Form® 3

A cubic polynomial Ax3 + Bx2 + Cx + D has three zeras x = X,
Xa, X3 that can be expressed explicitly in terms of its given
coefficients A, B, C, D in many ways. The formula chosen below
is one of the better ones, and has been arranged in the form of
an algorithm that can easily be programmed into a computer:

A, B, C and D are given real numbers.
If A=0
then { xs = (|B|l + |ClI +iDI)/A 3 ... @ or O/0 .
P = —C/2 3 4av Next solve B2 -~ 2px + D=0 ...
qQ = ¥(p2 - BD) 3 ... possibly an imaginary number.
if q is Real ..., in which case q 20, ...
then (r ‘= p + g8ign(p)g 3 2o = P + q ...
if r =0
then { ... Zeros are O or Wor ©O/0
Xy o= D/B 3 Xa 3 =-x: 3}
else { Xy :=D/r § X2 = r/B 3> 2
else { xy = p/B + q/B; xa = p/B - q/B I
else { b = -(B/A)/3 3§ c =C/A: d := D/A 3
Now solve X3 - 3bx2 + ex + d =0 "aa
= 3b2 - ¢ 3
= (3-b2)b - d ; _
.e Now % = b - y where ay -y = ¢t "o
if =20 . .
then (y4 = -t1/3 ; ... the real cube root.
ya 3 ys (=1 + wW/3)/2 >
else (U = ¥(4s/3) § ... possibly imaginary.
v = arcsin{(3t/s)/wW/3 3 ... may be complex.

S
t

& eo e s

w = (n/3)sign(Redv)) = v 3 cve = +1/2 - v ...
Y =2 usin(v) 3 vya = usin(w) >3
Ky s2 b - ¥y § X2 :=b = ya 3 X3z 1= y,+ya + b 3 .

3

Cubic1 WORK IN PROGRESS . Nov. 10, 1986

This algorithm was programmed into an HP-135C calculator without
difficulty. On many another machine programming might be impeded
by the absence of complex sin and arcsin from its library of
elementary functions. Then the following formulas may help:

I+ 22 > 1 then aresin(z2) (/2 - zarccosh(iz|)) z/iz{ .

I+ 2 1is real, arcsin(eez) = ¢garcsinh(z) ,
cos{etz) = cosh(z) , and
sin(zz) = gginh(z) . (2 = ¥-1)

With the aid of these farmulas and some algebraic manipulation,
the algorithm can be freed from all nontrivial complex arithmetic,
but only at the cost of introducing more case analysis. In place
of the formulas involving complex arcsin and =sin, there will
be three cases. One case handles s < 0 . If s > 0O (in which
case u > O too), there are two more cases according to where
[3t/(su)| lies relative to 1 . But multiplying cases can only
aexacerbate the first of three flaws that mar the algorithm:

First, the algorithm is complicated, and therefore vulnerable to
oversights. Have all singularities been considered and handled
correctly?

Second, the algeorithm is vulnerable to over/underflow. Even when
all three zeros lie well within range, over/underflow can blight

the intermediate quantities q, r, s and t . The natural defense

againat over/underflow is scaling , another caomplication.

. Third, the algorithm is vulnerable to roundoff, particularly
when the zeros are of wildly different magnitudesy then the zeros
of smaller magnitude tend to be computed relatively imaccuratelvy.
(Examples af inaccuracy can be found at the end of these notes.)
All figures can be lost in any zero whose magnitude is smaller
than a rounding error in b . One way to calculate the tiniest
zero more accurately is to obtain it as the reciprocal of the
biggest zero of A + Bz + C22 + Dz3 , which is tantamount to
running the foregoing algorithm a second time. To compute the
zero of middle magnitude, divide -D/A by the other two zeros.

Another way to improve the accuracy of a zero is to use same kind
of iteration that improves approximate zeros by exploiting the
cubic's behavior near themy a short step past this thought finds
us contemplating whether the cubic might be better solved by an
altogether iterative method than by explicit formulas. Just such
an iteration is the mext topic discussed in these notes.

3. Newton’s Iteration:

Given the real cubic polynomial @Q(x) == AX3 + Bx2 + Cx + D , we
may use iteration Xaer += Xa — QX)) /@' (Xa) for n =0, 1, 2, ...
to find a real zero of Q(x) pravided we can solve four problems:
= How shall Q((X)/@Q (X)) be calculated efficiently?

- Where is a good place to choose the starting iterate Xo 7

= When should the iteration be stopped?

- Having found one zero, how dao we find the other two?

Cubic1 WORK IN PROGRESS Nov. 10, 1986

The following scheme computes @(X) and @' (X) at the cost of
4 multiplications per iteration:

Qo = AX 3 s *= Qo + B 3 Qa = Qi1 X + C 3

@(X) = (Qo+ Q)X + Qa2 ; Q<(X) = q2X + D .
Three preliminary divisions of all the coefficients of @(x) by
A could subsequently save one multiplication per iteration, but
doing so would exacerbate roundoff and raise questions about over/
underflow, questions best answered by scaling all coefficients of
@(x) in advance in a way to be discussed in 88 below.

Finding a good starting iterate Xo is a balancing act among many
contending considerations. First comes the numerical stability of
the deflation process by which, after a real zero has been
computed, it will be removed from the cubic to yield a quadratic
whose zeros are the remaining two zeros of the cubic. The process
of deflation is numerically stable unless the zero being removed
is much tinier than one zero of the quadratic but much bigger than
the other. Xo can be chosen to avoid that unstable situation.

A second consideration is speed., Newton's iteration converges
very quickly if started close enough to a simple zero, but
converges very slowly to a multiple zero. Therefore, Xeo should
ideally be extremely close to a triple zero, if @Q(x) has one,
or else much closer to a simple zero than to a double =zero if
@(x) has both of those. Here is a way to choase such an Xo @

Assuming AD # O , let b = —(B/A)/3 5 r = [BM)/AIYVS 2 O 3
and s = gign(Q{b)/A) = +1 . If @'(BI)/A 2 0 then Xo :=b - sr
else Xo := b - 1.324718 s max{r, ¥(-@'(b)/A)} . Why does this
choice work? The next paragraph will explain. To better follow
its argument, read it repeatedly with reference to the graphs of,
Say, X3 + ox + 2 for ¢ = -9, -3, -1, O, 1 and 3 superposed
upon each other to show how its leftmost real zero increases with
e . That leftmost zero is the goal of the iteration.

Why start iterating at Xo ? Observe that Q"(b) = 0 ; therefore
x = b at the inflexion on the graph of &) , and furthermore
Q(b=-y) = Q(b) - A'(b)Yy - Ay3 . If @(b)/A > O then this cubic
is gtrictly monotonic with just one real zero y that must lie
between y = 0O and y = sr 3§ otherwise the real zero y farthest
from O lies beyond y = sr and beyond y = gy (-@'(b)/A) tco,
but not beyond both aAsr and Asy(-Q'(b)/A) , where A is the
real root » = 1.32471 79572 44746... 0Of A3 = A + 1 . Since the
desired real zero X 1lies between the starting iterate Xo and
the inflexion point b , and the cubic is monotone between X and
Xoy Newton's iteration converges monotonically and rapidly to the
desired real zero. In the special case that Xo = b no further
iteration will occur because then b is the cubic’'s triple zero.

When should the iteration Xaes = Xa = Q(Xa) /8" (Xa) be stopped?

Except when Xo = b , we would expect sSign(Xae: = Xa) = 5 fOr
all n 3 but that expectation cannot persist indefinitely in the
face of roundoff. Ultimately roundoff must cause Xeae: — Xa tO

vanish or take the wrong sign, or cause Q'(X,) to vamish: in
either case we shall set X = Xn and accept it as a real zero of
the cubic. Since any iteration could take too long to home in to
X =0, which occurs if D = 0 , that case is segregated. And

S

Cubici WORK IN PROGRESS. Nov. 10, 1986

the quotient GQ/Q° must be replaced by (2/7@') /71.000...001 to
overcompensate for roundoff that could aotherwise carry Xs. too
far beyond its goal. When X is extremely tiny, that extra
division prevents X, from jumping over X to O , as otherwise
it would in one of the examples in 8§10 . Roundoff can cause yet
another kind of overshoot when the cubic’'s three zeros are closely
clustered; Xa can fall between two zeros. We avoid the worst
effects of this overshoot by accepting X = Xa instead of Xnes »
Our policies for handling roundoff and stopping the iteration are
not the only possibilities, but they are among the simplest.

-With one real zero X in hand, the next task is dJderlation to
obtain the quadratic Ax2 + Byx + Ca whose zeros are .the two
remaining zeros of the cubic. Here are the deflation formulas:
If I1X31I > ID/Al then { Cz = -D/X 3 By = (C2=-C)/X I}
else { By, = AX+B 3§ Cz +:= B:X+C 3

ese (recall qs and qaz2 abave) ...
One faormula faor Ca caomes from the product of the cubic’'s zeros,
-D/A = X Ca/A . The choice for B; was derived from an ervror-
analysis that looked at the sum of the zeros, -B/A = X - B:i/A ,
and at the sum of their reciprocals, -C/D = 1/X - By/Ca , to
find out which is least perturbed by the error in X . Of course,
different formulas have to be used when A=0 or D=20.

Finally, formulas for solving a quadratic equation are taken from
the algorithm presented earlier.

4, Iterative Algorithm aQBC 3 ..

The following algorithm, arranged to facilitate programming, is
complete except for scaling precautions against over/underflow.

It is broken into subprocedures that make it easier to understand.

Real Function DISC(a, b, ¢) = b3 - ac ;

cve Later, during the discussion of Preconditioning in &7 ,

ees another version of DISC will be presented that is more

«se accurate when a, b, ¢ are all integers and not too big.
End DISC . ’

Praocedure G@GDRTC(A, B, C, Xi+1Y;:, Xa+2Y¥a):
ese GBiven real coefficients A, B, C , this procedure delivers
«ae the two zeros X,+tY, of the quadratic Ax2 + Bx + C .

b = -B/2 3 g += DISC(A, b, C) 3

If g< O
then { Xy = b/A 3 X2 = X, 3
Ye o= ¥(-q)/A 3 Y2 = =Y, 3
else { Yy =203 VYa = 0 3
r :=b + sign(b)yg 3§ .. = b + ¥yq .
If r =20
then ¢ X, = C/A 3 Xa = =X, 3
else { Xy :=C/r 3§ Xa :=r/A Y 1 3

Return 3 End @DRTC .

Cubicli WORK IN PROGRESS Nov. 10, 198é

Procedure EVAL(X, A, B, C, D, @, &, By, Cy)¢
vs. Biven real X and real coefficients A, B, C, D of the
.. cubic BQ(x) = Ax® + Bx2 + Cx + D , this procedure computes
ves B mA(X) , @ =2@(X), B :=AX+B and Caz ;= B X +C .
Qo = AX § By = Qo+B 3 Ca i= B4X +C
@ = (Qo+By)X+Ca g @ := CaX+D ;
Return 3 End EVAL .

Procedure Q@BC(A, B, C, D, X, Xi;+2Y,, Xat+ttY¥a):
.«s Biven real coefficients A, B, C, D of the cubic
ves AX3 + Bx2 + Cx + D , this procedure computes a real zero X
.ss« and two complex zeros X;+tY¥; of the cubic.
If A=0 then {(X =0 ; A :=Bg3§ by, :=C s €2 =D ;
go to fin 3 3
If D=0 then ¢{ X =03 by, =B
go to fin > ;
X := =(B/A)/3 ; ecall EVAL(X, A,B,C
t = qQ/A 3 r =371t 3 8 ;= sign
t = -q'/A 3 if t >0 then r

n
N
.
]
0

+D, g, 9’y by C2J ;
() 3 o0 = #1 .
o= 1.324718 max (r, vt)
Xo s X — s~ 3 if %o = X then go to Tin 3
Do { X = % 3 call EVAL(X, A,B,C,Dy, q, Q'y b1, €2) 3
if qQ =0 then xe¢ := X
else xo := X - (Q/q')/1.000..001 3
until 8xo < sX 3 ... stop when xo % X .
I+ [AIX2 > [D/XI
then { ca = =D/X § by = (€a=-C)/X 323
fin: call @GDRTC(A, by, Cay, Xi+tY1, Xa+i¥a) 3
Return ; End QBC . .

3. Accuracy:

A rigorous assessment of the effects of roundoff upon GBC would
be too complicated to include in these notes, but the conclusions
from such an assessment will be stated here, followed later in

8§86 ("Testing Considerations”) and 87 (“Preconditioning") by
some suggestions about what can be done about those effects.

Provided over/underflow does not intrude, GBC's combination of
iteration and deflation always produces results scarcely worse
than if the cubic’'s coefficients had each been perturbed by a few
rounding errors at the start. In the worst case, when the three
zeros of the cubic are all relatively nearly coincident, they may
be correct to as few as a third of the figures carried; such a
loss of accuracy also may afflict the closed form formula in that
case. The phenomenon is illustrated by the following example:

Consider the cubic x3 - 3x2 + 3x - (1-g) , where 1-gz is the
number next less than 1 representable in the floating-point
format used during computation. The zeros of this cubic ars the
three values of 1 - e'/3 . For instance, if 12 sig. dec. are
carried during computation, 1-g = 0,9999 9999 9999 and the real
zero 1 - g¥v/3 = 00,9999 . Changing the coefficient 1-= in its
12¢" gig. dec. to 1 changes all three zeros in the 4% to 1 .

In other examples, with two nearly coincident zeros relatively
far from the third, about half the figures carried can be lost

7

Cubic2 WORK IN PROGRESS , Nov. 8, 1986

regardless of how the cubic is solved. But GBC never lases all
the figures carried, as the closed-form formulas can. Examples
to show what can happen will be presented later. Here is a

summary of the conclusions that can be drawn from error analysis:

Each zero 2 computed by @BC's combination of iteration and

daflation is accurate almost to whichever is the largest of ...

- as many figures as were carried less the sum of the numbers of
figures to which the other two zeros agree with Z , or

- half of the excess of the number of figures carried over the
number of figures of agreement between Z , one of a pair
of coincident or nearly coincident zeros, and a third zero
relatively different from the pair, or ...

- a third of the figures carried, if all three zeros are
caincident or nearly coincident with Z .

No way is known to calculate the zeros of a cubic more accurately
than if its coefficients had first been perturbed by roundof+f,
unless part of the calculation is performed exactly -- with no
roundoff at all. That exact calculation is part of a process
called "Preconditioning”, which will be described later in §7 .

6. Testing Considerations:)

The obvious way to test G@GBC is to supply it with arguments for
which accurate results have been calculated by some other method,
and then compare. On reflection, this test procedure is not so
obvious. What other methad will give accurate results? Cubics
can be constructed with small integer coefficients and at least
one zero expressible as a ratio of small integers; but small
integer input data might fail to stimulate typical rounding
arrors. And if results differ from what might ideally have been
expected, how does one decide whether the differences are
tolerable consequences of unavoidable rounding errars, or
symptoms of a defect in the program that must be repaired?

A simple procedure that seems at firat free from the dilemmas is
to reconstruct the cubic from its computed zeraos X, Y, Z by
expanding A(x—=X) (x~Y)(x—=Z) in powers of x . If the cubic so
raeconstructed matches the given cubic well enough, the program
that computed the zeraos cannot be too wrong. But how well is
"well encugh®" ? Presumably the reconstruction need match no mors
accurately than if X, Y and Z were correct zeros each rounded
off to working precision (though actually they might be far less
accurate than that); and the rounding errors that accrue during
the reconstruction process have to be allowed for too. It's not
30 simple after all. '

Program testing is fraught with anxiety unless one can estimate
mathematically how big the errors should not be. Such an estimats
of uncertainty can be very difficult; I would much rather have to
write a program than have to analyze its errors aor test it.

The program REVAL below computes a rigorous and fairly sharp
bound A for the contribution of roundoff to the computed value
Q of a cubie Q(2) = Az3 +Bz22+Cz+D at the same time as it
computes Q@ . REVAL requires knowledge about bounds for every

8

CubicZ WORK IN PROGRESS Nov. B, 1986

rounding error committed by the computer in responsa to statemnents
like " g imx+y 3 d B X=y 3] P = x®#y 3 " in a program.
These assignments store in the computer’'s memory values s, d and
p slightly different from the ideal sum, difference and product
desirad. Almost every modern computer’'s arithmetic has its own
charactaeristic tiny constants & and § that satisfy

Is = (x+y) | £ 8I8! , id=(x=y)| £ 8(d] , Ip = x#y| < eln*yl
for all non-pathological values x and y representable in the
computer (ignore ® and over/underflow for now) . Ideally

3 = € = (1.000-.0001 - 1-000--.000 y/2 9

but some computer arithmetics are somaewhat worse, and many suffer
larger values of ¢ for complex multiplication than for real.

To apply the foregoing inequalities to the error analysis of any
program that computes @ , first decompose the program into a
sequence of simple assignments like

Qo = A®Z ; Qi1 " Qo+*B 3 .20 3 Qs = qQa®*z § Q = qs+D .
Then raplace them by the inequalities they actually satisfy:

Ige=Az| £ €¢lAZ] 3 gy = (Qo+B) 1l £ 81Qsl 5§ oo

eee § Qs ~qazl £ tlQazl 3§ I1@-<(gs+D)| £ &Il .
These several inequalities boil down to cne of the form
1@ = (A23 +B22+C2+D)| £ A&

wherein A is expressed in terms of & and § and various
computed values. Hence, A can be computed too thus:

Procedure REVAL(Z, A, B, C, D, @, &):
ess Given real coefficients A, B, C, D , this procedure vields
ees an approximation Q@ to Q(2Z) = AZ3+BZ2+CZ+D and a
ess bound 4.2.1@a-8¢(2)| 4 which would be zero if no roundoff.
‘ess Gccurred. Instead, A constants & and & that reflect the
«ss Computer’'s roundoff must be put inteo the program. A bigger
«ee & may be needed for complex arithmetic than for real.

@ = |Alg/(e+d) ; -

Qs = AZ +B; @ = |Z]le + |q:l 3

Ga = qQ,Z +C @ = |[Zl e + |qal 3

Q@ = QaZ +D A = (g+8)|Z]le+ |QIS 3

Return 3 End REVAL .

How might REVAL be tested? After proving that no computed value
of @ can differ from an accurate evaluation of QQ(Z) by more in
magnitude than A , we have to show also that the error bound &
is not so pessimistic as to be useless. Amaong large collections

of trial data, A should sometimes barely exceed |Q@ - Q(Z)|

the anly way to verify this is to compute Q(Z) more accuratelvy.

This procedure REVAL can serve to test the quality of Z as an
approximate zero of the cubici; compute the quotient |[2|/4 . A
quotient no bigger than 2 , say, indicates that no substantial
improvement in the accuracy of Z is likely to be achieved unlass
arithmetic is carried ocut to higher precision. OFf course, if vou
believe GBC works correctly you must believe that (@74 will
be fairly small at every computed zero, in which case you’'ll not
bother to compute that quotient. But REVAL has another use.

Cubic2 WORK IN PROGRESS Nov. 8, 1986

A bound upon the error in any approximate zero Z can be derived
from REVAL's bound A > |@-@Q@¢(Z)I , among other things, no
matter what the praovenance of Z . If Z is accurate encough, one f‘\
step of Newton’'s iteration from Z to Z - QZ)/ (2) nearly
doubles its number of correct digits, in which case Q(Z)/Q'(Z)
must approximate the error in Z fairly closely. That quotient
is never much smaller than the error because, in general, @&(z)
must have a (possibly complex) zero =z no farther from Z than
JIQ(2)/x°¢Z)| 4, according to a theorem of Laguerre. REVAL's
|2|+A overestimates |[Q(Z)] 3§ and an estimate of & (Z) comes
either from AZ2 +q;Z +qa2 , as in EVAL, or from A(Z-X)(Z-Y)
wherea X and Y approximate the other two zeros of the cubic. One
way or another, (|Q[+A)/{@(Z)| provides at least a rough bound
for the error in Z .

A rigorous error bound derived from Laguerre’'s theorem requires
a rigorous lower bound for |R@(Z)| , which could be obtained
from an augmented version of REVAL that accounted for roundoff's
contribution to @'(Z) as well as to Q(Z) . Alternatively, if
approximate zeros X, Y, Z are in hand, three calls to REVAL
would help overestimate the right-hand sides of the inequalities

Ix=Xl1 <& 3JIQX)1/71A(X=Y) (X=-2)] ,

ly=Yl £ 3IQ(Y)I/7IAY=2Z) (Y=-X) | and

12=Z1 £ 3@ |/71A(Z=X) (Z=Y) | ,
which rigorously beound the true zeros x, v, z of & unless they
are clustered so closely that these three estimates overlap. But
rigorous bounds differ gsignificantly from the previous paragraph’'s
. rough bounds only when zeraos are clustered, and then time spent
' to get rigprous but probably dismal bounds might be better spent Fam
computing more accurate zeros with the aid df preconditioning.

7. Praeconditioning:

Since error bounds are so often pessimistic, one might suspect
that error analysts are pessimists too. Actually, error analysts
are less interested in over—-estimating error than in diminishing
it. One way to diminish roundoff error is preconditioning, a
process that transforms a problem hypersensitive to roundoff into
a problem that is similar but far less sensitive.

The simplest illuastration of the process concerns a quadratic
equation in the form

ax?2 - 2bx + ¢ = 0 ,
a form more convenient for gur purpase than the usual farm
Ax? + Bx + C =0 from which we get the desired form by setting
a =2 -2A, b =Band ¢ = =-2C . This equation is hypersensitive
to rounding errors and alseo to any other perturbations of its
coefficients just when its roots are relatively nearly coincident,
in which case computed roots canm be inaccurate in almost half the
figures carried. For instance, when a = 100002 , = 10C001
and c = 100000 , the true roots x = 1 and x = 0,99998000Q0043, ..
differ in their S%" digits from the double roat x = 0.9999300002
computed on &a 10-digit calculatar using the familiar formula

x = (b + y(b2-ac))/a

but the computed roots are just what would have been obtained in 7
exact arithmetic had the coefficients b and ¢ first been alterad ‘
in digits beyond their 10%s ¢g b = 100001.00000 00004 and

10

Cubic? WORK IN PROGRESS Nov. 8, 1986

c = 100000.000Q7 00005 99996 00008 . Such tiny perturbations are
enough to cause relatively serious errors in ¥(b%-ac) , errors
avoidable only by carrying in worst cases twice as many sig. dec.
in our computations and honoring twice as many sig. dec. in the
coefficients as we wish to guarantee correct in computed roots.

When are the coefficients likely to be known so accurately? Most
likely when they are known exactly, and then most likely when
they are integers. Therefore, let us consider the case when a ,
b and ¢ are all integers and, to simplify the exposition, let
us assume that they are representable exactly in floating-point
"with a digit to spare. This means integers with no more than @
digits on a 10-digit calculator, no more than 23 bits on a
computer that performs binary floating—point with 24 sig. bits.
I+ the coefficients were rather smaller than that, 3o small that
the products b2 and ac were both representable exactly, then
the discriminant q = b%-ac would be fully accurate enough to
produce entirely satisfactory results from a program like G@DRTC
above. That state of affairs is the goal of the preconditioning
function DISC presented below. Without changing q = b2-ac ,
it successively diminishes the integers a, b, ¢ until either ac
is negative or it differs encugh from b2 that DISC = b2 - ac
can be computed contaminated enly relatively slightly by roundoff.

Real Function DISC(a, b, ©): .
ees Given integers a , b, c all small enough to fit exactly
ses into floating-paint with at least a digit to spare, return
e+« DISC = b2 - a¢c with roundoff confined to its last sig. dec.
I+ ac > 0 then
{ a‘'= |al 3 ¢ = |c| 3
loopt if a < c then swap(a, €) § «c. NOWw O < c < a .
n = integer nearest b/c ; ... n-=-b/cl < 1/2 .
if n# O then ... (else b? < c2/4'< ac/4)

{ &« = a-nb g ees’ @xact if o 2 -a
if « 2 -a then see (else 2b2 > Jac)

4
< b:’b'nc‘) |b|,<_C/
a =g -nb 3§
if a >0 then go to loop 2 } 3
Return DISC = b?* - ac ;3 End DISC .

After substituting this preconditioning function DISC for the
function DISC that accompanies the procedure GQDRTC above, we
can compute the desired roots X,+tY; of our quadratic to nearly
full accuracy by calling GDRTC(a, -2b, €, Xs+eY,, Xa+i¥Ya) .

When applied to our example above, DISC(100002, 100001, 100000)
finds n =1 and reduces a , b € successively to

& =]00002-100001 = | , b = 100001-100000 =1, a=1=1=20
and then returns DISC = 1 correctly having exploited massive
cancellation without error. Here are socme more examples:

11

Cubic2

WORK IN PROGRESS

8, 1986

a b c crude DISC refined DISC true b2-ac
3234424088 1160927837 41564690270 398000000000 397448343600 397448343619
3234413351 1160928203 41466906346 -89000000000 -89040331630 -89060331627
89527351441 1997623 271 0 114 114
89527351442 1337623 271 0 -157 -137
3309162499 2301700899 9978464924 -6000000000 -51108756873 -5110876873%
53091562499 2301700899 997864923 0 198283424 198283424
53091562499 2301700899 997864922 3000000000 3507448123 5307348123

All columns but tha last were obtained from vaersions of DISC programmed into
the HP-13C, a ten-figure calculator. The last caolumn comes fram the HP-71B,
a twelve-figure machine, using a faster versian of DISC that exploits the
INEXACT flag provided by I[EEE standard p834, to which the HP-718 conforns:
DEF FNq(a,b,c) ! ... § = b*2 - a#c nmore accurately. (in 34SI()
i0 = FLAG(INX,0) ! ... saves and resets INEXACT flag.
‘loop’s b0 = bab @ a0 = asc ! ... Are they exact?
IF FLAG(INX,i0)s0 OR a0<=0 THEN 6&0TO 'fin’
IF ABS(c)>ABS{a) THEN a0=a @ asc @ c=30 ! ,.. swap(a,c)
b0 = RED(b,c) @ n = IROUND((b-bO)/c) ! ... RED is [EEE raa
il = FLAG(INX,0) ! ... resets INEXACT flag.
a0 = (a -~ n3b) - nabo
IF FLAG(INX)=0 THEN a = a0 @ b = b0 & GOTO ‘'loop’
'fin $ FNq = bsb - a#sc @ END DEF

An idea similar to that in DISC , but applied very dafferently,
serves to precondition the cubic equatinn
qix) = axu® - 3bx? + Jex - d = O
whan all its coefficiants axcept paerhaps d are integers
representable aexactly in floating-point with at least a digit or
two to spare. GBC will calculate the equation’s roots but, in
the light of error analyses mentioned above, we must expect the
calculated roots to suffer badly from roundoff whenever they are
clustered. Fortunately that possibility, clustered roots, can
be recognized easily without any call upon @BC 3 if all three
roots are nearly coincident then all three quotients Bb/a, c/b and
d/c must be nearly coincident too. In fact, a little algebraic
manipulation suffices to prove that the quotients matech to beyend
twice as many sig. digits as are common to the roots. To explait
this phenomenon, chocse A to approximate all three quotients
rounded to no more gsig. digits than are left unocccupied by the
first three coefficients; this means that all three products ia,
Ab and ac¢ will be computed exactly in floating-point arithmetic.
Next replace x by aA+y in the given aequation to get a new cubic
qia+y) = ay3 - Ih'y2 4+ Iy - d* = O

which G@BC can solve for rocots y , whance x = A+y , much more
accurately than befare. New coefficients must be calculated thus:

d = d - Ac 3 e =¢c - Ab 3 b := b - Aa g

d* = ad - ac’ 3 c* =" - Ab’ 3

d® = d* - ac* .
Cancellation will occur in the first row without error; and if
rounding errors do ceccur later they will be far tinier than what
UBC would likely inflict upon the original coefficients. When
all three roaots x are axtremely close, so close that all three

12

-

Cubic2 WORK IN PROGRESS Nov. 8, 1986

roots y must be relatively nearly coincident too, no rounding
errors will occur during the calculation of the new coefficients
b’y ¢® and d®*, and then the foregoing transformation may be
repeated advantageously with a new tinier a .

When two roots are nearly coincident but relatively far from the
third, the three guotients above must be replaced by two values

(1/2) (bec = ad)/ (b2 - ac) and +y/((c2-bd)/ (b2 -ac)) .
They can be shown to match to about twice as many sig. digits as
are in agreement between the two nearly coincident roots; and A
must approximate those two values rounded to at most half as many
digits as are left unoccupied by the first three coefficients, so
that all three products aA2a, A?b and Ac will be computed exactly
in fleoating—-point arithmetic. Then the new coefficients and the
roots x = A+y may be calculated as above except when d turns
out to be small compared with ax3 . In that special case, the
third root will be rather smaller than the two that are nearly
coincident, so it may well be computed more accurately from the
original coefficients than from the new ones. Moreover, in casa
d is small and not an integer, the formulas for d’', d' and d*
should be changed as follows for better accuracy in the nearly
coincident roots A+y : .

. D = integer nearest d 8§ ;= d-D 3

d” s D=2ac 3§ d" smd =2Nc' 53 d® = (d*=2Ac®) +§ .,

A detailed explanation to justify the foregoing procedures is too
complicated to include in these notes. Instead, a few examples
will illustrate the schemes’ efficacy.

These examples were all worked out on an HP-15C calculator, which carries 10
sig. dec. First the zeros x of each given cubic q(x) were aobtained from a
prograa like QBC , listed at the end of these notes, to see haw inaccurately
it coaputoes clustered zeros. Then quotients of coefficients were examined to
deternine a choice of A froa which new coefficients of q(i+y) were derived.
The intermediate results of this computation are displayed below with strings
of leading "0‘s" to denote digits that cancelled off. Then QBC was rerun
to compute the zeras 'y of q(ity) , from which were aobtained improved zeros
x = A+y whose corractness was verified on an HP-71B carrying 12 sig.dec.

@(x) = 658x3 ~ 190123x2 + 18311811x - 3878981464
ABC: x = 96.297 , 96.341 , 946.305
b/a = 96.31458967 c/b = 96.31450777 d/c = 946.31438582 A= 94,3

a = 458 b = 43375 c = 6103937 d = 587898144
b’ = gooa%.é €’ = 0000924.5 d’ = 000089030.9
c" = 000.02 d* = 00001.35
d. = -0.376

B{x+y) = 43By3 - 28.8y2 + 0,06y + 0.374
@BC: A+y = 96.22963935, 96.35706483 + 0,06974975204 ¢

Cubic3 WORK IN PROGRESS Nov. 10, 1986

@(x) = 2212111x3 - 73449x2 + 813x - 3
@BC: x = 0.01109692665 , 0.01105309967 + 0.0002009029481 ¢
b/a = 0.0110677 c/b = 0.0110689 d/c = 0.0110701 A +3 0,0111

a s 2212111 b = 24483 c = 271 d = 3
b’ = -go071.4321 ¢' = -g00.7613 d’' = -0.0081
c* s 0.03159631 d°® = 0.00a33043

d*® = -0.000000289041
Br+y) = 2212111y3 + 214,2963y2 + 0.09478893y + 0.000000289041
@BC: A+y = 0.01109693006 , 0.01103309791 + 0.0002009034814 ¢

A is not critical, nor is a samall rounding error in d® . Here is the
previous exanple repeatad with a different A 3 0.01107 ¢
a s 221211t b = 24483 c = 271 d =3
b" = -000035.06877 c’' = -0ao0.02681 d’ s o0.00003
c" = 0.0293012839 d* = 0,0003247847
d* = 0.0000024214872..
Yat @GBC delivers practically the same final results A+y as before.

Aix) = 5111x3 = F1792x2 + 109737x + 0.00623
BBC: x = -=5,5677209907,0-8 , 4.237477394 , 4.2377311035
(bc-ad)/(2{b2-ac)) = ¢((c2-bd}/(b2-ac)) = 4.237404349 » = 4,24
a =611t b = 17264 c = 34379 D = ¢ $ =d = -0.004623
b’ = -086446.64 ¢’ = -J4620.36 d’ = -135094.94
€" = 00041.3936 d° =2 o000173,356564
d® = -p00,. 148694
Q(xey) = H111y3 + 25939.92y2 + 124.1808y + 0.148494
-@BC: 2A+y = -q,0000000846 , 4,237383784., 4.237624711
d- is so tiny that the isolated root is best calculated directly from 3(x).

.The foregoing discussion may promote a misleading impression that
preconditioning is worth while only if the data (ceefficients) are
given exactly. Other circumstances do exist when preconditioning
helps, however. For example, the errors in the data could be
correlated in a way that is known to mostly cancel in the results.
Or the coefficients, though uncorrelatedly erroneous, may figure
subsequently in several related contexts among which consistency
of some kind is essential even though ultimate accuracy is not.
For instance, suppose a program uses the zeros of the cubic and
alsa of its derivativey Rolle’'s theorem implies that the latter
Zeros should lie between the former when they are all real, and a
theorem due to Gauss places the latter inside the convex hull of
the former when they are complex. If thaose relationships are
violated by clustered approximate zeros computed too inaccurately,
the subsequent logic of the program could malfunction. Adapting
that logic to disordered zeros can be far more complicated than
preconditioning in a way that protects their order from roundoff.
However, preconditioning procedures appropriate for noninteger
data go far beyond the scope of these notes.

14

Cubic3? WORK IN PROGRESS Nov. 10, 1986

8. Scaling Invariance vs. Over/Underflow:
The factored form of the cubic

AX3 + B2 + Cx + D =2 A = X) x = Y) (x - 2)
provides a factorization for the scaled cubic
(rAIX3 + (eBe)X2 + (sCp2)X + (Dp3) = oA (X — pX) (X = QY) (x —pZ) .
If the scale factors v and ¢ are powers of the radix (10 for
a decimal calculator, 2 for a binary computer), then the scaled
coefficients oA, ¢Bp, ¢Co2, sDp® will have the same significant
digits as the original coefficients A4, B, C, D : only the
decimal or binary points will have shifted. Therefore the same
should be true of the scaled zeros e¢X, oY, ¢Z , even in the face
of roundoff. OFf course, the relationship between the scaled
zeros and the original zeros X, Y, Z must break down when the
scale factors are so big or so tiny that the scaled coefficients
or zeros over/underflow; ideally the relationship should not
break down for any other reason. In practice, most algorithms
are vulnerable to spuriocus over/underflow. For instance, the
discriminant q in Q@DRTC and the quotients r and t in @QBC
can easily aover/underflow even though the coefficients and zeros
lie well within range. Conscientious programmers introduce scale
factors into their programs either to forestall undegerved over/
underflows or to recover from them. The task is not eased by the
absence from most programming languages of any reference to over/
underflow other than an implication that the crime will be
punished by termination of the program's execution.

Here is how a scale factor ¢ can be chosen to prevent spurious
over/underflow during the solution of a quadratic equation

Ax2 + Bx + C=0. If- A=0 or C= 0 the solution is obvious.
Otherwise choose o« t0 be a power of the radix near YIAl YICL
and so chosen that neither A/e nor C/r can over/underflow. Then
1 (A/e) (C/e)| cannot be orders of magnitude larger or smaller than
1 . Next compare |Bi with ¢« 3 if |IBlI is so much bigger than
¢ that |B| +¢ rounds to [B| , then the quadratic’'s roots are
approximated accurately enmough by -C/B and -B/A . Otherwise
call G@QDRTC(A/s, B/¢, C/cy, X + t¥:, X2+ tY¥Ya) , allowing
underflows to flush to O if nothing better is available. Na
undeserved overflow will occur.

Similar ideas can help suppress spurious over/underflows when
golving the cubic. Roughly speaking, when A/B is very tiny,
much tinier than roundoff in numbers near { , but B/C is not
tiny at all, then the cubic’'s biggest zero must be very nearly
-B/A , and the ather zeros can be found by setting A = 0 and
solving the resulting quadratic equation. And when D/C is very
tiny but C/B is not, the tiniest zero is very nearly -D/C ,
and so on. When neither A/B nor D/C is very tiny, the cubic
and its zeros can be scaled and computed in the ordinary way.

Cubic3 WORK IN PROGRESS Nov. 10, 1986

9. Scome Trial Data for Cubic Equation Solvers:

Notation:
Coefficients A, B, C, D of cubic Ax3+DBx? +Cx +D are input.
Qutput are real zeros X, Zi, Za Or complex zeros Z .
Parameters: M is a small integer; N is a big integer; usually
IN|] is almost as big as possible without roundoff.
u =M/N 3 v i3 1/7(2N) .
t is a tiny number; 1000 + t rounds to 1000 .
h is a huge number; h £+ 1 rounds to h .

Follow the formalas for coefficients EXACTLY; rounding thes could change zeras drastically.

Cubics with samall integer coefficients:

A", Banz-bg Catln X=3, ZI=1’ ZQ=.&-
A=sD=1, B=C=0, X==1, Z= 0.3 + /0.75 .
A=-D=1, BaC=a0, X = 1 Z==-0.5 + /0.75 .

A=¢0, B=1, C=23, D=2, X=0, Zy=2-1, Zz = -2 .
A=1, 85-3, C"Z, D=9, X=0, z:=1y Za=‘a.
A=D=1, B=2C=23, X=31Z, =13 =~-1.

A=-Ba-C=2=D=at, X=a-1, Z,=12Z3=1.

A=1, B=-=30, (C=299, D=2-1980 . X =220, Z =9 + /74 .

Cubics with zeros of very different magnitudes:

A=1, B==30, C=299, D==t . X % t/299 , Z % 15 + /74 .
Aa‘Dﬁt,-Bﬂcﬂh. X’l, z:‘t/h, z:*h/t-
A=1, B=ms-h, C=2-t, D=ht. X=a2ah, Z=+yt.
A=D=1, B=C=1~-N-1/N. X=1/N, Zy=-1, Za =N.
Cubics with ill-conditioned zeros:

A=s-CaN+tt , D=-B=N-1, =X=22Z, =31, Zz2 =31 - 2/(N+1) .
A=-DsN, C=-B=3N+2M . X =21, Z =3 1+u + ¥(2u+uz) .
A=B=3C, C =9N3, D= 1-N8 ., X = (1=-2v)/3 , Z = 1+v + v¥3 .
A=D= N2+M2, BaCa 3M2-N3, Xa-1, Z = {-2u2/(1+u3) + 2/ (1+42),
As=D=N2+M2, —-B=Ca3N2-M2 , X=t, Z = (-=-2u2/(1+u?) + 2w/ (1+u2) ,

10. Selected Results from the HP-15C :

Both algorithes above, one using the Forsula with complex arcsin, ane like @BC that iterates to
solve a cubic, have Gees programsed into the HP-13C calculator along with a progras like REVAL to
comgute Q(x) and 4 . The results tabulated belcw shaw the coefficients A, B, C, 0 of the cubic 2(x)
and the zeros X, ¥, I chtained first from the programmed Forsula, second from exact calculation en
another machine, third froa the iterative sethod 0BC. Below GBC's results are showa carrespending
quotients [Q(X)[/4(X), [Q(Y)|/A(Y), 18(2)|/A(Z) as computed by a progras like REVAL .

The HKP=13 rounds aritheetic to 10 sig. dec., corresponding to § = ¢ 2 3a-10 .

Azl Formla X =1 Y=2 123
B=-$ Correct I=} Ys2 123

ta 11 Iter've 21 Ys2 Is3
D=-$ 10174 0 0 0
A=t Forsula X = =i Y 3 0.4999999999 ¢ 0,8660254037 ¢
B39 Correct X = -| Y203 + 0.866025403784 ¢

C=0 [ter've X = -1 Y=0.3 & 0.8660254038 :

0=-t 1a1/4 0 0

16

Cubic3 WORK IN PROGRESS ' Nov. 10, 1986

Ast Forsula X2~ = ¥ = [

Bs3 Correct X2t = ¥ s [

€=23 Iter've I2-] 3 ¥ =1

Dsti lal/A 0 ess y G0 the prograss work at least sosetises.

A=t Formula X = 2,094551481 Y = -1,047275741 + 1,135939689 ¢ ... Newton's

B=9¢ Correct X = 2,0945514813 Y = -1,0472757408 ¢ 1{.1359396891 @ own

Cs-2 Iter've I = 2.094351481 Y = ~[047273781 + 1.135939689 ¢ . example,

Ds=-3 a1/ 0.27 0.15

Azt Foracla X = 4e-10 Y=1i 1=2 ... I 1is omingus.

Bs=-3 Correct X290 Ys1 122

€=22 Iter've X390 Y=1 132

D=0 181/a 0 0 0

Asl Formula X = 4e~10 Y21 132 ... Y iswrong.

Ba-3 Correct X =-1.17e-89 Y31 132 This is why 8BC has
c 2 2 [tﬁr'“ x 3 'l.(k‘ﬂq Ys t Z s 2 138 1.000.-001 ill it-

D = 2,342-89 iel/a 0 24081 2.9e-81

As] Forrula X = 7999999998 Y = 43043 143543 ... Yand I are very wong.
B = -7999999999 Correct X = B000G00000 Y= | 1= -2

C = -8000000002 [ter've X = 8000000000 VY= | Is <2

D = 15000000000 1a1/78 0 0 0

A = 16000000000 Formala I = 1.0e-10 Y = 0,9999999999 1 = -0.4999999999 ... Yand Z are 0. K.
B = -8000000002 Correct X =1.Z3e-10 Y= | 1s-0.3 now, but I isa't,
C=-7999999999 Iter've X= (2010 Y= | 1=-0.3 This cubic is the
D=t le1/a 0 0 0.1 - previous one reversed.
Azl Forsula X = 99999.99997 Y s -1.0443 10,0433 ... Yand I are wrong again,
B = -99999.00001 Correct X = 100000 Y= 1 = 0.00001 and reversing the cubic
C = -99999.00001 Iter've I = 100000 Y=z~ 1 = 0,00001 won’'t improve V. .
0ai la1/8 0 0.4 0

A 20,01 Forsula X = §.0le~4 - 206 ¢ Y = 14999.99995 + 8602.3251% ¢

B=-300 Correct X = 1,00000001003e-4 Y 3 14999, 99995 & 8602,32517986 1

€ = 2990000 [ter've I = 1,0000000100-4 Y = 14999, 99993 + 8602,32518 ¢

D = <299 ie1/8 0 0.00015

The Forsula's value I is weong in the werst way: wrong encugh to matter, but net abviously wrong.
fh=2-3 Forsula 220,333 2 ¥ =2 1

B=3 Correct X = 0.333178613706 Y = 0,333410693147 + 0.000133991128129 ¢

C=- Iter've X 2 0. BTBRIIT Y3 0.3333384667 I =0.33333

9= 0. 0011111110 [Q1/A 0 o 0

Better results cannot be expected from calculations carried out to 10 sig, dec., since as many as two
thirds of the figures carried can be lost if all three zeros are nearly coincident.

A = 10000000000 Forsula X s <0.9999999997 Y = 0,9999999999 & 0.00001721325932 «

B = -9999939998 Correct 1 = -| Y= 1 = 0.9999999998
C=-A [ter've X = -| Y = 1,000014142 1 = 0.999985858
D=z-B 101/4 0.057 0.27 0

Better results cannot be expected fros calculations. carried aut to 10 sig. dec., since as many as half
the figures carried can be lost if two zercs are nearly coincident but far from the third, Note that any
pregras that cosputes X, Y, I as well as can be expected should produce values for [Q1/A4 smaller than
{ or 2, but the ssallness of that quotient does not by itself tell how accurate a computed zero may be.

17

Cubic3 WORK IN PROGRESS Nov. 10, 1986

11. A Program for the HP-13C:

This program deals with cubics @Q(x) = and + bx2 + cx + d and
quadratics rx? + sx + t . Function keys [Al, tel, Cci, tD1, CE]
and [11 are invoked via CGSB1 [Al etc. Stack register X is
normally displayed; to see the other registers Y, Z2and T , wuse
the CRyl, CRT] or [X2Y] keys. Here is what the program does:

CAl: a CENTER] b [ENTERJ c CENTER] d [A] stores a, b, c, d
in cells #3, #4, #5, #& resp. for ...
CB1: Using coefficients a, b, ¢, d stored by [Al , solves

Q(x) = O far roots X, ¥, 2 by means of a
farmula involving complex arcsin. Scratches
cells #7, #8, #9 .

CEl1: Using coefficients a, b, ¢, d stored by [Al , solves
Q@(x) = 0 for roots X, ¥, Z as GBC does by
iteration and deflation. X is real and also
in cell #9 3 Y and Z are complex-
conjugates. Scratches cells #7 and #8 .

CCls Using coefficients a, b, ¢, d stored by C[Al , copies
X into Z and T, writes [X| into cell #7,
writea Q(X) over X and an error bound for
Q¢X) onto Y . X may be complex. Cf. REVAL.

L1l1s Using coefficients a, b, ¢, d stored by [Al , writes
X inte Z2 and T , R (X) into ¥ and Q(X)
over X 3 and if X was real, then leaves

. - aX+h in cell #7 , (axX+b)X+c in #8 .

LD1]: r CENTER] s CLENTER] t [D1] solves a quadratic equation
r<k? + sx + t = 0 for its roots X and Y ,
which may be complex. r # O . Cf. GQDRTC.

Program Text:

LBLLCAJ 5T06 Rv STOS Ry STO4 Ry STO3 ATN L.BL.LBJ CF8 RCL4 RCL3 X=07 G709 + 3 CHS + STO7 X2 ST08 3 x ROLS
RCL#3 - STO9 RCL-@ RCLx7 RCL& RCL#3 - RCLY X=07 6700 + 3 x RCLY .73 # SFO #X + LSTX XY SIN=* 3 # CFO X(0? SFO
k 3 + FO? CHS X2Y - LSTX SIN Rt x I3Y SIN Rt x 6702 LBLO X3Y CHS 3 {/X SFB Y* ENTER ENTER 1| CHS LSTX ¥Y* CHS
x LBL2 RCL7 X2Y - RCL7 LSTX Rt + RCL+7 XY LSTX - RTM LBL.ECJ ABS 5707 4,006 STOI LSTX RCLJ ENTER ABS 2
+ LBL3 RCLx7 Ry x RCL#(i) ENTER ABS Rt + ISGI GTO3 LSTX + 2 EEX 9 # X3Y RTN LBL.LD1J CFA X3Y 2 CHS + CFO
X<0? SFO STOI X2 Ré x LSTX X3Y Rt - CHS X)0? 6704 CHS #X Rt ¢ ENTER CHS RCLI LSTX ¢ X2Y I ENTER Rt fI RTN
LBL.4 /X FO? CHS RCL+I X=0? RTN ¢ LSTI R? ¢ RTN LBLLEJ CF8 EEX CHS 9 e* STOY RCLS X=0? 6T06 RCL4 RCLI
=07 GT0? + 3 CHS + G8B1 RCL#3 CFO X<0? SFO ABS 3 1/X Y* X2Y RCL+3 CHS X¢0? 6TUS #X XDY? X2Y CLX 1,325 « ENTER
LBLS CLI + F0?7 CHS - X=Y? GTO7 LBL.& 65B1 X2Y X=0?7 G707 + RCL#9 - Xa¥? 6707 LSTX FO? CHS XX0? GTO7 Ry 670
LBLL13J ENTER ENTER RCLxJ ENTER RCL#4 STO7 + x XY RCLx7 RCL+§ STO8 + X2Y LSTX x RCL+6 RTN LBL7 R¥ R¢
ST0Y X=0? 6708 X2 RCLx3J ABS RCLS RCL:9 ABS X)Y? GTC8 LSTX CHS STO8 RCL-3 RCL:9 STQ7 LBL.8 RCLI RCL7 RCL8 6705
LBLY | TANH=* STO? RCL4 RCLS RCLS LBLS 658D RCLY RTN (303 steps)

12, Program Timings:

For the selected results from the HP-15C exhibited above, the
closed-faorm farmula program C[Bl] took about 14 sec. on average:;
the iterative G@BC program C(E]l averaged roughly 27 sec. But
program (Bl was inaccurate at times; to get results as re2liable
as [(El's , program C[B]l] would have to be run twice, the second
time with coefficients reversed, and then the two sets of results
would have to be combined with some additional arithmetic. Thus,
the iterative program runs faster on the HP-15SC than would a

18

m

Cubic3 WORK IN PROGRESS Nov. 10, 1986

reliable program based upon closed-form formulas despite that.the
complex inverse trigonometric functions available on that machine,
but on few others, promote the implementation of the formulas.

13. Annotated Bibliography: :

An old encyclopaedia like the B8ritannica is as good a place as
any to look up the Italians Scipione Ferro, Tartaglia (Niccolo
Fontanma) and Hieronimo Cardano, and the Frenchman Franciscus
Vieta, who first produced closed-form solutions for the cubic
equation. Their formulas can be found there too under the heading
"Equations, Theory of"; or in handbooks like the Handbook ot
Chemistry and Physics, the Chemical Rubber Publishing Co.,
Cleveland; or the Handbook of Mathematical Functions edited by
M. Abramowitz and Irene Stegun, #5355 in the Applied Mathematics
Series published in 1964 by the U. S. National Bureau of Standards
but cbtainable now reprinted by Dover, N. Y. The algorithm @RC
presented in 83 and §4 has not been published before.

The genesis of rounding errors on older electronic computers is
described well by Patrick H. Sterbenz in his book Floating-
Point Computation, published in 1974 by Prentice-Hall, N. J.

A better arithmetic design is specified by the IEEE standards
754-1985 and p8Y%4, to which many of the newest computers conform;
these standards have been described by W. J. Cody et al. in "“A
Propased Radix- and Word-length-independent Standard for Floating-
Point Arithmetic® in IEEE MICRO, August 1984, pp. 86 - 100,

An elementary overview of error analysis is provided in parts of
the HP-1SC Advanced Functions Handbook, Hewlett-Packard part no.
00013-9011, 1982. Backward error analysis in particular is the
subject of Rounding Errors In Algebraic Processes by James H.
Wilkinson, Prentice-Hall, 1963. The error analysis summarized in
8§85 bhas not been published yet: its approach is similar to that
in Brian T. Smith's "Error Bounds for Zeros of a Folynomial
Based Upon Gerschgorin’'s Theorem" in the Journal of the ACH
vol. 17 (1970), pp. &61-674, wherein may be found also the proof
of the claims for the three inequalities near the end of 86 ..

86's procedure REVAL 1is similar to one presented and explained
in "A stopping criterion for polynomial root-finding® by Duane
A. Adams, Communications of the ACH vol. 10 (1967), pp. 655-658.
The preconditioning techniques in 87 and the sgscaling technigues
in §8 are new although similar in spirit to technigues described
in the author's lecture notes since 1963. The theorem by Gauss
that relates the zeros of a polynomial and of its-derivative, and
Laguerre’'s theorem mentioned in 86 , camn both be found in
Geometry of Zeros by M. Marden (1966), American Mathematics
Society, FProvidence, R. I.

14, Acknowledgements:

Though first assembled for use in my Numerical Anc.vysis classes in

1985 and 1986, these notes summarize wor!. performed in a
desultory way over two previous decades, partially supported at .

times by a grant from ULhe U. S. Office of Naval Research under

contract number MOO014-76-C-0013 , and more recently by grants

19

Cuticsd WORK IN PROGRESS Nov. 9, 1986

from the Air Force Office of Scientific Research under contract
number AFOSR-B84-0158, and from the Army Research Office wunder
contract number DAAL29-85-K-0070. I am indebted also ta Prof.
Beresford N. Parlett for patient encouragement and advice while
these notes were being compiled into their present form. Finally,
I am grateful for the sympathetic hearing granted by Prof. George
E. Forsythe at a time, twenty years ago, when many mare people
than nowadays thought the subject matter of these notes a subject
fit only for nit-pickers.

20

