
1

To Test Whether Binary Floating-Point Multiplication is Correctly Rounded.

W. Kahan
July 13, 1988

A :floating-point arithmetic operation is Correctly Rounded when its rounding error does not
exceed half an ulp (unit in its last place). Something more must be said to define correct
rounding in the ambiguous cases when the error is exactly half an ulp. The DEC VAX™
rounds these cases away from zero. IEEE standard 754 for Binary Floating-Point Arithmetic
requires that these cases be rounded "to nearest (even)" by default; this implies that the
rounded value, call it [X • Y], of a product X • Y must be the representable number nearest
X • Y and, if there are two of those, the one whose last bit is zero. Whichever specification
may be in force, we wish to test whether multiplication conforms to that specification.
Our tests will be intrinsic in the sense that they may be executed entirely upon the very
computer whose multiplication is being tested, assuming only that addition and subtraction
are correctly rounded, and that multiplication and division are in error by less than one
ulp.

To be specific, assume 1r significant bits are being carried;

1r = 24 for VAX F and for IEEE 754 Single Precision,
1r = 53 for VAX G and for IEEE 754 Double Precision,
1r = 56 for VAX D,
1r = 64 for IEEE 754 Double Extended on Intel, Motorola, and Western Electric chips,
1r = 113 for VAX Hand for Hewlett-Packard Precision architecture

IEEE 754 Double-Extended.

Unless over/underflow is at issue, scale operands X and Y so that 211'-l :::; X. Y < 211' - 1;
then the product X • Y must round to the integer [X • Y] nearest X • Y in the interval
21r-l :::; [X • Y] :::; 21r - 1. The critical case that arises when X • Y is halfway between two
consecutive integers is resolved by choosing then the nearest even integer for [X • Y] to
conform to IEEE 754, or the next larger integer on a VAX.

To test whether X • Y has been rounded correctly, one might generate hosts of examples
at random and see what happens. However, if multiplication is nearly correctly rounded,
so nearly that the error in [X • Y] can barely exceed half a unit in its last place, then
almost all such test cases will lie far enough from halfway cases to be rounded correctly,
and no incorrect cases will be observed unless the number of examples tested is gargantuan.
Testing more efficiently is possible if we can systematically generate test cases that all lie
on or very near the critical halfway points. The schemes outlined herein do that, and at
a moderate cost far lower than undisciplined random testing. The schemes presented here
assume that floating-point operations are all correct when they do not have to be rounded
(when they are exact), and that addition and subtraction are already correctly rounded,

~ and that division is in error by less than one ulp. Then these operations can be used to
generate the operands that will test whether multiplication is correctly rounded when it is
inexact.

To Test Whether Binary Floating-Point Multiplication is 2

Generating Halfway Cases at Random
The following scheme generates products X • Y that are all half-odd-integers in the binade
21r-l < X • Y < 211', for which [X • Y] should round to the nearest even integer for IEEE 754,
to the next larger integer for the VAX. (A conscientious tester will also vary randomly the
exponents of X and Y to check on the correctness of rounding in other binades, using for
this purpose the function scalb for IEEE 754, ldexp in C, or a table of powers of 2.0. Sign
bits should be varied randomly too.)

Choose at random any odd integer X in the interval 2 < X < 211'. Next compute in
floating-point two integers

JL := cei1((211' - (X - 1))/(2X)) and
Ju:= floor((211'+1 - (X + 1))/(2X)).

Each quotient can be computed with only one rounding error which, ideally, should be
directed upward for JL, downward for Ju; in the absence of directed roundings, inaccurate
quotients can be remedied by adjusting these two integers so that they barely satisfy 21r-I -

(X - 1)/2 ~ X • J L and X • Ju ~ 211' - (X + 1)/2. All the terms in these inequalities can be
computed exactly in floating-point. Then choose at random any integers J between J L and
Ju, as well as J = JL and J = Ju, from which to construct test arguments Y := J + 1/2
representable exactly in floating-point. (Including the extreme values J L and Ju among
the otherwise random values of J enhances the power of the tests by generating products
with long chains of carries and borrows.) Now every product X • Y turns out to be half an
odd integer in a binade where it must round to the nearest even integer for IEEE 754 , the
next larger integer for a VAX. The rounded product (X • Y] should match the rounded sum
(X .J +X/2] of two terms each of which is computable exactly; otherwise multiplication and
addition do not round consistently. To test both operations for correct rounding, calculate
U := (X - 1) • J + (X - 1)/2 + J exactly and expect to find (X • Y] = U if U is even and
IEEE 754 is in force, otherwise [X • Y] = U + 1, or else conclude that rounding has failed
the test.

Generating Nearly Halfway Cases at Random
We shall generate odd integers X and Y at random, in the binade between 211'-l and 21r, of
which many will satisfy either 221r-l < X • Y < 221r and X. Y = [X. Y] ± (271"-l - 1), or
2211'-2 < X • Y < 2271"-l and X • Y = [X • Y] ± (271"- 2 - 1). These products come as close as
possible to half-way cases without hitting one. IEEE 754 and VAX round them the same
way.

Let us abbreviate t := 211"-3 , so that all integers between ±St are representable exactly
in floating-point. The first step is to choose at random an odd integer i in the interval
0 < i < t; i := 1, i := 3, i := t - 1 and i := t - 3 are good choices too. Then compute the
greatest common divisor of i and 4t using the Euclidean algorithm provided in the appendix
to get j and k too:

1 = GCD(i, 4t) = i • j - 4t • k with O < j < 4t and O ~ k < i.

From this trio (i,j, k) derive a collection of quantities all computed exactly in floating-point
thus:

To Test Whether Binary Floating-Point Multiplication is

First let .i := sign(2t - j) = ±1 according as 2t ~ j. Then compute in turn

io := i
i1 := 2t + i
i2 := 4t - io
i3 := 4t - i1

koo := k
k10 := k + j/2

Xo := 4t + io
X1 := 4t + i1

X2 := 4t + i2
X3 := 4t + i3

io :=j
i1 := 2ot + i
h := 4t -io
ia := 4t-it
ko1 := k + io/2

Yo:= 4t +io
Y1 := 4t + it
½ := 4t +h
Y3 := 4t +is

ku := (ko1 + k10) - k + .it
for L = 0 to 1 do for M = 0 to 1 do

{ kL(M+2) := i£ - kLM; k(L+2)M := iM - kLM;

k(L+2)(M+2) := 4t - (iL + iM) + kLM };
for L = 0 to 3 do for M = 0 to 3 do

{ iLM := sign((L - 1.5)(M - 1.5)) }; ... = ±1.

3

At this point each of the intervals (0, t), (t, 2t), (2t, 3t) and (3t, 4t) contains just one i L

and just one iM, whereupon each interval (4t, St), (5t, 6t), (6t, 7t) and {7t, St) must contain
just one XL and just one YM, all of them odd integers that can be represented exactly in
floating-point. Moreover, all 32 products iL • iM and XL• YM differ from multiples of 2t by
lLM = ±1. In fact,

iL • iM = 4t • kLM + hM and
XL· Y.AF 4t • (4t + (i£ + iM) + kLM) + lLM;

but note that kLM is a half-integer if L - Mis odd, an integer if L - Mis even.

Therefore the 16 products XL • YM are all 2,r or 21r - 1 bits wide with 1r - 2 trailing
bits ... 00001 or ... 11111; about half of the products will have the property needed to test
multiplication for correct rounding, namely that they come as close as possible to half-way
cases without hitting one. All that remains is to show how to compute (XL• YM] in another
way that tests whether multiplication is rounded correctly, consistently with addition.

vVe need formulas that express each product as a sum of two terms,

each of which is computable exactly. Here they are:

For
{

L= 0 to 3 do for M = 0 to 3 do
ALM:= kLM - 2 • Floor(kLM/2);
ALM := kLM - ALM;
SLM:= 4t • (4t + (iL + iM) + ALM);
DLM := 4t ·ALM+ lLM;
HLM :=[SLM+ DLM];
TLM := (SLM - HLM) + DLM;

... = (2ku,1 mod 4)/2 ~ 0

.. . an even integer ~ k u1.

... rounded to 7r dignificant bits .

... exactly}.

Now to test whether multiplication and addition are rounded consistently, test whether

To Test Whether Binary Floating-Point Multiplication is

every [XL• YM] = HLM• And to test whether rounding is correct, test whether

2ITLMI < 1 ulp of HLM

= INextAfter(HLM,sign(TLM) • oo)- HLMI•

Still to come:

Testing directed roundings.
Testing gradual underflow.
Examples.
Complete program.

4

To Test Whether Binary Floating-Point Multiplication is 5

Appendix:

Program to Compute GCD(i, 4t) = i • i - 4t • k :
Based upon the Euclidean algorithm for a Greatest Common Divisor, this program starts
from a given t = 21r-3 and a given randomly chosen positive integer i < t, and yields
a sequence of triples { On, in, kn } that all satisfy On = i • in - 4t • kn while each new
lonl ~ IYn-11/2 until at last Ion-ti= GCD(i,4t) = 1.

Initialization:
g := 4t;

Repeat
91 := i;
{

i := k1 := O; ii:= 1; k := -1;

Yo:= g; g := 01; io :=i; i :=i1; ko := k; k := k1;
m := integer nearest go/ g; ... or very nearly nearest
91 := Yo - m • g; i1 := io - m • i; k1 := ko - m • k

} until 91 = O;
Ifg<Othen{g:=-g; i:=-i; k:=-k};
If i < 0 then { i := t + i; k := k + i };

Now GCD(i,4t) = g = i-j-t-k with O < j < t and O ~ k < i, and g = I, because of the way
i and t were chosen. Since all integers no bigger than St = 21r can be represented exactly,
all computations in this program except g0 / g can be carried out exactly in floating-point;
and go/ g accurate to within an ul p is accurate enough.

