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To Test Whether Binary Floating-Point Multiplication is Correctly Rounded. 

W. Kahan 
July 13, 1988 

A :floating-point arithmetic operation is Correctly Rounded when its rounding error does not 
exceed half an ulp ( unit in its last place). Something more must be said to define correct 
rounding in the ambiguous cases when the error is exactly half an ulp. The DEC VAX™ 
rounds these cases away from zero. IEEE standard 754 for Binary Floating-Point Arithmetic 
requires that these cases be rounded "to nearest ( even)" by default; this implies that the 
rounded value, call it [X • Y], of a product X • Y must be the representable number nearest 
X • Y and, if there are two of those, the one whose last bit is zero. Whichever specification 
may be in force, we wish to test whether multiplication conforms to that specification. 
Our tests will be intrinsic in the sense that they may be executed entirely upon the very 
computer whose multiplication is being tested, assuming only that addition and subtraction 
are correctly rounded, and that multiplication and division are in error by less than one 
ulp. 

To be specific, assume 1r significant bits are being carried; 

1r = 24 for VAX F and for IEEE 754 Single Precision, 
1r = 53 for VAX G and for IEEE 754 Double Precision, 
1r = 56 for VAX D, 
1r = 64 for IEEE 754 Double Extended on Intel, Motorola, and Western Electric chips, 
1r = 113 for VAX Hand for Hewlett-Packard Precision architecture 

IEEE 754 Double-Extended. 

Unless over/underflow is at issue, scale operands X and Y so that 211'-l :::; X. Y < 211' - 1; 
then the product X • Y must round to the integer [X • Y] nearest X • Y in the interval 
21r-l :::; [X • Y] :::; 21r - 1. The critical case that arises when X • Y is halfway between two 
consecutive integers is resolved by choosing then the nearest even integer for [X • Y] to 
conform to IEEE 754, or the next larger integer on a VAX. 

To test whether X • Y has been rounded correctly, one might generate hosts of examples 
at random and see what happens. However, if multiplication is nearly correctly rounded, 
so nearly that the error in [X • Y] can barely exceed half a unit in its last place, then 
almost all such test cases will lie far enough from halfway cases to be rounded correctly, 
and no incorrect cases will be observed unless the number of examples tested is gargantuan. 
Testing more efficiently is possible if we can systematically generate test cases that all lie 
on or very near the critical halfway points. The schemes outlined herein do that, and at 
a moderate cost far lower than undisciplined random testing. The schemes presented here 
assume that floating-point operations are all correct when they do not have to be rounded 
( when they are exact), and that addition and subtraction are already correctly rounded, 

~ and that division is in error by less than one ulp. Then these operations can be used to 
generate the operands that will test whether multiplication is correctly rounded when it is 
inexact. 
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Generating Halfway Cases at Random 
The following scheme generates products X • Y that are all half-odd-integers in the binade 
21r-l < X • Y < 211', for which [X • Y] should round to the nearest even integer for IEEE 754, 
to the next larger integer for the VAX. ( A conscientious tester will also vary randomly the 
exponents of X and Y to check on the correctness of rounding in other binades, using for 
this purpose the function scalb for IEEE 754, ldexp in C, or a table of powers of 2.0. Sign 
bits should be varied randomly too. ) 

Choose at random any odd integer X in the interval 2 < X < 211'. Next compute in 
floating-point two integers 

JL := cei1((211' - (X - 1))/(2X)) and 
Ju:= floor((211'+1 - (X + 1))/(2X)). 

Each quotient can be computed with only one rounding error which, ideally, should be 
directed upward for JL, downward for Ju; in the absence of directed roundings, inaccurate 
quotients can be remedied by adjusting these two integers so that they barely satisfy 21r-I -

(X - 1)/2 ~ X • J L and X • Ju ~ 211' - (X + 1)/2. All the terms in these inequalities can be 
computed exactly in floating-point. Then choose at random any integers J between J L and 
Ju, as well as J = JL and J = Ju, from which to construct test arguments Y := J + 1/2 
representable exactly in floating-point. ( Including the extreme values J L and Ju among 
the otherwise random values of J enhances the power of the tests by generating products 
with long chains of carries and borrows. ) Now every product X • Y turns out to be half an 
odd integer in a binade where it must round to the nearest even integer for IEEE 754 , the 
next larger integer for a VAX. The rounded product (X • Y] should match the rounded sum 
(X .J +X/2] of two terms each of which is computable exactly; otherwise multiplication and 
addition do not round consistently. To test both operations for correct rounding, calculate 
U := (X - 1) • J + (X - 1)/2 + J exactly and expect to find (X • Y] = U if U is even and 
IEEE 754 is in force, otherwise [X • Y] = U + 1, or else conclude that rounding has failed 
the test. 

Generating Nearly Halfway Cases at Random 
We shall generate odd integers X and Y at random, in the binade between 211'-l and 21r, of 
which many will satisfy either 221r-l < X • Y < 221r and X. Y = [X. Y] ± (271"-l - 1), or 
2211'-2 < X • Y < 2271"-l and X • Y = [X • Y] ± (271"- 2 - 1). These products come as close as 
possible to half-way cases without hitting one. IEEE 754 and VAX round them the same 
way. 

Let us abbreviate t := 211"-3 , so that all integers between ±St are representable exactly 
in floating-point. The first step is to choose at random an odd integer i in the interval 
0 < i < t; i := 1, i := 3, i := t - 1 and i := t - 3 are good choices too. Then compute the 
greatest common divisor of i and 4t using the Euclidean algorithm provided in the appendix 
to get j and k too: 

1 = GCD( i, 4t) = i • j - 4t • k with O < j < 4t and O ~ k < i. 

From this trio ( i,j, k) derive a collection of quantities all computed exactly in floating-point 
thus: 
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First let .i := sign(2t - j) = ±1 according as 2t ~ j. Then compute in turn 

io := i 
i1 := 2t + i 
i2 := 4t - io 
i3 := 4t - i1 

koo := k 
k10 := k + j/2 

Xo := 4t + io 
X1 := 4t + i1 

X2 := 4t + i2 
X3 := 4t + i3 

io :=j 
i1 := 2ot + i 
h := 4t -io 
ia := 4t-it 
ko1 := k + io/2 

Yo:= 4t +io 
Y1 := 4t + it 
½ := 4t +h 
Y3 := 4t +is 

ku := ( ko1 + k10) - k + .it 
for L = 0 to 1 do for M = 0 to 1 do 

{ kL(M+2) := i£ - kLM; k(L+2)M := iM - kLM; 

k(L+2)(M+2) := 4t - ( iL + iM) + kLM }; 
for L = 0 to 3 do for M = 0 to 3 do 

{ iLM := sign((L - 1.5)(M - 1.5)) }; ... = ±1. 
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At this point each of the intervals (0, t), (t, 2t), (2t, 3t) and (3t, 4t) contains just one i L 

and just one iM, whereupon each interval ( 4t, St), (5t, 6t), ( 6t, 7t) and {7t, St) must contain 
just one XL and just one YM, all of them odd integers that can be represented exactly in 
floating-point. Moreover, all 32 products iL • iM and XL• YM differ from multiples of 2t by 
lLM = ±1. In fact, 

iL • iM = 4t • kLM + hM and 
XL· Y.AF 4t • (4t + (i£ + iM) + kLM) + lLM; 

but note that kLM is a half-integer if L - Mis odd, an integer if L - Mis even. 

Therefore the 16 products XL • YM are all 2,r or 21r - 1 bits wide with 1r - 2 trailing 
bits ... 00001 or ... 11111; about half of the products will have the property needed to test 
multiplication for correct rounding, namely that they come as close as possible to half-way 
cases without hitting one. All that remains is to show how to compute (XL• YM] in another 
way that tests whether multiplication is rounded correctly, consistently with addition. 

vVe need formulas that express each product as a sum of two terms, 

each of which is computable exactly. Here they are: 

For 
{ 

L= 0 to 3 do for M = 0 to 3 do 
ALM:= kLM - 2 • Floor(kLM/2); 
ALM := kLM - ALM; 
SLM:= 4t • (4t + (iL + iM) + ALM); 
DLM := 4t ·ALM+ lLM; 
HLM :=[SLM+ DLM]; 
TLM := (SLM - HLM) + DLM; 

... = (2ku,1 mod 4)/2 ~ 0 

.. . an even integer ~ k u1. 

... rounded to 7r dignificant bits . 

... exactly}. 

Now to test whether multiplication and addition are rounded consistently, test whether 
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every [XL• YM] = HLM• And to test whether rounding is correct, test whether 

2ITLMI < 1 ulp of HLM 

= INextAfter(HLM,sign(TLM) • oo)- HLMI• 

Still to come: 

Testing directed roundings. 
Testing gradual underflow. 
Examples. 
Complete program. 
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Appendix: 

Program to Compute GCD( i, 4t) = i • i - 4t • k : 
Based upon the Euclidean algorithm for a Greatest Common Divisor, this program starts 
from a given t = 21r-3 and a given randomly chosen positive integer i < t, and yields 
a sequence of triples { On, in, kn } that all satisfy On = i • in - 4t • kn while each new 
lonl ~ IYn-11/2 until at last Ion-ti= GCD(i,4t) = 1. 

Initialization: 
g := 4t; 

Repeat 
91 := i; 
{ 

i := k1 := O; ii:= 1; k := -1; 

Yo:= g; g := 01; io :=i; i :=i1; ko := k; k := k1; 
m := integer nearest go/ g; ... or very nearly nearest 
91 := Yo - m • g; i1 := io - m • i; k1 := ko - m • k 

} until 91 = O; 
Ifg<Othen{g:=-g; i:=-i; k:=-k}; 
If i < 0 then { i := t + i; k := k + i }; 

Now GCD(i,4t) = g = i-j-t-k with O < j < t and O ~ k < i, and g = I, because of the way 
i and t were chosen. Since all integers no bigger than St = 21r can be represented exactly, 
all computations in this program except g0 / g can be carried out exactly in floating-point; 
and go/ g accurate to within an ul p is accurate enough. 




