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Why do we need a floating-point arithmetic standard? 

JY. Kahan 

University of California at Berkeley 
lia:bm: g ii. 1961 

M•"• S., 

•• ... the prouammer must be able to state which properties 
he requires ... Usually proerammers don't do so because, 
for lack of tradition as to what properties can be taken for 
snmted, this would require more expli~~•ness than is other
me desirable. The proliferation of machines with lc...3y 
eoauna-point hardware - to1ether with the misapprehen• 
■on that the automatic computer is primarily the tool of 
the numerical analyst - has done much harm to the prof es· 
■on." 

F.dsaer W. Dijks~ra [1] 

••'Ihe maxim 'Nothina avails but perfection' may be spelt 
abort.er, 'Paralysis'." 

WlDston S. Churchill [2] 

After more than three years' deliberation, a subcommittee of the 1EEE 
Computer Society bas brought forth a proposal [3, 4-, 5] to st1U1dardize binary 
ftoating•point arithmetic in new computer systems. Tbe proposal is unconven
Uonat. controversial and a challenge to the implementor, not at all typical of 
current machines though designed to be .. upward compatible" from almost all 
of them. Be that as it may, several microprocessor manufacturers have already 
adopted the proposal fully [6, 7, B] or in part [9, 10] despite the controversy [5, 
11) and without waiting for higher-level languages to catch up with certain inno
vations in the proposal. lt bas been welcomed by representatives of the two 
international aroups of numerical analysts [12. 13] concerned about the porta• 
bility of numerical software among computers. These developments could 
atimulate various imqinings: that computer arithmetic bad been in a state of 
anarchy: that the production and distribution of portable numerical software 
bad been paralyzed: that numerical analysts had been waiting for a light to 
auide them out of chaos. Not sot 

Actually, an abundance of excellent and inexpensive numerical software is 
obtainable from several libraries [1~21] of programs designed to run correcUy, 
albeit subopti.mally, on almost all major mainframe computers and several 
minis. 1n these libraries many a program has been subjected to, and bu sur
vived, extensive tests and error-analyses that take into account the arilhmeUc 
idiosyncrasies of each computer to which the program bas been calibrated. 
thereby attesting t.bat no idiosyncrasy defies all understanding. But the cumula· 

• Uve effect of those idiosyncrasies and the programming contortions they induce 
imposes a numbing intellectual burden upon the software industry. To appraise 
bow much that burden costs us we have to add it up, which is what this paper 
tries to do. 
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This paper is a travelogue about the computing industry's arithmetic 
vagaries. Instead of looking at customs and superstitions among primitive 
tribes, we shall look at arbitrary and unpredict able constraints imposed upon 
programmers and their clients. The constraints are those associated with arith
metic semantics rather than syntax. imposed by arithmetic hardware rather 
than by higher-level languages. This is not to say that the vagaries of higher
level language design. of compiler implementation, and of operating system con
-.entions are ~nor aul~. even if sometimes they can be circumvented by assem
bly language programming. Language issues are vital, but our itinerary goes 
beyond them. 

Numerical softwm-e production is costly. We cannc;,t afford it unless pro-
1ramming costs are distributed over a large market: this means most programs 
must be portable over diverse machines. To think about and write portable pro-
1rams we need an abstract model of their computational environment. Faithful 
models do exist, but they reveal that environment to be too diverse, forcing 
portable programmers to bloat even ttie simplest concrete tasks into abstract 
monsters. We need something simple or, if not so simple, not so capriciously 
complex. 

Rational One1lnen. 
Why are continued fractions used far less often than their speed and some

times accuracy seem lo deserve? One reason can be gleaned from the example 

R(a) := 7 - 3/(a-2 - 1/ (a-7 + 10/(z-2 - 2/(z-3)))) 

which behaves well (3.7 < R(z) < 11.8) for all z and can be computed fairly 
accurately and fast from the foregoing .. one-line" detinition provided certain 
conventions like 

(nonzero)/0 .. •, (finite)+• .. •, (Onile)/ m .. 0 
have been built into the computer's arithmetic, as bas been done lo some 
machines. But on most machines attempts to calculate 

R(l) = 10, R(2) = 7, R(3} = 4.6, R(4) = 5.5 
stumble after division by zero, which must then be avoided if the program is to 
be portable over those machines too. Another algebraically equivalent one-line 
·definition 

R(z) := (({(7z -lOl)z +540)z-1204)z +958)/ ((((z-14)z +72)z -151)z +112) 

avoids division by zero but falls afoul of exponent overtlow when z is huge 
enough, no bigger than 3x101 on some machines: moreover, this second expres
sion for R(z) costs more arithmetic operations than the continued fraction and 
is less accurate. In general, no way is known to avert spurious over / undertlow, 
division by zero or loss of accuracy, without encumbering expressions with tests 
and branches that result in portable but inscrutable programs. 

Test.a and Branches. 
What makes tests and branches expensive is that programmers must decide 

in advrm.ce where and what to test; they must anticipate every undesirable con
dition in order to avoid it, even if that condition cannot arise on any but a few of 
the machines over which the program is to be portable. Consequently, program
mers generally are obliged to know that on some widely used computers a state-
ment like • 
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if s ff O then s:= 3-sin(z )/ z elae s := 2 
will. when executed with certain very tiny values z , stop the machine and allege 
that division by zero was attempted. These machines treat all sufficiently tiny 
nonzero numbers z as if they were zero during multiplication and division, but 
not during addition and subtraction; consequently these machines calculate 

s/0.004 = s x 250. = 0 and 0.004/ z = {division by zero) 

whereas 
{s +• )/ 0.008 = {z +z )x125. JI. 0 end 0.001/ (z +z) = {a finite number}. 

To be po~ble over these machines t.he statement above must be changed to 
If lxs ,e O then s := 3 - sin{z )/ z else s := 2 

or better 
if 1+1•1 ff 1 then s := 3 - sin{s)/ z el8e s := 2 • 

The last test opens another can of worms. 
Some compilers try to be helpful by using extra precision to calculate 

aubexpressions during the evaluation of arithmetic expressions. 'Ibis is a good 
idea provided the programmer knows that it is being done. Otherwise comm
drwns can be created by statements like 

p :=q tt ; 
% := 11+•: 
If z ft 11+• then print "uily not?" ; 
If p ,t q +r tlum. print "haw come?" : 

which print nothing on some systems, print why not? haw come? when q +r and 
11+• are evaluated to more precision than can be stored in p and z , and print 
just haw come? when the compiler' s optimizer notices that the subexpression 
{:r ,t y +s) involves a value z that bas just been calculated in an extra-wide 
register and need not be reloaded from memory. Consequently subexpressions 
like {y+s ,e y} may remain tru.e even when Isl is so tiny that y+z and y would 
be equal were they rounded to the same precision. 

Precision and Range. 
The accuracy of ftoating-point arithmetic operations is worse than about 6 

signiftcant decimals on some machines, better than 33 on others. Some 
machines serve more than one level of precision, some as many as four. One 
machine's single-precision format can be almost as accurate as another 
machine' s double. If he does not know how precise .. SINGLE PRECISION" really 
is, the would-be portable programmer faces dilemmas. An algorithm that is fas
ter than any other to achieve modest accuracy may be incapable of achieving 
high accuracy. An algorithm that works superbly if executed in arithmetic sub
stantially more accurate than the given data and desired solution may fail 
ianominiously if the arithmetic is only slightly wider than the data and solution. 
An algorithm that uses some double-precision arithmetic to support successfully 
a computation performed mainly in single-precision may collapse if "'DOUBLE 
PRECJSION" is actually less than twice as wide as "SINGLE PRECISION", as hap
pens on several machines. Therefore a library of portable programs may have 
t.o cope with a speciftc task by including just one program that is grossly sub
optimal on almost every machine, or else by including several similar programs 
of which each user must reject all but the one that suits his own machine. Nei
ther choice i_s a happy one for the people who assemble and maintain the 
library. 

A similar dilemma is posed by various machines' over / underdow thresholds. 



The overdow threshold A is the largest number, the underdow threshold ). is the 
smallest positive normalized number that can be represented by a machine's 
ftoating-point arithmetic. The diversity of thresholds is sampled in Table 1. 
Worse than that diversity is the unpredictability of reactions to over /underdow; 
many machines trap or stop, most set underdows to zero, some overdow to A. 
some overdow to •• a few overdow to zero, and so on. 

Table 1: ftoating-Point Over /Unclerft.Ot":" ,Ma -----c..,holds 

Machine Underftow ). 

DEC PDP-11, VAX, 2-1•.., 2.9x10-st 
F and D formals 

DEC PDP-10; 2-1• sts 1.5x1Q-at 
Honeywell 600, 6000; 
UNIVAC 110x sqle; 
IB11 709X. 704X 

Burrouabs 8X00 sqle 

H-P 3000 

IB11 360, 370; Amdahl; 
DG Eclipse 111600; ... 

llast bend.held calcu
lators 

CDC 6XOO, 7XOO, Cyber 

DEC VAX G format; 
UNIVAC 110X double 

HP85 

a--01 ltl e.ex10◄7 

2-2111 1t1 8.6x 10-7e 

16-tD ltl 5.4X 10-1' 

10-• 

2-t?e .., 1.5x 10-nt 

2-1024 .., 5.6x 10-• 

Overflow A 

2127 .., 1. 7x 10• 

21n 1t1 1. 7x 103' 

8711t1 4.3x1088 

221111t1 1.2x1077 

lstS 11t1 7.2xt0711 

10100 

21070 .., 1.3xlo'22 

21023 .., 9x 10So'7 

Cray 1 1t1 2-e182 1t1 9.2x10-hl7 1t1 ~•• 1t1 1.1xt02488 

DEC VAX H format 

Burrouabs 
double 

8XOO e-m= 11t1 1.9x 10-ncse1 e32"80 1t1 1.9x 1021ecs 

Proposed IEEE Standard: INTEL 18087; llotorole 8839 

double 

double-extended ~~•es• 1t1 3.4x10◄1S2 ~2•met 1t1 1.2x10~ 



No wonder then that simple tasks spawn hordes of complex programs: here 
is one example, the calculation of the root-sum-squares norm of a vector Y, 

msm.sq(n, v> := ✓(ff+ VI + ... + V:>. 
The obvious program is a simple one: 

.-um:= 0; fori = 1 ton dosum. :=sum.+ V[i] •-2; 
Rtsmsq := v'(sum.} . 

This simple program is the best on machines with ample range and precision, 
but· on most ma.chines this program encounters al least one of the following 
~---·-UA41U~- -

l) 

li) 

When n is huge (108) but the precision is short (6 signitlcant decimals) then 
SW"IL. and hence Rtsmsq, may be badly obscured by roundoff amounting to 
almost n/2 units in its last place. 
Even though Rts,,,,,sq 's value should be unexceptional. sum. may 
over/underftow {e.g. if some I V[i]I > v'Aor all I V[i] I < YA}. 

The simplest way to subdue both perils is to evalu_ • e the sum of squares using 
enra precision and range as may be achieved in a few computing environments 
via a declaration like 

Double Precision sum. . 
The proposed IEEE ftoating-poinl arithmetic standard allows implementors, al 
their option. to offer users just such a capability under the name "Extended For
mat". But most computing environments afford no such luxury, and instead 
oblige programmers to circumvent the hazards by trickery. The obvious way lo 
circumvent hazard (ii} is to scan V to Ond its biggest element Vmu and then 
evaluate 

Rtsmsq := I Vmu:1 Xv'( f: (V[i]/ Vmu}2) 
l 

but this trick violates all but the third of the following constraints upon the cal• 
culation: 
J) Avoid scanning the array V more than once because, in some "virtual 

memory" environments, access to · V[ i] may cost more time than a multipli
cation. 

D) Avoid extraneous multiplications, divisions or square roots because they 
may be slow. For the same reason, do not request extra precision nor 
range. 

ID) Avert overftow: it may stop the machine. 
JV) Avert underdow: it may stop the machine. 

The only eublished program that conforms to all four constraints is due to 
l . L. Blue [22J. Other published programs ignore constraint IV and assume 
\Dlderftows will be dushed to zero. One such program is C.L. Lawson's SNRM2 in 
LINPACJ<[17], called nonn by W.S. Brown(23]. Another program. VECTOR.NORM 
by Cox and Hammarling [24-], violates constraint n. All these programs succumb 
to the ftrst hazard {i) above, so there is need for yet another program; it will be 
furnished in Figure 7. Only this last program can be generalized convenienUy to 
cope with sums of products as well as sums of squares, and then only by violat
ln& constraint m, as will be shown in Figure 8. None of the programs is tran
sparent to the casual readez:. None is satisfactory for vectorized machines. 

Suppose an ostensibly portable program works correctly for all physically 
meaningful data when run on one of the machines with a wide range listed below 
\he middle of Table 1. But the proaram is not robust in the face of intermediate 
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over/ undeniow, so it produces wrong answers and/ or warning messages and/ or 
stops when run with meaningful but unusual data on a machine with a narrow 
range. Who is to blame? We, who supply machines and programs, tend to excul
pate ourselves and blame instead whoever used that program to treat that data 
on that machine; be should have spent more money to buy a machine with far 
wider range than encompasses his data and output. or be should have paid more 
money for a better and robust but more e laborate program, or ~~ !lbould not 
worry about unusual data beyond the normally ample capacity of what 'WA.'! have 
recenUy sold to him. Is this issue really just a question of cos•. vs .. capability? 
No. From time to time a simple program, run on a system with narrow range 
and precision but designed felicitously, will deliver better resuits and sooner 
than an elaborate program run on a system with wider range and precision. 
1bus the competency of its design. its intellectual economy and many other 
parameters of a system must fl&ure signitlcantiy enough in its performance to 
deserve our consideration too. 

Radiz. 
Almost every machine that provides tloating-point arithmetic does so in 

binary {radix 2), octal {8), decimal {10) or hexadecimal {16). Biological and his
torical accidents make 10 the preferred radix for machines whose arithmetic 
will be exposed to frequent scrutiny by humans. Otherwise binary is best. Rad
ices bigaer than 2 may offer a minuscule speed advantage dwin& normalization 
because the leadina few signitl.cant bits can sometimes remain zeros, but this 
advantage is more than offset by penalties in the ranee/ precision tradeoff [25] 
and by "wobbling precision" [ 19, p. 7]. For instance, the proposed IEEE standard 
squeezes as much range and worst-case precision from a 32-bit binary format as 
would demand 34 bits in hexadecimal. For the pro1rammer whose task is to 
produce 

as a.ccunzte r& progrrz.m. as possible 
the technical hindrance arises less from not enjoying the use of the optimal 
radix than from not lmowina which radix his program will encounter. 

Consider for example two al&ebraically equivalent expressions 

91{s) :=1/{l+s); q1{s) := 1-s/{l+s) . 

Which one can be calculated more accurately? If Is I is big then q 1{z) is better 
because q2{s) suffers from cancellation. lf I e I is tiny then q 1{z) is worse 
because its error can be bigaer than q2{z )'s by a factor almost as larae as the 
radix. and this is serious if the radix is 16 and the precision short. To minimize 
that error a conscientious proarammer might write 

U O < s < t{B) tben q(s) := 1-s/{l+s) elN q(s) := V{l+s) 
where t(B} i■ a threshold whose optimal value depends deviously upon the radix 
B and upon whether arithmetic is rounded or chopped. Speciftcally, when arith
metic is rounded after normalization the optimal values are 

t(2) = 1/3. t(8) = 0.728, t{10) = 0.763, t{16) = 0.827 ; 
but when arithmetic is chopped after normalization the optimal values are 
different. And when arithmetic is roWlded or chopped before normalization, 
different threshold• and a rather different program are called for: 

U O < s < t(B} then q{s) := {0.5-s/(l+s)}+0.5 
elae q (s} := 1/ (0.5+(z +0.5)). 

1be reason for usma 0.5+0.5 in place of 1 will become clear later. 
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End. mecta. 
Some computers can do funny things. Each of the following phenomena is 

possible for a wide range of operands on some machine which is or was widely 
used: 

1' xc ,. s xy ; s ,. lxs 1' 0 ; z = 'II but :r -t ,. 11-t ; 1/ 3 ,a 9/ 27 . 
These phenomena are caused by peculiar ways of performing rowidoff. Further 
anomalies are caused by peculiar ways of handling exponent over /undertlow 
without stopping the machine and sometimes without any indication visible to 
the program or its user: 

((yxz)/y)/z <0.00001 ... caused by overtlow to A; 

s,>l>z>0 but s,/z =0 

((yxz)/11)/z > 100000. 

s,/z _< 0.99 but 11-z = 0 

a >0, b >0, c >0. cf >0, z >0, but 
ax:r + b I cxz + d > l 5 
11 + b/z)/(c + cf/z) • 

... caused by overtlow to O : 

. .. caused by undertlow to ~ ; 

... caused by undertlow to O : 

... caused by undertlow to 0. 

Other paradoxes were discussed above under Tests and Branches. Some further 
anomalies cannot be blamed upon computer architects. For instance, 
discrepancies can arise whenever decimal-binary conversion is performed 
differenUy by the compiler than by the run-time Input/Output utilities: 

Input z ... the 'USff' types 9.999 to signal end-of-data ... 
If z = 9.999 then print result else continue processq data; 
... but no result ever gets printed. 

These funny things computers do can cause confusion. Some of the confusion 
can be alleviated by education, whereby we come to accept and cope with those 
anomalies that are inescapable consequences of the ftniteness of our machines. 
But education cannot mitigate the demoralizing effects of anomalies when they 
are unnecessary or inexplicable, when they vary capriciously from machine to 
machine, when they occur without leaving any warning indication, or wben no 
practical way exists to avert them. 

Tbe end effect of caprice is a perverse indoctrination. After a while pro
grammers learn to distrust techniques which formerly worked perfecUy and 
provably on their old computer system but now fail mysteriously on the new and 
better system. By declaring those techniques to be "tricks", as if they never 
deserved to work, we reverse the traditional educational parad.i&m,: 

"'A.trick used three times is a standard technique." 
(Attributed to G. Polya.) 

llodalL 
I know about several attempts to impose some kind of intellectual order 

upon the arithmetic jungle. An early attempt by van Wijngaarden [28] failed 
partly because it was excessively abstract and complicated (32 axioms) and 
partly because a few very widely used computers did not conform to bis model 
Lately W.S. Brown [23, 27, ?B] bas contrived another model. It is an outstanding 
accomplishment, simultaneously simpler and more realistic than every previous 
attempt, easily the best available description of 1'1oating-point arithmetic for 
programs that must be portable over all machines within reason. By apt 
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assignment of possibly pessimistic values for a few parameters including radix. 
precision and over /underftow thresholds pertinent to an artfully designated sub
set of the computer's tloating-point nwnber system. Brown's model encom
passes not only 

•• ... computers of mathematically reasonable design. but can also encom
pass a variety of anomalies... While a thorough study of real-world tloating
point anomalies may lead one to despair. the situation can be summarized 
rather neaUy, and with litUe exaggeration. by stating that any behavior per
mitted by the axioms of the model is actually exhibited by at least one com-
1r.ercially important computer." (23, pp. 11-12] 

Conversely, every anomaly enumerated in previous paragraphs. except possibly 
unannounced overftow to zero, is subsumable within a model like Brown's. All 
these models, new and old. share the notion of a fuzzy tloating-point variable 
whose fuzziness, though unknowable, cannot exceed a known tolerance. 

The proposed IEEE standard is quite different. Rather than describe 
abstracUy some long list of minimal properties that an arithmetic engine must 
honor, the proposal prescribes in detail how an arithmetic engine shall be 
designed. whence follow t.he minimal properties and many more. The engine's 
designer is allowed only a limited amount of leeway in the optional features, 
mosUy related to capacity, that he may choose to implement; the designer may 
choose to support only the single-precision format (32 bits wide), or to support 
two formats, or possibly three, and to charge different prices accordingly. Each 
format has its designated subset of t.he real numbers represented as tloating 
point numbers; the single-precision format bas one sign bit. an eight-bit 
exponent tleld. and a 23-bit tleld for the signiftcand's fraction. allowing for one 
more 0 implicit bit" to make up 24 bits of precision. Each format has its own 
over/underftow thresholds {cf. Table 1) and special bit-patterns reserved for±• 
and Na.NF>; more will be said later about NaN= Not-a-Number. Also to be dis
cussed later are the obligatory responses prescribed by the standard for every 
exception (Invalid Operation. Division by Zero, Over /Underftow and Inexact 
Result); for now we note that the designer can supplement but not supplant 
those responses, so programmers can predict for every exception what response 
will occur unless a program bas explicitly requested something else. The 
designer may choose bow much of the proposal to implement in hardware, how 
much in ftrmware (microcode in read-only memory). how much in software, 
thereby trading off speed against cost. The proposal says nothing about the 
relative speeds of, say, multiplication vs. division. But the designer cannot per
form roundoff arbitrarily; his design must conform to the following rules unless 
a program asks explicitly for something else: 

Every algebraic operation (+, -. ><, /, ✓) upon one or two operands must 
deliver its result to a destination, either implicit in an arithmetic expression or 
designated explicitly by a program's assignment statement; the destination's 
format cannot be narrower than either operand's format. 

The result delivered must be the closest in the destination format 
to the exact value that would have been calculated were range and 
precision unbounded; and if the exact value lies just midway 
between two adjacent numbers representable in the destination's 
format then the one whose. least signitlcant digit is even shall be 
the result. 

The only exceptions to this rule are the obvious ones - Invalid Operations like 
0/0 with no exact value, and Overtlow to ±• which occurs only when the rounded 
value would otherwise be bigger than the overftow threshold A. 
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These rules are comparatively simple as arithmetic rules go, and permit a 
programmer to infer from his chosen format{s) exactly bow the arithmetic 
engine will behave. Most of the inferences are as pleasant as anyone accus
tomed to computation might desire. Some of the inferences associated with 
undert'iow are slightly surprising to programmers accustomed to having 
underftows go to zero; that is contrary to the rules set out above. Therefore the 
proposal includes a Wa.rnin.g Modll designed to defend those programmers 
against arithmetic ambush; it will be discussed later. 

The difference between the proposed !EEE standard and the aforemen
tioned models boils down to this: Having s~iected a format with its concomitant 
width. radix (2), precision and range, a r,rogrammer knows exacUy what results 
must be produced by arithmetic engines that conform to the standard. whereas 
an engine that merely conforms to one of those models is capable of excessive 
arithmetic diversity. Proaramrning for the standard is like programming for 
one of a small family of well-known machines, whereas programming for a model 
is like programming for a horde of obscure and ill-understood machines all at 
once. 

Procram Libraries" Coats and Penalties. 
In the absence of a prescriptive standard like the IEEE proposal, two stra

tegies are available to the would-be architect of a great library of numerical 
software. One strategy is to ... 
Customize: Calibrate a version of the library to the arithmetic idiosyncrasies of 

each computer upon which the library is intended to be supported. 
This is the strategy chosen most often for the elementary transcendental func
tions like exp, cos, ... and for some similarly heavily used higher transcendental 
functions like erf. lt could lead to almost as many different libraries as there 
are different styles of arithmetic, though the situation is not yet that bad. 

A second strateay is to strive for universal ... 
Portability: Impose upon programmers a discipline whereby all their programs 

exploit only those arithmetic properties supported by some universal model 
encompassing all styles of arithmetic within reason; when the discipline 
succeeds the programs are provably portable to all machines within reason. 

'Ibis strategy bas succeeded for many matrix calpulations and, when environ
mental parameters (29, 30] pertaining to radix. precision and range are accessi
ble to the program, for iterative equation-solving, quadrature, and much more. 
But the parameters are not always easy to interpret unambiguously (31, 32]; see 
the section after next. Neither need a program's reliability and effectiveness be 
easy to prove from the model's abstract axioms. Suppose a programmer seeks 
but cannot ftnd such a proof; the logical next step is to scrutinize his program to 
ftnd a bug and ftx it. After exhaustive tests reveal no bug, the programmer may 
SU1pect that only because he is unskilled in the model's style of inference was he 
unable to ftnd a proof. What should he do next? Should he encumber his p~ 
aram with unnecessary defenses against imaginary threats? Suppose he can 
prove by test as well as theory that his program works flawlessly on bis own 
machine, with which he has become thoroughly familiar; bas be the right to hope 
that his program will not fail except on some hypothetical machine that, while 
conforming to the modeL does so only perversely? This question will be re
uamined a few paragraphs below. 

The architects of the great numerical subroutine libraries [1~21] deserve 
our admiration for their perseverance in the face of arithmetic anomalies which 
appear to be accumulating insurmountably, though each is by itself a minor 

--
..... 
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irritant. To contain cost.s, the architects have pursued the second strateiy, por
tability, whenever possible, even if occasionally a proliferation of ostensibly 
portable programs had to be tolerated in order to accommodate irreconcilable 
differences amolli arithmetic engines. The results have been surprisingly good, 
all things considered. But these triumphs of intellect over inscrutability are 
P~c victories won at the cost of too many man-years of misdirected 
in&enuity: bad the libraries not been subsidized by aovernment [33] nor by occa
sionally inadvertent corporate munificence, none of us could afford to use them. 
A1J beftts an era of diminished ex;,ecutions, the libraries' performance has 
intentionally been compromised; some programs accept an unexpectedly lim· 
ited r&llie of data. some progrems er-, less accurate than they could be, some 
more complicated to use than they should be, some less helpful than we would 
like when things ao wrolli, and some are slow. We shall see in detail why these 
performance penalties cannot be avoided entirely if programs must be portable 
over machines with unnecessarily widely disparate arithmetic engines. Such 
penalties, or the belief that they exist, tend to undermine the perceived utility 
of the libraries cmd stimulate an urge to replace a port.able program by another, 
made-to-order and presumably more nearly optimal for a specitic machine. 
Moreover, programmers have eaos that will not be denied self-expression. Ironi
cally, many a made-to-order program bu turned out worse than the library pro-
1ram it was to supplant.. Let us not blame sub-optimal decisions about sub
optimal programs upon sub-optimal programmers when the culprit. is actually a 
pr01ramming environment. so sub-optimal as to defy education and repel tidy 
minds. Let us look at that environment.. 

Model.a of Panmata. 
No realistic conclusion about the programming environment. for port.able 

numerical software can be drawn without some experience of the way simple 
tasks turn into quqmires. Here is an example of a simple task: 

Write two fast, accurate and portable programs to calculate 
ain 1'(t) given t = tan(,,/ 2) , and also 
+(t) = ✓(arcsin (1)2 + arccos (0.25 + 0.75sin3 ,,(t) )2) . 

The reader may e·scape the quagmire by skipping over several pages to Dimin
ished Expectatiom but the programmer assigned a task like this must wade 
through the following muck. 

The dfil&ent. programmer soon discovers that 

•~ 1'(t) = sin (2 arctan t) = 2/ (t + 1/ t) = 2t / (1 +t2) , 

and the last two expressions cost much less time to evaluate than 
ain (2 arclan (t)) provided 1/ t or t 2 does not overdow. However I sin 1'1 s 1 
whereas both 121 (t + 1/ t) I and 12 (t I (1 + t 2)) I might conceivably exceed 1 by 
a roundilli error when evaluated for t sliahUy less than 1 on some ( unknown) 
machine. Therefore the formula used for sin 1' when I t I is near 1 must (for the 
sake of portability tot.bat. unknown machine) be transformed into, say, 

sin1'(t) = tl(ltl +(ltl-1)212), 

from which I sin 1' I s 1 follows immediately because universally 

I 1/ I s c implies I 11 / c I ~ 1 
despite roundoff. Keepi.na I sin 1' I ~ 1 avoids misadventure during subsequent 
calculation of 

arccos (0.25 + 0. 75(sin 1')3) 
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by constraining the arccosine's argument to lie always between -0.5 and 1 
inclusive despite roundoff. These precautions are just.ided because without 
them the arccosine expression above could be invalid on some machines; it 
ftashes lights on the T.I. SR-52, 58, 58C and 59 when they calculate sin 1' = 
1.000000000004 at 1' = 89.99995 degrees or 1' = 1.570795454-1 radians. 

The arccosine's argument must be defended against another hazard that 
could force it past 1 into misadventure. Although constants like 0.5, 0.25 and 
0. 75 are all :-epre::'!ntable exacUy in every computer in the Western world, they 
could be blurred aligbUy by inept decimal-binary conversion. Such blurring 
occurs sometim'1s when 0.75 is converted not as 75/ 100 but as 75><0.0l using an 
approximatior. to 0.01 drawn from a table of powers of 10 converted into binary. 
If the decim!ll value 0. 75 is converted to the binary string 0.1100 ... 001 in a 
machine that rounds sums, then the arccosine expression above will be ren
dered invalid by an argument bigger than 1 when sin1' = 1. This kind of unneces
sarily blurred conversion of modest-sized cons\ants is forbidden by the pro
posed IEEE standard but not by Brown's model [23, 27, 28, 29], so the prudent 
programmer should not assume exact conversion for any constants other than 
small integers. ConsequenUy the prudent programmer will replace tire 
arccosine expression above by 

arccos ({1 + 3(sin 1')5)/ 4) 

to avoid misadventure, though it costs an extra division. 

Real funcUon sin2arctan ( t) : real t ; 
if I t I ~ 2 then return 2/ (t + 1/ t) 
eiareturn tl( lt l +o.5x( lt l-1)••2) 

end sin2arctan; 

Real funcUon psi(t) : real t ; 
.return ~(arcsin(l)•-2 + arccos({l + 3 x sin2arctan(t )•-3)/ 4)•-2) 

end psi. 

F"iaureA 

From these protracted deliberations ensue the brief programs shown in Fig
ure A. The constant arcsin(1)1 has been retained intact to promote portability 
regardless of whether angles are reckoned in degrees or radians. The notation 
z .. 2 and z .. 3 bas been used to represent z xz and z xz xz respectively rather 
than exp(2xln(z)) and exp{3xln(z)) which misbehave when z ~ 0. These pro
grams assume that square root, arcsin and arccos subroutines are available and 
accurate to within a few ulps (Units in the Last Place), in which case the pro-
1rams in Fiaure A can be proved to be comparably accurate and fast on every 
computer in the Western world with full ftoatin&·point division built into its 
hardware. But these programs cannot be proved portable using Brown's model 
nor any other that encompasses aU arithmetic engines in current use! 

How miaht F'iaure A'• programs fall? A few computers calculate every quo
tient y/z as a product t,><(1/s) after estimatina the divisor's reciprocal 1/z. 
A!!J long as that reciprocal is correcUy rounded or chopped, the proposition 

Iv I s• lmpli• IY x (1/z) I s 1 
will remain valid despite roundoff, and ngure A's programs will continue to func
tion ftawlessly as befits their careful design. But the proposition cannot be 
proved from any version of Brown' s model that encompasses the Cray-1, a 
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machine on which division y I z entails an estimate for 1/ z that could be a bit 
too big. Because the inference I y x ( 1/ z) I s 1 cannot be supported by the 
model, the programs in Figure A must be declared non-portable . even though 
they are provably infallible on every mainframe in the Western world except 
m.a:ybe the Cray-1. 

In fairness to the Cray-1 we should digress momentarily. Its arithmetic is 
not so aberrant as to deserve invidious mention. Had a dluer~nt task than +(t) 
been selected to illuminate a different quagmire, some other computer would 
have emerged egregious. The speed of the Cray-1 makes it 'c.oo important com
mercially to be excluded from any arithmetic model with ..m.iversal pretensions, 
so Brown' s model must omit division from bis list of "t,a.sic arithmetic opera
tions ... addition, subtraction, multiplication, ... •• (23, p. 6]. Because too litUe is 
known about the Cray-l's reciprocal and division algorithms (34, p. 3-30], 
nobody can tell whether the proposition above is still valid or not; values y and z 
may exist for which I y I ~ z but the Cray-1 calculates I 11 x( 1/ z) I > 1. Therefore 
this possibility must be allowed by the axioms in Brown's mo-tel, as indeed it is. 
Unfortunately, the possibility is nowhere mentioned explicitly amont Brown's 
twenty-odd theorems and lemmas, so a programmer unfamiliar with a Cray-1 
might be forgiven if at first she takes the proposition for granted. 

Is it fair to blame a programmer for a bug that cannot come alive except 
possibly when her programs run on a Cray-1? Not unless the old song that says 

..... It's always the woman that pays ... " 
sets the standard for fairness. None the less, dogmatic adherence to the axioms 
of universal portability demands that either the programs or the computer be 
mended, and the programs are more eligible than the computer. Let us con
sider bow to change the programs. 

The customary way to defend arccos(z) from an argument with I z I > 1 is 
to insert conditional statements like 

If I z I ~ 1 then ... arccos {z) ... 
elae ... 

into the program. Good programmers know many reasons to eschew such 
expedients. F°1rst, conditional branches hamper high-speed machines that would 
otherwise achieve part of their speed by looking ahead into the instruction 
stream. Secondly, conditional statements make for cluttered and ugly pro
grams. These two considerations induce the best programmers to linger over 
conditional statements hoping to excise some of them, thereby exacerbating the 
third consideration: 

Among the most time-consuming tasks that confront numerical program
mers are the decisions about thresholds and tests - where to put them, 
what to test, where to go afterwards, when to quit. 

For instance, why was 2 chosen for the threshold value compared with I t I in F°ig
ure A's program sin2erctan? For machines whose divide is much slower than 
multiply, a threshold much larger than 2 would yield a faster program. On the 
other band, a carelessly chosen threshold could conspire with roundoff to sub
wrt the monotonicity of sin2arctan{t) as It I crosses the threshold, so the 
threshold should be a modest power of 2 at which sin2arctan suffers at most one 
rounding error. Whether this threshold matters or not. its choice will dissipate a 
programmer's time. . 

The crowning irony is that a test like the customary 
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If le I :s: 1 then ... arccos (z) ... 
else ... 

cannot. be proved via Brown' s model t.o defend arccos(z) against. I z I > 1 even 
though it. works infallibly on t.he Cray-1, the only machine on which t.he test 
might. be needed. The model renders the test futile by allowing for the possibil
ity that. a computer may say I z I :s: 1 when actually I z I > 1 by a bit.. In t.he 
model all comparisons, like all nwnbers, are a bit fuzzy. Machines du exis'l that. 
will allege I z I ~ 1 when actually I z I < 1 by a bit; among them are the T.1. MBA 
and CDC 6400, 6600, 7600 and Cyber machines. Lat.er we shall see what. causes 
such tlbs. Notwithstanding these precedents and t.he model's license, no com
puter yet built will say I s I :s: 1 when actually I z I > 1; whatever might cause this 
tlb would probably cause the computer t.o calculate z -z < 0 for every z > 0 con
trary to both Brown's model and normal expect.at.ions. Perhaps some day t.he 
model may be refined to retlect. another property of real arithmetic engines, 
namely that a difference :-y between two numbers with the same sign and 
exponent must. be computed exactly, but until that day comes t.he model denies 
to F"igure A's programs any such repair as the obvious test abo"3'r 

The foregoing discussion is not hypothetical nor is it a condemnation of 
Brown's model. Alas, his model portrays faithfully the current. Welta.nschau:u:n.g 
for portable programs: conditional expressions can be hazardous in tloat.ing
point. arithmetic. Expressions like z :s: 0.25 suffer from double-jeopardy because 
0.25 may not. mean what. it. says and then the computer may lie about z . The 
expression z ,t O is ambiguous, as we have seen above under Tests and 
Brancbm, and should be replaced by lxz fl 0. The expressions z < y and 
s-y < 0 are exactly equivalent on some computers but not on others; on t.he 
former kind of machine, undertlow when : and y are both tiny can cause t.he 
machine to deny falsely that : < 1/, and when z and 1/ are both huge with oppo
site signs the expression z < y may overftow and stop the machine. The expres
sion 1 + eps = 1 should be tnLe when eps is negligible but. may be false for all 
negative cps on a machine which truly chops, or false for all nonzero eps on a 
machine which rounds the way John von Neumann suggested, namely by forcing 
the last retained bit of an inexact sum or difference to be 1 and chopping the 
rest. 

If a test like 
If I• I :s: 1 then ... arccos (z) ... 

else ... 
is unreliable, what other modit1cation to F"igure A's programs would make them 
run reliably and provably so on every computer? Ask a consultant skilled in 
error-analysis. He will observe that when z is near 1 then arccos (z) is near 
zero where relatively small perturbations in z cause relatively huge but abso
lutely small perturbations in arccos (z ). Since ,J,(t) involves (big} + arccos ( ... )2, 
the perturbations don't change ,J,(t) much. Therefore, the way to avoid misad
ftnture when I• I > 1 is to depress I z I by several ulps, something acco~plished 
by using 4-.000 ... 005 as a divisor instead of 4- in the program psL This works, but 
ls a poor idea for two reasons. First, it makes psi slightly less accurate. 'lbe 
optimal value 4-.000 ... 005 must depend upon the characteristics of the machine 
in a way determined by the error-analyst to sacrifice only a little of psi's accu
racy as insurance against misadventure. The machine's characteristics (radix, 
precision, roundoff properties, ... ) are available in principle [29, 30] to portable 
programs, but their use introduces a new complication into Figure A and buries 
the distinct.ion bet.ween portable programs and customized programs under a 
blizzard. of environmental parameters, about which more is said below. 
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Secondly, there is a way t.o repair program psi t.hat is simpler and can be 
proved within Brown' s model; insert a test like this: 

if lz I < 1 then ... arccos (z) ... 
else ... 0 .... 

Environmental Parameters . 
.. Environment.al Parameters" [29, 30] is t.he term now applied t.o a list. of 

aumbers that. describe a computer' s arithmetic t.o a programmer and t.o bis 
program wit.bout. bet.raying the machine's name, rank and serial number. 
Language implement.ors are being urged by some numerical analysts t.o set. 
aside lists of names for these parameters so that every program may enquire of 
its compiler about. the computer's arithmetic characteristics like 

Radix. 
Precision (number of significant digits carried), 
Range (overftow threshold(s), underftow threshold(s)), 
Roundoff properties (guard digits, which operations are chopped, et.c.) 

Some lists are more parsimonious, and therefore less repellent. to compiler 
writers, than others. Some lists are obtainable, :without any concessions from 
compiler writers, by executing ostensibly port.able environmental inquiry sub
programs like MA.CHAR [19, appendix B] which purport t.o discover the parame
ters' values at execution time by means of very devious but not entirely fool
proof codes. The big quest.ion is not whether environment.al parameters should 
be available, but how and 'Which. However they become available, they cannot 
defeat. the would-be portable programmers' worst enemy, unnecessary com
plexity. 

A convenient. way t.o describe environment.al parameters is with the aid of 
the generic function l3] 

Next.aft.er{z, 'I/) 
which stands for the tlrst number in t.he computer, representable in the same 
format as z, after z in the direction towards y. For instance 

Next.aft.er(l.0, 2) = 1.000 ... 001 
with as many significant. digits as t.he computer carries for numbers near 1. For 
simplicity we consider only one level of precision for all tioating-point expres
sions; otherwise we should have to distinguish single-Next.after from double
Nextafter and so on. A few useful examples are: 

94Jeps := Next.after{l.0, 2) - 1 = 0.000 ... 001 . 
.uttlaps := 1 - Next.after(l.0, 0) = 0.000 ... 0001. 
B:= Bigeps/li.ttl.aps = the machine's ftoating-point. radix. 
A:= Next.after(+•, 1) = t.he overftow threshold. . 
>. := Next.aft.er{0.0, 1) = the machine's tiniest positive number. 
>./ Littleps = a threshold commonly used to test. whether undertiow· 

bas had a significant effect.. • 
At. ftrst. sight. these environmental parameters appear t.o be detlned uniquely for 
each format. as they are in the proposed IEEE standard. However, some 
machines have different. over/underftow thresholds for multiplication and/ or 
division than for addition and/ or subtraction. Many machines miscalculate 
1.0 - Next.after{l.0, 0) and get 94]eps instead of Littleps: a safer expression is 

.Wtleps := {0.5 - Nextaft.er{1.0, 0) ) + 0.5 . 

Different. authors define environment.al parameters differently. For exam
ple, a common deftnition is 
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Eps := the smallest positive number such that the calcu
lated value of 1.0 + Eps exceeds 1.0. 

This E'ps depends upon how sums are rounded or chopped; 

Eps = Bigeps/ 2 if sums are rounded up, 
= Bigeps if sums are chopped down, 
= ~ if von Neumann rounding is used. 

Brown and Feldman [29] detlne t in terms of model numbers; 
t := the smallest positive value of :,: -1 for model numbers z . 

Because the model numbers constitute an artfully selected and well-behaved 
subset of the machine' s representable numbers, t satisfies 

t ~ E'ps and t ~ /Jigeps 

but not much else can be said about. its relation to the machine's actual 
nwnbers and operations. 

The diversity of detlnitions is not. what. undermines environment.al parame
ters; no matt.er how they may be defined their relationship with the arithmetic 
operations will remain enigmatic unless the parameters include information 
about the numbers of guard digits carried [35], whether operations are 
chopped or rounded or -something else, and when the chopping or rounding is 
performed (before or aft.er normalization), to mention only a few possibilities. 
Brown's model was designed in the hope that. four environment.al parameters 
would be enough for all practical purposes, but we have already seen reasons t.o 
expect. otherwise and more reasons follow. 

Precision and range are not. absolutes that. can be captured entirely by a 
few numbers. To illustrate why this is so, consider several different programs 
each using a different. method t.o calculate the same function ,Cz) t.o about the 
same physically meaningful accuracy, say six significant. decimals, over a physi
cally meaningful range, say I z I < 1010. Assuming speed and memory usage are 
about. the same for all the programs, ~one of them is distinguishable from any 
other by the obvious at.tributes mentioned so far, but. this is not to say that. they 
are indistinguishable for numerical purposes. Imagine a larger program which 
includes among its numerical sub-tasks either the calculation of t = min. ,Cz }. 
or the solution of the equation ,C:.r} = y t.o detme the inverse function 
s = ,-1{y }. That. program will calculate divided differences 

{ ,{z + ~) - ,(z}) / ~ 

to determine the direction in which to pursue a search: the success of the 
search will depend upon the smoothness of the calculated value of 91{z) regard
less of its accuracy. Indeed. if 91(z) is supposed to be a strictly monotonic func
tion of z in the absence of error, then a program that. computes a strictly 
monotonic approximation to ,Cz) correct. to six signiftcant decimals will fre
quently yield better results overall than a raaaed approximation correct. to 
■even. Similarly, when the search process wanders temporarily far adeld pro
ducing accidentally a sample argument z > 1011 with no physical meaning, a 
program that delivers a mathematically plausible value for 91{z) will be better 
appreciated than one that simply stops and shouts .. Overftow." ln short, the 
quality of a program and its results depend upon the quality of arithmetic in 
ways that go beyond the most. obvious measures of precision and range. 
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Diminished Expectations. 
Programs conforming lo a universal model that subsumes extremel7 

diverse arithmetic engines, a model like Brown's [23] or van Wijngaarden' s [26J, 
are programs written for a hypothetical machine far worse than any ever built, a 
machine afflicted by the daws of all machines subsumed under the model. Writ
in& such programs is a painful experience which we have just sampled. Usina 
such programs is painful too f-,r reasons now to be explored. 

The nicer properties of a carefully implemented arithmetic engine cannot 
be exploited by program:. conforming to an abstract model of grubby arith
metic. Therefore conforming programs cannot escape entirely from perfor· 
mance penalties like those mentioned under Program libraries• Costs and 
Penalties. Worse. the model's hypothetical machine may be provably incapable 
of computations that could be accomplished, by arcane tricks in some instances 
[36], on almost every real machine. Paradoxically, no problem exists that could 
be solved on a real machine but cannot be solved using, say, Brown's model, 
even th~1o1gh computations exist that can be performed correcUy on every 
widely used computer but are provably impossible to perform correcUy on the 
model's hypothetical machine. Before I explain this paradox, let me explain why 
it matters to me. 

For the moment accept the paradox at face value: some computations are 
achievable nowadays on every actual machine but are provably impossible on 
the model's hypothetical machine, and therefore provably impossible for port
able programs. Were that impossibility accepted by the computing world as a 
Law of Nature it would inevitably become Law legislated by atrophy. No edu
cated customer would demand, nor would any knowledgeable programmer 
attempt lo provide, performance generally believed to have been proved impos
sible. Hardware designers would be not rewarded but penalized for designing 
arithmetic engines any better than barely in compliance with the model, since 
better arithmetic would be a feature of no use to programmers who wish to pro
duce· portable {and therefore widely marketable) programs. Thus would arith
metic deteriorate until it matched the model; and numerical programming for 
protl.t would become the exclusive preserve of a priestly cadre, the devotees of 
the model. 'Ibis is no way lo convey computer power to the people. 

Regardless of whether my forebodings are realistic, the paradox is real and 
has immediate practical consequences some of which will be exhibited after the 
paradox bas been explained. 

F"irst, no problem exists that could be solved on a real machine but cannot 
be solved on a hypothetical machine that conforms to Brown's model. 'Ibis is so 
because all of at least the tint several thousand small integers are model 
numbers within which computation must be exact; therefore a program can be 
written that uses vast numbers of small integers to simulate any real computer 
an the hypothetical one. Brent [37, 38] bas written just such a program to simu
late doating-point arithmetic of any desired range and precision on any 
sufficiently capacious computer with a FORTRA.~ compiler. His program 
includes decimal-binary conversion for input and output, elementary transcen
dental functions like arccos and others not so elementary. and much more; any 
problem that can be solved by writing FORTRAN programs for a real computer 
can be solved {and more accurately) by writing FORTRAN-like programs for 

. Brent's simulation. Of course, Brent's simul~ted t1oating-point is some orders of 
magnitude slower than the native t1oating-point of the computer on which the 
simulation runs. so it should not be used indiscriminately. 

On the other band consider a hypothetical machine that conforms lo 
Brown's model [23] but is otherwise no better than it has to be. For definiteness 
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assume that the machine's hardware caters to just one tloating-point format -
call it working-precision.. Let z be a working-precision variable satisfying 
0 < z ~ 1. Paradoxically, there is no way for the machine to calculate accu
rately (to within a few ulps of their working-precision values) any of 

ln(z ). arccos(z) or 1 - z 

despite the availability of Brent' s simulation and despite the fact that all of 
these functions _can be cG!culated accurately on any real machine. (The last two 
are calculated below under Subtraction.) 

The paradox arises because Brown's model allows these expressions to be 
calculated no more acr.:urate!y than if they bad first l;>een replaced respectively 
by 

ln(z1). arccos{ze) or 1 - •s 

where z 1• z2 and zs are unknown but differ from z only in its last digit(s). For 
instance, on a machine which -,arries six signitlcant decimals but is fuzzy about 
the last of them. any value z between 0.9~9990 and 1.000000 can be replaced by 
any other values z 1• z 2 and •s in that interval whenever any arithmetic opera
tion { +, -. x, /) is performed with z . Therefore the hypothetical computer can 

-, produce any value between 

-1.000005><10-s and 0 for ln(z), 
0 and 4.47214><10-s for arccos(z) radians. 
0 and 1x10-s for 1 - z . 

without traducing the model Brent's simulation of high-precision ftoating-point 
cannot help because ftrst z would have to be converted, using the machine' s 
arithmetic, from working-precision to Brent's format. but the model implies 
that conversion must deliver to Brent' s program some unknown value z4 no 
closer to z than z 1• z 2 or zs have to be. 

Aft.er acquiescing to the indeterminate effect of model operations upon z's 
last digit{s). a programmer might as well choose an algorithm to calculate, say, 
ln{z) that really does contaminate z ' s last digit by roundoff on every machine, 
and therefore calculates ln(z) quite wrongly when z is almost 1. Why should a 
programmer labor to implement ln{z) accurately lo within a few ulps of its 
value, as Cody and Waite [19, ch. 5] have shown how to do on all real machines, if 
that accuracy cannot be justitied by the model' s fuzzy view of tloating-point 
numbers? He might as well do as Brown and Feldman [29, p. 515] have done, 
namely choose an algorithm that performs badly on all machines, yet no worse 
than the best that the model predicts for poorly designed ones. This is a pity 
because, the model notwithstanding, excellent results on well designed 
machines (whose every number is a "model number") could have been obtained 
from a slightly different and equally portable algorithm that does at least as well 
u theirs on every machine. Instead of choosing an integer k such that/ := 
•I 'l1' satistles ~/ <2. they could equally easily have chosen k so that 
11"'2</ <"'2 and then calculated 

ln{z) := kxln(2) + L((J - 0.5) - 0.5) 

where L(u,) := ln(l+u,) = u, - u,2/2 + • • • . The fact that(/ - 0.5) - 0.5 is 
computed exacUy by all machines is not provable from the model. but true 
nonetheless. 

Perturbations in z 's least significant digit appear to be unimportant when e 
is a computed value whose last digit is already uncertain because of earlier 
rounding errors: then the uncertainties in ln(z ). arccos{z) and 1 - e caused by 
■ubsequent rounding errors cannot be much worse than what must be inherited 

- - - ...... --- --- - ... 
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from before. But appearances can deceive; consider now the function 

/(a) = arct.an(ln(z ))/ arccos(z )2 . if O :s. z < 1 

= -1/ 2 if a = 1 . 

This function is well-behaved and comparatively insensitive to changes in z 's last 
1igniftcant digit. · Therefore the obvious program to calculate/ (z) is this: 

Real functian / ( z) : real z ; . 
If a < 0 ar z > 1 then protest ... invalid &r!;wnint 

elae If a = 1 then return -0.5 
elae retuni arctan(ln(z ))/ arccos(z) •~ end/. 

Provided arctan. 1n and arccos are calculated to within a few ulps of working
accuracy, the obvious program for/ (z) is almost equally accurate. But if ln(z) 
and arccos(a) cannot be calculated that accurately, then an unobvious program 
must be contrived to calculate / (z) accurately, perhaps by using a power series 
like 

/(a) = -1/2 + (a - 1)/8 - (a-1)1/20 - 124{a-1)3/945 + • • • 
when a is close enough to 1 and the obvious expression otherwise. The program
mer must decide bow many terms of the series to calculate, and at what thres
hold value of a to switch from the obvious expression to the series; the number 
of terms needed to achieve n correct signiticant decimals throughout O:s.z:s.1 
somewhat exceeds n . When working-precision is very wide many a programmer 
will despair of calculating / (z) to within a few ulps of working-accuracy on the 
hypothetical machine, declaring the task impractical; by acquiescing to less 
accurate results the programmer and bis client acknowledge Diminished Expec
tations. 

Of course / ( z) must be . very special to invite accurate calculation by an 
obvious program despite its approach to 0/ 0 as z .. 1; some observers would 
describe the obvious program as a trick. Other functions just as well-behaved as 
/(a) and even closely related, say 

g(a) = ln(-2/(z)}/(1-a) if O < z :s. 1, 

=1/3 ifa=l, 

cannot be calculated accurately to nearly full working-accuracy by any obvious 
program when z is close to 1. Instead a series like 

g{l-t) = 1/3-7t/45-1229t2/5670-8899t3/ 113400+ • • • 

bas to be used when t := 1-a is tiny. The trick still pays otr: without it twice as 
many terms of the series would be needed to achieve nearly full working· 
accuracy in g{z) throughout O:s.a:s.1. But describing my techniques as tricks 
misses the point: 

If you believe a technique cannot work. 
you will presume some task to be impractical. 

Here is another example: accurate calculations of functions like 
h(z. 11) = (11•-1)/ (11-1) for all 11>0 and all real z 

are performed routinely by certain ftnancial calculators (39]. h(z, 1/) can be 
calculated accurately by a short and ostensibly portable program [ 40, p. 218) 
which merely assumes exponentials, logarithms, products, quotients • and 
ditrerences are accurate to nearly full working-precision. The program is short 
but not obvious; it circumvents the 0/ 0 problem when 11 .. 1 in a way that. fails 
when ln(z) and 1-a are no more accurate than is possible on the hypothetical 



machine. 'lbe modality of Br-own's model supplies no incentive to look for tha.t 
program, less to think it might wor-k. Had the calculator-s' designer-s been in the 
habit of thinking only alon& the lines of the model, ever-y accurate algorithm 
they devised would have over11owed the space available for- microcode, and 
■omebody would have bad to choose between pr-oducing inaccurate calculators 
or none. 

1be most elementary tasks are vulner-able to Diminished Expectations if 
they must be pr-ogrammed too portably. Take the solution of a quadratic equa • 
tion 

a:1 -2bz+c = 0 

aiven working-precision values of the coefficients a, b, c. Can't the roots be cal
culated correct to within a few ulps of working-precision from a well-known for
mula? Yes and No. 'lbe calculation is possible for an ostensibly portable pro
aram which. by making the fullest use of Environmental Parameters (q.v. ab, ve), 
will work correcUy on ever-y· North Amer-ican mainframe. But if the· program 
must be rigor-ously portable over all the machines covered by Bn,wn's modeL 
and hence over the hypothetical machine, then the best that can be done is this 
[36]: 

Except for over /widertlow, the calculated roots differ each by at most a few 
ulps from corresponding exact roots of some unknown quadratic whose 
coefficients differ each by at most a few ulps from the respective aiven 
coefficients. 

This kind or accuracy ■pecitlcation. generally associated with backward trTTOr
a:n.alysis, is not the easiest kind to understand. It implies for the quadratic 
equation that as many as half the figures carried may be lost when the r-oots are 
nearly coincident. 

To calculate the roots to nearly full instead of half working-precision. it 
1uffices that a program evaluate the discriminant b2-ac as accurately as if it 
were tlrst evaluated to double-working-precision and then rounded back to · 
working-precision. This can be achieved by ostensibly portable and truly 
efficient pr-ograms published by Dekker [ 41] which represent each double
working-precision value as a sum of two working-pr-ecision numbers, but the pro
grams malfunction on a few families of machines with insufficiently meticulous 
arithmetic. Whether a package of programs like Dekker's could be devised to 
work on ever-y real machine is not. yet known. No such package could possibly 
work on the hypothetical machine: on the other- hand. ever-y mainframe machine 
built so far bas been found susceptible to precision extension even if only via a 
non-portable pr01ram calibr-ated to that machine. What makes the quadratic 
equation solvable by a proaram which is portable da facto but not cu ju.n is a 
loophole: if the discriminant is posiUve it need onlr be evaluated at tlrst to a lit
tle less than full double-working-precision [42. f7J, and then only if b1 and ac 
mostly cancel By combining Dekker'• techniques with another [38, p. 1233] 
that provokes cancellation or errors, a sinale proaram can be devised that 1olves 
quadratic equatiom to nearly full working-precision on all the machines I know, 
thouah verifying that the program works must be done ver-y differenUy on 
different machines. This program is ugly and too slow to be pr-actical. A practi
cal program similar to the one in F"iaure 10 (to be discussed later) does exist: it 
is much faster than indiscriminate double-wor-king-precision because it uses 
only a few of Dekker's techniques, and it is portable over most machines, but it 
fails on a few commercially important machines. Per-haps those few should be 
excluded from the purview of portable progr-amming, though such a s~ma 
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would surprise their designers and purchasers who had believed, in good com
pany, that allowing arithmetic lo be a bit fuzzy would obscure just the last digit 
or two, not half of the digits carried. 

Among the casualties of Diminished Expectations are our mental para
digms. For instance, the term il.l-ccmctitionad is applied to a problem whose 
amswer's accuracy deteriorates drastically when certain kinds of data for tblc" 
problem are very slightly in error. The archetypal example is matrix inversion: 
the inverse A-1 of a nearly singular matrix A is hypersensitive to tiny perturb~
tions in A. The roots of a quadratic equation are hypersensitive to tiny pertur
bations in the coefficients when the roots are nearly coincident. These probleffl."; 
are ill-conditioned regardless of the program used lo solve them, regardless of 
whether the program calculates the answers correctly or not in the face of 
roundoff. Backward error-analysis [ 43, 36] is a paradigm intended lo explain 
(but not excuse) the effects of roundoff in some programs and is regarded as 
successful whenever 

the program's results differ by at most a few (specifted) ulps from the exact 
results belonging to a similar problem with data differing by at most a few 
{specified) ulps from the data actually given. 

This explains successfully why a matrix inversion program should be expected to 
produce a poor inverse A-1 when applied to a nearly s~ular, and hence ill
conditioned, matrix A. Only if the program's calculated A- is much worse than 
could be caused by a few ulps' perturbation in A - as might happen if the pro-
1ram neglects to perform pivotal interchanges - would the program be con
derrmed as numerically unstable and supplanted by a good program drawn from 
UNPACK [17]. Numerical instability is not necessarily fatal; if working-precision 
sufficiently exceeds what might have been thought warranted by the accuracy of 
the data and desired results, then an ostensibly unstable program may deliver 
eminently satisfactory results fast despite losing most of the figures it carries. 
On the other hand, solutions correct to within an ulp or two can be calculated 
economically for many an ill-conditioned problem. including the examples ln{z ), 
arccos(z ), 1-z and the quadratic equation discussed above; these accurate 
solutions are easier to understand and apply than inaccurate solutions excused 
by ill-condition. Thus, the epithets ill-conditioned and unstable have come not 
so much to characterize problems and programs as to retiect our attitudes 
towards them. From a paradigm created to explain erstwhile perplexing numer
ical phenomena, backward error-analysis has evolved into an exculpatory 
mechanism for any programmer who believes, sometimes correctly, that his 
portable progrem does about as well as is practical even if it does badly. 

Diminished Expectations circumscribe range as well as precision. The 
hypothetical machine of Brown's model becomes unpredictable (it may stop) 
when overtiow occurs, so programs should not allow that to happen unneces
sarily; if a problem's data and solution both lie within range then ideally the pro-
1ram should not allow overftow to obstruct its progress. But the only way to 
avert overtiow is to test the magnitudes of operands against preselected thres
holds before every operation that cannot be rendered safe II priori by the intro
duction of apt scale factors {choices of units). This strategy is consistent with 
John von Neumann's antipathy to tioating-point arithmetic L 44-, §5.3] but be was 
much better at mental analysis than the rest of us for whom the strategy is usu
ally impractical. Nowadays most programmers take perfunctory precautions if 
any, leaving pre-scaling and other defenses against over /undertiow lo the care 
of their program's users [17, p. 15]. In the light of this policy let us consider so 
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simple a computation as the scalar product of two vectors, 

<U, Y> := U1 Y1 + U2Y2 + • • • + Un Yn 
Jt is clearly unreasonable to test before every multiply and add lest it 

over/undertlow, so the user must be obliged to choose scale factors a, -r in 
advance and calculate <aU, TY> = a-r<U, V> for subsequent unsealing. But 
1caling ci pri,ori might be impractical too. Try it on the expression 

q := <A, B> <C, D> 
<A, D> <C. B> 

allowing for the possibility that the vectors may resemble these: 

A := (A. Cl, Cl, , Cl, Cl, 0) 

B := (O,b,b , ••• ,b,b,A) 

C := (A.c,c, • • • ,c,c,0) 

D := (o. cf, cf, • • • , ct. ct, A) 

where A is the ~vertlow threshold and ci, b, c, d are not much bigger than the 
undertlow threshold. After getting q = 0/ 0 because all underflowed products 
ab , cd, ad, cb were tlushed to zero by the machine, try to tlnd scale factors a, {J, 
-,, 6 which will permit 

q := <aA. fJB> <7C. 6D> 
<aA, 6D> <-yC, (JB> 

to be calculated correcily (q = 1) despite underftow and without overtlow. No 
such scale factors exist. 

In general, scale factors that avert overtlow without stumbling over some
thing else tend to be unnecessary (1) for most data but hard to tlnd when 
needed, if they exist at all. Programmers incline neither to waste time looking 
for them nor to encumber programs with them when they are obvious but tedi· 
ous. Therefore the customary portable program for calculating q is the obvious 
program, and it sacridces about three quarters of the machine's exponent range 
to achieve practical portability: the program may malfunction if the vectors' 
nonzero elements are bigger than the fourth root of the overftow threshold or 
tinier than the fourth root of the underflow threshold. This Diminished Expecta
tion is practically unavoidable unless the computer resumes calculation after 
overflow and allows the program subsequently to determine whether overtlow 
occurred. as do many computers today and as is required by the proposed IEEE 
■tandard, in which case programs like those in Figures B and 9 ( discussed below) 
become practical. 

The lesson is clear. Regardless of what may be provably vnpossible, 
currently available arithmetic engines are so diverse that provably portable pro
&ramming is impro.c:tical unless we agree either 
1) to expect signiftcanily poorer accuracy, range and/or speed from portable 

programs than we expect from customized programs, or 
ll) that portable programs are expected to work correctly on most machines 

but not all. although we cannot easily ascertain which machine deserves 
more than certain others to be odd man out. 
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Programmers n. Users n. Computer Salesmen 
Rather than waste human time and talent worrying about computers' preci

sion, range and/or speed, the wisest policy is to purchase more precision, range, 
speed and memory than are needed and then squander the surplus, provided we 
do not squander so much as to forego the competitive advantage conferred by a 
powerful computer. But bow much do we need? The quadratic equation and 
other more impo::'tant ~xamples suggest that twice as much precision is needed 
for intermediate calcuJ~tions as is meaningful in data and results; the quotient q 
of scalar produc~ above suggests that range requirements should be quadru
pled. Might other examples inftate our perceptions of our needs even more? 
UnW we understand better what can and can' t be done with the equipment we 
have already, and who is responsible for decisions about what is feasible, and 
unt.ll we understand better which limitations are Laws of Nature and which are 
due to ianorance and indifference, we cannot say with conftdence bow much 
more is needed nor by whom. UnW then, decisions about computer purchases, 
hardware and software, will rely more upon salesmanship than upon informed 
judgment. 

Buying a bigger computer is the answer to a question that is too often asked 
too late, namely shortly after a new machine bas been purchased. Before the 
purchase, all concerned entertain optimistic hopes and promises. Then the pro
arammer has to realize them. I am not certain that programmers are the only 
ones who have to reconcile ill-deftned tasks to ill-behaved machines, but cer
tainly the programmer must be among the first to suspect that the task 
assigned to him might be impractical and to wonder whether he can persuade 
bis management that this is so. The programmer cannot just buy a bigaer com
puter, neither real nQr hypothetical. 

We ought to be more considerate of programmers, especially if we plan to 
dood the market with computers intended for users among whom almost none 
yearn to program. Those users cannot see the computer as it really is but 
rather see a portrait painted over it by programmers. If programmers have to 
redecorate a grubby machine, real or hypothetical, they may weigh it down with 
too many layers of painL For instance, consider an engineer who has 0 to cope 
with data and results to 3 or 4 signiftcant decimals; experience teaches him to 
calculate with at least 7 or B significant decimals, so he looks for applications 
programs and computer systems that will guarantee that much accuracy. The 
applications programmers, asked to guarantee the correctness of 7 or B 
significant decimals, demand 14 or 15 from their computer system and its sup
porting library,. The library programmers play it safe too; they ask for 30. Com
puter architects obligingly offer 33. The engineer who accepts this rationale 
may unknowingly be squandering 3/4 of his system's data memory and 9/10 of 
its speed as well as the opportunity to obtain a satisfactory system on one chip. 
I think I have exaggerated the situation here, but only to emphasize bow heavily 
important decisions will bang upon what the user and various programmers 
believe to be practical. 

The IEEE subcommittee that drafted the proposed standard bad the pro
arammer uppermost in mind when it abandoned the path beaten by most previ
ous committees concerned _with tl.oating-point, and chose a different approach 
albeit not unprecedented [ 4-5 ]. A draft standard under which all commercially 
important arithmetic engines could be subsumed was not attempted. Numerical 
programs were not surveyed statistically to accumulate operation counts, nor 
were questionnaires mailed out. Instead. the subcommittee tried to understand 
how arithmetic engines have evolved up to now, why programs have been written 
the way they are, what programmers and their clients need and wish to 
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accomplish. and how best that might be done taking into account costs that 
must be borne by users as well as implementors. A few subcommit tee members 
scrutinized innumerable numerical programs - real ones too, not just artificial 
examples like some in this paper. Most of the important discrepancies among 
diverse arithmetic engines were traced .lo accidental differences, some of them 
exceedingly minute. 

aibtractton 
Current computers and ctJ.culators perform fioating-point subtraction in 

diverse ways that occasionally produce peculiar results. To simplify the presen
tation of some of the anom~es let us restrict atter.tion to decimal fioating point 
antbmetic with o~erands and results carrying 4 significant decimals. One exam
ple is {3.414x10 ) - (7.809x10-S) = 3.406191x100 ➔ 3.406x10° to 4 significant 
decimals, calculated as shown in F"igure 1 to gel a slightly different result 
3.407xto0• 

[ 
3.414x10° ) _ [ 3.414 x100] [ 3.414xt00] 

-7.809x10-sj - -0.007809x10° ➔ -0.007x100 

3.407x10° 

F"igure 1 

Many machines, as illustrated in Figure 1, shift the tinier operand to the 
right enough to equalize exponents but, in doing so, retain no more decimal 
digits of the tinier operand than will line up under the 4 significant decimals of 
the bigger operand. The tinier operand's excess digits are discarded {chopped 
off) before the subtraction is carried out to produce a final result that appears, 
in F"igure 1, to be not too bad. A slighUy better result might be expected if, 
instead of chopping off the excess digits, the machine were designed to round 
them off as in Figure 2. 

[ 
3.414X lQO ] _ [ 3.414 X 10°] 

-7.809x10-3 - -0.007809x10° ➔ [ 
3.414-xlOO] 

-0.00BxlOo 

3.406xl0° 

Indeed. the result there is as good as can be expressed in 4 significant decimals, 
so the process illustrated in F"igure 3, which rounds off not the subtrahend but 
just the final difference, might seem to be not worth the bot.her of carrying an 
enra digit or two during the subtraction plus the enra work to round off the 
final result. • 
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[ 
3.414xto0 ] _ [ 3.414 x10°J- [ 3.414000xl0° 

-7.809x10-s - -0.007809xl0° - -0.007809x10° 
3.406191xt0° ◄ 3•40BxloD 

Figure 3 

But appearances can deceive. Before passir.g judgment look at a few complete 
programs rather than merely a few calculations. 

The subprograms in F"igure 4 show bow arcsin(z) and arccos(z) might have 
to be calculated in a computing environment which, like the earliest FORTRAN 
dialects, comes with no inverse trigonometric function besides arctan. 

Real function arcsin(z): real z; 
lf I z I > 1 then Exit with "Invalid Operand" message; 
lf I z I = 1 then. return sign(z )x(1r/ 2) 

else return. arctan(z / -v'((l-z )x( 1 +z))) end arcsin. 
Real function. arccos(z): real z ; 

lf I z I > 1 then. Exit with '1nvalid Operand" message; 
lf I z I + 0.125 = 0.125 then retum fr/ 2; 
11 := arctan(-v'((l-z )x(l+z ))/ z ); 
lf 'II < 0 then. retum. fr + ?/ else return y end arccos. 

F"igure 4 

What do these subprograms produce for arcsin(z) and arccos(z) when 
z = 9.999x10-1 ? The results depend crucially upon the value calculated for 1-z 
which depends in turn upon how subtraction is performed. Let us apply each of 
the methods illustrated by F"igures 1 to 3 in turn. 

Subtraction performed like F"igure 1 calculates 1.ooox10-s for 1-z as shown 
in F"igure 1A. Subsequent calculation on such a machine yields 
arcsin(z) ◄ 1.526x10° and arccos(z) ◄ 4.46Bx10-2• 

I 1.ooox100 1-11.000 x100J 
-9.999x10-1 - -0.9999x100 ◄ [ 

1.ooox10°l 
-0.999xto0J 

o.001x10° 

F"igure 1A 

= 1.ooox10-=-

Results are harder to predict for a machine that subtracts the way illus
trated in F"igure 2. If such a machine recognizes that I 9. 999x 10-1 1 < 1: as seems 
reasonable, then it must calculate O for 1-z as shown in F"igure 2A. Conse
quently arcsin(9.999x10-1) encounters division by zero and delivers no predict
able result, and arccos(9.999x10-1) ◄ 0 on this machine. 
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[ 
1.000xlOO ]- [ 1.000 xlOO] 

-9.999x10-1 - -0.9999x100 .. 

F'igure 2A 

[ 
1.000x 10°] 

-1.ooox10° 

0.000x10° =O 

[ 
1.ooox100 ]- [ 1.000 x100J- [ 1.oooox10° 

-9.999x10-1 - -0.9999x10° - -0.9999x10° 
o.0001x10° = l .OOOxlo-1 

F'igure 3A 

Subtraction performed the third way is a little slower but produces an 
error-free difference 1-z = 1.000xl0-4 as shown in Figure 3A. and then leads to 
calculated values 

arcsin{9.999x10-1) .. 1.557><10° and arccos{9.999x10-1) .. 1.414x10-2 

which compare favorably with the correct values: 
arcsin (0.9999) = 1.556654 ... and arccos(0:9999) = 0:01414225 .... 
Despite their anomalies, the first two kinds of subtraction are common 

among computers and calculators, defended by their designers with various 
arguments. One argument points out that 1.000xloD - 9.999x10-1 involves "mas
sive cancellation" and consequent '1oss" of significant digits. A related argu
ment observes that 9.999x10-1 could easily be in error by a unit or so in its last 
(fourth) significant decimal; should no more be known about z than that 

9.99Bx10-1 < z < 1.000xl<>° 

then nothing more is worth saying about arcsin(z) and arccos(z) than that 

1.55079 < arcsin{z) < 1.570B0 and 0.0200004 > arccos{z) > 0. 

These arguments will not be pursued here because they give so little satisfaction 
even to their proponents, especially considering that neither of the first two sub
traction methods yields final results satisfying the last two inequalities. More 
satisfaction can be realized by substituting the esoteric subexpression 

((0.5-z) + O.S)x{{0.5 + •) + 0.5) 

for (1-• )x(l+•) in Figure 4's subprograms. after which all three styles of com
putation will yield results very nearly correct to all 4 signitlcant decimals 
despite "massive cancellation", but the mod.U1ed subprograms are trickier to 
explain. • 

Little tricks here and there add up to complicated programs. The more 
complicated the program, the more vulnerable it is to blunders and the more it 
must cost to develop. Conversely, a programming environment free from 
unnacessmi, anomalies, entailing fewer tricks, must entail lower programming 
costs. By specifying that subtraction be performed as accurately as possible, 
and consequently exactly whenever massive cancellation occurs, the proposed 
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1EEE standard increases slightly the cost of implementing arithmetic in the 
hope that programmers can then waste less time on arithmetic trickery. 

Of course, no standard can protect programmers from inaccuracies caused 
by their choice of unstable numerical methods. For instance, a common mis
take is to use the equation 

arccos{z) = ; - arcsin{z) 

as an algorithm to dedne arccos{z); this equation would prnduce 
arccos(9.999x10-1) .. 1.571 - 1.557 = 0.014 = 1.400><10-2 instead of the r.:orrect 
value 1.414x10-t. Another common mistake is to replace ((1-z )><(1+z)) in Fig
ure 4 by the simpler expression (1-s2); this can lose almost half the ,igniftcant 
decimals carried. as it does when z = 9.968>< 10-1 because 

1 - •• = 1 - {.99381024) .. 1 - .9938 .. 0.0064 = 6.400x10-s 
instead of 

(1 - s)x(l + s) = (0.0032)x(1.996B) 

.. {3.200x10-S)x1.997 = 6.3904xlo-s .. 6.390><10-3• 

How should a programmer know which of these expressions make good pro-
1rams and which bad? Under the proposed standard the programmer knows 
that massive cancellation during subtraction introduces no new rounding errors 
but may reveal errors inherited by the operands. Therefore differences like 
(1 - •) between exact constants and given data are safe to use, whereas 

differences like 1 - •• or ; - arcsin(z) involving round~d values may be inaccu
rate. Without the standard no such simple rule can be trusted, and then the 
programmer may have to resort to tricks like ((0.5 - z) + 0.5)><{{0.5 + z) + 0.5) 
which work well enough but have to be explained differently and with difficulty 
for every different style of arithmetic. 

SJmbols and Ezceptiom. 
The proposed IEEE standard goes far beyond specifying small details like 

rounding errors. It also specifies how to cope with emergencies like 1/0, 0/0, 
~ exponent over /underdow, etc. Lacking such specifications, the subpro
arams in Figure 4 have been encumbered by tests like 

if I z I > 1 then ... . to avoid v(negative number), 
if I z I = 1 then. ... to avoid :i::1/ 0, and 
if I z I + 0,125 = 0.125 then.... to avoid 1/0 or overdow of 1/,: when lz I 

is very tiny. 
But the proposed standard specides rules for creating and manipulating symbols 
like :t:O, ±• and Na.N - the symbol "Na.N" stands for "Not a Number". These 
rules are de5i&ned so that a programmer may frequently omit tests and 
branches that were previously obligatory because computers treated exceptions 
in unpredictable or capricious ways. For instance, the proposed standard's 
rules for signed zero and infinity, 1-1 = +0 = v'+n, +1/(:i::0} = ±1/(+0) = ±• 
respectively, and the rule that approximates overdowed quantities by :t• with 
the appropriate sign, allow the subprograms in F"igure 4 to be simplified substan
tially provided the arctan program recognizes that arctan(:t:•) = ±rr/ 2 respec
tively. The subprograms in Figure 5, when they are run in the proposed 
standard's Norm.aJ:izing Modll (about which more later), deliver the same numer
ical values as do tbe more cumbersome subprograms in Figure 4. 
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Real function arcsin{z ): real z: 
return arctan(z/✓((1-z)x(l+z))) end arcsin. 

Real funcUon arccos(z ): real z: 
1/ := arctan{✓((l-z)x(l+z))/z): 
if 1/ < 0 then return ff' + 1/ elae return 'I/ end arccos. 

Fiaure 5 

For invalid ar,umenls ( Is I > 1) the subprograms in F"igure 4 deliver an 
error message and then wrest control of the computer away from the program 
that called arcsin{•) or arccos(z ), thereby presumably abort.ina its execution. 
The subprograms in Figure 5 do not have to abort; instead when I• I > 1 they 
may deliver the value Na.N, created by ✓(negative number) and propagated 
through arctan{Na.N) .. Na.N, and then resume execution of the calling pro
gram. At the same time as Na.N is created a tlag called Invalid q>eration is 
raised. SubsequenUy the calling program may infer either from this ffag or from 
the Na.N that an emergency arose and may cope with it automatically rather 
than abort. This capability, to cope automatically rather than just stop and 
complain, might be important in a program being executed far away from 
human supervision, possibly in an unmanned spacecran surveying Mars. or 
course, if the programmer fails to anticipate and provide for that emergency 
then, according to the proposed standard's rules by which Na.Ns propagate 
themselves throuah arithmetic operations, the program's tlnal output may be 
Na.N. A humane computing system might recognize when a Na.N is being emit
ted to a human and convey additional retrospective diagnostic information like 

this Na.N is descended from ✓(negative number) 
attempted in subprogram "arcsin". 

The proposed standard allows {but does not oblige) such information to be 
encoded in a Na.N. 

Alternatively, when debugging programs that call the subprograms in F"ia
ure 5, the programmer may have specided in advance (by enabling the fn:ualid 
~n trap) that invalid operations terminate execution with a messqe like, 
say, 

lnvali~ operand outside domain of operation "square root" 
invoked in line 1 of subprogram "arcsin" 
invoked in line 23 of subprogram "triangle" 
invoked in line 5 of subprogram "survey'' 

Note that no special provision to allow or suppress such messaaes has to be 
inserted into Jiiaure 5'1 subproarams. The proposed standard specides just the 
arithmetic aspects of the programming environment, and does so independenUy 
of whether the operatin& system is helpful enough to supply those messages 
when it aborls execution. A more explicit message, say 

subprogram "triangle" knows no plane triangle has sides 
3.075, 19.82, 2.041 

might be more help to whoever must debug "survey" , but that message is the 
responsibility or whoever programmed "triangle". What the proposed standard 
does provide is that means must exist whereby "triangle" can be programmed to 
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discover whether it is being executed with the /nvCJLid (peratian trap enabled, in 
which case its message may emerge, or disabled, in which case only Na.N need 
emerge when t.binis go wrong. 

J'lap and llodes. 
The convenience afforded by symbols like ±• and Na.N, and by tlags like 

Jrwal:id ~ and Divid.a by Zero, does not come for free. Besides the 
signiftcant cost of embedding the rules for symbols and tlags in the arithmetic' s 
implementation. there is a considerable cost in developing software that will 
interpret correcUy these symbols as inputs and will raise tlags only when neces
sary. 

Let us see what Figure 5's subprograms do to flags. Because those subpro
arams are 10 brief and natural, we can verify easily that they do produce either 
a satisfactory numerical result or a deserved Na.N for lnlffl/ input s, be it ftnite, 
inftnite or NaN. But when Is I = 1 the Dwi,d,e by Zrro ftag will be raised by 
arcsin{s) even though it returns ±rr/ 2 correcUy. The same tlaa will be raised 
when arccos{O) delivers rr/ 2. Rather than distract other users of his program 
by raising flags unnecessarijy, the conscientious programmer should restore 
irrelevanUy raised tlags to their prior states. F"i.aure 6 below will show bow the 
statements needed to restore flags constitute a brief prologue and epilogue in 
each proaram without intruding upon the program's algorithm. 

In addition to tlags, the proposed standard bas bad to introduce things 
called Jlodlls to reftect the truism that exceptions are exceptional just because 
no universally satisfactory way to cope with them can exist. Fortunately, each 
class of exceptions admits only a few reasonable responses, and the proposed 
standard encompasses most of those in its Modes. For instance, the A/f'i:nc and 
the Pro;•ctaJ• modes provide the two environments in which arithmetic with 
inftnity bas been found useful. The Aff"me mode respects the sign of ±• so that 
- < (an11 /'in.i1• munber) < + • • and (+•) + {+•) = {+•) but (+•) - {+•) is 
invalid {NaN); this mode is apt when +• was created by overdow or by division 
by zero resulting from underftow. The Pr ojective mode treats the sign of • as 
misinformation created, perhaps, by evaluating 1/ {z -y) in one place and 
-1/ (y-z) in another both with 1/ =z. and regards as invalid (Na.N) all expres
sions•••+•" and••• - •", and raises the /nvflLid flag for ordered comparisons 
like "• < z •· and "ao ~ z " both of which are. called /al.$• for every ftnite z . 
Because the Projective mode is the more cautious of the two, it is the default 
mode in which programs lacking any contrary directives are presumed to be 
executed. It.-is the apt mode for calculating rational functions in complex arith
metic. Since most programs, like those in F"igure 6, work the same way in both 
modes, most pro1rammers will safely ignore both modes. 

Other modes in the standard control the direction and precision of 
roundoff, enable and disable optional traps for handling exceptions, and mediate 
the effect.a of aradual underdow [ 46). The two modes associated with gradual 
underdow are the Warnu,,g and Nonn.aJ:iztn.g modes of which the latter is invoked 
in F°ll'll'8 8, 10 these two modes will be described here. 

Gradual Undenlow 
Underftow b what happens to numbers too tiny to be represented in the 

normal way. Consider for instance a decimal machine carrying four signiticant 
decimals, with two-digit exponents spanning the range between ±99 inclusive. 
Such a machine allows magnitudes between 1.ooox10-tt and 9.999><1011 to be 
represented normally but needs special ,ymbols for O and possibly • . Some
thina special b needed for underdowed magnitudes between O and 1.o~ox10-1t 
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too; nowadays most machines either tlag undert'lows as ERRORs and STOP, or else 
ftush them to O as if they were negligible despite that sometimes, we know, they 
are noL The proposed standard undertlows graduaJ.l.y by using denonnalized 
num.bn-s, in this instance ranging from 0.001x10-t8 up to 0.999x10-•, to approx
imate underftowed magnitudes. These denormalized numbers, distinguishable 
from other numbers only by their minimal exponent -99 and lead.in& digit 0, sim
plify certain programs by helpu,~ tn p~serve relationships [ 46) that cannot sur
vive when underftows are ftusbed to 0. For example "z >11" should imply 
"z -11 > O", and does so despitr, ro\~doff and underftow when undert'low is gra
dual; but examples like 

z = 3.414x10-t• > 11 = 3.402x10-t9 

suffer when z -11 = 0.012x10-18 underftows and is dushed to O or brings compu
tation to a stop. 

Gradual underftow incurs an error no bigger than a rounding error 
0.00~~10-tt in the smallest normalized nu."tlber 1.000x10-t8 on our decimal 
machine; the corresponding magnitudes on a binary machine conforming to the 
proposed standard are respectively 2-1110 = 7.xl0-48 and 2-128 = 1.x10-s11 in single 
precision. A programmer will ignore these errors if be is satisded that they do 
no more damage than roundoff, as is almost always true; and then he will ignore 
u well the standard's undertlow ftag which is raised whenever underdow occurs. 
But sometimes the ftag must not be ignored. as is the case for the following 
ezample: 

9 = (cixb )/ (c xd) = (ci/ c )x(b/ d) = (ci/ d)x(b / c ). 

Which of the three expressions should be used to compute q? 
Whichever one be chosen, values ci, b , . c, d can be encountered that 

overwhelm the chosen expression with overftow or undert'low despite that some 
other expression would have produced q correctly. For instance, evaluating all 
three expressions on our four significant decimal machine with ci = 8. lOOxl0-151, 

b = 1.eoox10-•, c = 6.0oox10-50, d = 1.670x10-eo produces 

caxb = ci«r 
1.45Bx 10-102 

1.002x10-te 
• • • underdowing gradually and raising ftag 

.. O.OOlxlO-fll .. 9.980xlO_. 
1.002x10-t11 ' 

(1.350x10-1)x(1.078x10-2> .. Cl b 
-X- ➔ 
c d 
a b 
-X- ➔ 
ct C 

1.455x10-s 

1.455x10- s 

correcUy, 

correctly. 

GenUe or not. underftow is too danaerous here to ignore. A conscientiously writ
ten program. after calculatin& q from one expression, must test the Ouff'jtow 
and CJnd.arftow dags and then substitute when necessary whichever (if any) other 
expression for q can be evaluated without raising a ftaa. Such a program is 
called robust insofar as it copes with avoidable exceptions automatically. 

Underflow'■ Norrnalizin& ys. Warning llode■. 
Tbe foregoing discussion outlined what the proposed standard provides for 

underdow in its Normal:izing mode; it merely raises the Und.srjtow dag whenever 
a denormalized number or O is created to approximate a number tinier than the 
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tiniest normalized number. Rat.her t.han acquiesce t.o t.he consequences of t.bat. 
error. a program may respond t.o a raised tiag by branching t.o an alt.ernat.ive 
procedure. But. what. about. a program writ.t.en in ignorance of t.he CJndarftow flag 
and its related two modes? Lacking any reference t.o eit.ber mode, the program 
would be expected to be executed int.he standard's default mode, which is t.he 
Wflf'Tt'ing mode. This mode treats as invalid any alt.empt. to divide by a denor
malized number or to magnify it great.ly by a mult.iplication or division. Conse
quenUy the Warning mode would p,-uciuce a Na.N and raise t.he In.valid. C?P•ra.tion. 
ftag rather than produce t.he dangerouo:; value 9.980x10""" for q = (cixb)/(cxd) 
above. If the In.valid~ trap ~ere not enabled t.he program's user would 
■ubsequent.ly have to invest.ig ate why bis program 

propagated a Na.N int.o its output. 
raised the In.valid Openztion. dag, and 
raised the Un.darftow dag. 

Aft.er educating himself about widerdow he would contemplate bis options: 

l1nore or change the data that induced the exception, or 
Condemn the program and return it to its aut.hor, or 
Revise the program to calculate q some other way, or 
Institute the Normalizing mode and re-run the.calculation. 

'lbe last. option makes sense when, as happens frequenUy, analysis reveals that q 
is destined to be added to some value sufficienUy bigger than q that its figures 
lost to underftow cannot matter much. 

l!Kceptions Deferred. 
The proposed standard's treatment of widerftow illustrates its pragmatic 

approach t.o an elusive and controversial objective: 
t.o specify for each kind of exception an automatic response that. is econom
ical. coherent. more likely useful t.han punitive, provably no worse than 
what has been done in the past. and no serious impediment to programs 
that may have t.o respond in another way. 

Both undertiow-bandling modes permit programs as well as programmers to 
defer judgment about the seriousness of an wider ftow. An analysis of numerical 
programs shows why this deferral is so valuable; most underftows are rendered 
harmless when denormalized because t.bey are dest.ined t.o be added into accu
mulations of like or larger magnitudes, (matrix calculations) or to be further 
diminished by subsequent multiplications (polynomial evaluation) or divisions 
(continued fractions). Harmful underftows tend t.o draw attention t.o themselves 
when subsequent results that. should be tinit.e and not zero t.urn out otherwise. 
Other harmful underdows, like the dangerously wrong value 9.980x10""" for q 
above, are captured in the Warning mode which, when it would be t.oo pessimis
Uc, can be over-ridden by the Normalizing mode as is done in Yli\,lr9 6. A few 
kinds of harmful widerdow will remain elusive as ever, known only by the dag 
they raise. 

Tbe proposed standard's treatment of except.ions has been elected because 
It appears, on balance, to be better than any known alternative although cer
tainly not foolproof. The only foolproof way to cope with exceptions is t.o abort 
computation whenever one occurs, but that does not deliver correct results at 
all. • 
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... Generic subprograms to calculate arcsin{z) and arccos{z) 
... using throughout the same precision as bas been declared for :r . 
... (Insert precision declarations for :r , y , ff, arctan. arcsin, arccos.) 
Domain: valid for -ls:rsl . 
... Invalid arguments, including• in both modes {Affine/Projective), 
... produce Na.N if the Invalid Operation trap is disabled, otbenrise 
. .. prec~pitate an Invalid Operation Exception" ..J (Negative Number)" • 
.Accuracy: within a few units in the last significant digit delivered. 
Subprogram used: arctan(z ), assumed correct to within a few 
... units in its last significant digit for all arguments z including very 
... tiny and denormalized z for which arctan(z) = z, and 
... arctan(±•) = ±ff/ 2 respectively, and arctan(Na.N) .. NaN . 
... all without exceptions. 

arcsin(z ): Save & Reset Dwid.e by zero 11ag to off; 
V := arctan(z / ..J((l-z) x (1+:r)) ); 
Rest.ore sued Flags; 
return y end arcsin. 

arccos(z ): Save & Reset Di.vida by zero, Ouerftow '1ags to off; 
Save Warning/Normalizing )lode & Set to Normalizing; 
v := arctan{..,/((1-z) x {l+z)}/z ); 
If v < 0 then y := y + ff: • 
Rest.ore sued nags, Kodes: 
return y end arccos. 

F'igure 6 

.Arcsin and Arccos. 
F'igure 6 illustrates bow the conscientious programmer might produce 

impeccable and portable subprograms despite a potentially bewildering diver
sity of options and exceptions recognized by the proposed standard. He does 
not have to change F'igure 5's algorithms; he does not have to devise nor explain 
arcane tests like the one in Figure 4, Le. 

if I z I + 0.125 = 0.125 then · • • 

Instead he includes in his program or documentation just those statements per
tinent to the selection of options and responses to exceptions that concern him. 
He need not know about any option be does not exercise nor about any excep
tion bis program will not precipitate. Those aspects of the programming 
environment mentioned by him explicitly are thus proclaimed to be the aspects 
for which be has assumed responsibility; at least he bas thought about them. 

Opportunity n. Obligation. 
The more that can be done, the more will be expected and the more will be 

attempted. ln this respect the proposed standard is not an unmixed blessing for 
soft.ware producers. Besides having to unlearn tricks that should never have had 
to be learned, programmers will have to think. lest they become distracted by 
an embarrassment of riches, about which of the enhanced capabilities are worth 
exercising. Three related cases in point are the solution of a quadratic equation 
and the scalar product 
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<U, V> := U1V1 + U2V2 + ··· +Un Vn 

discussed above under Diminished. Expectations, and the root-sum-squares 

Rtsmsq(n, V) := ✓<U, Y> 
discussed under Precision and Range earlier. How should these functions best 
be calculated wider the proposed standard? 

Unquestionably the best way lo calculate sum. := <U, V> -.rhen the proposed 
standard's optional Eztendllrl format is available is with the obviou~ program: 

Real En.ended sum; sum. := 0 ; 
for;= 1 ton dosum. :=sum.+ U[i]xV[i]. 

(Should the hiaher-level language processor not know that the product 
U[i]xV[i] must be evaluated to the extra range and precision afforded by the 
Extended format. some assembly-language program may have to be used 
instead.) This obvious program illustrates, by contrast with the programs in F"ig
ures 7, 8 and 9 to be discussed below, the best reason for implementi. : the 
Extended format: 

By far the easiest errors and exceptions to cope with are the ones we know 
can' t happen. 

Especially on parallel pipelined vectorized machines, where n may be immense 
and/ or exceptions impossible to trap, the Extended format is worthwhile even if 
cont'med to a relatively small number of (vector and scalar) registers. But some 
computer and language architectures will not tolerate yet another kind of 
ftoating•poit1t data type, so we must reconsider the calculation of scalar pro
ducts and root-sum-squares in an environment supporting only one t'loating
point. format. 

Previously published programs [17, 22, 23, 24] for Rtsmsq(n, V) were bur
dened by constraints of which only two need be reconsidered now: 
I) Avoid scanning the array V more than once because, in some "virtual 

memory" environments, access to V[i] may cost more time than a multipli· 
cation. 

Il) Avoid extraneous multiplications, divisions or square roots because they 
may be slow. For the same reason, do not request. extra precision nor 
range. 

And those programs overcame only one of the two hazards, roundoff and 
over / underflow, succumbing to the former: 

When n ·is huge (108) but the precision is short (6 signiticant decimals} then 
Rtsmsq (n, V) may be badly obscured by roundoff amounting to almost n/ 2 
ulps. 

Moreover, the programs are unsatisfactory for a vectorized machine with a 
parallel pipelined arithmetic engine because they entail several non-trivial 
branches within their inner loops. Attempts to generalize these Rtsmsq pro
arams to cope with scalar products compound this last complication beyond 
practicality. 

The programs in F"igures 7 to 10 are practical solutions for the foregoing 
problems. The programs use two functions recommended widely [3, 19, 29] to 
cope with scaling problems and available under diverse names; one is 

1calB(z, n) := sxir 

where Bis the machine's radix (2 for the proposed standard), and the function 
over/underflows only if the product would otherwise be finite, nonzero and out of 
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range. The second function is the integer valued 

ft := logB(z) that salistles s = scalB(/. n) where 1 ~ 1/ I < B 

provided a tlnite such integer n exists; otherwise 

logB(0) = -• and logB(±•) = +• . 
'l'bese functions or their near equivalents are achievable universally via litUe 
more than integer arithmetic upon the exponent tleld of the ftoating-point argu
ment s: without them neither exp(z) nor ln(z) could be computed ecc-noJl"ically. 
Should scalB(s, n) be slower than a multiplication, replace it by c xs inside a 
loop havin& Ont computed the scale factor S := scalB{l, n) out~ide that loop; 
such an Swill not over/underftow in the programs of F"igures 7-9. 

The pr01rams in Fi&ures 7 to 10 achieve their accuracy by exploiting a 
technique akin to some used by Dekker [ 41] to ext.end the available precision, 
but faster, though not fut enough to be worth using in all instances; this feature 
la easy to remove by following the comments at the programs' ends. 

Tbe programs are practical, but program Dotprod in F"igure 8 is unreason
able: each of its inner loops is too much slowed down by a test for overftow that 
could branch out of the loop. This program. derived from Rtsm.sq in Figure 7 via 
a few modidcations, illustrates the danger in unt.hinlcing acceptance of a prior 
constraint, namely constraint I. Scalar products are far more common than 
root-sum-squares, and far less likely to suffer over / underftow. Therefore Dotp
rod should be proarammed as in Figure 9 to maximize its speed in the usual 
cue and accept a modest penalty, retardation by a factor of 2 to 5 overall, in 
the rare event of over /underftow. Then the program to calculate the root-sum
aquares rni&ht as well be this: 

RaalfuncUoo.Rlsmsq(n, Y) : lntegern; real array V(n]: 
lnt.eger le; real sum; 
Dotprod(n, V, V, sum. l:): ReturnscalB(v'{sum.), l:/2) end. 

In the special case n =2. important for complex absolute value 

cabs(z + iy) = v'z2 + 112 , 

better and shorter programs have been presented elsewhere [ 47]. 
F"igure 10 exhibits a program which solves the quadratic 

az1 - 2bz + c = 0 

correct to working precision without using Extended nor Double precision. It 
acales to preclude premature over /undert1ow, and tests for pathologies like ci =0 
to detect inftnite or indeterminate roots when appropriate. The program 
achieves full robustness by saving and restoring tlags and modes in appropriate 
places, thereby ensuring the appropriate nag will be raised only when a root 
overftows, underftows, is intlnite because of division by ci =0, or is invalid (0/ 0, 
•/ •, er dubious because of denormalized coefficients in the Warning mode). 
The proaram is complicated most of all by an accurate calculation of the 
discriminant d := b1-ac using simulated nearly-double-precision arithmetic 
whenever this is necessary. ConsequenUy the accuracy does not deteriorate 
when roots are nearly coincident. The same goal is achievable by far simpler 
programs when either an Extended format [5, pp. 19-20] or double-precision [36, 
p. 1222] is available. Alternatively, when the loss of half the tlgures carried 
would be tolerable, the subroutine red.DD in Fiaure 10 can be thrown away. 

Programmers always have to juggle trade-otfs: Speed, Memory, Generality, 
Simplicity of use, Reliability, Delay in development. Accuracy, Range and 
Robustness lenathen this list for numerical software. The perplexities of these 
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trade-offs cannot be e liminated by the proposed IEEE arithmetic standard: it 
may make them worse. Whereas fuzzy arithmetic vitiates certain kinds of close 
analysis, thereby relieving the programmer from an obligation to analyze too 
closely, the proposal's precise specifications raise hopes that careful analysis 
will be rewarded at least occasionally by significant performance enhancements. 
Whether these enhancements be won easily with the aid of an Extended format, 
or won deviously without that format, enhanced performance will stimulate 
er..hanced ~xpectations. Thus are obligations born of opportunity. 

Cc,nclWlion. 
Alas, the proposed IEEE standard for binary ftoating point arithmetic will 

not guarantee correct results from all numerical programs. But the standard 
weights the odds more in our favor. It does so by meticulous attention to details 
that hardly ever matter to most people but matter, when they do matter, very 
much. That attention to detail bas been found by several implementors of this 
standard to cost tolerably litUe extra compared with the intrinsic cost of meet
ing any standard. And the expected benefits go beyond the presumed benefits 
conferred by any standard, namely that in identical circumstances we all enjoy 
or suffer identical consequences. The benefit of careful attention to detail is 
that consequences follow from what we have done rather than from what has 
been done to us. 
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Real Fwlctian Rtsmsq ( n, Y) : • • • : = v(f: V[; ]2) 

Integer n ; Real Array Y[ n] ; 
1 

Roundoff cannot accumulate beyond a few ulps of Rtsmsq. 
No tlqs are changed unless Rtsmsq must over / underdow. 
... To avoid premature overdow or loss of accuracy to drastic underftow, 

the sum of squares is scaled internally by B ••2k just when necessary; 
... B is the radix, here 2, to avoid injecting extra roundo~ . 
... For speed's sake the array Vis scanned only once, 

but this program is unsuitable for pipelined parallel vl!:r.lorized machines. 
Integer i, i, le, m; Boolean. nags Owrjlow, CJndlrflow ... ~s signal events. 
Real sum., round, tenn., temp ... same precision & ranae as V. Rtsmsq. 
Constant i, m; ... inserted by hand or at compile time using formulas •. 
Saw Warning/Normalizing llode Ir Set to Narmalizing; 
Saw .AJJvu, /Pro;ectiw )(ode It Set to )I/in.a ... respect sign of •. 

• round:= 1-Nextafter(l, 0) . = 1 ulp of 0.999... < 1/n.. 
• temp := Nextafter( +•, 0) ... = overftow threshold. 
• m := logB(round/v(tem.p)) ... B•-rn A: round/ v(tem.p) to scale down. 
• tnm. := Nextafter(0, 1)/round ... normalized underftow threshold x2. 
• i := (l01B(tem.p )-logB(tenn)+logB(round})/2 ... to scale up. 

Saw & Rael Owrftow, Un.dJ,rftow nap to/alse; 
; := 1; ft&m. :=round:= O; le := i; 10 to ''Scaled" ... scale up tint. 

"Huge": Reaet Otlff'/low Flaa to false; le : = m. ... to scale down. 
· non.:= scalB(nim. m.+m.); round := scalB(nnmct, m.+m.); 

.. Seal.ad": for; = i ton. do begin ... calculate scaled sum of squares. 
term. := roun.ci + scalB( Y[; ], le )•92 ; 
temp := term. + sum ... add ( Y[; ]xB •~) •--2 to sum. 
U Over/low then go to "Ordinary" ... and record; . 
round := (sum.-tem.p }+term.; sum.:= temp endj; 

Restore saved Flags, )(odes; Return scalB( v(sum.), -le) ... unscaled 

.. 0-cnnary": .sum:= scalB(nim. -i-i); round:= scalB(round, -i-i); 
Reset Overflow Flag to false; 
for; = ; ton do begin ... try an unscaled sum of squares. 

tenn. := roun.ci + V[; ]••2; temp := term. + sum. 
U Over/low then go back to "Huge " ... and record;. 
round := (sum-temp )+term.; sum.:= temp endj; 

Restore saved Flags, llocles; Return v{sum.) 

Optimization for small n. or large tolerance for roundoff: This program 
... spends time recalculating round to compensate for most 

... ... roundin& errors caused by addition and succeeds unless n > 1/ round 

... . .. • initially, which is all but inconceivable. But if an error as big as n/ 2 ulps 
... of RtsmMJ is tolerable then speed can be improved slighlly by omit.ting 

...... recalculation of round and term., as if round = 0. 
andlltm,,sq. 

F'igure 7 
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~broutine Dotprd(n, U, V, sum. k): ... sum.:= d:u[j]xV[j])/ B•ffc 
1 

Input Integern; Input Real Array U[n], V[n]; 
Output Integer k; Output Real sum. ... B = radix, 2 for IEEE standard. 
... Scaling (k jj!Q) is invoked only if necessary to avoid over/underflow; le is even. 
... Accuracy is no worse than if every U[j] and V[j] were perturbed by less than 2 ulps . 
... For speed's sake the arrays are each scanned only once, but this program 

is unsuited to pipelined parallel vectorized machines. 
Integer i, ;, m: Boolean nags Overflow, Invalid, Und.erftow; 
Real round, tenn, temp ... same precision & range as sum, U, V. 
Constant i, m: ... inserted by hand or at compile time using formulas •. 
Save W~ /Nrrrmal:iring llode ft Set to Normal:izing; 
Save AJfi:na /Projective llode ft Set to A,ffi:n.e ..• respect sign of•. 

• round := 1-Nextafter(l, 0) ... = 1 ulp of 0.999 ... < 1/n. 
• temp := Next.after{+ .... , 0) ... = overt'low threshold. 
• m. := logB{round/✓{temp)} ... B•-rn i:= round/✓(*t:tmp} to scale down. 
• i := logB{tem.pxroundxround) ... to scale up. J' • 

Save ft Reset Overflow, Undzrftow, Invalid ftqs to false; 
i := 1: sum.:= round := O; le := i; go to "scaled" ... scale up tirsL 

"Huge": Reset Overflow Flag to false; le := m ... to scale down. 
sum:= scalB(sum. m.+m.}; round:= scalB{round, m.+m.): 

.. Scaled": for; = i ton do begin ... calculate scaled sum of products. 
tenn. := round + scalB( U[j ], le) x scalB( V[; ], k) : 
temp := tenn. + sum. ... add (U[;]xV[j]} X B 0 2k to sum. 
if not Ouer/low then begin round:= (sum-temp )+term.: 

endj; 

sum. := temp end not Overflow; 
else if not 1-n:val.id then go to "Ordin.a:ry" ... & record j. 

else Reset Ouerftow, Invalid Flags to false 

k := -k -k: Reset Und.erftow Flag to false; 
temp := scalB{sum. k) ... attempt to unscale. 
if not (Ouerflow or Underflow) then begin 

k := O; sum := temp end: 
Rest.ore saved Flags, Kodes; Return ... possibly k ~o. 

"Orctina:ry": sum.:= !!CalB{sum. -i-i); round:= scalB{round, -i-i); 
Reset Overflow Flag to false; 
for; = ; ton do begin ... try to accumulate unscaled products. 

tenn. := round + U[; ]x V[j ]; temp := term + sum.: 
if Ouerflow then go back to "Huge" ... and record;. 
round := (sum-temp )+tenn.; sum.:= temp endj; 

Restore saved Jlags, llodes; Return ✓(sum) ... k =0 as usual 

Optimization for small n. or large tolerance for roundoff: This program 
spends time recalculating round to compensate for most rounding errors 
caused by addition and succeeds unless n > 1/round initially, which is all but 

inconceivable. But if perturbations of about n/ 2 ulps in every U[;] and V[j] 
are tolerable then speed can be gained by omitting to recalculate 
round and term., as if round = 0. 
end Dotprrt. 

F"igure 8 



&lbroutine Dotprd (n, U, V, sum.. le) : ... sum := d: U[i ]x V[j ])/ B .. k 
1 

Input Integer n,· Input Real Array U[n ], Y[n] ; 
Output Integer k ; Output Real sum. ... B = radix, 2 for IEEE standard . 
... Scaling (Jc 11"0) is invoked only if necessary to avoid over / underftow; k is even. 
... Accuracy is no worse than if every U[i] and V[j] were perturbed by less than 2 ulps. 
... If over /underftow requires it, the arrays may be scanned twice. This program 

is satisfactory for pipelined parallel vectorized machines because tests 
in t.he inner loop do not have to wait for any arithmetic operation to tlnish. 

Integer i , ;, m.; Boolean 1'lap Ouarjl.O'W, CJnd,,erftow ... t'lags signal events. 
RMl round, scwesu.m., term, temp, thresh ... precision & range of sum., U, V. 
Constant i , m., thresh; ... inserted by band or at compile time using formulas •. 
Jlacro proceclllre .Add(z ): ... to be compiled in-line, rather than called ... 

term. := round + s ; t•mp :=sum.+ tffffl.; round := (sum.-tem.p) + t•nn.: 
sum. : = tflffll' end Add ... more accurate than sum. : = sum. ~ s . 

Sawe Warning / NormaJ:i.zur.g llode & Set to Normal:i.zing; 
&.::-e Jlfi:nfl / Projecti:ue )lode & Set to Jlfi:nfl ... respect sign of •. 

• nnmd := 1-Nextaft.er(l, 0) ... = 1 ulp of 0.999 ... < 1/ n . 
• temp := Nextafter( +•, 0) ... = overdow threshold. 
• m := logB(round/✓(t•mp)) ... e•-m sts round./✓(temp) to scale down. 
• th.rash := Next.after(0, 1)/ round .... normalized underdow threshold x2. 
• i := logB(temp xroun.d xround) ... to scale up. 

Sawe & Reset OwrjtO'W, Und.trrftO'W nap to false; 
sum := round := k := 0: ... try to do without scaling. 
for; = 1 to n do Add ( U[i] x V[j ]) : 

If Ourrftow then begin ... scale down. 
sum.:= round := 0 : Jc := m. ; 
for; = 1 to n do Add ( scalB( U[; ], /e ) x scalB( V[j ], k )): 

end Ouarjl.ow. 
elae if Un.d.erftow and !sum.I < nxth.resh then begin 

savesum. := sum.; sum. := round := 0; le := i ... t ry to scale up. 
forj=l ton doif U[j]ff0 and V[i],t0 

then Add (scalB( U[; ], le) x scalB( V[j ], k)) : 
If OuwftO'W then begin sum. := savesum.; le := 0; end can' t scale 

end Und,arjf O'UJ: 
If k 11"0 then begin /e := -1: -le ... try to unscale. 

Reset Ouerftow, Undarj'f ow nags to false; 
scwesum. := scalB(sum., le); 
if not (Ouflrjfow or CJnd.arftow) then begin ... successfully unscaled. 

le := 0; sum. := scwesum. end 
endk f'O: 

Rest.ore saved nags. llodes: Return; 

Optimization for small n or large tolerance for roundoff: This program 
spends time recalculating round to compensate for most rounding errors 
caused by addition and succeeds unless n > 1/ round initially, which is all but 

inconceivable. But if perturbations of about n I 2 ulps in every U[;] and V[j] 
are tolerable then speed can be gained by omitting to calculate 

... round and tflTffl in.Add, as if round= 0. 
endDotprtL 

F'lgure 9 
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Sibroutine Quadra,tic (a, b . c , D. X. Y) : ... solve az2 - 2bz + c = 0. 
Input real ci, b, c; Output real D. X, Y; 
••• If D :a: 0, real roots X and Y satisfy IX I ,- I YI : otherwise the complex conjugate 
- · roots are X ± lY. Each of X and Y is accurate within a few ulps unless it lies out 
- · of re.nae, in which case it over / underflows. Infinite, ze ro or denormalized ci , b , c 
... produce X, Y compatible with modes inherited from the calling program. 
Integer m; Boolean 11a&• Ourrftow, CJnd.erflow; RP.al. A. B, C, P. R. 
Integer constant L, l; ... inserted bf hand or at cc,npile time. 
L := l01B(Nertafter( •, O)) ... {ramz )L+l barely o~rftows. 
l := logB{Nextafter(O, 1)/ (Next.an.er( 1, 2) - 1)) ... (r,··...diz )' almost underflows. 
... Test for pathological coefficients Orst. 
If ci=O lllldc=O thengotobigBelN D := 1; 
If ci =O er c is not. tlnite then begin Y := (c / b )/ 2; X := c I ci; return end; 
If c =O or ci is not. tlnite then beci,n X := (b I Cl)/ 0.5; Y := c I ci; return end; 
... Henceforth a and c are Onite and nonzero. 
m. := (l + L - maxll, logB{r.i H - maxll, logB{c H) / 2 ... rounded to integer. 
A:=scalB(a, m.); C:=scalB(c , m.); P :=AxC; 
Saft le Rael Ourrftrrw, Urullrftow Jlap to falss; 
San Warning / Narmalizing llode le Set to Nonnal.:izing; 
B:=scalB(b, m.): R :=BxB; D:=R-P; 
If D = R then bep ... lJI » IAxCI ~ 1. 

Re■tore sa•ed llag■, llodes: 
frigB. D := 1: Y := (c / b )/ 2: X := (b I ci )x2; return end: 

if -R~D~P then. ndlJD ... see internal subroutines below. 
ii D <0 then begin ... complex conjugate roots. 

Rat.are saYed fta&s. llodes; Y := ...r-:rJ I A; X := (b l ci): return end; 
... now roots must be real. 
R := B + copysign(v'D , B) . .. = B + v'21 x sign{B): 
Rest.ore saYed 11.aas. llodn; Y := Cl R; X := R I A; return; 

Internal Subroutine ndlJD : ... recalculate small D = B1-AC. 
Omit ndlJD if half-precision accuracy is acceptable for nearly coincident roots. 

... Otherwise, by simulating nearly-double-precision arithmetic, the following program 

... calculates D correct to working-precision, despite cancellation. Consequently the 

... calculated roots will be correct to nearly full working-precision. And when the roots 

... would be small integers if calculated exacUy, they will be calculated exacUy in 

... binary, but perhaps only approximately when the radix exceeds 2. 
real A, ll, B. ii, C, f'~l'_• r , E, e, F, /, G, g; 
m. := (logB(A) - log~ C))/ 2 ... rounded to integer . 
.,,W(scalB(A, -m), A, ll) ... see SJ!lit_subroutine below. 
aplif(scalB(C, m.), ~. f'f ~it(B, B, b); 
p := ((1xc - P) + (llxC +Ax~))+ llXf' ... = Axe - P exactly. 
r := ((11xB - R) + 2xii xB) + b xb ... = BxB - R exacUy. 

T := E-. ; / := (F+• )-E) -r ... F-/ = E-. +r 
E := R-P: • := l(E+P)-R) + p ••• E-. = R-P-p 

G := F-/ : g := G+J)-F ... G-g = F-/ 
D := G-g; return ... D = R-P-p -r = BxB - AxC. 

Internal Subroutine split(Z, H , t) : Input real Z; Output real H, t ; 
... H := (Z rounded to half working-precision) and t := Z-H exactly provided 
... that Uie radix is 2 or else working-precision carries an even number of digits. 
real constant J := 1 + scalB(l, integer nearest ((0.5 - logB(Nextafter(l, 2) - 1))/ 2)); 
H := JxZ; H := H-(H-Z); t := Z-H; return end split: end redoD; end Qu,a.d:ra.tic 

F'igure 10. 
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