ARITHMETIC FOR OCESSORS

R. Kirchner and U. Kulisch

Fachbereich Informatik, Universitit Kaiserlautern
Fakultdt fiir Mathematik, Universitidt Karlsruhe
West Germany

Abstract: In electronic computers the elementary
arithmetic operations are these days generally
approximated by floating-point operations of high-
est accuracy. Vector processors and parallel com—
puters often provide additional operations like
"multiply and add”, *“accumulate” or "multiply and
accumulate”. Also these operations shall always
deliver the correct answer whatever the data are.
The user should not be oblighed to execute an er-
ror analysis for operations predefined by the man-
ufacturer.

In the first part of this paper we discuss cir-
cuits which allow a fast and correct computation
of sums and scalar products making use of a matrix
shaped arrangement of adders and pipeline techno-
logy. In the second part a variant is discussed
which permits a drastic reduction in the number of
adders required. The methods discussed in this
paper can also be used to build a fast arithmetic
unit for micro computers in VLSI-technology.

1. Introduction

Modern computers of highest performance, the
so-called vectorprocessors or supercomputers, are
gaining considerably in importance in research and
development. They serve for simulation of proces-
ses which cannot be measured at all or only with
great effort, for solving large engineering design
problems or for evaluation of large sets of meas-
ured data and for many other applications. It is
commonly assumed that these computers open a new
dimension for scientific computation. In sharp
contrast to this is the fact that the arithmetic
implemented on supercomputers differs only margin-
ally from that of their slower predecessors, al-
though results are much more sensitive to rounding
errors, numerical instabilities, etc. due to the
huge number of operations executed.

Research in numerical mathematics has shown that,
with a more comprehensive and optimal vector
arithmetic, reliable results can be more easily
obtained when dealing with extensive and huge pro-
blems. Computers with this kind of arithmec have
proved the significance of this development in
many successful applications.

Until now, it has been assumed that an optimal
vector arithmetic could not be implemented on su-
percomputers. The users, therefore. had to choose
between either lengthy computation times and accu-

CH2419-0/87/0000/0256%01.00 © 1987 IEEE

256

rate results on general purpose computers or com—
paratively short computation times and possibly
wrong results obtained on supercomputrs.

It was assumed, in particular, that correct compu-
tation of continued sums and scalar products,
which are necessary for vector arithmetic. could
not be implemented on supercomputers with pipeline
processing. Well known circuits, which solve this
problem, require several machine cycles for carry-
ing out a single addition whereas a computer of
highest performance with traditional arithmetic

carries out one addition in each cyclel. This pa-
per describes various circuits for the optimal
computation of sums and scalar products at the
speed of supercomputers. There is. in principle,
no longer any reason to continue to accept inaccu-
rate sums or scalar products by not using optimal
vector arithmetic on vectorprocessors and super-
computers. The additional costs compared with the
cost of the complete system are justified in any
case. It takes the burden of an error analysis
from the user.
The first electronic computers were developed in
the middle of this century. Before then, highly
sophisticated electromechanical computing devices
were used. Several very interesting techniques
provided the four basic operations of addition,
subtraction, multiplication, and division. Many of
these calculators were able to perform an additio-
nal operation which could be called "accumulating
addition/subtraction” or continued summation. The
machine was equipped with an input register of
about 10 to 13 digits. Compared to that, the re-
sult register was much longer and had perhaps 30
digits. It was situated on a sled which could be
shifted back and forth relatively to the input
register. This allowed an accumulation of a large
number of summands into different positions of the
result register. There was no rounding executed
after each addition. As lonz as no overflow oc¢-
curred, this ating addition was e .
dd sociativ t nd
ndent of the order in which ¢t 8
added.
This accumulating addition without intermediate
roundings was never implemented on electronic com-

lBy a cycle time or a machine cycle we understand
the time which the system needs to deliver a
summand or a product, in case of a scalar product
computation, to the addition pipeline.

puters. Only recently, several /370 compatible
systems have appeared which simulate this process
on general purpose machines by accumulating into
an area in main memory, which is kept in the cache
memory for enhanced performance. [5]., [6]. This
allows the elimination of a large number of round-
ings and contributes essentially to the stability
of the computational process. This paper desribes
circuits for an implementation of the accumulating
addition on very fast computers making use of
pipelining and other techniques.

The first uters executed their cal-
culations in fixed-point arithmetic. Fixed-point
addition and subtraction is error free. Even very
long sums can be accumulated with only one final
rounding in fixed-point arithmetic, if a carry
counter is provided which gathers all intermediate
positive or negative overflows or carries. At the
very end of the summation a normalization and

rounding is executed. us fixed
] S ative e result

rect t e un n t figure and it is

ent of t rder in whi e ds are

added. Fixed-point arithmetic, however, imposed a
scaling requirement. Problems needed to be pre-
processed by the user so that they could be accom
modated by the fixed-point number representation.
With the increasing speed of computers, problems
that could be solved became larger and larger. The
necessary pre-processing soon became an enormous
burden.

The introduction of floating-point representation
in computation largely eliminated this burden. A
scaling factor is appended to each number in
floating-point representation. The arithmetic 1t-
self takes care of the scaling. Multiplication and
division require an addition. respectively sub-
traction, of the exponents which may result in a
large change in the value of the exponent. But
multiplication and division are relatively stable
operations in floating-point arithmetic. Addition
and subtraction. in contrast, are troublesome in
floating-point.

As an example let us consider the two floating-
point vectors

102] 1050
1223 2
x= |10%% . y= -10%
1018 1022
3 2111
-10%1] | 108

A computation of the inner or scalar product of
these two vectors gives

X.y = 1050

8,779

Most digital computers will return zero as the
answer although the exponents of the data vary
only within 5 X or less of the exponent range of
large systems. This error occurs because the
floating-point arithmetic in these computers is
unable to cope with the large digit range required
for this calculation.

Floating-point representation and arithmetic in
computers was introduced in the middle of this

+2.446 - 10° + 10%° + 6,333 - 1090 =

257

centry. Computers then were relatively slow, being
able to execute only about 100 floating-point ope-
rations in a second. The fastest computers today
are able to execute billions of floating-point
operations in a second. This is a gigantic gain in

speed by a factor of 107 over the electronic com-
puters of the early fifties. Of course, the prob-
lems that can be dealt with, have become larger
and larger. The question is whether floating-point
representation and arithmetic which already fails
in simple calculations, as illustrated above, are
still adequate to be used in computers of such
gigantic speed for huge problems.

We think that the set of floating-point operations
should be extended by a fifth operation, the “ac-
cumulating addition/subtraction" without interme-
diate rounding. an operation which was already
available on many electromechanical calculators.
It is the purpose of this paper to show that this
additional operation can be executed with extreme
speed. We realize this operation by adding the
floating-point summands into a fixed-point number
over the full floating-point range. Thus “accumu-
lating addition/subtraction”™ is error free. Even
very long chains of additions/subtractions can be
executed with only a single rounding at the very
end of the summation. Such "Accumulating addition/
subtraction” is associative. The result is inde-
pendent of the order in which the summands are

added.
With the fifth operation "accumulating addition/-

subtraction”, we combine the advantages of fixed-
point arithmetic - error free addition and sub-
traction even for very long sums - with the advan-
tages of floating-point arithmetic - no scaling
requirements.

2. e State of the Art

A normalized floating-point number z (in sign-mag-
nitude representation) is a real number of the
form

z=%meb® .
Here % ¢ {+.,-} denotes the sign (sign(z)), m the
mantissa (mant(z)), b the base of the number sys-
tem and e the exponent (exp(z)). b is an integer
number with b > 1. The exponent is an integer and
lies between two integers el { e2. In general, el
< 0and e2 > 0. m is the mantissa. It is of the
form
1

m= I
i=1
Here, the z[i] denote the digits of the mantissa;
z [1] ¢ {0.1,....,b~1} for all { = 1(1)n and 2[1]
0. 1 is the length of the mantissa. It denotes
the number of mantissa digits carried along. The
set of normalized floating-point numbers does not
contain the number 0. In order to obtain a unique
definition of O one can additionally define:
sign(0) = +, mant(0) = .000 ... O (1 zeros after
the point) and exp(0) = el. This kind of floating-
point system depends on four constants b,l.el and
e2, Ve denote it with S = S(b.1,el,e2).
Let

2[1] + b1 .

Y Y1

u2 v
u=(u1)= . V=(v‘)=

u v,

n n

be two vectors, the components of which are nor-

malized floating-point numbers, 1i.e. u;. Ve S
forall i = 1i{1)n. The theory of computer
arithmetic[1], [2]., [3] demands that scalar

products of two floating-point vectors u and v be
computed with meximum accuracy by the computer for
each relevant, finite n and different roundings.
By doing so, millions of roundings can be
eliminated in complicated calculations. This
contributes essentially to the stability of the
computational process and enlarges the reliability
and accuracy of computed results. Furthermore,
defect correction then becomes an effective
mathematical instrument.

This requires, for example, the execution of the
following formulae by the computer:

n
u®v=0 (2 ug *v.)
i=1
n
uBve=0(u, * v}
=1 1+ 1
n
W v=V (I u v (0
i=1

n
ulAv=A (2 ug *v,)
i=1

The multiplication- and addition-signs on the
right side denote the correct multiplication and
addition for real numbers. O, O, V. A are
rounding symbols. O denotes a rounding to the
nearest floating-point number, [0 denotes the
rounding towards zero, V denotes the monotone
downwardly directed rounding and A denotes the
monotone upwardly directed rounding.

For an execution of formulae (I) first the pro-
ducts u; * v, have to be correctly calculated by

the computer. This leads to a mantissa of 21 di-
gits and an exponent which lies in the range of
2el-1¢e{2e2. So the computation of scalar products
is reduced to the evaluation of sums of the fol-
lowing form:

()(12l ':l)' neN (11)
i=1

Here the w, are floating-point numbers of double
length w eS(b.21.2e1-1,2e2), for all 1 = I(1)n. O

denotes a general rounding symbol, ¢ ¢ (O, 0O,
V. A). Measures have to be taken first to gene-
rate and represent the summands v correctly in

the computer. In case of scalar products this can
be done by very fast and well-known circuits.
For traditional general purpose computers there

258

are several ways to correctly compute (I) and (II)
mentioned in the literature. It is the intention
of this paper to describe circuits for high speed
computation of (I) and (II) on vector computers by
means of pipeline techniques. These circuits have
to accept and process one summand from (I) resp.
(II) during each machine cycle. To assist in the
understanding of the following material, we first
refer to one of the possibilities mentioned in
47:

ge]cons!der a register of L = k + 202 + 21 + 2]el]
digits of base b, which should be placed in the
arithmetic unit (Figure 1).

k 2e2 21 2]e1]

Figure 1

We divide this register into segments of length 1
(Fig. 2):

k 1

Figure 2

The summands in (I) and (II) are of length 2l.
They fit therefore, digitwise into a subrange of
length 31 of this storage. This part of the regis-
ter, which is determined by the exponent of the
summand, is selected and loaded into an accumula-
tor of length 31. The summand is loaded into a
shiftregister of the same length. being correctly

positioned according to the exponent, and then
added into the accumulator (Figure 3).
1 Accumulator
1 Shiftregister
2] (summand)
Figure 3

The addition may produce a carry. In order to
catch this carry. a few more digits than the three
words of length 1 can be read from the long regis-
ter into the accumulator. which i{s extended to the
left accordingly. If not all of these digits are
b-1, the carry is caught by these additional di-
gits. Since it is possible that all these additio-
nal digits are b-1, a loop has to be provided
which then adds the carry to the following digits
of the long register. This loop may possibly have
to be activated several times.

The addition of the summands of (I) resp. (II)
into the long register, Fig. 1 resp. Fig. 2, may
still produce a carry on the very far left of the
register. In order to catch such carries the long
register is extended on the left by a few more (k)
digits of base b (Fig. 1). Then, any sum (I) or
(II) of n summands can be added without loss of

information into the long register of length L. bk
carries may occur and can be processed without
loss of information.

Here we conclude our description of one possibili-
ty to solve the problems (I) and (II). See [4].

[

What we just described belongs to the state of the
art.

3. utation 1 cts

The method described above is not suited for the
computation of (I) resp. (II) on vector processors
or supercomputers. The process of reading, shift-
ing, carry handling, possibly by a loop. and writ-
ing back is certainly too slow to be executed in
one cycle time of only a few nsecs of these compu-
ters. A solution of the problem by a very long
adder is also very costly and probably too slow.

We therefore discuss here a variant of the possi-
bilities mentioned above which makes processing of
a summand of (I) resp. (II) possible within a very
short cycle time. In comparison to general purpose
computers, vector processors and supercomputers
achieve their high speed of computation by means
of pipelire technology whereby during each machine
cycle a result is obtained. If scalar products and
sums are to be computed with high speed on vector
processors or supercomputers, one has to develop
circuits which accept and process one summand
(resp. a product) per machine cycle. This is only
possible if the addition is done by means of pipe-
line technology. This paper describes various cir-
cuits which allow this.

At first the most important issues and ideas of
the circuitry are presented in the text referring
to Figures 4 to 15. These Figures contain some
more details which are not essential for a first
understanding of the principles. These details are
presented later in chapter 4 "Additional Remarks
concerning the Figures".

The circuit described below consists of a shifter
which is followed by a pipelined adder called sum-
ming matrix (Figure 4). The shifting device may be
realized by standard technology and belongs to the
state of the art.

The adder consists of registers of a total length
of 8 2 L. Here L denotes the length of the long

register as outlined above2 (Figure 1). The regis-
ter length S 1s divided into r identical parts
which are arranged as rows one below the other
(Figure §). r denotes the number of rows. All rows
are of the same length. Each of these rows is di-
vided into ¢ 2 ! independent adders A (see Figure
6). Thus the whole summing device consists of r
c independent adders. Each of these adders A has a
width of a digits. Between two of these independ-
ent adders, carry handling must be possible. Also
between the last adder of a row and the first one
of the next row a carry handling must be possible.
The complete summing device which we call the sum-
ming matrix SM, has a width of S =a ¢ ¢ * r di-
gits of base b. c denotes the number of columns of
the summing matrix. It must be S 2 L = k + 2e2 +
21 + 2 |e1] (Figures 5, 6).

The summing matrix contains ¢ * r independent ed-
ders A. Each of these adders must be able to add a
digits of base b in paralle] within one machine
cycle, and to register a carry which possibly may
occur. Since each row of the summing matrix con-

2, a part of it. A reduction of the length S is
discussed below.

259

sists of c¢ identical adders, h:= ¢ * a digits can
be added in each row of the summing matrix. Each
of the r rows of the summing matrix SM must be at
least as long as the mantissa length of the sum-
mands which are to be added. Each digit of the
summing matrix is characterized by a certain expo-
nent corresponding to the digit's position. The
upper right part of the summing matrix carries the
least significant digit. the lower left part of
the summing watrix carries the most significant
d;git of the full summing device (Figure 5, Figure
6).

Each summand resp. each product of (I) resp. (II)
must now be added into the summing matrix at the
proper position according to its exponent. The row
selection is obtained by the more significant bits

of the exponent (exp div h)3 and the selection of
the columns is obtained by the less significant

bits of the exponent (exp mod h)4. This complies
roughly with the selection of the adding position
in two steps by the process described in Fig. 3.

The incoming summands resp. products are now first
shifted in the shifting unit (barrel shifter,
cross bar switch) into the correct position ac-
cording to their exponents. The shift is executed
as a ringshift. This means that the part of the
summand which hangs over the right end is rein-
serted at the left end of the shiftregister (Fig-
ure 6 upper part, summands 2 and 3, Figure 8). The
summand is distributed onto the ¢ independent
parts of width a of the shiftregister. Each part
receives an exponent identification according to a
specific digit in it, e.g. the least significant
one (Figures 5, 6 and 10). The individual adders A
also carry an exponent identification. The shifted
and expanded summand now drops into the top row of
the summing matrix and thereafter proceeds row by
row through the summing matrix, woving ahead one
rov in each machine cycle. The addition is execu-
ted as soon as the exponent identification of a
transfer register in the summing matrix coincides
with the exponent identification part of the sum-
mand .

A summand, which arrives at the sumning unit, can
remain connected after shifting to the correct
position within the shifting unit. In this case,
the addition is executed in only one row of the
summing matrix. The shift procedure, however, can
also cause an overhanging at the right end of the
row. The overhanging part then is reinserted by a
ringshift at the left end of the shifting unit
(see Figures 6 and 8). In this case, the addition
of both parts of the summand is then executed in
neighbouring rows of the summing matrix. If the
wost significant part of the summand, which was
situated at the right end of the shifter, is added
in row y then the addition of the least signifi-
cant part, which was situated at the left end of
the shifter, is added in row y - 1. This means the
next less significant row (see Figure 9).

It is, however, not at all necessary that each

3933 denotes integer division,
1.e. 24 div 10 = 2.

4@ denotes the remainder of integer division.
i.e. 24 mod 10 = 4.

transfer unit carries a complete exponent identi-
fication. It is sufficient to identify the row by
the exponent part exp div h of the summands in the
shifter and to use it for selection of row y. The
distinction whether the addition has to be execu-
ted in row y or in row y - 1 is made by a bit con-
nected with each transfer register or by a suit-
able column signal which distinguishes the trans-
fer registers of a row. (The principle is 1llus-
trated by the diagrams shown in Figures 11 and
12).
The addition may cause carries between the inde-
pendent adders A. Carry registers between the in-
dependent adders absorb these carries. In the next
machine cycle these carries are added into the
next more significant adder A, possibly together
with another summand. In this way, during each
machine cycle one summand can be fed into the sum-
ming matrix, although the carry handling of on
summand may take several machine cycles. The wme-
thod displayed in the Figures shows one of diverse
possibilities to handle the carries. There may be
carry presencing or look-ahead or other techniques
applied to speed up the carry processing within
one row. In any way, the summing matrix allows the
carry processing to be executed independently of
" the summations and in parallel with the processing
that has to be done at all, e.g. adding further
summands or reading out the result.
In principle., the summing matrix can only process
positive summands. Negative summands or positive
subtrahends are therefore marked and at the proper
place not added but subtracted. Here negative car-
ries instead of positive carries may occur.Similar
to positive carries they have to be processed pos-
sibly over several machine cycles. In other words:
The independent adders A must be able to carry out
additions as well as subtractions and to process
positive and negative carries in both cases (Fig-
ure 6, 12).
The design of the complete summing device contain-
ing the summing matrix SM described herewith can
depend on the technology used. We have mentioned
already that the width a of the individual adders
A has to be chosen in such a way that an addition
over the complete width can be executed within one
machine cycle. Each row of the summing matrix must
be at least as wide as the individual summands.
The shorter the rows are, the faster the summands
can be shifted into the right position. On the
other hand, shortening the width of the rows of
the summing matrix increases the number of rows
and with it, the number of pipeline steps for the
complete summation process.
After input of the last summand the rows can be
read starting with the least significant row, pro-
vided the row in question does not require any
carry handling. In this case the carries first
have to be removed. The readout process can use
the same data path by which the summands pass
through the matrix. Thus the result rows follow
the last summand on 1ts way through the transfer
registers. During the readout process additions
and carry handling in the more significant rows
may still be executed. Sim:ltaneously with the
readout process the rounding to the required
floating-point format can be executed. The result
can also be stored as an intermediate long vari-
able for further processing. Several rounding pos-
sibilities can be carried out simultaneously as

260

mentioned in [4]. During the readout process the
computation of a new scalar product resp. a new
sum can be started.

The width a of the independent adders A depends on
the technology used and on the cycle time of the
system. The width should be as large as possible.
But on the other hand, it must permit the addition
over the a digits in one machine cycle. (In the
case of a scalar product. a machine cycle is the
time in which the system delivers a product).
Depending on the technology there are several pos-—
sibilities of transportation of the summands to
one of the r rows of the summing matrix SM.

The method described above is based on the idea
that each of the independent adders A is supple-
mented by a transfer register of the same width
(plus tag-register for exponent identification and
+/- control). During each machine cycle, each
transfer register can pass on its contents to the
transfer register in the corresponding position in
the next row and receive a digit sequence from the
transfer register in the corresponding position in
the previous row. Attached to the transfer regis-
ters is the tag-register for exponent identifica-
tion (Figure 5 and Figure 6). The contents of this
register are always compared with the exponent
identification of the corresponding adder. In case
of coincidence, the addition resp. subtraction is
activated (Figures 5, 6 and 12).

Alternatives to this procedure are also possible.

1. One of these alternatives could be to trans-
fer the summand in one machine cycle directly
into the appropriate row of transfer regis-
ters of the summing matrix as determined by
the exponent. During the following machine
cycle, the addition is executed. Simultan-
eously, a new summand can be transferred to
the same, or another row, so that an addition
in each machine cycle is carried ocut.

2. The procedure is similar to 1. The interme-
diate storage of the summands in transfer
registers, however, is not necessary if it is
possible to execute the transfer- and addi-
tion-process in one machine cycle. In this
case, no transfer registers are necessary.
The output of the result then also takes
place directly.

3. The transfer of the summands to the target
row can be carried out not only sequentially
and directly but also with several interme-
diate steps, for example, by binary selec-
tion.

Each one of these alternatives also allows a dir-
ect and therefore faster readout of the result
without dropping step by step through the transfer
registers.

To each independent adder A of length a belongs a
transfer register TR which is basically of the
same length. The number of adders A resp. transfer
registers TR in a row is chosen in such a way that

the mantissa length m of the summands plus the
length of the transfer registers t (=a) becowmes

less or equal to the length of the row (m + a { h
= ¢ + a). In this way, an overlapping of the less
significant part of the mantissa with its most
significant part in one transfer register is avoi-

ir

ded. For typical float'ng-point formats this con-
cition may result in long rows of the summing ma-
trix or in short widths a of the adders resp.
transfer registers. The former case causes lengthy
shifts while the latter case causes more carries
(Figure 6 upper part and Figure 8).

This disadvantage can be avoided by providing se-
veral (2 2) pertial transfer registers for each
adder of length a. Each partial transfer register
TR of length t a carries jts own exponent iden-
tification. Finally, the length t of the transfer
registers can be chosen independently of the
length a of the adders A. Both only need to be
integer divisors of the row length of the summing
ug;rtx h=a-+*c=1t*n (see Figures 13, 14 and
15).

Figures 6 and 13 show, in particular, that the
sumning matrix has a very systematic structure and
that it can be realized by a few, very simple
building blocks. It is suitable, therefore, for
realization in various technologies.

Based on the same principle also. summands which
consist of products of three and more factors can
be added correctly.

If the summing matrix is to be realized in
VLSI-technology it may happen that the complet
summing matrix does not fit on a single chip. One
should then try to develop components for the co-
lumns of the summing matrix since the number of
connections (pins) between adjacent columns is
much smaller than between neighbouring rows.

The following remarks and Figures 4 to 15 provide
a more detailed description of the structure of
the su. 1ing matrix and its functioning.

4. iti rks_concern the res

The following abbreviations are used in the Fig-
ures:
A Adder
AC Accumlator Register
Carry
Tag-Register for Exponent Identifica-
tion
Least Significant Bit
Most Significant Bit
Summing Matrix
Shifter
Transfer Register

J925E "2

Figure 4 shows a structure diagram of the complete
summing circuitry and illustrates the interaction
of different parts of the whole circuitry, such
as: separation of the summands into sign. exponent
and mantissa, shifting unit, suwming matrix,
controller and rounding unit.

Eigure 5: As mentioned in the text, we assume that
S 2 L. Figure 5 shows the case S > L. There, for
both the first and last rows part of the row is
covered by transfer registers only. For the whole
summing matrix this means that transfer registers
exist for S digits but adders for L digits only. L
is chosen such that it is a sultiple of a.

The dotted lines through the independent adders A
indicate that the transfer wires bypass the ad-
ders. Above the transfer registers, the tag-regis-
ter for exponent identification is indicated by a
box. This register is part of the transfer regis-
ter.

26!

Figure 6 shows a block diagram of the summing ma-
trix. It is based on a special data format which
uses 4 bits to describe one digit of base b.

¥Width of AC: a = 4 bytes = 32 bits

Number of adders in one row ¢ = 5

Number of rows in SM r =8

k = 20 carry digits, 1 = 14 digits in the mantissa
el = -64 and e2 = 64. '

Users of /370 compatible systems will recognize
this data format as their double precision format.
L=20+2°-64+2+ 14+ 2 + 64 = 304 digits of
4 bits = 152 bytes.

Width of the complete summing matrix
S=ac*cer=4°+5¢8bytes = 160 bytes 2 L =
152 bytes.

In this example the width t of the transfer regis-
ters equals the width of the adders: t = a = 4
bytes.

The upper part of the Figure shows several
positions of summands.

Figure 7 defines the exponent coordinates x and y
of the digits in the summing matrix (x horizontal,

.y vertical). These coordinates are obtained ac-

cording to the following formulae:

€0 denotes the reference point, the digit with

the least exponent in the matrix (at the
upper right end).

€] denotes the least significant digit of the
adder.
®n denotes the most significant digit of

theadder.

If the first and the last row of the complete
matrix contains adders over the full width
then e =e, and e, =€ + reh-1.

e denotes the exponent of a digit to be added.

o denotes the distance to the least significant
end of the matrix.
Y= (e—eo) div h is the row coordinate in which

the digit with the exponent e is added.
X = (c—eo) med h indicates the distance to the

least significant end of row y.

Figures 8 and 9 describe the task of the shift
unit and its relation to the generation of the
exponent identification which will be transferred
into the summing matrix with the mantissa.

The task of the shift unit is:

1. adjust mantissa to the correct position for
its addition, i{f necessary by a ring shift.

2. fill the remaining positions of the transfer
registers resp. the row with zeros.

Figure 8 shows the shifted mantissa in both pos-
sible cases.

Figure 9 describes the shift process. Two cases
are to be distinguished:

1. x=(e-e) mod h m : no overhanging.
the whole mantissa i{s added in one
row.

2. x<{(m: overhanging,

the mantissa is added (n two

successive rows.
Part LY remains within the width of

the row. The overhanging part oy is

reinserted at the left of the row.
Both parts are furnished with a cor-

responding exponent 1identification.
Part n, will be selected for addition

in row y-1 whereas part =y will be
added in row y.

The shifted and expanded mantissa row drops row by
row through the matrix as a transfer row. Before
that, each transfer section is characterized by
its exponent which carries the information where
the addition has to be executed.

Figure 10 shows the exponent identification of the
sections of the transfer rows. Each row of the
transfer matrix consists of n transfer sections of
length t. Figure 10 defines the exponent identi-
fication t, (transfer exponent) of these transfer

sections of the matrix. If e, denotes the exponent

of the e.g. least significant digit of a transfer
section then this transfer section can be
characterized by the exponent identification t e

with t,= (et -

Before a summand enters the matrix, each transfer
section of the summand receives an exponent iden-
tification. During the passage through the matrix,
this exponent identification is then compered with
te- Equality triggers the addition. The lower part

e,) div t.

of Figure 10 shows how transfer sections of the
summand get their exponent identification.

A mantissa with the exponent e (= exponent of its
most significant digit), receives the exponent
identification (e - eo) div t = e, in the most

and
- 2, etc. in

significant transfer
identification en -

section,
1, L

exponent
the less

significant transfer sections.

Figure 10 shows in the lower part the two typical
cases. (Addition of the complete summand in one
row resp. in two consecutive rows).

Figure 11 explains the simplified adder selection
by row identification ¥g- This row identification

is transfered through the matrix with the
transferrow. The addition is triggered off as soon
as the row 1identification and the row index
coincide. The row selection switch RS generates
two selection signals which activate the adders of
the row in question (see Figure 12, too). An
activating signal is sent via the wire “z-selec-
tion” 1if the row identification equals the row
index. An activating signal is sent via the wire
"z-1-gelection” i{f y - 1 equals the row index.
Then the transfer sections only carry the informa-
tion (z-1,z)-summation.

Since the transfer rows may only contain positive
values the information addition or subtraction is
additionally transferred. .

Thus the controller contains transfer registers
with specific information for each row which leads
about to the structure shown in Figure 11.

262

Figure 12 shows a block diagram for an adder cell.
For simplicity the case t = a is selected. The
cell contains centrally an “adder/subtractor” and
a "partial accumulator section”. The right upper
corner shows the corresponding transfer register
with wires from the next less significant row and
to the next more significant row.

Additionally, the transfer register contains a tag
register for "z/z-1" identification which indenti-
fies through which selection wire the cell can be
activated. The “"adder/subtractor” receives the
operands from the "partial accumulator section”
and in case of selection from the transfer regis-
ter. Zero is added if no selection takes place. In
addition, the carry (positive or negative) arriv-
ing from the right is processed during each addi-
tion/subtraction and, if necessary, a carry is
passed on to the next adder cell on the left. This
carry {s temporarily stored in an auxiliary regis-
ter. Figure 15 further shows a control wire which
selects the operation (addition/subtraction) as
well as a control wire for the read out process
(at the bottom of the figure). All control wires
traverse the whole row.

Figure 13 is very similar to Figure 6. It shows

one row of the summing matrix, but with t < a. The

Figure is based on the same data format as Figure

6, i.e.: one digit of basis b is described by 4

bits, k = 20 carry digits, 1 = 14 digits in the

mantissa, el = =64 and e2 = 64. Furthermore:

Width of AC: a = 4 bytes = 32 bits.

Number of adders in one row c = 4.

Number of rows in SM r = 10.

L=20+2+64+2°14+ 2 ¢+ 64 = 304 digits per

4 bits = 152 bytes.

¥idth of the complete summing matrix

S=zacscer=4+4-°10 bytes = 160 bytes 2 L =

152 bytes.

In this example the width of the transfer regis-

ters is smaller than the width a of the adders: ¢
a

=5= 2 bytes.

This permits a smaller row width of only ¢ = 4

adders.

The upper part of the Figure shows the position of

a summand of m = 2¢1 = 14 bytes at a critical po-
sition. .

Figure 14 shows another case where the width of
the adders differs from that of the transfer re-
gisters (t # a). In the Figure the transfer regis-
ters are shown without exponent identification.
Dotted lines again indicate transfer wires which
bypass the adder in question.

Eigure 15 shows a section of a row of the summing
matrix with t # a. Here the case 3t = 2a has been
selected. It shows how digits of the same transfer
register are distributed and added into neighbour-
ing adders.

5. 1 e Row er

We now discuss a further variant of the above cir-
cuitry for which edders exist only for one row of
the summing matrix. The complete structure of this
variant is similar to the one before (Figure 16).
I.e. the complete circuitry consists of an input

adjusting unit, the summing unit with the actual
accumlator and a device for carry handling, re-
sult row filtering and rounding.

The complete fixed-point word, over which summa-
tion takes place, is divided into rows and co-
lurns, as before. The transfer width and the adder
width, however, must now be identical. The width
can be chosen according to the criteria as out-
lined above. The columns of the matrix shaped sum-
ming unit are now completely disconnected, i.e. no
transmission of carries takes place between the
individual columns of the matrix during the pro-
cess of summation. The carries occurring during
the summation are collected in carry counters and
processed at the end of the summtion process.

Figure 17 shows the circuit of a “"colum®” of the
matrix shaped swming unit. The full "long accumu-
lator™ is spread over the various columns of the
suming unit. The part allotted to one colum is

called “accu-pemory”, see (1) in Figure 17.5

To each cell of the accu-memory belongs a carry
counter. The collection of carry counters of a
column is called “carry-memory”. see (2) in Figure
17. In these cells of the carry-memory all carries
emerging from the adder/subtractor are collected
and incorporated in the result at the very end of
the summing process. The individual cells of the
carry-memory must be so wide that they can take a
carry (positive or negative) from each summand.
For a vector length of 128 one needs, for example,
7 bits plus a sign bit resp. an 8 bit number in
twos ' ~coaplement .

In Figure 17, for example, the column width is 32
bits and the width of the individual carry-memory
cells is 16 bits. This allows a correct computa-
tion of sums with less than or equal to 32 K sum-
mands. The exponent identification (in Figure 17)
has a width of e bit; consequently the column has

2° cells resp. the memory matrix 2° rows.

During the normal summation process the following

happens:
1. The mantissa section MANT, sign sg. and expo-
nent jdentification EPI reach the input re-
gister RI, (3).
2. In the next cycle
- the memory is addressed through EPI
and the accu-part as well as the carry
part are transferred to the
corresponding section of the register
before the sum-mation RBS, (4):

- the mantissa section, sg, and EPI are
also transferred to the corresponding
section of RBS, (5).

3. In the next cycle

- addition resp. subtraction according to sg is
executed in the adder/subtracter (6). The
result 1is transferred to the corresponding
section of the register after the summation
RAS, (7). According to the carry, the ecarry-
part is adjusted in (8) by +1, -1 or not at

5‘!‘be numbers enclosed in round parentheses in the
text indicate in the corresponding Figure that
part of the circuitry which 1s marked with the
same number.

all and 1t is also transferred to RAS, (9):
- EPI is also transferred to RAS, (10).
4, In the next cycle

- EP1I of RAS addresses the memory, and

the accu-part together with the carry-
part are written back into the memory.

Since in each machine cycle a mantissa section is
supplied, these phases must be pipelined. This
means, in particular, that all phases need to be
active simultaneously. It pust be possible there-
fore, to read from the memory and to write into
the same or another row of the memory during each
machine cycle. This, however, is usual for regis-
ter memories.
If in two consecutive cycles the same accu- and
carry-memory cell {s addressed, the previously
described procedure may lead to a wrong result,
since in the second cycle the result of the just
started summing procedure should be read, which
does not yet exist. We have a typical pipeline
conflict. These difficulties can be overcome by
duplicating the accu-carry-memory several times
which, however, is very costly.
Therefore. we suggest an easier alternative. We
suppose that during consecutive cycles mantissa
sections with the same exponent identification
arrive. We distinguish the following two cases:
a) directly one after the other;
b) with another exponent identification in bet-

ween and both arbitrarily often and mixed.

We first deal with case a}.

1) The registers EPI of RI and EPI of RBS con-
tain the same exponent identification. The
two are compared in (11) and in case of coin-
cidence the read process from the memory to
RBS is blocked off in part (13) of the selec-
tion unit (12). Instead, the result of the
addition of the first of the two consecutive
summands is directly transferred to RBS via
(14) so that the second summand can immedi-
ately be added.

Furthermore, (15) causes a dummy exponent to
be read into EPI of RAS. So, if in the same
cycle a further third value with the same
exponent identification is transferred to RI
the case EPI/RI = EPI/RBS = EPI/RAS is avoi-
ded. This case would cause a conflict in the
selection unit (12).

Thus, consecutive summands with the same ex-
ponent identification can be added without
memory involvement. The intermediate values
may be written into the memory or discarded
(storage blockade on). Only the last value
must be written into the memory via RAS.

We now deal with case b).
b) Three values EPIl. EPIz. EI-’I3 with EZ}"Il =

EPI, # EPIz. In this case EPI/RI and EPI/RAS-

contain the same exponent identification.The
two registers are compared in (16). In the
following cycle the contents of RAS is
directly transferred to RBS through part (17)
of the selection unit (12). The read process
from the memory is again suppressed in (13).
The intermediate value may be written into
the memory. It can also be suppressed.

In this way, any consecutive mantissa sections can

be added and the carries collected in the carry
counters.

We now consider the process of reading the result.
The central read control produces continuous ad-
dresses so that the accu-memory is read from the
least significant to the most significant row.
This sequence {s a must because of the necessary
carry handling. The addresses reach the memory
through the multiplexer (18).

Wires (19). (20) for transfer of the carries lead
from column to column. The carry-parts of a column
are fed to the next more significant column. There
they are taken into the mantissa section of RBS.
To get there the multiplexer (21) is switched
over. The carry. which is stored in the twos’-com-
plement for convenience, first has to be changed
into sign-magnitude-representation and, if neces-
sary, expanded in length (22). In the next cycle,
the carry is added and together with a possible
ibit-carry (positive or negative) transferred to
the unit for preparing the result after temporary
storage in RAS. The above mentioned carry can
there be stored either in a part of the RAS-carry
register or in a 2bit auxiliary register (23).

During the process of reading it is advisable to
delete the particular storage cell immediately by
a circuitry part which is not shown. This can, for
example, be done by writing zeros into it. If va-
rious scalar products resp. sums are to be accumu-
lated, the process of reading is not started until
the computation of the full sum is finished. The
summands are continuously accumulated into the
accu-carry~-memory.

From the most significant column the carry part of
the memory is transferred into an auxiliary carry
register, (24) in Figure 16. From there. this car-
ry is transferred with a delay of one cycle via
wire (20) to the least significant column to have
it available for the read out process of the more
significant row.

The final carry treatment (25) contains a single-
resp. multi-stage pipeline where the still remain-
ing carries are included in the result. At the end
of this part of the circuitry the ready rows of
the result appear, the least significant ones
first.

In another part of the circuitry (26), which is
shown in Figure 18, the two rows with the signifi-
cant digits must be found. The most significant
digit of the more significant register (28) con-
tains the result sign: smallest digit (preferably
zero) means positive, largest digit (dual 1, deci-
mal 9, hexadecimal F) means negative. t is advis-
able to initialize both registers with zero. The
circuitry for filtering the rows with significant
information now checks in each row presented to
the circuit whether there is at least one digit
not equal to the sign digit already stored in the
higher significant register (28). If this is the
case or if there is no sign digit (e.g. 1..8 in a
decimal system) at position (28) then the transfer
is enabled for the actual and the next clock cycle
to fill both registers with two new consecutive
rows. If, however, the transfer was already en-
abled in the previous cycle, then it must be reen-
abled for one cycle only. The control circuit (29)
may therefore be described by the following state
table with entries "next state/transfer enable”.

264

output of

sign check
State 0 1
1 1/0 2/1
2 1/1 /1
3 170 3/1

The transfer into the registers ends if only rows
with sign digits follow. Finally, in both regis-
ters those rows appear, which contain the mantissa
of the floating-point result. One obtains the ex-
ponent from the position as well as from the ini-
tial address resp. from the number of cycles ne-
cessary for reading. Furthermore. the information
required for the rounding is easily obtained du-
ring output. It serves for a possible adaptation
of the result.

The circuitry shown in Figure 17 may be varied to
reduce the number of i{nput/output lines, e.g. by
transferring the carry count (19) through the MANT
inputs. The Figure is intended just to show prin-
ciples, and not tricky details.

6. tems wit rge and further
Remarks

nent

Many computers have a very modest exponent range.
This is for instance the case for the system /370
architecture. If in the decimal system, for in-
stance, 1 = 17, el = -75 and e2 = 75 the full
length L = k + 2e2 + 21 + 2 |el| of the registers
(see Figure 1 and Figure 2) can more or less easi-
ly be provided. Then sums and scalar products of
the form (I) and (II) can be correctly computed
for all possible combinations of the data by the
technique discussed in this paper without ever
getting an overflow or an interrupt.

However, there are also computers on the market
with a very large exponent range of several hund-
red or thousand. In such a case it may be costly
to provide the full register lengths of L = k +
2e2 + 21 + 2 |el] for the techniques discussed in
this paper. It is most useful then to reduce the
register lengths to the single exponent range and

instead of L to choose L™ = k + e2 + 2] + le1] or
even a smaller range e’ { e ¢ e” with el { e’ and
T" '< e2 and correspondingly L' = k + e" + 21 +
e’}

Traditionally, sums and scalar products are com-
puted in the single exponent range el < e € e2. If

lel] and e2 are relatively large most scalar pro-
ducts will be correctly computable within this
range or even in e’ { e { e". Whenever, in this

case, the exponent of a summand in a sum or scalar
product computation exceeds this range e’ e é e”

an overflow has to be signalled which may cause an
interrupt.

In such a case the exponent range could be exten-
ded to a larger size on the negative or the posi-
tive side or even on both sides. We may very well
assume that the necessity for such an extension of
the exponent range occurs rather rarely. The sup~
plementary register extensions, which are necessa-
ry for the techniques discussed in this paper,
could then, for instance, be arranged in the main
memory of the system and the summation within the

extended register part may then be executed in
sof tware. Such procedure would slow down the com-
putetion of scalar products in rather rare cases.
But it still always will deliver the correct
answer.

We further discuss a few slightly different me-
thods how to execute accumulating addition/sub-
traction and the scalar product summation on pro-
cessors with large exponent range.

On a more sophisticated processor the exponent
range covered by the summing matrix could even be
made adjustable to gain most out of this special
hardware. This could be done by an automatic pro-
cess of three stages:

1. A special vector instruction analyzes the two
vectors and computes the exponent range that
covers most of the summands or products of
the vector components. This step may be dis-
carded if the best range {s already known.
The summing matrix gets properly adjusted to
the range found in 1. and in a vector in~
struction the fitting part of the summand or
products is accumulated into the summing ma-
trix. If a summand or product does not fit
into it it can be dealt by one of the two
alternatives:

a) Interrupt the accumulation and add that
summand or product by software to the
not covered extended parts of the accu-
mulator which resides in main memory.

b) Do not interrupt the accumulation, but

discard this summand or product and
mark this element in a vector flag re-
gister. Later the marked elements are
added by software to the extended parts
of the accumulator. This second way
avoids interrupting and restarting the
pipeline and will thus lead to higher
performance than a).

3. In a final step the content of the summing
matrix part of the accumulator is properly
inserted between the extended parts to get
the complete result in form of a correspond-
ingly long variable in main memory.

Another cure of the overflow situation e € [e’,
e"] may be the following: Summands with an expo-
nent e, which is less than e’, are not added, but
gathered on a "negative heap”. Similarily summands
with an exponent, which is greater than e", are
gathered on a “"positive heap”. The negative and
the positive heap may consist of a bit string or a
vector flag register where each summand or vector
component is represented by a bit. This bit is set
zero if the summand was already added. It is set 1
if the component belongs to the corresponding
heap. After a first summation pass over all sum-
mands the computed sum §s stored. Then the posi-
tive and/or negative heap is shifted into te
middle of the exponent range ¢' e e” by an
exponent transformation and then added by the same
procedure. After possibly several such steps the
stored parts of the sum are put together and the
final sum is computed. In many cases it will be
possible to obtain the final result without sum-
ming up the negative heap.

Another possibility to obtain the correct result
with a reduced register length L' =k + e* + 2] +
e” is the following: The process of summation
starts as usual. As soon as the exponent e of a

tummand exceeds the range [e', e"] an exponent
part is built up which interprets the digit se-
quence of L' as a very long mantissa of a normal-
ized floating-point number. The normalization, in
general, will require a shift. Then a "positive
heap™ is no longer necessary. And in most cases it
will be possible to obtain the correct rounded
result without summing up a possibly stil]l neces-
sary "negative heap”. The method computes all ac-
cumulating sums or scalar products correctly with-
out considering the negative heaps as long as less
than e” - e’ digits cancel. The negative heap can
only influence the k least significant digits of
L.

The reduction of the full accumulator length L to
a smaller size L' { L may cause exponent under- or
overflows in special summation processes. This
always makes some event handling routine necessa-
ry. Whatever this is, this procedure represents a
trade off between hardware expenditure and run-
time.

A rather primitive event handling would consist in
a traditional summation of the positive and nega-
tive heap. In this case a message should be deli-
vered to the user that the result is probably not
precise.

In the context of programming languages the accu-
mulator of length L' = k + e” + 21 + e’ represents
a new data type which could be called precise. As
long as no exponent under- or overflow occurs (e’

e { e") addition of variables of type real, of
products of such variables as well as of scalar

ucts r ctors intg a varjab his

type can precisely be executed and it is error
ree. Accu tio eal variables r
scalar products into a variable of type precise is
associative. The result is independent of the or-
der in which_the summands are added.

Vectorprocessors belong to the fastest computers
which are presently available. Their main field of
application is scientific computation. It should

. be natural that vectorprocessors compute vector

265

operations correctly. The vector operations con-
sist basically of the componentwise addition and
subtraction, the componentwise multiplication and
the scalar product. The implementation of highly
accurate vector addition/subtraction and compo-
nentwise multiplication belongs to the state of
the art. The computation of accurate scalar pro-
ducts has been dealt with in this paper.

Due to their high speed of computation, vectorpro-
cessors must, however, also be able to support an
automatic error analysis resp. verification of the
computed result. In order to achieve this it is
necessary that all operations, mentioned above,
such as componentwise addition/subtraction, com~
ponentwise multiplication and scalar products can
optionally be called with several roundings. in
particular with the monotone downwardly directed
rounding., the monotone upwardly directed rounding
and the rounding to the least including interval.
We do not discuss the implementation of these
roundings here. It belongs to the state of the
art. For further information we refer to the lit-
erature.

Finally, we remark that the methods and procedures
outlined in this paper are also suitable to add up
sums of products correctly which consist of more
than two factors, for example

7. icat t t sion Arithmetic
We show in this chapter that the essential parts
of multiple precision arithmetic can easily be
executed with high speed if a fast scalar product
unit is available.

Ve consider
6

1. Double Precision Arithmetic
1.1 Sum and Difference

It is clear that sums of two or n double precision
summands a + bora + b + ¢ ... + z can be accum-
lated. The same holds for sums of vectors or ma-
trices.

1.2 Product

If a product a * b of two double precision factors
a and b has to be computed, each factor can be
represented as a sum of two single precision num—
bersa=a1+a2andb=bl+b2. wherealandbl

represent the first (higher significant) 1 digits
and a, and b2 represent the last (lower signifi-

cant) 1 digits of a and b. The multiplication then
requires the execution of a scalar product:

a*b:(a1+a2) (b1+b2)=

ajby + a,by + agh, + aghb, . (1)
where each summand is of double precision. These
can be added by the techniques developed in this
paper.
Similarly, products of more than two factors can
be computed. As in (1) products of two double pre-
cision numbers are expressed by a scalar product
of single precision numbers. On the right hand
side of (1) each summand is a double precision
number which can be expressed by a sum of two
single precision numbers. In the case of a product
of four double precision numbers this leads to the
following formulas, which are self-explanatory.

a*beced = (a*b) (ced) =

8 8 8 8
2 a‘ e 3 <:1 = 2 2z ai . c‘i
i=1 i=1 i=1 j=1
8 i 8 i
witha*b= 2 a andc+sd= 2 ¢
i=1 i=1

Thus a*beced can be computed as the sum of 64 pro-
ducts of two single precision numbers each.

The case of products of two or more double preci-
sion matrices is a little more difficult. But it
can, in principle, be treated similarily. If a
product of two double precision matrices has to be
computed the two matrices are first represented as

sﬂigh speed scientific computation is usually done
in the long data format. Double precision here
means the double mantissa length of that format.
If the usual long format is already called double
precision our double precision corresponds to
quadruple or extended precision.

266

sums of two single precision matrices. Multiplica-
tion of these sums then leads to a sum of products
of single precision matrices:

a-b:(al+a2) (b1+b2)=
a,b; + a;by + agb) + agh,

Each component of the products on the right hand
side of (2) is computed as a scalar product. Thus
each component of the product matrix a * b con-
sists of a sum of scalar products which itself is
a scalar product.

In case of matrix products, which consist of more
than two double precision matrix factors, one has
to take into account that the components of (2)
may already be pretty long. They may consist of 10
or 20 consecutive digit sequences of single preci-
sion lengths. These sums of single precision ma-
trices then have to be multiplied with other such
sums, which leads to a sum of matrix products.
Each component of this sum can be computed as a
scalar product of single precision numbers.

(2)

2.
Arithmetic of triple precision is a special case
of quadruple precision arithmetic.

3. Quadruple Precision Arithmetic

3.1 Sum and Difference

Each summand of quadruple precision can be repre-
sented as a sum of two double precision summands.
Thus sums of two or more quadruple precision sum-
mands can be added as expressed by the following
formulas:

a+b=a1+a.2+b1+b2

a+b+c+ ... +2=

al+a2+bl+b2+c +02 L

1 tz

Zl 2 -

Sums of quadruple precision vectors or matrices
can be treated correspondingly.

3.2 Products

Each quadruple precision number can be represented
as a sum of four single precision numbers a = a, +

a, + ay + a,. Multiplication of such sums requires
the execution of a scalar product:

a - b= (ajtayiagia,) -
4

Z a
1 3=1

*b

§ by @)

il M

(b1+b2+b3+b g) = .

Similarily, products of more than two quadruple
precision factors can be computed. We indicate
this process by the following formulas. which are
self-explanatory.

asbeced =
by d 8
b3 =
1 by) (1=1 51 cd,)

4 4
(a-b) (¢°d) =(b T a
i=] j§=1 J=

a2 22 2 32
=(z al)(z)= 3 3 aldd. (4)
=1 =1 i=1 4=1

There the 16 double precision summands aibj and
c‘dj of the two factors of (4) are each represen-

ted as sums of two single precision-numbers. This
leads to the product of the two sums over 32

i resp. c‘1 in the next

single precision numbers a
line.

If a product of two quadruple precision matrices
is to be cosputed each factor is represented by a
sum of four single precision floating-point matri-
ces as in (3).

Multiplication of these sums leads to a sum of
matrix products. Each component of these matrix
products is computed as a scalar product. The sum
of these scalar products is again a scalar pro-
duct.

It was the intention of this section to demon-
strate that with a fast eccumulating addition/sub-
traction or scalar product unit a big step towards
multiple precision arithmetic., even for product
spaces, can be done.

8. Literature

[1] U. Kulisch: Grundlagen des Numerischen Rech-
nens - Mathematische Begriindung der Rechner-
arithmetik, Bibliographisches Institut, Mann-
heim 1976

[2] U. Kulisch and W.L. Miranker: Computer Arith-
metic in Teory and Practice, Academic Press
1881

[3] U. Kulisch and W.L. Miranker: The Arithmetic
of the Digital Computer: A New Approach,
SIAM-Review, March 1986, pp. 1-40

[4]) IBM System /370 RPQ, High Accuracy Arith-
metic, Publication Number SA 22-7093-0

[S] High Accuracy Arithmetic, Subroutine Library,
General Information Manual, IBM Program Num-
ber 5664-185

[6] High Accuracy Arithmetic, Subroutine Library,
Program Description and User's Guide, IBM
Program Number 5664-185, Publication Number
GC 33-6163

[7] T. Teufel:‘Ein optimler.cleitkomnprozessor.
Dissertation, Universitiit Karlsruhe, 1984

[8] G. Bohlender and T. Teufel: BAP-SC: A Decimal
Floating-Point Processor for Optimal Arithme-
tic, to appear in: Computer Arithmetic,
Scientific Computing and Programming Lan-
guages (E. Kaucher, U. Kulisch, Ch. Ullrich,
Eds), B.G. Teubner, 1987

[9] Arithmos Benutzerhandbuch, SIEMENS AG.,
Bestell-Nr.: U 2900-J-Z 87-1

For a supplementary bibliography see the litera-
ture listed in [3].

267

floating~point auaber (susmand) = (sg.e.m)

g o e A J
—— adbsolute value

shifting and
ioput adjusting uait

P TP &t bt ?t n pathes (net=h:
TF IR T

cation

p— suaming Batrix

controller

I T CNE O OO OO T+ A
—1 rostin

(35.8,8), = result as floating-
point number

Pagure 41 Structure of the whole circuitry
Value denotes the nusber of tigures of 'value®

trom shifter and sxpension umit

g
I

.....

ndEilR
I3

--......‘DWF ﬂ@

o [2o

biplaifel
e U] .

to rounding unit
EB: tag-register for
esponent tc«-uuuuo«
CY: carry register ®EB: most significant bit
T™: transfer register R: aumber of rows
As adder RY: £om carry

AC3 sccusuleting register in-
cluding arithmetic circuitry

@ach gov coatains ¢ #dders of & digits and n transfer tovht.u
of ¢t digits, .¢. hec-aon-t (here: noc and twa)

Pigure 3: Sctructure of the summing matrix

LSD: Joast significant bit

Pigure 14: Transfer registers and adders of different
o : width 100. tor Luunev ted, a=6). The

'lthmn
tag-fields for mz ientification

.13
-;3
.
sdif L
.ﬂ‘.: A
:!E:g 3 !

07,
Ezzza
G774/,

==

1y sost sigalficant digit of susmend

N -
\ 1 ;
\]
) i
3
S-
e
S i
\ ! . .
N N -0
& [&] i3
.8
528
£56
S if:
N igd
N ¥ R
R 133
%] F--
238
sS4
il
. f3¢
d | I -
g q ' !i H
- .= N $
H g
i e ceb :
w -~
cow *
C—f
naohoi LY .
¢ —— e e e ccca e o e .- -]
only transfer registers.no edders
e o2n-t e oh
o —-
R ._.p.’h-‘ T°.‘2h
¢ *ah=1 (3 1)
) -
o2 !?ﬂr-nh-l . :Q:u-zn.
e orh-} -~ e ol rellb

o o o frfen -t
caly treasfer ceglstars, a0 adders

ot raference poist, digit vith least exponsst iz the mstriz

ot axpoosst Of the least sigoificast digit of che edders
oy exponeat of the sost sigalficaat digit of the adders

b l1ength of rowa (in digits of base b), Ah=c-a
L = e we)el, Seogeh, S22 L
o esxponsnt of a digic
o-e,1 distasce to the lesst sigaificast end of the metrix

o
y=le=s,) 41y k1 row ceordinate of the digit with sxpueent o

n=(e-s,) sud h; distance from lesst significant ead of row y

Pigure 7: Exposent coordinates of the digits in the summing
astrix

268

Lage 1: =2 &
digit mth exponsnt €

,00.....0 00 Je -]©0...0.00...... °
| 1

4 + + + "

'tw with n cecanster }ql-un of lengeh t

1 -, |oo.°o.....9 .co......e_oo... °C s,]
! o ' ' | — 1

row with o tranafer regiscers of length t

Pigure 8: Task of the shift unit

addition of all digiee of
the mantissa in row y.

-,
—2y p_.‘..__ng fenemy
e |
. ncn part », of the mantissa
y-1 punken - is added io tow y,
y N 1 pare =y in row ye!,
y = lee) divh
axponent of the most significant digit of the aantisse
length of eantissa, number of digits of the mantissa
number of digits of a row of the summing satrin
Pigure 91 Description of the shift process
exponent identification t, of the transfer sections
of the matrix:
row
0o =ty — % &
4
R R 281 . . nel . o .
.
.
.
. .
z=1)0=1 N ,le2)a
-2 + * '
zom =1 (e=Vln
=1 | 4 $ Y
A 1 row with o gots the
following 1deatifl in the 3.

transfer eectionss ©,.0, qeccc. -

L00.....0 00 lay ay-t o2 LEXRRd | NLOO.....Q‘
! | D
vitho v (e -o)) dive

d ot the 1

™is is
Por isstance:

L | I L

1%! o2 e 100 .00................0. lt.

Pigure 191 Exposest ideatificatios of the sacticas
of the trassfer sowe

te

cegister for
row identification

selection
lines
‘_'EE : par 10w

opcration

h—l :— 1 ion
| - z 1 ion

41 index of the summands tis),...,m)
88: row selection

Pigure 11: Siwplified adder selection
tow fdentification y; i

from row of
lower signiticance

t'ete{s,x-11 identification

™
selection
HE) o0l
control
wires
aperatio 23858 ion/
Fa
o CY
{5
e e
2
7a
control wire for the
r08d out Process
to row of

higher aigni. cance

CY: carry with sign
sslection logic: &dd/sudtr, If (selection-z) end {tage-3)

t (selection-{3-1] and (tag-{2-1)

©
#33/subtr. tero else

Structure of & section of the aatrix rcw y,

¥igure 12:
for am¢t

S FATEL [BZAERZZ

BB,

(e A 5724
TR
.f=

. :F. rE?_Frm__‘Em,%\L [E[It]

SIMESNES ES

LS8

GG ES m m

Pigure 13: Part of the summing matrix with
transfer registers with t<as, here t=a/2
¢ : most significant digit of summand

§: { {
| t digics I iglte
%

*/=-
.—I and AC

digice

S
-

Strecture of & section with several
.‘0:: / un.nmu :Aa’uon;l:x

sters (for e 38 ® 3¢
::'- -lnuuod“tgnonnuon withe
out tag-flelds for exponent identificstion
and coatrol lines.

SL1 selection

Pigere 15:

input #d)juting unit
®antis8s sections, each one
with exponent identifica-
tion and sign
\
PP N S ap— UL
central] £aloans
_ consisting
::;N.u of one
addes
Tegister and
accu-
register
coslecacnleanne
adder
catty /

e S

t ¢ ¢

final carry treatment
mecesscccnenas
fsitering the rows with

j significant snformstion

preparation l

[

unit for adjusting
the result

Pigure 16: Structure of the summing unit
with only one row of adders

Cfrom sait Cor
adjsstiog the
Sague

L]
slga

) .
- ‘:T.dﬂ J.] = Ai " 132 tros we —t
(= - @‘ 1
d Fd

J I ' i | £ | 2

L, s @irn ..-| --.l. .i

.L‘) 16 bead -’-’--...---..:

as EP1 M"; en 4 accy

2

©0

1

22

flguze 17: Strect:
ot

o walt for praparisg the
result

» “evlumn®

wre of
the addities walt

contr.

[

processed rows
without carries
F32.¢c
L] tigher
register for
oign digit :g:lﬂc.ng
] lowmr

coatrol sigoals

Pigure 10:

Pilteriog the gows with significant
Sntormation

