
ARITHMETIC FOR VECTOR PROC:ESSORS

R. Kirchner and U. Kulisch

Fachbereich Inrormatik. Universitat Kaiserlautern
Fakultat £Ur Mathematik. Universitat Karlsruhe

West Germany

Abstract: In electronic computers the elementary
arithmetic operations are these days generally
approximated by rloating-point operations or high
est accuracy. Vector processors and parallel com
puters often provide addi tiona.l operations like
'"multiply and add .. , .. accumulate" or .. multiply and
accumulate'". Also these operations shal 1 always
deliver the correct answer whatever the data are.
The user should not be oblighed to execute an er
ror analysis for operations predefined by the man
ufacturer.
In the first pa.rt of this pa.per we discuss cir
cuits which al low a fast and correct computation
of sums and scalar products making use of a matrix
shaped arrangement of adders and pipeline techno
logy. In the second pa.rt a variant is discussed
which permits a drastic reduction in the number of
adders required. The methods discussed in this
paper can also be used to build a fast arithmetic
unit for micro computers in VLSI-technology.

Introduction

Modern computers of highest performance. the
so-called vectorprocessors or supercomputers, are
gaining considerably in importance in research and
development. They serve ror simulation of proces
ses which cannot be measured at all or only with
great erfort. for solving large engineering design
problems or for evaluation or large sets or meas
ured data and £or l'IBllY other applications. It is
co111110nly assumed that these computers open a new
dimension for scientiric computation. In sharp
contrast to this is the fact that the arithmetic
implemented on supercomputers differs only margin
ally from that or their slower predecessors. al
though results are much more sensitive to rounding
errors. numerical instabilities, etc. due to the
huge number or operations executed.
Research in numerical ae.tbeue.tics has shown that.
with a more comprehensive and optimal vector
arithmetic. reliable results can be more easily
obtained when dealing with extensive and huge pro
blems. Computers with this kind or ari thmec have
proved the signtricance of this development in
many successful applications.
Unti 1 now. it has been assumed that an optimal
vector arithmetic could not be implemented on su
percomputers. The users. thererore. had to choose
between either lengthy computation times and accu-

CH2419-0/87/0000/0256$0t.OO © 1987 IEEE
256

rate results on general purpose computers or com
paratively short computation times and possibly
wrong results obtained on supercomputrs.
It was assumed. in particular. that correct compu
tation of continued sums and scalar products.
which are necessary for vector arithmetic, could
not be implemented on supercomputers with pipeline
processing. Well known circuits, which solve this
problem. require several machine cycles for carry
ing out a single addition whereas a computer of
highest performance with traditional arithmetic

1 carries out one addition in each cycle. This pa-
per describes various circuits for the optimal
computation of sums and scalar products at the
speed of supercomputers. There is. in principle.
no longer any reason to continue to accept inaccu
rate sums or scalar products by not using optimal
vector arithmetic on vectorprocessors and super
computers. The additional costs compared with the
cost of the complete system are Justified in any
case. It takes the burden of an error analysis
from the user.
The first electronic computers were developed in
the middle of this century. Before then. highly
sophisticated electromechanical computing devices
were used. Several very interesting techniques
provided the r our basic operations of addition.
subtraction, multiplication. and division. Many or
these calculators were able to perform an additio
nal operation which could be cal led .. accumulating
addition/subtraction" or continued sW111Btion. The
ma.chine was equipped with an input register or
about 10 to 13 digits. Compared to that, the re
sult register was much longer and had perhaps 30
digits. It was situated on a sled which could be
shifted back and forth relatively to the input
register. This allowed an accumulation or a large
number or sumrrands into dirferent positions or the
result register. There was no rounding executed
ar ter each addition. As long as no overr low oc
curred, this accumulating addition was error free.
Addition was associative, the result being inde
pendent or the order in which the summands were
added.
This accumulating addition wt thout intermediate
roundings was never implemented on electronic com-

1 By a cycle time or a ne.chine cycle we understand
the time which the system needs to deliver a
summand or a product, in case of a scalar product
computation. to the addition pipeline.

puters. Only recently. several /370 compatible
systems have appeared which simulate this process
on general purpose me.chines by accumulating into
an area in main memory. which ts kept tn the cache
memory for enhanced performance. [5]. [6). This
allows the elimination of a large number of round
ings and contributes essentially to the stability
of. the computational process. This paper desribes
circuits for an implementation or the accumulating
addition on very fast computers making use or
pipelining and other techniques.
The first electronic computers executed their cal
culations in fixed-point arithmetic. Fixed-point
addition and subtraction ts error free. Even very
long sums can be accumulated wt th only one final
rounding in fixed-point arithmetic. tr a carry
counter ts provided which gathers all intermediate
positive or negative overflows or carries. At the
very end of the sU111111tion a nonmltzatton and
rounding ts executed. Thus accumulation of fixed
point numbers ts associative again. The result is
correct to one unit in the last figure and it is
independent or the order in which the sumnands are
added. Fixed-point arithmetic. however. imposed a
scaling requirement. Problems needed to be pre
processed by the user so that they could be accom
modated by the fixed-point number representation.
Wt th the increasing speed or computers. problems
that could be solved became larger and larger. The
necessary pre-processing soon became an enormous
burden.
The introduction of floating-point representation
in computation largely eliminated this burden. A
sealing factor is appended to each number in
floating-point representation. The arithmetic it
self takes care or the scaling. Multiplication and
division require an addi tton. respectively sub
traction, of the exponents which 1111y result in a
large change in the value or the exponent. But
multiplication and division are relatively stable
operations in floating-point arithmetic. Addition
and subtraction. in contrast. are troublesome in
floating-point.
As an example let us consider the two floating
point vectors

1020 1030

1223 2

x= 1024 y = -1026

1018 1022

3 2111
-1021 1019

A computation or the inner or scalar product or
these two vectors gives

x.y = 1051) + 2,446 - 1050
+ 1040 + 6.333 - 1040 =

8.779
Nost dtgi tal computers will return zero as the
answer al though the exponents of the data vary
only within 5 X or less of the exponent range or
large systems. This error occurs because the
floating-point arithmetic in these computers ts
unable to cope with the large digit range required
for this calculation.
Floating-point representation and arithmetic in
computers was introduced tn the middle or this

257

centry. Computers then wert relatively slow, being
able to execute only about 100 floating-point ope
rations in a second. The fastest computers today
are able to execute billions or floating-point
operations in a second. This is a gigantic gain in

speed by a factor or 107 over the electronic com
puters or the early fifties. or course, the prob
lems that can be dealt with, have become larger
and larger. The question is whether floating-point
representation and arithmetic which already fails
in simple calculations, as illustrated above. are
sti 11 adequate to be used in computers of such
gigantic speed ror huge problems.
We think that the set of floating-point operations
should be extended by a fifth operation, the •·ac
cumulating addi tton/subtraction"' wt thout interme
diate rounding. an operation which was al ready
available on many electromechanical calculators.
It is the purpose or this paper to show that this
additional operation can be executed with extreme
speed. We realize this operation by adding the
floating-point sumnands into a fixed-point number
over the full floating-point range. Thus "accumu
lating acldi tion/subtraction"' is error free. Even
very long chains or additions/subtractions can be
executed wt th only a single rounding at the very
end or the sunmation. Such "Accumulating addition/
subtraction" is associative. The result is inde
pendent of the order in which the summands are
added.
Wt th the fifth operation "'accumulating addition/
subtraction"', we combine the advantages or fixed
point arithmetic - error free addition and sub
traction even for very long sums - with the advan
tages of f loa.ting-point art thmetic - no sealing
requirements.

2. The State or the Art

A normalized floating-point number z (in sign-mag
ni tude representation) is a real number of the
form

z = w m •be.
Here w ~{+.-}denotes the sign (slgn{z)), m the
mantissa (nent(z)), b the base or the number sys
tem and e the exponent (exp(z)). bis an integer
number with b > 1. The exponent is an integer and
lies between two integers el ~ e2. In general, el
< 0 and e2 > 0. mis the mantissa. It is of the
form

1
m = I z[i) • b-t .

1=1
Here, the z[i] denote the digits of the mantissa:
z [i] ~ {0.1 b-1} ror all i = l{l)n and z[l]
- 0. 1 ts the length of the mantissa. It denotes
the number of mntissa digits carried along. The
set of normalized floating-point numbers does not
contain the number 0. In order to obtain a unique
definition of O one can additionally define:
sign(O) = +. mant(O) = .000 ... 0 (1 zeros after
the point) and exp(O) =el.This kind of floating
point system depends on four constants b, I.el and
e2. We denote it with S = S(b,l.el,e2).
Let

ul vl

u2 v2

u = (ui) = V = (vi) =

u V n n

be two vectors, the components of which are nor
malized floating-point numbers. i.e. ui. v16 S

forall i = t(l)n. The theory of computer
arithmetic(lJ, [2]. (3) denands that scalar
products of two floating-point vectors u and v be
computed with aaximum accuracy by the computer for
each relevant, finite n and different roundings.
By doing so. mt 11 ions of roWldtngs can be
eliminated in compl teated calculations. This
contributes essentially to the stability of the
computational process and enlarges the reliability
and accuracy or computed results. Furthermore,
defect correction then becomes an effective
mathematical instrument.
This requires, for example, the execution of the
following formulae by the computer:

n
u0v=O (I u1 N vi)

i=l

n
uffiv=D (I ui • vi)

i=l

n
u'i'v= '1 (I ui • vi) (I)

i=l

n
u £ v = A (I ui N v 1)

i=l
The multiplication- and addition-signs on the
right side denote the correct multiplication and
addition for real numbers. 0. D, '1. A are
rounding symbols. 0 denotes a rounding to the
nearest floating-point number. D denotes the
rounding towards zero, '1 denotes the monotone
downwardly directed roWldtng and A denotes the
monotone upwardly directed rounding.
For an execution of formulae (I) first the pro
ducts ui N vi have to be correctly calculated by

the computer. This leads to a mantissa of 21 di
gt ts and an exponent which lies in the range or
2el-1SeS2e2. So the computation of scalar products
is reduced to the evaluation of sums of --the fol
lowing form:

n
◊ (I w1), n 6 M (II)

1=1
Here the w1 are floating-point numbers of double

length w1eS(b,21.2el-1,2e2), for all t = l{l)n. ◊
denotes a general rounding symbol, ◊ 6 { 0. D,
'v , A} . Measures have to be taken ft rs t to gene
rate and represent the swmands w1 correctly in

the computer. In case of scalar products this can
be done by very fast and well-lmown ctrcut ts.
For tradt tional general purpose computers there

258

are several ways to correctly compute (I) and (II)
mentioned in the literature. It is the intention
of this paper to describe circuits for high speed
computation or (I) and (II) on vector computers by
means of pipeline techniques. These circuits have
to accept and process one surmend from (I) resp.
(II) during each machine cycle. To assist in the
understanding of the following material. we first
refer to one of the possibtli ties mentioned in
(4):
We consider a register of L = k + 2e2 + 21 + 2Je1)
dtgi ts of base b, which should be placed in the
arithmetic unit (Figure 1).

k 2e2 21 2)el I
Figure 1

We divide this register into segments of length 1
(Fig. 2):

k 1

Figure 2

The sunma.nds in (I) and (II) are or length 21.
They fit therefore, digitwtse into a subrange of
length 31 of this storage. This pa.rt or the regis
ter, which is determined by the exponent of the
swrmand, ts selected and loaded into an accumula
tor of length 31. The swmand 1s loaded into a
shiftregister of the same length, being correctly
positioned according to the exponent, and then
added into the accumulator (Figure 3).

11111 1 Accumulator

1 Shiftregister

21 (sumnand)
Figure 3

The addt Uon may produce a carry. In order to
catch this carry. a few more digits than the three
words of length 1 can be read from the long regis
ter into the accwmllator, which ts extended to the
left accordingly. If not all of these digits are
b-1, the carry ts caught by these addt ttonal dt
gi ts. Since it ts possible that all these additio
nal dtgt ts are b-1, a loop has to be provided
which then adds the carry to the following digits
of the long register. This loop may possibly have
to be activated several times.
The addition of the SWIIIIIDds ot (I) resp. (II)
into the long register, Fig. 1 resp. Fig. 2, may
still produce a carry on the very far left of the
register. In order to catch such carries the long
register ts extended on the left by a few more (k)
digits of base b (Fig. 1). Then. any sum (I) or
(II) of n sUJIIIIUlds can be added wt thou t loss of

k information into the long register of length L. b
carries may occur and can be processed wt thout
loss of information.
Here we conclude our description of one'possibtlt
ty to solve the problems (I) and (II). See [4].

e

! What we Just described belongs to the state or the
art.

3. fast Computation or Sums and Scalar Products

The method described above is not suited r or the
computation of (I) resp. (II) on vector processors
o~ supercomputers. The process or reading, shift
ing, carry handling. possibly by a loop. and writ
ing back is certainly too slow to be executed in
one cycle time or only a few nsecs or these compu
ters. A aolution of the problem by a very long
adder is also very costly and probably too slow.

We therefore discuss here a variant or the possi
bilities mentioned above which mkes processing or
a aummmd or (I) resp. (II) possible within a very
abort cycle time. In comparison to general purpose
computers. vector processors and supercomputers
achieve their high speed of computation by means
of pipeline technology whereby during each mchine
cycle a result ts obtained. Ir scalar products and
aums are to be computed with high speed on vector
processors or supercomputers, one has to develop
circuits which accept and process one surmnand
(resp. a product) per machine cycle. This is only
possible if the addition is done by means of pipe
line technology. This)leper describes various cir
cuits which allow this.
At first the most important issues and ideas of
the circuitry are presented in the text referring
to Figures 4 to 15. These Figures contain some
more details which are not essential for a first
understanding of the principles. These details are
presented later in chapter 4 "Additional Remarks
concerning the Figures".
The circuit described below consists of a shifter
which 1s followed by a pipelined adder called sum
ming matrix (Figure 4). The shifting device may be
realized by standard technology and belongs to the
state of the art.
The adder consists of registers of a total length
of S ~ L. Here L denotes the length of the long

register as outlined above2 (Figure 1). The regis
ter length S is divided into r identical parts
which are arranged as rows one below the other
(Figure 5). r denotes the number of rows. All rows
are of the same length. Each or these rows is di
vided into c ~ 1 independent adders A (see Figure
6). Thus the whole swrning device consists of r •
c independent adders. Fach of these ~ders A has a
width of a digits. Between two of these independ
ent adders. carry handling must be possible. Also
between the last adder of a row and the first one
of the next ro11 a carry handling must be possible.
The complete sumning device which we call the sum
ming matrix SM, has a width or S =a• c • r di
gits or base b. c denotes the number of ~olumns of
the sumnillf matrix. It must be S ~ L = k + 2e2 +
21 + 2 fell (Figures 5. 6).
The SW!llling matrix contains c • r independent ad
ders A. F.ach of these adders must be able to add a
digits or base b in parallel wt thin one aichine
cycle. and to register a carry which possibly may
occur. Since each row of the summing aatrix con-

2or a·part or it. A reduction or the length S 1s
discussed below.

259

sists of c identical adders, h:= c • a digits can
be added in each row of the sumning matrix. Each
or the r rows of the &W1111ing matrix SM must be at
least as long as the mantissa length of the sum
mands which are to be added. Each digit of the
&'Wmling matrix is characterized by a certain expo
nent corresponding to the digit •s position. The
upper right part of the &Uffltling matrix carries the
least significant digit. the lower left part of
the sumning mtrix carries the most significant
digit of the full sumning device (Figure 5, Figure
6).
Each swmand resp. each product of (I) resp. (II)
must now be added into the swming matrix at the
proper position according to its exponent. The row
selection is obtained by the more significant bits

or the exponent (exp sUx h)3 and the selection or
the columns 1& obtained by the less significant

bits of the exponent (exp mm! h}4 . This complies
roughly with the selection of the adding position
in two steps by the process described in Fig. 3.

The incoming swmands resp. products are now first
shifted in the shifting unit (barrel shifter,
cross bar switch) into the correct post tion ac
cording to their exponents. The shift is executed
as a ringsh1ft. This means that the part of the
swrrnand which hangs over the right end is rein
serted at the left end of the shirtregister (Fig
ure 6 upper part, swmends 2 and 3. Figure 8). The
sunmand is distributed onto the c independent
parts of width a of the shiftregister. Each pa.rt
receives an exponent identification according to a
specific digit in it, e.g. the least significant
one (Figures 5. 6 and 10). The individual adders A
also carry an exponent identif'ication. The shifted
and expanded sumnand now drops into the top row or
the swming matrix and thereafter proceeds row by
row through the swmning matrix, moving ahead one
row in each machine cycle. The addition is execu
ted as soon as the exponent identification of a
transfer register in the &Ullll\ing matrix coincides
with the exponent identification part of the sum
mand.
A swmnand, which arrives at the sunning unit. can
remain connected after shtrttng to the correct
position within the shifting unit. In this case,
the addition is executed in only one row or the
SW1111ing mtrix. The shift procedure, however, can
also cause an overhanging at the right end of the
row. The overhanging part then is reinserted by a
rlngshift at the lert end or the shifting unit
(see Figures 6 and 8). In this case. the addition
of both parts or the IIWIIIBlld Is then executed in
neighbouring rows of the rn.mning matrix. If the.
most significant part or the swmand. which was
situated at the right end of the ahirter, is added
in row y then the addition of the least signiri
cant part. which was situated at the lert end of
the shifter. is added in row y - 1. This means the
next less significant row (see Figure 9).
It is, however, not at all necessary that each

3d!Y denotes integer division,
i.e. 24 d!x 10 = 2.

4mgs1 denotes the remainder or integer division,
i.e. 24 ~ 10 = 4.

transfer unit carries a complete exponent identi
fication. It is sufficient to identify the row by
the exponent part exp !!ll h of the sumnands ln the
shifter and to use it for selection of row y. The
distinction whether the addition has to be execu
ted in row y or in row y - 1 is made by a bit con
nected with each transfer register or by a suit
able column signal which distinguishes the trans
fer registers of a row. (The principle is illus
trated by the diagrams shown in Figures 11 and
12).
The acldi tion may cause carries between the inde
pendent adders A. Carry registers between the in
dependent adders absorb these carries. In the next
machine cycle these carries are added into the
next more significant adder A, possibly together
with another swrmand. In this way. during each
machine cycle one sunmand can be fed into the swn
ming matrix. al though the carry handling or on
sunmand may take several machine cycles. The me
thod displayed in the Figures shows one or diverse
possibilities to handle the carries. There may be
carry presencing or look-ahead or other techniques
applied to speed up the carry processing within
one row. In any way, the swrming matrix allows the
carry processing to be executed independently of
the summations and in parallel with the processing
that has to be done at all. e.g. adding further
summands or reading out the result.
In principle. the sunning matrix can only process
positive sunmands. Negative swmends or positive
subtrahends are therefore marked and at the proper
place not added but subtracted. Here negative car
ries instead or positive carries may occur.Similar
to positive carries they have to be processed pos
sibly over several machine cycles. In other words:
The independent adders A must be able to carry out
additions as well as subtractions and to process
positive and negative carries in both cases (Fig
ure 6, 12).
The design of the complete sunning device contain
ing the sumning matrix SM described herewith can
depend on the technology used. We have mentioned
already that the width a or the individual adders
A has to be chosen in such a way that an addition
over the complete width can be executed within one
machine cycle. F.ach row of the summing aa.trix must
be at least as wide as the individual swmands.
The shorter the rows are, the faster the sumnands
can be shifted into the right position. On the
other hand, shortening the width or the rows of
the sunning matrix increases the number or rows
and with it, the number of pipeline steps for the
complete swmation process.
After input or the last swmand the rows can be
read starting with the least significant row, pro
vided the row in question does not require any
carry handling. In this case the carries first
have to be removed. The readout process can use
the same data path by which the sunmmds pass
through the aatrix. Thus the result rows r ollow
the last swmend on its way through the transfer
registers. During the readout process additions
and carry handling in the more significant rows
aay still be executed. Si1111ltaneously with the
readout process the rounding to the required
floating-point fonat can be executed. The result
can also be stored as an intermediate long vari
able for further processing. Several rounding pos
sibi 1 i ties can be carried out siml taneously as

260

mentioned in [4]. During the readout process the
computation of a new scalar product resp. a new
sum can be started.
The width a of the independent adders A depends on
the technology used and on the cycle time of the
system. The width should be as large as possible.
But on the other hand. it must permit the addition
over the a digt ts in one machine cycle. (In the
case of a scalar product, a rra.chine cycle ts the
time in which the system delivers a product).
Depending on the technology there are several pos
sibilities of transportation or the swrmands to
one or the r rows or the swt111ing matrix SM.
The method described above is based on the idea
that each or the independent adders A ts supple
mented by a transfer register or the same width
(plus tag-register for exponent identification and
+/- control). During each machine cycle, each
transfer register can pass on its contents to the
transfer register in the corresponding position in
the next row and receive a digit sequence from the
transfer register in the corresponding position in
the previous row. Attached to the transfer regis
ters is the tag-register for exponent identifica
tion (Figure 5 and Figure 6). The contents of this
register are always compared with the exponent
identification of the corresponding adder. In case
of coincidence, the addition resp. subtraction is
activated (Figures 5, 6 and 12).

Alternatives to this procedure are also possible.
1. One of these alternatives could be to trans

fer the swrmand in one machine cycle directly
into the appropriate row of transfer regis
ters of the summing matrix as determined by
the exponent. During the following nachine
cycle, the addition is executed. Simultan
eously, a new swmand can be transferred to
the same, or another row, so that an addition
in each nachtne cycle is carried out.

2. The procedure is similar to 1. The interme
diate storage or the sunmands in trans! er
registers, however, is not necessary if it is
possible to execute the transfer- and addi
tion-process in one machine cycle. In this
case, no transfer registers are necessary.
The output or the result then also takes
place directly.

3. The transfer of the sunmands to the target
row can be carried out not only sequentially
and directly but also wt th several interme
diate steps, for example, by binary selec
tion.

F.a.ch one of these alternatives also allows a dir
ect and therefore £aster readout of the result
without dropping step by step through the transfer
registers.
To each independent adder A of length a belongs a
transfer register TR which is basically of the
same length. The number of adders A resp. transfer
registers TR in a row is chosen in such a way that

the mantissa length ii or the swmands plus the
length of the transfer registers t (:::a) becomes

less or equal to the length of the row (m + a i h
= c • a). In this way, an overlapping or the less
significant part or the mantissa with its most
significant part in one transfer register is avoi-

ded. For typical float '.ng-point formats this con
ci tion may result in long rows of the IIWIIDing ma
trix or in short widths a of the adders resp.
transfer registers. The former case causes lengthy
shifts while the latter case causes more carries
{Figure 6 upper part and Figure 8).
This disadvantage can be avoided by providing se
veral O 2) partial transl er registers for each
adder of length a. F.ach partial transfer register
TR of length t ~ a carries its own exponent iden
tification. Finally, the length t of the transfer
registers can be chosen independently of the
length a of the adders A. Both only need to be
integer divisors of the row length of the SWll!ling
matrix h =a• c ~ t • n {see Figures 13, 14 and
15).
Figures 6 end 13 show. in particular. that the
SU11111ing matrix bas a very systematic structure and
that it can be realized by a few. very simple
building blocks. It is suitable, therefore, for
realization in various technologies.
Based on the same principle also, sumrands which
consist of products of three and more factors can
be added correctly.
If the SUJ11ning matrix is to be realized in
Vl.SI-technology it may happen that the complet
sumning matrix does not fit on a single chip. One
should then try to develop components for the co
lumns of the sunrning matrix since the number or
connections (pins) between adjacent columns is
much smaller than between neighbouring rows.
The following remarks and Figures 4 to 15 provide
a more detailed description or the structure of
the s~ •Ing matrix and its functioning.

4. Additional Remarks concerning the Figures

The following abbreviations are used in the Fig-
ures:

A
AC
Ct
E

LSB
·EB

SM
SR
TR

.Adder
Accumulator Register
Carry
Tag-Register for Exponent Identifica
tion
Least Significant Bit
Kost Significant Bit
Swmning Matrix
Shifter
Transfer Register

figure 4 shows a structure diagram of the complete
sWllning circuitry and illustrates the interaction
of different parts of the whole circuitry, such
as: separation of the sunnands into sign, exponent
and amtissa, shifting unit, swmning matrix,
controller and rounding unit.

Figure 5: As mentioned in the text, we assume that
S ~ L. Figure 5 shows the case S > L. There, for
both the first and last rows part of the row is
covered by transfer registers only. For the whole
sunning matrix this means that transfer registers
exist for S digits but adders for L digits only. L
is chosen such that it is a multiple of a.
The dotted lines through the independent adders A
indicate that the transfer wires bypass the ad
ders. Above the transfer registers, the tag-regis
ter for exponent identification is indicated by a
box. This register is part or the transfer regis
ter.

261

Figure 6 shows a block diagram of the summing ma
trix. It is based on a special data format which
uses 4 bits to describe one digit of base b.

Width of AC: a= 4 bytes= 32 bits
Number of adders in one row c = 5
Number of rows in SM r = 8
k = 20 carry digits, 1 = 14 digits in the mantissa
el ::: -64 and e2 = 64. •
Users of /370 compatible systems wil 1 recognize
this data format as their double precision format.
L = 20 + 2 • 64 + 2 • 14 + 2 • 64 = 304 digits of
4 bits= 152 bytes.
Width or the complete sumning matrix
S =a• c • r = 4 • 5 • 8 bytes= 160 bytes~ L =
152 bytes.
In this example the width t of the transfer regis
ters equals the width of the adders: t = a = 4
bytes.
The upper part of the Figure shows several
positions of swmnands.

Figure 7 defines the exponent coordinates x and y
of the digits in the SWlll'ling aatrix (x horizontal,

. y vertical). These coordinates are obtained ac
cording to the following formulae:

eo denotes the reference point, the digit with
the least exponent in the matrix (at the
upper right end}.

el denotes the least significant digit of the
adder.

e
m

e

denotes the most significant digit of
theadder.
If the first and the last row of the complete
ma.trix contains adders over the full width
then e1 = e

0
and em= e

0
+ r•h-1.

denotes the exponent of a digit to be added .

e-eo denotes the distance to the least significant
end of the matrix.

y = (e-e
0

) div h is the row coordinate in which

the digit with the exponent e is added.
x = (e-e) mgg h indicates the distance to the

0

least significant end of row y.

Figures 8 and 9 describe the task of the shift
unit and 1 ts relation to the generation of the
exponent identification which will be transferred
into the sunming matrix with the aantissa.

The task of the shift unit ts:
1. adjust mntissa to the correct position for

its addition, if necessary by a ring shift.
2. fill the renaining positions of the transfer

registers resp. the row with zeros.

Figure 8 shows the shifted mantissa in both pos
sible cases.
Figure 9 describes the shift process. Two cases
are to be distinguished:
1. x = (e-e) md h ~ iii : no overhanging,

0

the whole mantissa is added in one
row.

2. x < m overhanging,
the mntissa is added in two

successive rows.
Part m1 remains wt thin the width of

the row. The overhanging part "2 is

reinserted at the left of the row.
Both parts are furnished with a cor
responding exponent identification.
Part "2 will be selected for addition

tn row y-1 whereas part m1 will be

added in row y.

The shifted and expanded amtiasa row drops row by
row through the aatrix as a transfer row. Before
that, each transfer section is characterized by
its exponent which carries the inf oraation where
the addition has to be executed.

Figure 10 shows the exponent identification or the
sections of the transfer rows. Each row of the
transfer matrix consists of n transfer sections of
length t. Figure 10 defines the exponent identi
fication te (transfer exponent) of these transfer

sections of the m.trtx. If et denotes the exponent

of the e.g. least significant digit of a transfer
section then this transfer section can be
characterized by the exponent identi£1cation te

with te= (et - e
0

) div t.
Before a swmand enters the aatrix, each transfer
section of the sUIIIDIUld receives an exponent iden
tification. During the passage through the matrix,
this exponent identification is then compared with
te. Equality triggers the addition. The lower part

of Figure 10 shows how transfer sections of the
swmend get their exponent identification.
A mantissa with the exponent e {= exponent of its
most significant dtgi t), receives the exponent
identification (e - e

0
) div t = em in the most

signif'icant transfer section, and exponent
identification e - 1, e - 2. etc. in the less m m
significant transfer sections.
Figure 10 shows in the lower part the two typical
cases. (Addition of the complete swmand in one
row resp. in two consecutive rows).

Figure 11 explains the simplified adder selection
by row identification yi. This row identification

is trans! ered through the ne.trix with the
transferrow. The addition is triggered off as soon
as the row identification and the row index
coincide. The row selection switch RS generates
two selection signals which activate the adders of
the row in question (see Figure 12, too). An
activating signal is sent via the wire "z-selec
tion" tr the row identification equals the row
index. An activating signal is sent via the wire
"z-1-selection" if y - 1 equals the row index.
Then the transfer sections only carry the inforaa
tion (z-1,z)-sumnation.
Since the transfer rows may only contain positive
values the tnforne.tion addition or subtraction ts
additionally transferred.
Thus the controller contains transfer registers
with specific infornation for each row which leads
about to the structure shown in Figure 11.

262

Figure 12 shows a block diagram for an adder cell.
For simplicity the case t = a is selected. The
cell contains centrally an "adder/subtracter" and
a "partial accumulator section". The right upper
corner shows the corresponding transfer register
with wires from the next less significant row and
to the next more significant row.
Additionally, the transfer register contains a tag
register for "z/z-1" identification which indenti
ftes through which selection wire the cell can be
activated. The "adder/subtractor" receives the
operands from the "partial accumulator section"
and in case of selection from the transfer regis
ter. Zero is added if no selection takes place. In
addition, the carry (positive or negative) arriv
ing from the right ts processed during each addi
tion/subtraction and, if' necessary, a carry is
passed on to the next adder cell on the left. This
carry is temporarily stored in an auxiliary regis
ter. Figure 15 further shows a control wire which
selects the operation (addi Uon/subtraction) as
well as a control wire for the read out process
(at the bottom of the figure). All control wires
traverse the whole row.

Figure 13 ts very similar to Figure 6. It shows
one row of the SWlllling matrix, but with t <a.The
Figure ts based on the same data fol'flBt as Figure
6, i.e.: one digit of basis bis described by 4
bi ts, k = 20 carry dtgi ts, l = 14 digits in the
mantissa, el = -64 and e2 = 64. Furthermore:
Width of AC: a= 4 bytes= 32 bits.
Number of adders in one row c = 4.
Number of rows in SM r = 10.
L = 20 + 2 • 64 + 2 • 14 + 2 • 64 = 304 digits per
4 bits= 152 bytes.
Width of the complete swrning natrix
S =a• c • r = 4 • 4 • 10 bytes= 160 bytes~ L =
152 bytes.
In this example the width of the transfer regis
ters ts Sflllller than the width a of the adders: t

a = 2 = 2 bytes.

This permits a smaller row width of only c = 4
adders.
The upper part of the Figure shows ·the position of

a sumnand of iii= 2•1 = 14 bytes at a critical po
sition.

Figure 14 shows another case where the width of
the adders differs from that of the transfer re
gisters (t - a). In the Figure the transfer regis
ters are shown wt thout exponent identification.
Dotted lines again indicate trans£ er wires which
bypass the adder tn question.

Figure 15 shows a section of a row of the IIWlllling
ae.trix with t - a. Here the case 3t = 2a has been
selected. It shows how digits of the same transfer
register are distributed and added into neighbour
ing adders.

5. Sun.nation with only one Row of Adders

We now discuss a further variant of the above cir
cuitry for which adders exist only for one row of
the sunning natrix. The complete structure of this
variant is similar to the one before (Figure 16).
I.e. the complete circuitry consists of an input

adjusting \Dli t. the auming tmit with the actual
accumulator and a device for carry handling, re
sul trow filtering and rounding.
The complete fixed-point word. over which sumna
tion takes place, ts divided into rows and co
lU111nS. as before. The transfer width and the adder
width, however. aist now be identical. The width
can be chosen according to the criteria as out
lined above. The columns or the 11Btrtx shaped sum
■img unit are now completely disconnected, t.e. no
transmission or carries takes place between the
individual columns or the mtrtx during the pro
cess or ■U1111Btion. The carries occurring during
the au111111tton are collected in carry counters and
processed at the end or the SU111Btion process.

Figure 17 shows the ctrcut t of a "column"' of the
-trix shaped SUJ1111ing unit. 'the full "long accumu
lator" ts spread over the various columns or the
&UBDing unit. The pa.rt allotted to one column ts

5 called .. accu-memory". see (1) in Figure 17.

To each cell or the accu-memory belongs a carry
counter. The collection or carry counters of a
column ts called .. carry-memory". see (2) in Figure
17. In these cells or the carry-memory ill carries
emerging from the adder/subtractor are collected
and incorporated in the result at the very end of
the ■wrming process. The individual cells of the
carry-memory 111st be so wide that they can take a
carry (positive or negative) from each sumnand.
For a vector length of 128 one needs. for example,
7 bits plus a sign bit resp. an 8 bit number in
twos• -complement.
In Figure 17, for example, the column width is 32
bits and the width of the individual carry-memory
cells is 16 bi ts. This allows a correct computa
tion or sums with less than or equal to 32 K sum
Ends. The exponent identification (in Figure 17)
has a width of e bit: consequently the column has

2e cells resp. the memory a:atrix 2e rows.

During the nora:al sunmation process the following
happens:
1. The mantissa section IIANT, sign sg, and expo

nent identification EPI reach the input re
gister RI. (3).

2. In the next cycle
the memory ts addressed through EPI
and the accu-pe.r t as we 11 as the carry
part are transferred to the
corresponding section of the ~egister
before the §WZHIBtion HRS, (4):
the amtissa section, sg. and EPI are
also transferred to the corresponding
section or RBS, (5).

3. In the next eycle
addition resp. subtraction according to sg ts
executed in the adder/subtracter (6). The
result is transferred to the corresponding
■ectton of the xesister nfter the awmatton
RAS, (7). According to the carry. the carry
)Nlrt is adjusted in (8) by +l. -1 or not at

51'be numbers enclosed in round Jarentheses in the
text indicate in the corresponding Figure that
)Nlrt or the ctrcui try which is au-ked with the
same number.

263

all and it is also transferred to RAS. (9):
EPI ts also transferred to RAS. (10).

4. In the next cycle
EPI of RAS addresses the memory, and
the accu-part together with the carry
part are written back into the memory.

Since in each machine cycle a nentissa section is
supplied. these phases must be pipelined. This
means, tn particular. that all phases need to be
active simultaneously. It D:!ll be possible there
fore. to read from the memory and to wrt te into
the same or another row or the memory during each
machine cycle. This. however. is usual for regis
ter memories.
If in two consecutive eycles the same accu- and
carry-memory cell is addressed. the previously
described procedure may lead to a wrong result.
since in the second cycle the result of the just
started sumning procedure should be read. which
does not yet exist. We have a typical pipeline
conf ltct. These dirficul ties can be overcome by
duplicating the accu-carry-memory several times
which, however. ts very costly.
Therefore. we suggest an easier alternative. We
suppose that during consecutive cycles mantissa
sections with the same exponent identification
arrive. We distinguish the following two cases:
a) directly one after the other:
b) with another exponent identification in bet

ween and both arbitrarily often and mixed.

We first deal with case a).
'\) The registers EPI of RI and EPI of RBS con

tain the same exponent identification. The
two are compared in (11) and in case of coin
cidence the read process from the memory to
HRS ts blocked off in part (13) of the selec
tion unit (12). Instead. the result or the
addition or the first or the two consecutive
sumnands ts directly transferred to RBS via
(14) so that the second SWIIIBJld can inmedi
ately be added.
Furthermore. (15) causes a dmm,y exponent to
be read into EPI o(RAS. So. if in the same
eycle a further third value wt th the same
exponent identification is transferred to RI
the case EPI/RI; EPI~; EPI/RAS is avoi
ded. This cas~ would cause a conflict in the
selection unit (12).
Thus, consecutive sumna.nds with the same ex
ponent identification can be added wt thout
memory involvement. The intermediate values
may be written into the memory or discarded
{storage blockade on). Only the last value
mst be written into the memory via RAS.

We now deal wt th case b) .
b) Three values EPI1. EPI2. EPI3 with EPI1 =

EPI3 - EPI2. In this case EPI/RI and EPI/RAS
contain the same exponent tdenttficatton.The
two registers are compared in (16). In the
following cycle the contents or RAS is
directly transferred to RBS through part (17)
of the selection unit (12). The read process
from the memory is again suppressed in (13).
The intermediate value may be wrt tten into
the memory. It can also be suppressed.

In this way. any consecutive mnttssa sections can

be added and the carries collected in the carry
counters.
We now consider the process or reading the result.
The central read control produces continuous ad
dresses so that the accu-memory is read from the
least significant to the most signHicant row.
This sequence is a must because of the necessary
carry hand! ing. The addresses reach the memory
through the multiplexer (18).
Wires {19). (20) for transfer of the carries lead
from column to column. The carry-parts of a column
are fed to the next more significant column. There
they are taken into the mantissa section of RBS.
To get there the multiplexer (21) is switched
over. The carry. which is stored in the twos• -com
p lemen t for convenience. first has to be changed
into sign-magnitude-representation and. if neces
sary. expanded in length (22). In the next cycle,
the carry is added and together with a possible
lbi t-carry (positive or negative) transferred to
the unit for preparing the re~lt after temporary
storage in RAS. The above mentioned carry can
there be stored either in a part of the RAS-carry
register or in a 2bit auxiliary register (23).

During the process of reading it is advisable to
delete the particular storage cell irmiediately by
a circuitry part which is not shown. This can. for
example. be done by writing zeros into it. If va
rious scalar products resp. sums are to be accumu
lated. the process of reading is not started until
the computation of the full sum is finished. The
swrrnands are continuously accumulated into the
accu-carry-memory.
From the most significant column the carry part of
the memory is trans£ erred into an auxi 1 iary carry
register, (24) in Figure 16. From there, this car
ry is transferred with a delay of one cycle via
wire (20) to the least significant colunm to have
it available for the read out process of the more
significant row.
The final carry treatment (25) contains a single
resp. multi-stage pipelin~ where the still remain
ing carries are included in the result. At the end
of this part or the circuitry the ready rows of
the result appear, the least significant ones
first.
In another part of the circuitry (26), which is
shown in Figure 18, the two rows with the signifi
cant digits must be found. The most significant
digit of the more significant register (28) con
tains the result sign; SffB.llest digit (preferably
zero) means positive, largest digit {dual 1, deci
mal 9, hexadecimal F) means negative. tis advis
able to initialize both registers with zero. The
circuitry for filtering the rows with significant
infonration now checks in each row presented to
the circuit whether there ts at least one digit
not equal to the sign digit already stored in the
higher significant register (28). If this is the
case or if there is no sign digit (e.g. 1 .. 8 in a
decimal system) at position (28) then the transfer
is enabled for the actual and the next clock cycle
to fill both registers with two new consecutive
rows. If. however, 'the transfer was already en
abled tn the previous cycle, then it must be reen
abled for one cycle only. The control circuit (29)
may therefore be described by the following state
table with entries "next state/transfer enable".

264

output of
sign check

State 0 1

1 1/0 2/1
2 1/1 3/1
3 1/0 3/1

The transfer into the registers ends if only rows
with sign digits follow. Finally, in both regis
ters those rows appear, which contain the mantissa
of the floating-point result. One obtains the ex
ponent from the position as well as from the ini
tial address resp. from the number of cycles ne
cessary for reading. Furthermore, the information
required for the rounding is easily obtained du
ring output. It serves for a possible adaptation
or the result.
The circuitry shown in Figure 17 may be varied to
reduce the number of input/output lines, e.g. by
transferring the carry count (19) through the MANT
inputs. The Figure is intended just to show prin
ciples, and not tricky details.

6. Systems with large Exponent Range and further
Remarks

Many computers have a very modest exponent range.
This is for instance the case for the system /370
architecture. If in the decimal system, for in
stance, 1 = 17, el = -75 and e2 = 75 the full
length L = k + 2e2 + 21 + 2 jell of the registers
(see Figure 1 and Figure 2) can more or less easi
ly be provided. Then sums and scalar products of
the form (I) and (II} can be correctly computed
for all possible combinations of the data by the
technique discussed in this paper without ever
getting an overflow or an interrupt.
However, there are also computers on the aarket
with a very large exponent range of several hund
red or thousand. In such a case it may be costly
to provide the full register lengths of L = k +
2e2 + 21 + 2 lell for the techniques discussed in
this paper. It is most useful then to reduce the
register lengths to the single exponent range and

* instead of L to choose L = k + e2 + 21 + fell or
even a smaller range e' ~ e ~ e" with el< e' and

e" < e2 and correspondingly L' = k + e" + 21 +
le' 1.
Traditionally. sums and scalar products are com
puted in the single exponent range el< e < e2. If

(el I and e2 are relatively large most =sca;ar pro
ducts will be correctly computable within this
range or even in e' ~ e ~ e". Whenever, in this

case, the exponent of a suanend in a sum or scalar
product computation exceeds this range e' < e < e"

= =
an overflow has to be signalled which any cause an
interrupt.
In such a case the exponent range could be exten
ded to a larger size on the negative or the posi
tive side or even on both sides. We aay very well
assume that the necessity for such an extension of
the exponent range occurs rather rarely. 1be sup
plementary register extensions, which are necessa
ry for the techniques discussed in this paper.
could then, for instance, be arranged in the m.in
memory or the system and the summtton wt thin the

extended register part nay then be executed in
software. Such procedure would slow down the com
putetion or scalar products in rather rare cases.
But it still always will deliver the correct
answer.
We further discuss a rew slightly dU'ferent me
thods how to execute accuJa1lating addition/sub
traction and the scalar product swmation on pro
cessors with large exponent range.
On a more sophisticated processor the exponent
range covered by the sunming mtrix could even be
Ede adjustable to gain most out of this special
hardware. This could be done by an automatic pro
cess or three stages:
1. A special vector instruction analyzes the two

vectors and computes the exponent range that
covers most or the swmencls or products or
the vector components. This step my be dis
carded if the best range ts already known.

2. The sunmtng aatrtx gets properly adjusted to
the range found tn 1. and tn a vector in
struction the fitting part or the suanand or
products is accumulated into the S1.U11Ding ma
trix. Ir a swmand or product does not ft t
in to it 1 t can be dealt by one or the two
alternatives:
a) Interrupt the accumulation and add that

swmand or product by software to the
not covered extended parts or the accu
mulator which resides in main memory.

b) Do not interrupt the accwmllation. but
discard this SWll1Blld or product and
lllllrk this element in a vector flag re
gister. Later the marked elements are
added by software to the extended parts
of the accumulator. This second way
avoids interrupting and restarting the
pipeline and wi 11 thus lead to higher
performance than a).

3. In a final step the content of the &Wlllling
smtrix part of the accumulator is properly
inserted between the extended parts to get
the complete result in form of a correspond
ingly long variable in smin memory.

Another cure of the overflow situation e f [e·.
e ..] may be the following: Sunmands with an expo
nent e. which is less thane•. are not added. but
gathered on a .. negative heap0

• Similarily swmmnds
with an exponent, which is greater than e"'. are
gathered on a "positive heap". The negative and
the positive heap nay consist of a bit string or a
vector flag register where each sumnand or vector
component is represented by a bit. This bit is set
zero if the sumnancl was already added. It is set 1
tr the component belongs to the corresponding
heap. After a first SW!lllation pass over all sum
mands the computed sum is stored. Then the pos i
tt ve and/or negative heap is shifted into te
middle of the exponent range e • ~ e ~ e.. by an
exponent transronna.tion and then added by the same
procedure. After possibly several such steps the
stored parts or the sum are put together and the
final sum is computed. In many cases it will be
possible to obtain the final result without sum
ming up the negative heap.
Another posstbi 1 i ty to obtain the correct result
with a reduced register length L' = k + e• + 21 +
e" is the following: The process of swmation
starts as usual. As soon as the exponent e of a

265

! umnand exceeds the range [e'. e"] an exponent
part is bui 1 t up which interprets the digit se
quence of L" as a very long nantissa of a normal
ized floating-point number. The nornalizatlon, in
general. will require a shift. Then a "'positive
heap" ts no longer necessary. And in most cases it
wi 11 be possible to obtain the correct rounded
result without sumning up a possibly still neces
sary .. negative heap". The method computes all ac
cumulating sums or scalar products correctly with
out considering the negative heaps as long as less
than e" - e• digits cancel. The negative heap can
only influence the k least significant digits of
L'.
The reduction of the full accumulator length L to
a smaller size L' < L m.y cause exponent under- or
overflows in special swmation processes. This
always makes some event handling routine necessa
ry. Whatever this is. this procedure represents a
trade orr between hardware expenditure and run
time.
A rather primitive event handling would consist in
a traditional swrmation or the positive and nega
tive heap. In this case a message should be deli
vered to the user that the result is probably not
precise.
In the context or progranning languages the accu
mulator of length L" = k + e" + 21 + e' represents
a new data type which could be called precise. As
long as no exponent under- or overflow occurs (e"
~ e ~ e") addition 0£ variables of type real. of
products of such variables as well as of scalar
products of real vectors into a variable of thi~;
type can precisely be executed and 1 t is error
free. Accumulation of real variables, products or
scalar products into a variable of type precise is
associative. The result is independent of the or
der in which the swmands are added.
Vectorprocessors belong to the fastest computers
which are presently available. Their main field of
application ts scientific computation. It should
be natural that vectorprocessors compute vector
operations correctly. The vector operations con
sist basically of the componentwise addition and
subtraction. the componentwise multiplication and
the scalar product. The implementation of highly
accurate vector addition/subtraction and compo
nentwise multiplication belongs to the state or
the art. The computation of accurate scalar pro
ducts has been dealt with in this paper.
Due to their high speed or computation. vectorpro
cessors must. however. also be able to support an
automatic error analysis resp. verification or the
computed result. In order to achieve this it is
necessary that all operations. mentioned above.
such as componentwise addition/subtraction. com
ponentwise multiplication and scalar products can
opt tonally be cal led with several roundings. in
particular with the monotone downwardly directed
rounding. the monotone upwardly directed rounding
and the rounding to the least including interval.
We do not discuss the implementation of these
roundings here. It belongs to the state or the
art. For further information we refer to the lit
erature.
Finally. we reuark that the methods and procedures
outlined in this paper are also suitable tp add up
sums or products correctly which consist or more
than two factors. for example

7. Application to Multiple Precision Arithmetic

We show in this chapter that the essential parts
of multiple precision arithmetic can easily be
executed with high speed if a fast scalar product
unit is available.

We consider

1. Double Precision Arithmetic6

1.1 Sum and Difference
It is clear that swns of two or n double precision
swmiands a + b or a + b + c . . . + z can be accumu
lated. The same holds for sums of vectors or ma.
trices.

1.2 Product
If a product a• b of two double precision factors
a and b has to be computed. each factor can be
represented as a sum of two single precision num
bers a= a 1 + 82 and b = b1 + b2 . where a1 and b1
represent the first (higher significant) l digits
and 82 and b2 represent the last (lower signifi-

cant) 1 digits of a and b. The multiplication then
requires the execution of a scalar product:

a• b = (a1 + 82) {b1 + b2) =

albl + alb2 + 82b1 + 82b2 • (l)
where each summand is of double precision. These
can be added by the techniques developed in this
paper.
Similarly. products of more than two factors can
be computed. As in (1) products of two double pre
cision numbers are expressed by a scalar product
of single precision numbers. On the right hand
side of (1) each swmand ts a double precision
number which can be expressed by a sum of two
single precision numbers. In the case of a product
of four double precision numbers this leads to the
following formulas, which are self-explanatory.

8 i 8 i 8 8
at • Cj I a . I C = I I

i=l 1=1 i=l J=l
8

ai and C
8 i with a• b = I • d = I C

1=1 i=l

Thus a•b•c•d can be computed as the sum of 64 pro
ducts of two single precision numbers each.
The case of products of two or more double preci
sion rratrices is a little more difficult. But it
can, in principle, be treated similartly. Ir a
product of two double precision 1111.trices has to be
computed the two 1111.trices are first represented as

6eigh speed scientific computation is usually done
in the long data foraat. Double precision here
means the double mantissa length of that f onmt.
If the usual long fonmt ts already called double
precision our double precision corresponds to
quadruple or extended precision.

266

sums of two single precision aatrices. Multiplica
tion of these sums then leads to a sum of products
of single precision aatrices:

a• b = (a1 + 82) (b1 + b2) =
albl + alb2 + 82b1 + 82b2 (2)

Fach component of the products on the right hand
side of (2) is computed as a scalar product. Thus
each component of the product matrix a • b con
sists of a sum of scalar products which itself ts
a scalar product.
In case of matrix products. which consist of more
than two double precision matrix factors. one has
to take into account that the components of (2)
may already be pretty long. They nay consist of 10
or 20 consecutive digit sequences of single preci
sion lengths. These sums of single precision ma
trices then have to be multiplied with other such
sums. which leads to a sum of 1111.trix products.
Each component of this sum can be computed as a
scalar product of single precision numbers.

2.
Arithmetic of triple precision is a special case
of quadruple precision arithmetic.

3. Quadruple Precision Arithmetic
3.1 Sum and Difference
Fa.ch swmend of q~ruple precision can be repre
sented as a sum of two double precision sUJl'll1Bnds.
Thus sums of two or more quadruple precision sum
mands can be added as expressed by the fol lowing
formulas=

a+ b = a 1 + 82 +bl+ b2

a+b+c+ ... +z=
al~+b1•b2+c1+c2 + ••• + zl + z2.

Sums of quadruple precision vectors or matrices
can be treated correspondingly.

3.2 Products
Each quadruple precision number can be represented
as a sum of four single precision numbers a= a

1
+

82 + 8J + a4• Multiplication of such sums requires
the execution of a scalar product=

4
I a1 • bj

J=l
(3)

Similarily. products of more than two quadruple
precision factors can be computed. le indicate
this process by the following f ormulaa. which are
self-explanatory.

32 32 32
= (I a1) (I cj) = I (4)

i=l J=l 1=1

There the 16 double precision SUJIIIIBJlds a 1 b J and

c 1dJ or the two factors or (4) are each represen

ted as sums of two single precision-numbers. This
leads to the product or the two sums over 32

single precision numbers a 1 resp. cj in the next
line.
If a product or two quadruple precision 11Btrices
t■ to be ccaputed each factor is represented by a
sum or lour single precision floating-Point m.tri
ces as in (3).
llulttpltcation or these sums leads to a sum or
1&trix products. Fach component or these matrix
products ts computed as a scalar product. The sum
or these scalar products ts again a scalar pro
duct.
It 1188 the intention or this section to demon
strate that wt th a fast accumulating addition/sub
tractton or scalar product unit a big step towards
aul tiple precision art thmetic. even for product
spaces, can be done.

8. Literature

[1) U. Kulisch: Crundlagen des Nwnerischen Rech
nens - Nathenattsche BegrUndung der Rechner
arithmetik, Bibltographisches lnstitut, Mann
heim 1976

[2] U. Kulisch and W.L. Niranker: Computer Arith
metic in Teory and Practice, Academic Press
1981

[3) U. Kulisch and W.L. Niranker: The Arithmetic
of the Digital Computer: A New Approach.
SIAII-Review, March 1986, pp. 1-40

[4] IBM System /370 RPQ, High Accuracy Ari th
•tic, Publication Number SA 22-7093-0

(5] High Accuracy Arithmetic, Subroutine Library,
General Information Manual, IBM Program Num
ber 5664-185

[6) High Accuracy Arithmetic, Subroutine Library,
Program Description and User's Guide, IBM
Program Number 5664-185, Publication Number
0C 33-6163

[7] T. Teufel:•Ein optimaler Gleitkolmaprozessor.
Dissertation. Univerat tKt Karlsruhe. 1984

[8] G. Bohlender and T. Teufel: BAP-~: A Decim.l
Floating-Point Proce■sor for Optimal Ari tlwe
ttc. to appear tn: C,omputer Arithmetic,
Scientific Computing and Progranaing Lan
guages (E. Kaucher, U. Kulisch, Ci. Ullrich,
&la). B.G. Teuhner. 1987

[9] Art thmos Benutzerhandbuch, SIEMENS AC. ,
Bestell-Nr.: U 2900-J-Z 87-1

For a supplementary bibliography see the 11 tera
ture listed 1n (3].

267

t n pethH ror
,__-._ _...__ _ _._ _ _._,_:the ruuh

soudl119

r,,..,. • • luucture of tlle whole clrcuttrll'
vi'iiii denote• the n-r of ft9ur•• of •v•lue'

Ir«- ■hUt■r •nd upen•iOfl u1ut

I: u9•r~i■tcr for
eapon■ nt tdenUt•c•U

a, c■ rrr re<;t ■t.■r

n, tru■f■r r■9t■t.■r

At adder
AC1 -l•U119 r■9tuer in•

LSD: lc••t ■19nihe•nt bit

••• -t. ■t911iUc•nt ba
•• • .-.., of rOW11

a,, •- c•rrr

oluiU111 ert"-Ue circuitry
•ch row -i;.■tu c a6S■r• of • •11tt• eftd " tr•n•f•r r■9t■t•r•
of,.,,,,.,'-•· h•c•••n•t ,._, .. 11•c•ftd t••I

r, .. ,. s, StraCCan ar tile•-'"' •trt•

r.&vur■ "' Tr■nsf■r r99.l1t■r• ■Del ..sdcn of ••ff■r■11t
width t. ♦ •• for inaunce: t • 4, • • 61. 'the
tra1111f■r r■9iat■r• ••• rapreMnted •ttllout
cat•flal48 ror upociant .Identification

,_

r-2

'l!

I
•o
r~

c .. -v
.. . "
t•.:3 c-~:
C Ill' u=
fii
:i=
j
·;
--vu o-
Ut ·•1 .. .
... - ! •.~
a~!
.=:!
~!-= •r1 r~
1:~: ..
• ; . ~ t2

•0•11-1 •1 •o

e
0

+2h•I

• +Jh•I

~~~=~~;;;,,;~~~";;i~;~◄ I 
_ __....,.•o•II 'I 

--------------------1•.:,0 •211 

e
0

+4h•I 

1-·+-•1_,_-_11_ea-_, ________________ ,.•.:.o•lr•JIII 

• 0 • nf- polat, Cltlt wllJI l-t ~ 1• Ille •trl■ 

e1 • apoaat or CM l-t •lplfl- ••t•t of &lie .oder• 
••• cqioaeet or U. - elpUI- dltlt of &lie adder■ 
lu 1.,.11:.11 or,_. Ii• ••tit• of llaN bl. ll•c•a 

., • •■-■ 1•'• • • r. •• • I lo 

•• .....-11:. of• ••••t 
-o• ···- IO tlle lN■t •••• ., ••• 11:. ead of the •Ula 
:r• •-•• !!! •• ,_ -.. ... t• or t11e •1,111:. ••u a:p:i■eat • 
• • •-0 , !!!!!. 111 •••ta- fro■ laaH al9nUl•1111:. atld of row :r 

PituH ,. illlpoaeat -41MtH of &be dl9it■ In the __ ,.,. 
Mtrl■ 

268 

~ •:• 

row •111:.11 11 ua11.rcr re,ale11:.cra or 1■11911:.h 11:. 

~-·· 
loo oo ..... o oo •••••• o oo •••• OF 

I I I 

row will:.h 11 11:.ranafar re,aln■r• of left911:,II t 

Pl911re It Tallll of 11:.lle elllh ualt 

ii 

• addill:.ion of •11 di9iu of 
11:.h• -1111:.i ■M in row y • 

••• ,. •2 

par11:. •• of 1.11■ -1111:.•••• 
i• added in row , • 
pan. •z in row ,. 1 • 

•• •11pot1e1111:. of 11:.hc ■an ai9niflca1111:. di9it of 11:.hc -1111:.i••• 
i, lc11911:.h of -nthH, ftllllbcr of dl9i1t.• of 11:.lle -1111:.i•w 
111 nmob■r of di9i11:.• of • row of II.lie ■-int -tr•• 

Pi9ure ,, Description of 11:.lle •lllh p-■■ 

1aponc1111:. idaft11:.Ul•11:.ion 11:.• of 11:.II■ tr•n•fer ■ecll:.io"• 
of II.he -11:.ri•• 

... , 

A a&11t1- u ... fer ra. wltll -11:.1 ... ~ e 9111:.■ 11:.M 
ton_,., apcaeet tdMll:.iflcati- I• tM cocrap•H., 
u ... ru -•-• •••••,••·•· • 

flll• I• •ndepadat of tlle a-ti• la tlle tr-f■r cc.. 
ror l•H•-• 

, .. -, 
I • I • I I . • 

e-:a ... 

1
00 00 .••••••••••••.•• 000

1
. 



•·-

··-

•·· 

retiner for 
roo, ide11Uficat&on 

lt i.S.. of cbe -n4• U•I, ... ,al 
u, row HlectiOII 

Mlec:uon 
u .... 
per roo, 

~ration 

a•aolecUon 
a-1-Ml~lon 

f19ure 11, ll111PlUl..S adder MlectiDft by 
roo, ldeatlUcatlOII ,, 

froa r- of 
1-r ■i9nific■nce 

control wire for Uoe 
road out process 

co•- of 

ident if lcaUon 

tl1t""9II 

'°'"' c:Ofttrol 
wires 

bl9her sl911i. :■nee 

CY, carr:, wlth ■1911 

••hctlon 1091c1 add/aubtr, U lselect.lon•al and lta9•al 
or 1Hlec:tion•la•11 and lt■ 'll•la•II 

add/subtr. aero •l•• 

t'19urc U1 ltructur• or • Mctaon or the .. u,a rev y, 
for a• t 

u:wwm 

Pi9ure u, Pan of the ■-i"9 .. tria wltll 
tranafer regi■tcn with t c •• bere t • a/2 
•: -H ai9niflcant d19n of ■-nd 

IUIICCUe Of ■ NCCiOII with _,_1 
aMu I aabcr■c:cer■ aad uea■r■r 
s.tl■wr■ Uor eaaaple :ta • 311.I 
, •• alapUUed r■pr&Hnt■ tlOII .. ,e11-
out uv-Ueld• for uponent ldentlfic■tlon 
aad _,rol lines. 
A1 MlectlOII 

LSII 

SIi 

269 

--r---r---r-----' .. flt.&••• ••ct.aons. ••C'fil ot1• 
vltft ••ponent a dent 1. f ac•-

r-..._--r-"'--r"""'"L--.--L- tion and ai9n 

control 

colu'""a 
conauun9 
of one 
adder 
and 
accu• 
reg,ner 

reauh r 
preparatiOII l 

unit for ■d,usUn9 
_____ """'I' ____ __, the rnult 

Pi9ure 16, Structure of the •-•"9 unit 
with only one roo, of ad4era 

·-
JI 

rry . _.,. ..... r, 

CD 0 

Pl'-■-■d rows 
wl&llout carriea 
:t:t •c 

1/ ______ ...., 
mauol ■ipal■ 

Pi9ure 111 PUteri119 tlle roo,■ with ■J9nif.ii:.11t 
,.,_,,oci 

ca -ia■r or ciol-■ 

, .. u 

... ,u ..... 

r■thter for 
■itniUcant ,_ 




