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Abstract: In electronic computers the elementary 
arithmetic operations are these days generally 
approximated by rloating-point operations or high
est accuracy. Vector processors and parallel com
puters often provide addi tiona.l operations like 
'"multiply and add .. , .. accumulate" or .. multiply and 
accumulate'". Also these operations shal 1 always 
deliver the correct answer whatever the data are. 
The user should not be oblighed to execute an er
ror analysis for operations predefined by the man
ufacturer. 
In the first pa.rt of this pa.per we discuss cir
cuits which al low a fast and correct computation 
of sums and scalar products making use of a matrix 
shaped arrangement of adders and pipeline techno
logy. In the second pa.rt a variant is discussed 
which permits a drastic reduction in the number of 
adders required. The methods discussed in this 
paper can also be used to build a fast arithmetic 
unit for micro computers in VLSI-technology. 

Introduction 

Modern computers of highest performance. the 
so-called vectorprocessors or supercomputers, are 
gaining considerably in importance in research and 
development. They serve ror simulation of proces
ses which cannot be measured at all or only with 
great erfort. for solving large engineering design 
problems or for evaluation or large sets or meas
ured data and £or l'IBllY other applications. It is 
co111110nly assumed that these computers open a new 
dimension for scientiric computation. In sharp 
contrast to this is the fact that the arithmetic 
implemented on supercomputers differs only margin
ally from that or their slower predecessors. al
though results are much more sensitive to rounding 
errors. numerical instabilities, etc. due to the 
huge number or operations executed. 
Research in numerical ae.tbeue.tics has shown that. 
with a more comprehensive and optimal vector 
arithmetic. reliable results can be more easily 
obtained when dealing with extensive and huge pro
blems. Computers with this kind or ari thmec have 
proved the signtricance of this development in 
many successful applications. 
Unti 1 now. it has been assumed that an optimal 
vector arithmetic could not be implemented on su
percomputers. The users. thererore. had to choose 
between either lengthy computation times and accu-
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rate results on general purpose computers or com
paratively short computation times and possibly 
wrong results obtained on supercomputrs. 
It was assumed. in particular. that correct compu
tation of continued sums and scalar products. 
which are necessary for vector arithmetic, could 
not be implemented on supercomputers with pipeline 
processing. Well known circuits, which solve this 
problem. require several machine cycles for carry
ing out a single addition whereas a computer of 
highest performance with traditional arithmetic 

1 carries out one addition in each cycle. This pa-
per describes various circuits for the optimal 
computation of sums and scalar products at the 
speed of supercomputers. There is. in principle. 
no longer any reason to continue to accept inaccu
rate sums or scalar products by not using optimal 
vector arithmetic on vectorprocessors and super
computers. The additional costs compared with the 
cost of the complete system are Justified in any 
case. It takes the burden of an error analysis 
from the user. 
The first electronic computers were developed in 
the middle of this century. Before then. highly 
sophisticated electromechanical computing devices 
were used. Several very interesting techniques 
provided the r our basic operations of addition. 
subtraction, multiplication. and division. Many or 
these calculators were able to perform an additio
nal operation which could be cal led .. accumulating 
addition/subtraction" or continued sW111Btion. The 
ma.chine was equipped with an input register or 
about 10 to 13 digits. Compared to that, the re
sult register was much longer and had perhaps 30 
digits. It was situated on a sled which could be 
shifted back and forth relatively to the input 
register. This allowed an accumulation or a large 
number or sumrrands into dirferent positions or the 
result register. There was no rounding executed 
ar ter each addition. As long as no overr low oc
curred, this accumulating addition was error free. 
Addition was associative, the result being inde
pendent or the order in which the summands were 
added. 
This accumulating addition wt thout intermediate 
roundings was never implemented on electronic com-

1 By a cycle time or a ne.chine cycle we understand 
the time which the system needs to deliver a 
summand or a product, in case of a scalar product 
computation. to the addition pipeline. 



puters. Only recently. several /370 compatible 
systems have appeared which simulate this process 
on general purpose me.chines by accumulating into 
an area in main memory. which ts kept tn the cache 
memory for enhanced performance. [5]. [6). This 
allows the elimination of a large number of round
ings and contributes essentially to the stability 
of. the computational process. This paper desribes 
circuits for an implementation or the accumulating 
addition on very fast computers making use or 
pipelining and other techniques. 
The first electronic computers executed their cal
culations in fixed-point arithmetic. Fixed-point 
addition and subtraction ts error free. Even very 
long sums can be accumulated wt th only one final 
rounding in fixed-point arithmetic. tr a carry 
counter ts provided which gathers all intermediate 
positive or negative overflows or carries. At the 
very end of the sU111111tion a nonmltzatton and 
rounding ts executed. Thus accumulation of fixed 
point numbers ts associative again. The result is 
correct to one unit in the last figure and it is 
independent or the order in which the sumnands are 
added. Fixed-point arithmetic. however. imposed a 
scaling requirement. Problems needed to be pre
processed by the user so that they could be accom
modated by the fixed-point number representation. 
Wt th the increasing speed or computers. problems 
that could be solved became larger and larger. The 
necessary pre-processing soon became an enormous 
burden. 
The introduction of floating-point representation 
in computation largely eliminated this burden. A 
sealing factor is appended to each number in 
floating-point representation. The arithmetic it
self takes care or the scaling. Multiplication and 
division require an addi tton. respectively sub
traction, of the exponents which 1111y result in a 
large change in the value or the exponent. But 
multiplication and division are relatively stable 
operations in floating-point arithmetic. Addition 
and subtraction. in contrast. are troublesome in 
floating-point. 
As an example let us consider the two floating
point vectors 

1020 1030 

1223 2 

x= 1024 y = -1026 

1018 1022 

3 2111 
-1021 1019 

A computation or the inner or scalar product or 
these two vectors gives 

x.y = 1051) + 2,446 - 1050 
+ 1040 + 6.333 - 1040 = 

8.779 
Nost dtgi tal computers will return zero as the 
answer al though the exponents of the data vary 
only within 5 X or less of the exponent range or 
large systems. This error occurs because the 
floating-point arithmetic in these computers ts 
unable to cope with the large digit range required 
for this calculation. 
Floating-point representation and arithmetic in 
computers was introduced tn the middle or this 
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centry. Computers then wert relatively slow, being 
able to execute only about 100 floating-point ope
rations in a second. The fastest computers today 
are able to execute billions or floating-point 
operations in a second. This is a gigantic gain in 

speed by a factor or 107 over the electronic com
puters or the early fifties. or course, the prob
lems that can be dealt with, have become larger 
and larger. The question is whether floating-point 
representation and arithmetic which already fails 
in simple calculations, as illustrated above. are 
sti 11 adequate to be used in computers of such 
gigantic speed ror huge problems. 
We think that the set of floating-point operations 
should be extended by a fifth operation, the •·ac
cumulating addi tton/subtraction"' wt thout interme
diate rounding. an operation which was al ready 
available on many electromechanical calculators. 
It is the purpose or this paper to show that this 
additional operation can be executed with extreme 
speed. We realize this operation by adding the 
floating-point sumnands into a fixed-point number 
over the full floating-point range. Thus "accumu
lating acldi tion/subtraction"' is error free. Even 
very long chains or additions/subtractions can be 
executed wt th only a single rounding at the very 
end or the sunmation. Such "Accumulating addition/ 
subtraction" is associative. The result is inde
pendent of the order in which the summands are 
added. 
Wt th the fifth operation "'accumulating addition/
subtraction"', we combine the advantages or fixed
point arithmetic - error free addition and sub
traction even for very long sums - with the advan
tages of f loa.ting-point art thmetic - no sealing 
requirements. 

2. The State or the Art 

A normalized floating-point number z ( in sign-mag
ni tude representation) is a real number of the 
form 

z = w m •be. 
Here w ~{+.-}denotes the sign (slgn{z)), m the 
mantissa (nent(z)), b the base or the number sys
tem and e the exponent (exp(z)). bis an integer 
number with b > 1. The exponent is an integer and 
lies between two integers el ~ e2. In general, el 
< 0 and e2 > 0. mis the mantissa. It is of the 
form 

1 
m = I z[i) • b-t . 

1=1 
Here, the z[i] denote the digits of the mantissa: 
z [i] ~ {0.1 ...... b-1} ror all i = l{l)n and z[l] 
- 0. 1 ts the length of the mantissa. It denotes 
the number of mntissa digits carried along. The 
set of normalized floating-point numbers does not 
contain the number 0. In order to obtain a unique 
definition of O one can additionally define: 
sign(O) = +. mant(O) = .000 ... 0 (1 zeros after 
the point) and exp(O) =el.This kind of floating
point system depends on four constants b, I.el and 
e2. We denote it with S = S(b,l.el,e2). 
Let 



ul vl 

u2 v2 

u = (ui) = V = (vi) = 

u V n n 

be two vectors, the components of which are nor
malized floating-point numbers. i.e. ui. v16 S 

forall i = t(l)n. The theory of computer 
arithmetic(lJ, [2]. (3) denands that scalar 
products of two floating-point vectors u and v be 
computed with aaximum accuracy by the computer for 
each relevant, finite n and different roundings. 
By doing so. mt 11 ions of roWldtngs can be 
eliminated in compl teated calculations. This 
contributes essentially to the stability of the 
computational process and enlarges the reliability 
and accuracy or computed results. Furthermore, 
defect correction then becomes an effective 
mathematical instrument. 
This requires, for example, the execution of the 
following formulae by the computer: 

n 
u0v=O ( I u1 N vi) 

i=l 

n 
uffiv=D ( I ui • vi) 

i=l 

n 
u'i'v= '1 ( I ui • vi) (I) 

i=l 

n 
u £ v = A ( I ui N v 1) 

i=l 
The multiplication- and addition-signs on the 
right side denote the correct multiplication and 
addition for real numbers. 0. D, '1. A are 
rounding symbols. 0 denotes a rounding to the 
nearest floating-point number. D denotes the 
rounding towards zero, '1 denotes the monotone 
downwardly directed roWldtng and A denotes the 
monotone upwardly directed rounding. 
For an execution of formulae (I) first the pro
ducts ui N vi have to be correctly calculated by 

the computer. This leads to a mantissa of 21 di
gt ts and an exponent which lies in the range or 
2el-1SeS2e2. So the computation of scalar products 
is reduced to the evaluation of sums of --the fol
lowing form: 

n 
◊ ( I w1), n 6 M (II) 

1=1 
Here the w1 are floating-point numbers of double 

length w1eS(b,21.2el-1,2e2), for all t = l{l)n. ◊ 
denotes a general rounding symbol, ◊ 6 { 0. D, 
'v , A} . Measures have to be taken ft rs t to gene
rate and represent the swmands w1 correctly in 

the computer. In case of scalar products this can 
be done by very fast and well-lmown ctrcut ts. 
For tradt tional general purpose computers there 
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are several ways to correctly compute (I) and (II) 
mentioned in the literature. It is the intention 
of this paper to describe circuits for high speed 
computation or (I) and (II) on vector computers by 
means of pipeline techniques. These circuits have 
to accept and process one surmend from (I) resp. 
(II) during each machine cycle. To assist in the 
understanding of the following material. we first 
refer to one of the possibtli ties mentioned in 
(4): 
We consider a register of L = k + 2e2 + 21 + 2Je1) 
dtgi ts of base b, which should be placed in the 
arithmetic unit (Figure 1). 

k 2e2 21 2)el I 
Figure 1 

We divide this register into segments of length 1 
(Fig. 2): 

k 1 

Figure 2 

The sunma.nds in (I) and (II) are or length 21. 
They fit therefore, digitwtse into a subrange of 
length 31 of this storage. This pa.rt or the regis
ter, which is determined by the exponent of the 
swrmand, ts selected and loaded into an accumula
tor of length 31. The swmand 1s loaded into a 
shiftregister of the same length, being correctly 
positioned according to the exponent, and then 
added into the accumulator (Figure 3). 

11111 1 Accumulator 

1 Shiftregister 

21 ( sumnand) 
Figure 3 

The addt Uon may produce a carry. In order to 
catch this carry. a few more digits than the three 
words of length 1 can be read from the long regis
ter into the accwmllator, which ts extended to the 
left accordingly. If not all of these digits are 
b-1, the carry ts caught by these addt ttonal dt
gi ts. Since it ts possible that all these additio
nal dtgt ts are b-1, a loop has to be provided 
which then adds the carry to the following digits 
of the long register. This loop may possibly have 
to be activated several times. 
The addition of the SWIIIIIDds ot (I) resp. (II) 
into the long register, Fig. 1 resp. Fig. 2, may 
still produce a carry on the very far left of the 
register. In order to catch such carries the long 
register ts extended on the left by a few more (k) 
digits of base b (Fig. 1). Then. any sum (I) or 
(II) of n sUJIIIIUlds can be added wt thou t loss of 

k information into the long register of length L. b 
carries may occur and can be processed wt thout 
loss of information. 
Here we conclude our description of one'possibtlt
ty to solve the problems (I) and (II). See [4]. 

e 



! What we Just described belongs to the state or the 
art. 

3. fast Computation or Sums and Scalar Products 

The method described above is not suited r or the 
computation of (I) resp. (II) on vector processors 
o~ supercomputers. The process or reading, shift
ing, carry handling. possibly by a loop. and writ
ing back is certainly too slow to be executed in 
one cycle time or only a few nsecs or these compu
ters. A aolution of the problem by a very long 
adder is also very costly and probably too slow. 

We therefore discuss here a variant or the possi
bilities mentioned above which mkes processing or 
a aummmd or (I) resp. (II) possible within a very 
abort cycle time. In comparison to general purpose 
computers. vector processors and supercomputers 
achieve their high speed of computation by means 
of pipeline technology whereby during each mchine 
cycle a result ts obtained. Ir scalar products and 
aums are to be computed with high speed on vector 
processors or supercomputers, one has to develop 
circuits which accept and process one surmnand 
(resp. a product) per machine cycle. This is only 
possible if the addition is done by means of pipe
line technology. This )leper describes various cir
cuits which allow this. 
At first the most important issues and ideas of 
the circuitry are presented in the text referring 
to Figures 4 to 15. These Figures contain some 
more details which are not essential for a first 
understanding of the principles. These details are 
presented later in chapter 4 "Additional Remarks 
concerning the Figures". 
The circuit described below consists of a shifter 
which 1s followed by a pipelined adder called sum
ming matrix (Figure 4). The shifting device may be 
realized by standard technology and belongs to the 
state of the art. 
The adder consists of registers of a total length 
of S ~ L. Here L denotes the length of the long 

register as outlined above2 (Figure 1). The regis
ter length S is divided into r identical parts 
which are arranged as rows one below the other 
(Figure 5). r denotes the number of rows. All rows 
are of the same length. Each or these rows is di
vided into c ~ 1 independent adders A (see Figure 
6). Thus the whole swrning device consists of r • 
c independent adders. Fach of these ~ders A has a 
width of a digits. Between two of these independ
ent adders. carry handling must be possible. Also 
between the last adder of a row and the first one 
of the next ro11 a carry handling must be possible. 
The complete sumning device which we call the sum
ming matrix SM, has a width or S =a• c • r di
gits or base b. c denotes the number of ~olumns of 
the sumnillf matrix. It must be S ~ L = k + 2e2 + 
21 + 2 fell (Figures 5. 6). 
The SW!llling matrix contains c • r independent ad
ders A. F.ach of these adders must be able to add a 
digits or base b in parallel wt thin one aichine 
cycle. and to register a carry which possibly may 
occur. Since each row of the summing aatrix con-

2or a·part or it. A reduction or the length S 1s 
discussed below. 

259 

sists of c identical adders, h:= c • a digits can 
be added in each row of the sumning matrix. Each 
or the r rows of the &W1111ing matrix SM must be at 
least as long as the mantissa length of the sum
mands which are to be added. Each digit of the 
&'Wmling matrix is characterized by a certain expo
nent corresponding to the digit •s position. The 
upper right part of the &Uffltling matrix carries the 
least significant digit. the lower left part of 
the sumning mtrix carries the most significant 
digit of the full sumning device (Figure 5, Figure 
6). 
Each swmand resp. each product of (I) resp. (II) 
must now be added into the swming matrix at the 
proper position according to its exponent. The row 
selection is obtained by the more significant bits 

or the exponent (exp sUx h)3 and the selection or 
the columns 1& obtained by the less significant 

bits of the exponent (exp mm! h}4 . This complies 
roughly with the selection of the adding position 
in two steps by the process described in Fig. 3. 

The incoming swmands resp. products are now first 
shifted in the shifting unit (barrel shifter, 
cross bar switch) into the correct post tion ac
cording to their exponents. The shift is executed 
as a ringsh1ft. This means that the part of the 
swrrnand which hangs over the right end is rein
serted at the left end of the shirtregister (Fig
ure 6 upper part, swmends 2 and 3. Figure 8). The 
sunmand is distributed onto the c independent 
parts of width a of the shiftregister. Each pa.rt 
receives an exponent identification according to a 
specific digit in it, e.g. the least significant 
one (Figures 5. 6 and 10). The individual adders A 
also carry an exponent identif'ication. The shifted 
and expanded sumnand now drops into the top row or 
the swming matrix and thereafter proceeds row by 
row through the swmning matrix, moving ahead one 
row in each machine cycle. The addition is execu
ted as soon as the exponent identification of a 
transfer register in the &Ullll\ing matrix coincides 
with the exponent identification part of the sum
mand. 
A swmnand, which arrives at the sunning unit. can 
remain connected after shtrttng to the correct 
position within the shifting unit. In this case, 
the addition is executed in only one row or the 
SW1111ing mtrix. The shift procedure, however, can 
also cause an overhanging at the right end of the 
row. The overhanging part then is reinserted by a 
rlngshift at the lert end or the shifting unit 
(see Figures 6 and 8). In this case. the addition 
of both parts or the IIWIIIBlld Is then executed in 
neighbouring rows of the rn.mning matrix. If the. 
most significant part or the swmand. which was 
situated at the right end of the ahirter, is added 
in row y then the addition of the least signiri
cant part. which was situated at the lert end of 
the shifter. is added in row y - 1. This means the 
next less significant row (see Figure 9). 
It is, however, not at all necessary that each 

3d!Y denotes integer division, 
i.e. 24 d!x 10 = 2. 

4mgs1 denotes the remainder or integer division, 
i.e. 24 ~ 10 = 4. 



transfer unit carries a complete exponent identi
fication. It is sufficient to identify the row by 
the exponent part exp !!ll h of the sumnands ln the 
shifter and to use it for selection of row y. The 
distinction whether the addition has to be execu
ted in row y or in row y - 1 is made by a bit con
nected with each transfer register or by a suit
able column signal which distinguishes the trans
fer registers of a row. (The principle is illus
trated by the diagrams shown in Figures 11 and 
12). 
The acldi tion may cause carries between the inde
pendent adders A. Carry registers between the in
dependent adders absorb these carries. In the next 
machine cycle these carries are added into the 
next more significant adder A, possibly together 
with another swrmand. In this way. during each 
machine cycle one sunmand can be fed into the swn
ming matrix. al though the carry handling or on 
sunmand may take several machine cycles. The me
thod displayed in the Figures shows one or diverse 
possibilities to handle the carries. There may be 
carry presencing or look-ahead or other techniques 
applied to speed up the carry processing within 
one row. In any way, the swrming matrix allows the 
carry processing to be executed independently of 
the summations and in parallel with the processing 
that has to be done at all. e.g. adding further 
summands or reading out the result. 
In principle. the sunning matrix can only process 
positive sunmands. Negative swmends or positive 
subtrahends are therefore marked and at the proper 
place not added but subtracted. Here negative car
ries instead or positive carries may occur.Similar 
to positive carries they have to be processed pos
sibly over several machine cycles. In other words: 
The independent adders A must be able to carry out 
additions as well as subtractions and to process 
positive and negative carries in both cases (Fig
ure 6, 12). 
The design of the complete sunning device contain
ing the sumning matrix SM described herewith can 
depend on the technology used. We have mentioned 
already that the width a or the individual adders 
A has to be chosen in such a way that an addition 
over the complete width can be executed within one 
machine cycle. F.ach row of the summing aa.trix must 
be at least as wide as the individual swmands. 
The shorter the rows are, the faster the sumnands 
can be shifted into the right position. On the 
other hand, shortening the width or the rows of 
the sunning matrix increases the number or rows 
and with it, the number of pipeline steps for the 
complete swmation process. 
After input or the last swmand the rows can be 
read starting with the least significant row, pro
vided the row in question does not require any 
carry handling. In this case the carries first 
have to be removed. The readout process can use 
the same data path by which the sunmmds pass 
through the aatrix. Thus the result rows r ollow 
the last swmend on its way through the transfer 
registers. During the readout process additions 
and carry handling in the more significant rows 
aay still be executed. Si1111ltaneously with the 
readout process the rounding to the required 
floating-point fonat can be executed. The result 
can also be stored as an intermediate long vari
able for further processing. Several rounding pos
sibi 1 i ties can be carried out siml taneously as 
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mentioned in [4]. During the readout process the 
computation of a new scalar product resp. a new 
sum can be started. 
The width a of the independent adders A depends on 
the technology used and on the cycle time of the 
system. The width should be as large as possible. 
But on the other hand. it must permit the addition 
over the a digt ts in one machine cycle. (In the 
case of a scalar product, a rra.chine cycle ts the 
time in which the system delivers a product). 
Depending on the technology there are several pos
sibilities of transportation or the swrmands to 
one or the r rows or the swt111ing matrix SM. 
The method described above is based on the idea 
that each or the independent adders A ts supple
mented by a transfer register or the same width 
(plus tag-register for exponent identification and 
+/- control). During each machine cycle, each 
transfer register can pass on its contents to the 
transfer register in the corresponding position in 
the next row and receive a digit sequence from the 
transfer register in the corresponding position in 
the previous row. Attached to the transfer regis
ters is the tag-register for exponent identifica
tion (Figure 5 and Figure 6). The contents of this 
register are always compared with the exponent 
identification of the corresponding adder. In case 
of coincidence, the addition resp. subtraction is 
activated (Figures 5, 6 and 12). 

Alternatives to this procedure are also possible. 
1. One of these alternatives could be to trans

fer the swrmand in one machine cycle directly 
into the appropriate row of transfer regis
ters of the summing matrix as determined by 
the exponent. During the following nachine 
cycle, the addition is executed. Simultan
eously, a new swmand can be transferred to 
the same, or another row, so that an addition 
in each nachtne cycle is carried out. 

2. The procedure is similar to 1. The interme
diate storage or the sunmands in trans! er 
registers, however, is not necessary if it is 
possible to execute the transfer- and addi
tion-process in one machine cycle. In this 
case, no transfer registers are necessary. 
The output or the result then also takes 
place directly. 

3. The transfer of the sunmands to the target 
row can be carried out not only sequentially 
and directly but also wt th several interme
diate steps, for example, by binary selec
tion. 

F.a.ch one of these alternatives also allows a dir
ect and therefore £aster readout of the result 
without dropping step by step through the transfer 
registers. 
To each independent adder A of length a belongs a 
transfer register TR which is basically of the 
same length. The number of adders A resp. transfer 
registers TR in a row is chosen in such a way that 

the mantissa length ii or the swmands plus the 
length of the transfer registers t (:::a) becomes 

less or equal to the length of the row (m + a i h 
= c • a). In this way, an overlapping or the less 
significant part or the mantissa with its most 
significant part in one transfer register is avoi-



ded. For typical float '.ng-point formats this con
ci tion may result in long rows of the IIWIIDing ma
trix or in short widths a of the adders resp. 
transfer registers. The former case causes lengthy 
shifts while the latter case causes more carries 
{Figure 6 upper part and Figure 8). 
This disadvantage can be avoided by providing se
veral O 2) partial transl er registers for each 
adder of length a. F.ach partial transfer register 
TR of length t ~ a carries its own exponent iden
tification. Finally, the length t of the transfer 
registers can be chosen independently of the 
length a of the adders A. Both only need to be 
integer divisors of the row length of the SWll!ling 
matrix h =a• c ~ t • n {see Figures 13, 14 and 
15). 
Figures 6 end 13 show. in particular. that the 
SU11111ing matrix bas a very systematic structure and 
that it can be realized by a few. very simple 
building blocks. It is suitable, therefore, for 
realization in various technologies. 
Based on the same principle also, sumrands which 
consist of products of three and more factors can 
be added correctly. 
If the SUJ11ning matrix is to be realized in 
Vl.SI-technology it may happen that the complet 
sumning matrix does not fit on a single chip. One 
should then try to develop components for the co
lumns of the sunrning matrix since the number or 
connections (pins) between adjacent columns is 
much smaller than between neighbouring rows. 
The following remarks and Figures 4 to 15 provide 
a more detailed description or the structure of 
the s~ •Ing matrix and its functioning. 

4. Additional Remarks concerning the Figures 

The following abbreviations are used in the Fig-
ures: 

A 
AC 
Ct 
E 

LSB 
·EB 

SM 
SR 
TR 

.Adder 
Accumulator Register 
Carry 
Tag-Register for Exponent Identifica
tion 
Least Significant Bit 
Kost Significant Bit 
Swmning Matrix 
Shifter 
Transfer Register 

figure 4 shows a structure diagram of the complete 
sWllning circuitry and illustrates the interaction 
of different parts of the whole circuitry, such 
as: separation of the sunnands into sign, exponent 
and amtissa, shifting unit, swmning matrix, 
controller and rounding unit. 

Figure 5: As mentioned in the text, we assume that 
S ~ L. Figure 5 shows the case S > L. There, for 
both the first and last rows part of the row is 
covered by transfer registers only. For the whole 
sunning matrix this means that transfer registers 
exist for S digits but adders for L digits only. L 
is chosen such that it is a multiple of a. 
The dotted lines through the independent adders A 
indicate that the transfer wires bypass the ad
ders. Above the transfer registers, the tag-regis
ter for exponent identification is indicated by a 
box. This register is part or the transfer regis
ter. 

261 

Figure 6 shows a block diagram of the summing ma
trix. It is based on a special data format which 
uses 4 bits to describe one digit of base b. 

Width of AC: a= 4 bytes= 32 bits 
Number of adders in one row c = 5 
Number of rows in SM r = 8 
k = 20 carry digits, 1 = 14 digits in the mantissa 
el ::: -64 and e2 = 64. • 
Users of /370 compatible systems wil 1 recognize 
this data format as their double precision format. 
L = 20 + 2 • 64 + 2 • 14 + 2 • 64 = 304 digits of 
4 bits= 152 bytes. 
Width or the complete sumning matrix 
S =a• c • r = 4 • 5 • 8 bytes= 160 bytes~ L = 
152 bytes. 
In this example the width t of the transfer regis
ters equals the width of the adders: t = a = 4 
bytes. 
The upper part of the Figure shows several 
positions of swmnands. 

Figure 7 defines the exponent coordinates x and y 
of the digits in the SWlll'ling aatrix (x horizontal, 

. y vertical). These coordinates are obtained ac
cording to the following formulae: 

eo denotes the reference point, the digit with 
the least exponent in the matrix (at the 
upper right end}. 

el denotes the least significant digit of the 
adder. 

e 
m 

e 

denotes the most significant digit of 
theadder. 
If the first and the last row of the complete 
ma.trix contains adders over the full width 
then e1 = e

0 
and em= e

0 
+ r•h-1. 

denotes the exponent of a digit to be added . 

e-eo denotes the distance to the least significant 
end of the matrix. 

y = (e-e
0

) div h is the row coordinate in which 

the digit with the exponent e is added. 
x = (e-e ) mgg h indicates the distance to the 

0 

least significant end of row y. 

Figures 8 and 9 describe the task of the shift 
unit and 1 ts relation to the generation of the 
exponent identification which will be transferred 
into the sunming matrix with the aantissa. 

The task of the shift unit ts: 
1. adjust mntissa to the correct position for 

its addition, if necessary by a ring shift. 
2. fill the renaining positions of the transfer 

registers resp. the row with zeros. 

Figure 8 shows the shifted mantissa in both pos
sible cases. 
Figure 9 describes the shift process. Two cases 
are to be distinguished: 
1. x = (e-e ) md h ~ iii : no overhanging, 

0 

the whole mantissa is added in one 
row. 

2. x < m overhanging, 
the mntissa is added in two 



successive rows. 
Part m1 remains wt thin the width of 

the row. The overhanging part "2 is 

reinserted at the left of the row. 
Both parts are furnished with a cor
responding exponent identification. 
Part "2 will be selected for addition 

tn row y-1 whereas part m1 will be 

added in row y. 

The shifted and expanded amtiasa row drops row by 
row through the aatrix as a transfer row. Before 
that, each transfer section is characterized by 
its exponent which carries the inf oraation where 
the addition has to be executed. 

Figure 10 shows the exponent identification or the 
sections of the transfer rows. Each row of the 
transfer matrix consists of n transfer sections of 
length t. Figure 10 defines the exponent identi
fication te (transfer exponent) of these transfer 

sections of the m.trtx. If et denotes the exponent 

of the e.g. least significant digit of a transfer 
section then this transfer section can be 
characterized by the exponent identi£1cation te 

with te= (et - e
0

) div t. 
Before a swmand enters the aatrix, each transfer 
section of the sUIIIDIUld receives an exponent iden
tification. During the passage through the matrix, 
this exponent identification is then compared with 
te. Equality triggers the addition. The lower part 

of Figure 10 shows how transfer sections of the 
swmend get their exponent identification. 
A mantissa with the exponent e {= exponent of its 
most significant dtgi t), receives the exponent 
identification (e - e

0
) div t = em in the most 

signif'icant transfer section, and exponent 
identification e - 1, e - 2. etc. in the less m m 
significant transfer sections. 
Figure 10 shows in the lower part the two typical 
cases. (Addition of the complete swmand in one 
row resp. in two consecutive rows). 

Figure 11 explains the simplified adder selection 
by row identification yi. This row identification 

is trans! ered through the ne.trix with the 
transferrow. The addition is triggered off as soon 
as the row identification and the row index 
coincide. The row selection switch RS generates 
two selection signals which activate the adders of 
the row in question (see Figure 12, too). An 
activating signal is sent via the wire "z-selec
tion" tr the row identification equals the row 
index. An activating signal is sent via the wire 
"z-1-selection" if y - 1 equals the row index. 
Then the transfer sections only carry the inforaa
tion (z-1,z)-sumnation. 
Since the transfer rows may only contain positive 
values the tnforne.tion addition or subtraction ts 
additionally transferred. 
Thus the controller contains transfer registers 
with specific infornation for each row which leads 
about to the structure shown in Figure 11. 
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Figure 12 shows a block diagram for an adder cell. 
For simplicity the case t = a is selected. The 
cell contains centrally an "adder/subtracter" and 
a "partial accumulator section". The right upper 
corner shows the corresponding transfer register 
with wires from the next less significant row and 
to the next more significant row. 
Additionally, the transfer register contains a tag 
register for "z/z-1" identification which indenti
ftes through which selection wire the cell can be 
activated. The "adder/subtractor" receives the 
operands from the "partial accumulator section" 
and in case of selection from the transfer regis
ter. Zero is added if no selection takes place. In 
addition, the carry (positive or negative) arriv
ing from the right ts processed during each addi
tion/subtraction and, if' necessary, a carry is 
passed on to the next adder cell on the left. This 
carry is temporarily stored in an auxiliary regis
ter. Figure 15 further shows a control wire which 
selects the operation (addi Uon/subtraction) as 
well as a control wire for the read out process 
(at the bottom of the figure). All control wires 
traverse the whole row. 

Figure 13 ts very similar to Figure 6. It shows 
one row of the SWlllling matrix, but with t <a.The 
Figure ts based on the same data fol'flBt as Figure 
6, i.e.: one digit of basis bis described by 4 
bi ts, k = 20 carry dtgi ts, l = 14 digits in the 
mantissa, el = -64 and e2 = 64. Furthermore: 
Width of AC: a= 4 bytes= 32 bits. 
Number of adders in one row c = 4. 
Number of rows in SM r = 10. 
L = 20 + 2 • 64 + 2 • 14 + 2 • 64 = 304 digits per 
4 bits= 152 bytes. 
Width of the complete swrning natrix 
S =a• c • r = 4 • 4 • 10 bytes= 160 bytes~ L = 
152 bytes. 
In this example the width of the transfer regis
ters ts Sflllller than the width a of the adders: t 

a = 2 = 2 bytes. 

This permits a smaller row width of only c = 4 
adders. 
The upper part of the Figure shows ·the position of 

a sumnand of iii= 2•1 = 14 bytes at a critical po
sition. 

Figure 14 shows another case where the width of 
the adders differs from that of the transfer re
gisters (t - a). In the Figure the transfer regis
ters are shown wt thout exponent identification. 
Dotted lines again indicate trans£ er wires which 
bypass the adder tn question. 

Figure 15 shows a section of a row of the IIWlllling 
ae.trix with t - a. Here the case 3t = 2a has been 
selected. It shows how digits of the same transfer 
register are distributed and added into neighbour
ing adders. 

5. Sun.nation with only one Row of Adders 

We now discuss a further variant of the above cir
cuitry for which adders exist only for one row of 
the sunning natrix. The complete structure of this 
variant is similar to the one before (Figure 16). 
I.e. the complete circuitry consists of an input 



adjusting \Dli t. the auming tmit with the actual 
accumulator and a device for carry handling, re
sul trow filtering and rounding. 
The complete fixed-point word. over which sumna
tion takes place, ts divided into rows and co
lU111nS. as before. The transfer width and the adder 
width, however. aist now be identical. The width 
can be chosen according to the criteria as out
lined above. The columns or the 11Btrtx shaped sum
■img unit are now completely disconnected, t.e. no 
transmission or carries takes place between the 
individual columns or the mtrtx during the pro
cess or ■U1111Btion. The carries occurring during 
the au111111tton are collected in carry counters and 
processed at the end or the SU111Btion process. 

Figure 17 shows the ctrcut t of a "column"' of the 
-trix shaped SUJ1111ing unit. 'the full "long accumu
lator" ts spread over the various columns or the 
&UBDing unit. The pa.rt allotted to one column ts 

5 called .. accu-memory". see (1) in Figure 17. 

To each cell or the accu-memory belongs a carry 
counter. The collection or carry counters of a 
column ts called .. carry-memory". see (2) in Figure 
17. In these cells or the carry-memory ill carries 
emerging from the adder/subtractor are collected 
and incorporated in the result at the very end of 
the ■wrming process. The individual cells of the 
carry-memory 111st be so wide that they can take a 
carry (positive or negative) from each sumnand. 
For a vector length of 128 one needs. for example, 
7 bits plus a sign bit resp. an 8 bit number in 
twos• -complement. 
In Figure 17, for example, the column width is 32 
bits and the width of the individual carry-memory 
cells is 16 bi ts. This allows a correct computa
tion or sums with less than or equal to 32 K sum
Ends. The exponent identification (in Figure 17) 
has a width of e bit: consequently the column has 

2e cells resp. the memory a:atrix 2e rows. 

During the nora:al sunmation process the following 
happens: 
1. The mantissa section IIANT, sign sg, and expo

nent identification EPI reach the input re
gister RI. (3). 

2. In the next cycle 
the memory ts addressed through EPI 
and the accu-pe.r t as we 11 as the carry 
part are transferred to the 
corresponding section of the ~egister 
before the §WZHIBtion HRS, (4): 
the amtissa section, sg. and EPI are 
also transferred to the corresponding 
section or RBS, (5). 

3. In the next eycle 
addition resp. subtraction according to sg ts 
executed in the adder/subtracter (6). The 
result is transferred to the corresponding 
■ectton of the xesister nfter the awmatton 
RAS, (7). According to the carry. the carry
)Nlrt is adjusted in (8) by +l. -1 or not at 

51'be numbers enclosed in round Jarentheses in the 
text indicate in the corresponding Figure that 
)Nlrt or the ctrcui try which is au-ked with the 
same number. 
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all and it is also transferred to RAS. (9): 
EPI ts also transferred to RAS. (10). 

4. In the next cycle 
EPI of RAS addresses the memory, and 
the accu-part together with the carry
part are written back into the memory. 

Since in each machine cycle a nentissa section is 
supplied. these phases must be pipelined. This 
means, tn particular. that all phases need to be 
active simultaneously. It D:!ll be possible there
fore. to read from the memory and to wrt te into 
the same or another row or the memory during each 
machine cycle. This. however. is usual for regis
ter memories. 
If in two consecutive eycles the same accu- and 
carry-memory cell is addressed. the previously 
described procedure may lead to a wrong result. 
since in the second cycle the result of the just 
started sumning procedure should be read. which 
does not yet exist. We have a typical pipeline 
conf ltct. These dirficul ties can be overcome by 
duplicating the accu-carry-memory several times 
which, however. ts very costly. 
Therefore. we suggest an easier alternative. We 
suppose that during consecutive cycles mantissa 
sections with the same exponent identification 
arrive. We distinguish the following two cases: 
a) directly one after the other: 
b) with another exponent identification in bet

ween and both arbitrarily often and mixed. 

We first deal with case a). 
'\) The registers EPI of RI and EPI of RBS con

tain the same exponent identification. The 
two are compared in (11) and in case of coin
cidence the read process from the memory to 
HRS ts blocked off in part (13) of the selec
tion unit (12). Instead. the result or the 
addition or the first or the two consecutive 
sumnands ts directly transferred to RBS via 
(14) so that the second SWIIIBJld can inmedi
ately be added. 
Furthermore. (15) causes a dmm,y exponent to 
be read into EPI o( RAS. So. if in the same 
eycle a further third value wt th the same 
exponent identification is transferred to RI 
the case EPI/RI; EPI~; EPI/RAS is avoi
ded. This cas~ would cause a conflict in the 
selection unit (12). 
Thus, consecutive sumna.nds with the same ex
ponent identification can be added wt thout 
memory involvement. The intermediate values 
may be written into the memory or discarded 
{storage blockade on). Only the last value 
mst be written into the memory via RAS. 

We now deal wt th case b) . 
b) Three values EPI1. EPI2. EPI3 with EPI1 = 

EPI3 - EPI2. In this case EPI/RI and EPI/RAS
contain the same exponent tdenttficatton.The 
two registers are compared in (16). In the 
following cycle the contents or RAS is 
directly transferred to RBS through part (17) 
of the selection unit (12). The read process 
from the memory is again suppressed in (13). 
The intermediate value may be wrt tten into 
the memory. It can also be suppressed. 

In this way. any consecutive mnttssa sections can 



be added and the carries collected in the carry 
counters. 
We now consider the process or reading the result. 
The central read control produces continuous ad
dresses so that the accu-memory is read from the 
least significant to the most signHicant row. 
This sequence is a must because of the necessary 
carry hand! ing. The addresses reach the memory 
through the multiplexer (18). 
Wires {19). (20) for transfer of the carries lead 
from column to column. The carry-parts of a column 
are fed to the next more significant column. There 
they are taken into the mantissa section of RBS. 
To get there the multiplexer (21) is switched 
over. The carry. which is stored in the twos• -com
p lemen t for convenience. first has to be changed 
into sign-magnitude-representation and. if neces
sary. expanded in length (22). In the next cycle, 
the carry is added and together with a possible 
lbi t-carry (positive or negative) transferred to 
the unit for preparing the re~lt after temporary 
storage in RAS. The above mentioned carry can 
there be stored either in a part of the RAS-carry 
register or in a 2bit auxiliary register (23). 

During the process of reading it is advisable to 
delete the particular storage cell irmiediately by 
a circuitry part which is not shown. This can. for 
example. be done by writing zeros into it. If va
rious scalar products resp. sums are to be accumu
lated. the process of reading is not started until 
the computation of the full sum is finished. The 
swrrnands are continuously accumulated into the 
accu-carry-memory. 
From the most significant column the carry part of 
the memory is trans£ erred into an auxi 1 iary carry 
register, (24) in Figure 16. From there, this car
ry is transferred with a delay of one cycle via 
wire (20) to the least significant colunm to have 
it available for the read out process of the more 
significant row. 
The final carry treatment (25) contains a single
resp. multi-stage pipelin~ where the still remain
ing carries are included in the result. At the end 
of this part or the circuitry the ready rows of 
the result appear, the least significant ones 
first. 
In another part of the circuitry (26), which is 
shown in Figure 18, the two rows with the signifi
cant digits must be found. The most significant 
digit of the more significant register (28) con
tains the result sign; SffB.llest digit (preferably 
zero) means positive, largest digit {dual 1, deci
mal 9, hexadecimal F) means negative. tis advis
able to initialize both registers with zero. The 
circuitry for filtering the rows with significant 
infonration now checks in each row presented to 
the circuit whether there ts at least one digit 
not equal to the sign digit already stored in the 
higher significant register (28). If this is the 
case or if there is no sign digit (e.g. 1 .. 8 in a 
decimal system) at position (28) then the transfer 
is enabled for the actual and the next clock cycle 
to fill both registers with two new consecutive 
rows. If. however, 'the transfer was already en
abled tn the previous cycle, then it must be reen
abled for one cycle only. The control circuit (29) 
may therefore be described by the following state 
table with entries "next state/transfer enable". 
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output of 
sign check 

State 0 1 

1 1/0 2/1 
2 1/1 3/1 
3 1/0 3/1 

The transfer into the registers ends if only rows 
with sign digits follow. Finally, in both regis
ters those rows appear, which contain the mantissa 
of the floating-point result. One obtains the ex
ponent from the position as well as from the ini
tial address resp. from the number of cycles ne
cessary for reading. Furthermore, the information 
required for the rounding is easily obtained du
ring output. It serves for a possible adaptation 
or the result. 
The circuitry shown in Figure 17 may be varied to 
reduce the number of input/output lines, e.g. by 
transferring the carry count (19) through the MANT 
inputs. The Figure is intended just to show prin
ciples, and not tricky details. 

6. Systems with large Exponent Range and further 
Remarks 

Many computers have a very modest exponent range. 
This is for instance the case for the system /370 
architecture. If in the decimal system, for in
stance, 1 = 17, el = -75 and e2 = 75 the full 
length L = k + 2e2 + 21 + 2 jell of the registers 
(see Figure 1 and Figure 2) can more or less easi
ly be provided. Then sums and scalar products of 
the form (I) and (II} can be correctly computed 
for all possible combinations of the data by the 
technique discussed in this paper without ever 
getting an overflow or an interrupt. 
However, there are also computers on the aarket 
with a very large exponent range of several hund
red or thousand. In such a case it may be costly 
to provide the full register lengths of L = k + 
2e2 + 21 + 2 lell for the techniques discussed in 
this paper. It is most useful then to reduce the 
register lengths to the single exponent range and 

* instead of L to choose L = k + e2 + 21 + fell or 
even a smaller range e' ~ e ~ e" with el< e' and 

e" < e2 and correspondingly L' = k + e" + 21 + 
le' 1. 
Traditionally. sums and scalar products are com
puted in the single exponent range el< e < e2. If 

(el I and e2 are relatively large most =sca;ar pro
ducts will be correctly computable within this 
range or even in e' ~ e ~ e". Whenever, in this 

case, the exponent of a suanend in a sum or scalar 
product computation exceeds this range e' < e < e" 

= = 
an overflow has to be signalled which any cause an 
interrupt. 
In such a case the exponent range could be exten
ded to a larger size on the negative or the posi
tive side or even on both sides. We aay very well 
assume that the necessity for such an extension of 
the exponent range occurs rather rarely. 1be sup
plementary register extensions, which are necessa
ry for the techniques discussed in this paper. 
could then, for instance, be arranged in the m.in 
memory or the system and the summtton wt thin the 



extended register part nay then be executed in 
software. Such procedure would slow down the com
putetion or scalar products in rather rare cases. 
But it still always will deliver the correct 
answer. 
We further discuss a rew slightly dU'ferent me
thods how to execute accuJa1lating addition/sub
traction and the scalar product swmation on pro
cessors with large exponent range. 
On a more sophisticated processor the exponent 
range covered by the sunming mtrix could even be 
Ede adjustable to gain most out of this special 
hardware. This could be done by an automatic pro
cess or three stages: 
1. A special vector instruction analyzes the two 

vectors and computes the exponent range that 
covers most or the swmencls or products or 
the vector components. This step my be dis
carded if the best range ts already known. 

2. The sunmtng aatrtx gets properly adjusted to 
the range found tn 1. and tn a vector in
struction the fitting part or the suanand or 
products is accumulated into the S1.U11Ding ma
trix. Ir a swmand or product does not ft t 
in to it 1 t can be dealt by one or the two 
alternatives: 
a) Interrupt the accumulation and add that 

swmand or product by software to the 
not covered extended parts or the accu
mulator which resides in main memory. 

b) Do not interrupt the accwmllation. but 
discard this SWll1Blld or product and 
lllllrk this element in a vector flag re
gister. Later the marked elements are 
added by software to the extended parts 
of the accumulator. This second way 
avoids interrupting and restarting the 
pipeline and wi 11 thus lead to higher 
performance than a). 

3. In a final step the content of the &Wlllling 
smtrix part of the accumulator is properly 
inserted between the extended parts to get 
the complete result in form of a correspond
ingly long variable in smin memory. 

Another cure of the overflow situation e f [e·. 
e .. ] may be the following: Sunmands with an expo
nent e. which is less thane•. are not added. but 
gathered on a .. negative heap0

• Similarily swmmnds 
with an exponent, which is greater than e"'. are 
gathered on a "positive heap". The negative and 
the positive heap nay consist of a bit string or a 
vector flag register where each sumnand or vector 
component is represented by a bit. This bit is set 
zero if the sumnancl was already added. It is set 1 
tr the component belongs to the corresponding 
heap. After a first SW!lllation pass over all sum
mands the computed sum is stored. Then the pos i
tt ve and/or negative heap is shifted into te 
middle of the exponent range e • ~ e ~ e.. by an 
exponent transronna.tion and then added by the same 
procedure. After possibly several such steps the 
stored parts or the sum are put together and the 
final sum is computed. In many cases it will be 
possible to obtain the final result without sum
ming up the negative heap. 
Another posstbi 1 i ty to obtain the correct result 
with a reduced register length L' = k + e• + 21 + 
e" is the following: The process of swmation 
starts as usual. As soon as the exponent e of a 
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! umnand exceeds the range [e'. e"] an exponent 
part is bui 1 t up which interprets the digit se
quence of L" as a very long nantissa of a normal
ized floating-point number. The nornalizatlon, in 
general. will require a shift. Then a "'positive 
heap" ts no longer necessary. And in most cases it 
wi 11 be possible to obtain the correct rounded 
result without sumning up a possibly still neces
sary .. negative heap". The method computes all ac
cumulating sums or scalar products correctly with
out considering the negative heaps as long as less 
than e" - e• digits cancel. The negative heap can 
only influence the k least significant digits of 
L'. 
The reduction of the full accumulator length L to 
a smaller size L' < L m.y cause exponent under- or 
overflows in special swmation processes. This 
always makes some event handling routine necessa
ry. Whatever this is. this procedure represents a 
trade orr between hardware expenditure and run
time. 
A rather primitive event handling would consist in 
a traditional swrmation or the positive and nega
tive heap. In this case a message should be deli
vered to the user that the result is probably not 
precise. 
In the context or progranning languages the accu
mulator of length L" = k + e" + 21 + e' represents 
a new data type which could be called precise. As 
long as no exponent under- or overflow occurs (e" 
~ e ~ e") addition 0£ variables of type real. of 
products of such variables as well as of scalar 
products of real vectors into a variable of thi~; 
type can precisely be executed and 1 t is error 
free. Accumulation of real variables, products or 
scalar products into a variable of type precise is 
associative. The result is independent of the or
der in which the swmands are added. 
Vectorprocessors belong to the fastest computers 
which are presently available. Their main field of 
application ts scientific computation. It should 
be natural that vectorprocessors compute vector 
operations correctly. The vector operations con
sist basically of the componentwise addition and 
subtraction. the componentwise multiplication and 
the scalar product. The implementation of highly 
accurate vector addition/subtraction and compo
nentwise multiplication belongs to the state or 
the art. The computation of accurate scalar pro
ducts has been dealt with in this paper. 
Due to their high speed or computation. vectorpro
cessors must. however. also be able to support an 
automatic error analysis resp. verification or the 
computed result. In order to achieve this it is 
necessary that all operations. mentioned above. 
such as componentwise addition/subtraction. com
ponentwise multiplication and scalar products can 
opt tonally be cal led with several roundings. in 
particular with the monotone downwardly directed 
rounding. the monotone upwardly directed rounding 
and the rounding to the least including interval. 
We do not discuss the implementation of these 
roundings here. It belongs to the state or the 
art. For further information we refer to the lit
erature. 
Finally. we reuark that the methods and procedures 
outlined in this paper are also suitable tp add up 
sums or products correctly which consist or more 
than two factors. for example 



7. Application to Multiple Precision Arithmetic 

We show in this chapter that the essential parts 
of multiple precision arithmetic can easily be 
executed with high speed if a fast scalar product 
unit is available. 

We consider 

1. Double Precision Arithmetic6 

1.1 Sum and Difference 
It is clear that swns of two or n double precision 
swmiands a + b or a + b + c . . . + z can be accumu
lated. The same holds for sums of vectors or ma.
trices. 

1.2 Product 
If a product a• b of two double precision factors 
a and b has to be computed. each factor can be 
represented as a sum of two single precision num
bers a= a 1 + 82 and b = b1 + b2 . where a1 and b1 
represent the first (higher significant) l digits 
and 82 and b2 represent the last (lower signifi-

cant) 1 digits of a and b. The multiplication then 
requires the execution of a scalar product: 

a• b = (a1 + 82) {b1 + b2) = 

albl + alb2 + 82b1 + 82b2 • (l) 
where each summand is of double precision. These 
can be added by the techniques developed in this 
paper. 
Similarly. products of more than two factors can 
be computed. As in (1) products of two double pre
cision numbers are expressed by a scalar product 
of single precision numbers. On the right hand 
side of (1) each swmand ts a double precision 
number which can be expressed by a sum of two 
single precision numbers. In the case of a product 
of four double precision numbers this leads to the 
following formulas, which are self-explanatory. 

8 i 8 i 8 8 
at • Cj I a . I C = I I 

i=l 1=1 i=l J=l 
8 

ai and C 
8 i with a• b = I • d = I C 

1=1 i=l 

Thus a•b•c•d can be computed as the sum of 64 pro
ducts of two single precision numbers each. 
The case of products of two or more double preci
sion rratrices is a little more difficult. But it 
can, in principle, be treated similartly. Ir a 
product of two double precision 1111.trices has to be 
computed the two 1111.trices are first represented as 

6eigh speed scientific computation is usually done 
in the long data foraat. Double precision here 
means the double mantissa length of that f onmt. 
If the usual long fonmt ts already called double 
precision our double precision corresponds to 
quadruple or extended precision. 
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sums of two single precision aatrices. Multiplica
tion of these sums then leads to a sum of products 
of single precision aatrices: 

a• b = (a1 + 82) (b1 + b2) = 
albl + alb2 + 82b1 + 82b2 (2) 

Fach component of the products on the right hand 
side of (2) is computed as a scalar product. Thus 
each component of the product matrix a • b con
sists of a sum of scalar products which itself ts 
a scalar product. 
In case of matrix products. which consist of more 
than two double precision matrix factors. one has 
to take into account that the components of (2) 
may already be pretty long. They nay consist of 10 
or 20 consecutive digit sequences of single preci
sion lengths. These sums of single precision ma
trices then have to be multiplied with other such 
sums. which leads to a sum of 1111.trix products. 
Each component of this sum can be computed as a 
scalar product of single precision numbers. 

2. 
Arithmetic of triple precision is a special case 
of quadruple precision arithmetic. 

3. Quadruple Precision Arithmetic 
3.1 Sum and Difference 
Fa.ch swmend of q~ruple precision can be repre
sented as a sum of two double precision sUJl'll1Bnds. 
Thus sums of two or more quadruple precision sum
mands can be added as expressed by the fol lowing 
formulas= 

a+ b = a 1 + 82 +bl+ b2 

a+b+c+ ... +z= 
al~+b1•b2+c1+c2 + ••• + zl + z2. 

Sums of quadruple precision vectors or matrices 
can be treated correspondingly. 

3.2 Products 
Each quadruple precision number can be represented 
as a sum of four single precision numbers a= a

1 
+ 

82 + 8J + a4• Multiplication of such sums requires 
the execution of a scalar product= 

4 
I a1 • bj 

J=l 
(3) 

Similarily. products of more than two quadruple 
precision factors can be computed. le indicate 
this process by the following f ormulaa. which are 
self-explanatory. 



32 32 32 
= ( I a1) ( I cj) = I (4) 

i=l J=l 1=1 

There the 16 double precision SUJIIIIBJlds a 1 b J and 

c 1dJ or the two factors or (4) are each represen

ted as sums of two single precision-numbers. This 
leads to the product or the two sums over 32 

single precision numbers a 1 resp. cj in the next 
line. 
If a product or two quadruple precision 11Btrices 
t■ to be ccaputed each factor is represented by a 
sum or lour single precision floating-Point m.tri
ces as in (3). 
llulttpltcation or these sums leads to a sum or 
1&trix products. Fach component or these matrix 
products ts computed as a scalar product. The sum 
or these scalar products ts again a scalar pro
duct. 
It 1188 the intention or this section to demon
strate that wt th a fast accumulating addition/sub
tractton or scalar product unit a big step towards 
aul tiple precision art thmetic. even for product 
spaces, can be done. 
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