
UNIVERSITlT KARLSRUHE 
lnlllllutfQrAJlg8WBld8 Mathamatlk 

Prof. Or. Ulrich Kulisch 

David Bough 
Sun Microsystems, Inc. 
2550 Garcia Avenue 

Mountain View, CA 94043 
USA 

Dear David: 

~Is Sb&Se 12 • PoltfaCh 6980 
D-7500Karllluhe1 

Telef0n : (0721) 6c,e...t202 
Salcnariat (0721) 608-2680 

May 10, 1988 

Thank you for sending me a copy of the announcement for Kahan's 
series of lectures at Sun Microsystems. When your letter arrived 
I had qotten already several copies from diverse colleaques. 

Let me make the following remarks: 

1. What sometimes is called "Kulisch-Miranker-Arithmetic" 
does not require a "hidden Super-Accumulator 11 

What we require is that whenever a system or a programming en
vironment provides arithmetic operations they should obey the 
rules of a semimorphism. Further: Operations with this quality 
should be provided for the four basic types real, interval, 
complex and complex interval as well as for vectors and matrices 
over these types (for one·or more precisions, see Figure 1 of 
qur book and its context). 

In order to achieve this in case of matrix multiplication, for 
instance, an approximation of the dot product has to be provided 
which differs from the correct result only by one rounding. The 
long accumulator is one way to implement these dot products. In 
particular on computers of the /370 architecture, and others 
with a modest exponent range, it is a very convenient and 
efficient way. 

. I. 



- 2 -

But there are a number of different techniques available for an 
efficient implementation of semimorphi~ operations in particular 
for matrices or complex numbers. You don't even find the long 
accumulator in our book! 

2. Semimorphism is not an "over-axiomatization" 

In FORTRAN-SC, for instance, there are about 1500 arithmetic 
operators available for and between different numerical data 
types. They all are defined by the four or five rules of a semi
morphism, which can be written down on less than half a page. 

Ringoids and vectoids are consequences of semimorphic opera
tions. They are not axiomatic rules themselves. But they are 
most useful to derive further properties of arithmetic opera
tions on computers (even in non semimorphic cases). 

Properties of Computer Arithmetics can be discussed at lengths. 
Essentials are only those which contribute to the structure of 
the resulting space. Therefore ringoids and vectoids are stu
died. 

3. Semimorphic operations are not "too slow 11 

The opposite is true. However, we talked already about the fact 
that it is practically impossible to realize a semimorphic dot 
product using a processor which performs arithmetic of the IEEE 
standard. (This may perhaps be the reason for Kahan's resistance 
against semimorphism). 

A software implementation of the semimorphic dot product on the 
processor 68020, for instance, performs with 50% of the speed 
which is obtained if the same dot product is computed in the 
traditional sense using the hardware coprocessor 68881 
performing IEEE arithmetic! The latter may result in an incor
rect answer! 

All existing hardware and software implementations of a 
semimorphic dot product perform faster than a corresponding 
computation in the traditional sense. No normalizations and 
roundings need to be executed after each multiplication and 
addition in case of the semimorphic dot product! 

4. Why comment on the "IBM ACRITH package 1983"? 

ACRITH came in three releases 1983 (linear techniques only), 
1984 and 1985. Most of it was preliminary work necessary for the 
development and implementation of FORTRAN-SC (1987}. Since more 

. I. 



- 3 -

than 20 years we require that computer arithmetic and pro
gramming languages should not be considered as separated sub
jects. The language FORTRAN-SC (see the enclosed brochures) 
allows the declaration of functions with arbitrary result type, 
operator overloading and definition, as well as dynamic arrays. 
All numerical data types and operators mentioned in the first 
section are predefined in FORTRAN-SC. Beyond the operations 
FORTRAN-SC provides 22 elementary functions for each of the four 
basic data types real, interval, complex and complex interval in 
two precisions. PASCAL-SC .is a corresponding extension of 
PASCAL. 

I am pleased to see that Kahan requires operator overloading 
also. Does he know where and when these ideas originated? 

With best regards 
sincerely yours 



April 1988 

PASCAL-SC 
A Pascal Extension for Scientific Computation 

The new extended PASCAL-SC System is the result of a long-term effort 
by a team of scientists* to produce a powerful tool for solving scientific 
problems. Due to its properties, PASCAL-SC is also an excellent educatio
nal system. The highlights of the new version are: 

- PASCAL-SC contains Standard PASCAL 
- Powerful language extensions like functions with arbitrary result type 

and user-defined operators 
Module concept 

- Dynamic arrays and slicing 
- String concept 
- Overloading of procedures, functions and operators 
- Highly accurate arithmetic 
- New data type dotprecision, exact scalar product 
- Highly accurate expression handling with dot product expressions 
- Highly accurate standard functions 
- Screen oriented editor with syntax and semantic check 
- Libraries for 

Interval arithmetic, Complex arithmetic, Complex Interval arithmetic 
and all Vector and Matrix operations for these mathematical spaces 

- Modules for 
Linear systems, eigenvalues and eigenvectors, polynomials, ... 

l 

The Implementation of 1h11 Ncond version of PASCAL·SC la completed but not yat available. 
The flrat version la available on IBM/PC and ATNI ST. For further lnformadon ue 

G. Bohlender/L Ran/°'. ll!rich/J. Wolffv. Gudenberg: 
PASCAL·SC, WlrtcungavoU programmleren, kontrolllert rechnen, Bl Mannheim 1986 
PASCAL-SC. A Computer Language for Sclentlflc Computation. Academic Pren, New York 1987 

u. Kulflch (Edltof ): 
PASCAL·SC. A PASCAL Extension for Scientific Computation, 
Information Manual and Floppy Diab (IBM/PC). WH•y•T•ubner. Stuttgart 1987 
PASCAL.SC, A PASCAL Extension for Sdentfflc Computation, 
Information Manual and Floppy Dlska (ATARI ST). Teubner, Stuttgart 1987 

* Institute for Applied Mathematics, University of Karlsru~e. West Germany 




