
...

Computer System Support for Scientific and Engineering
Computation

Lecture 1 - May 3, 1988

Copyright ©1988 by W. Kahan and Shing Ma.
All rights reserved.

1 Mysteries of Floating Point Arithmetic

This chapter serves to explain a certain state of mind where people too commonly perceive
floating point arithmetic as a mysterious and irrational subject. It is pertinent to understand
this all-pervasive state of mind; only then can we go on to understand why fl.eating point
is capable of being mathematically manageable, provided we take care of its design. A
designer must understand that he is working in a mathematical domain in which taking
shortcuts is simply not a good practice as it may violate reasonable expectations based
OD mathematical principles. What may seem irrelevant or unimportant to him may be
very important to someone else. Whatever corners we cut today may affect others in the
future just as whatever inconsistencies we experience today are the deeds of past culprits.
Facts and examples indicate that perplexing things, some of which are intrinsic and easily
explained, happen when care has been neglected in designs. These puzzling occurrences
are arbitrary and avoidable. Investing resources such as time and money in careful designs
today will eventually accrue benefits to others and is more cost effective in the long run.
Contrary to other norms of life, when we do our jobs right in floating point arithmetic
others will not know!

There are certain perculiarities about floating point arithmetic which can be frightening
and mysterious to people who are not familiar with it, as well as to people who deal with it
every day. In floating point arithmetic, unlike in most other computing environments, you
cannot always rely OD what you see and you may not always obtain what you anticipate.
Listed below are some very frigtheniDg facts about floating point arithmetic :

1. What you see is often not what you have.

2. What you have is sometimes not what you wanted.

3. If what you have hurt you, you will probably never know how or why.

4. Things go wrong too rarely to be properly appreciated, but not rarely enough to be
ignored.

5. Items l to 4 do not constitute carte blanche to build floating point any way you like.

Let us look at a few examples which illustrate and substantiate these facts.

1 .s~ ,119 Ni.a..
f I r/.iJ..y ~8'

. '

Lecture l • May 3, 1988

1.1 What You Get is Not What you Expected

Consider the following program:

----------- Borland Turbo Basic on an IBM PC -----------

+--------------------------- Edit ------------~---------------+
I
I
I
I
I

-~ I
I
I
I
I

CLS
I
I

pc 2 for is:1 to 6: p • P*P
pp1 • p + 1 : pm1 • p - 1

next i I
I
I d • pp1 - pm1

Print" We expect d s: 2
Print II although (p+1) -
Print

but actually d-= 11
; d;" ,t1 I

(p-1) c t1; (p+1) - (p-1) ; t1 • ! "I

Print"
End

What you get isn't necessarily vhat you expected." I
I

+---+

2

According to the laws of algebra one expects both d and (p+ 1)-(p-l) to equal 2. However,
what one gets is d = 0 and (p + 1) - (p- 1) = 1 as shown below:

+--------------------------- Run -----------------------------+
We expect d c 2, but actually d =
although (p+l) - (p-1) = 1 . !

0 ,

What you get isn't necessarily what you expected.

WHAT YOU GET ISN'T NECESSARILY WHAT YOU EXPECTED.

I
I
I
I
I
I

It is evident that we are not getting what is ex"J)ected as the laws of algebra appear to have
been violated.

\Vhat seems mysterious, incorrect and irrational in the above program can be easily
explained. If the value of p is a large enough power of 2, p + 1 and p - 1 are actually
rounded top, thereby resulting in d = 0. In some computers, arithmetic operations are
performed on arithmetic registers or stack which have greater precision than those in which
the variables are declared. If the value of pis just large that p+ 1 rounds top but p-1 can
be represented distinctly from p, then (p+ 1)-(p- l) yields 1. So, what seems strange and
illogical at first can actually be explained by understanding the representation of fioating
point numbers and the nature of fioating point arithmetic operations.

1.2 What You See is Not Necessarily What You Get

Here is another simple illustration in which the result does not match the expectation as
things are not always what we perceive them to be. Consider the following program:

Lecture l - May 3, 1988

q = 3.0/7.0
if q = 3.0/7.0 then A
else B

3

One would expect A to be executed but B was executed instead. The following program,
which prints the values of q and 3.0/7.0, provides an explanation .for the bizarre and unex­
pected result.

------------ Borland Turbo Basic on an IBM PC ------------

+------------------------- Edit ------------------------------+
I

.. I

I
I
I
I
I
I
I

D:VYSIHWYG.BAS

CLS
q C 3.0/7.0
Print II The value of q = 11

; q
Print" but 3.0/7.0 c "; 3.0/7.0
Print
Print" What You See Is Hot Necessarily What You Get."
End

I
I
I
I
I
I
I
I
I

+---+
+------------------------- Run -------------------------------+

The value of q =
but 3.0/7.0 =

.4285714328289032

.4285714285714286

What You See Is Not Necessarily What You Get.

I

I
I
I
I
I

+----------------+-----------------------------♦----------------+

The values of q and 3.0/7.0 are different since 3.0/7.0 are computed but rounded to different
precisions in each case. In fact, both q and 3.0/7.0 are approximations of the actual value
of 3.0/7.0 which cannot be represented in finite precision. Once a.gain, we see that :floating
point arithmetic is capable of producing counter-intuitive results which are actually not as
illogical as they appear. People responsible for compilers can minimize much fear and panic
by documenting such phenomena.

1.3 How Often Do Errors Occur and Can We Ignore Them?

When errors, which occur rarely, surface as minute imperfections and seem incomprehensi­
ble, there is a tendency and willingness to ignore them. Such a compromise introduces an
element of risk. In numerical computations, what failure rate is reasonable and tolerable?
Engineers use concepts such ~ probability of failure, MTBF (mean time between failure),
MTTR (mean time to repair) and confidence limits to quantify the occurrences of events.
For instance, in the automobile or the telephone industries a failure rate of l in 1 million
is probably reasonable and acceptable. However such an error in numerical computations
is unacceptable and intolerable. In fact the failure rate of 1 in 1 billion is of significant
magnitude and is intolerable. A failure rate of l in 1 billion for a computer which operates

Lecture l - May 3, 1988 4

a.t 10 MFLOPS or 107 flops per second a.vera.ges to the occurrence of a.n error every 105

seconds (approximately 30 cpu hours). If an engineer uses 3 cpu hours a day, one can expect
an ~rror to surface every 2 weeks. If it ta.kes an engineer a week to detect and debug such
an error, a significant amount of time is spent on debugging instead of performing other
useful tasks, which is a loss of valuable personnel res'?urces.

1.4 Nightmares for Programmers

Some numerical algorithms are stable in theory but in practice they may fail on some
computers under certain circumstances. Ta.ke the following singular value decomposition
program for instance :

(1) .-\ = 1.0- f /h
(2) µ = ...
(3) P = y'-..A2_+_µ_2

(0 Sf :5 h)

(4) ... = µ/(p + .-\) + ... (µ=F 0)

By virtue of branches, 0 Sf :5 h in (1) andµ# 0 in (4). Since p ~Iµ I and Iµ I> 0,
evaluating (p~:X) should be safe as ~ S 1.0.

There is an unpredictable feature of the CRAY where f $ 1.0 is not guaranteed even
though O S f $ h. \Vhen f > 1.0, which implies that A < 0.0, the evaluation of (p~,\J

may malfunction because when µ is very tiny, we have p ~I A I which will result in a divide
by zero in (4). As we cannot be assured that f $ 1.0 on a CRAY, we may need to test
for .-\ # -p before entering (4) to avoid a divide by zero. It defies mathematical rules for
t > 1.0, but this embarrassing situation is not an impossibility for the CRAY due to the
v;ay division and multiplication are performed.

• A divider is an inherently complicated device and it requires quite a large area on
a chip. Since the number of occurrences of divides in most algorithms are relatively
low, there is a tendency to dedicate as little resources as possible to develop it.

One of the ways in whlch CRAY implements its division is by "division without a
divider". Division on a CRAY is based on Newton's iteration. Given A and B,
Q = j can be computed as follows:

1. Get r := 1/ B approximately (by table look-up)

2~ R = r • {2 - B • r) • • • perhaps repeated

3. Q = A ·R

According to Euler's formula, if I z I< 1, then

Euler's formula implies that at the cost of 2 multiplications, one in squaring and the
other in multiplying the factor, one can increase the number of correct digits by a

l.

,. .

·'-

.1

..
j

:a

-

tJ

Lecture l • Ma.y 3, 1988 5

factor of 2. The value of r is obtained by table look-up. This process involves 2
abbreviated multiplications whose total cost amounts to about 1 multiplication time.
Computing R = r • (2..:. B • r) and Q = A • R requires 2 a.nd 1 multiplications,
respectively. The expression 2 - B • r actually requires just 1 multiplication time
since it is merely the two's complement of B • r . . This implementation of division on a
CRAY, therefore, takes approximately 4 multiplication times,"but if two multiplication
units are available only 3 multiplication times are needed. (Ca.n you restructure the
algorithm to accomplish this?) This implementation of CRAY's division is heavily
dependent on the way it handles multiplications. In other words, if its multiplications
are inaccurate then its divisions are inaccurate too.

•. A problem with CRA Y's implementation of division is due to the manner in which it
performs its multiplications. The following diagram illustrates how we can multiply
two n bit numbers :

X

+ ________ __

n bits n - m bi ts ! m bits

The result is a 2n bit number which is then rounded to a n bit number, whereby
the bottom n bits are dropped after rounding. Since the bottom n bits are dropped
eventually," CRAY does not compute the lowest m (m < n) bits to speed up the
multiplication. Since the last m bits are ignored, the carrys that they should cause
into the leading bits do not occur, which may therefore affect the final result in
the rounding process. CRAY has, therefore, attained speed of its multiplications by
sacrificing accuracy.

As CR.A.Y's multiplication is potentially inaccurate, its division, which is heavily dependent
on its multiplication, is also potentially inaccurate. These discrepancies will eventually
return to haunt us. An excellent example is that on a CRAY we cannot be certain of
f $ 1.0, given that O $ f $ h. Because we ca.nnof rely on CARY's arithmetic to fully
conform with the laws of algebra, algorithms which have been theoretically proven to be
stable may malfunction in practice .

1.5 Underflow and Overflow are Not Uncommon

There is another vulnerability in the way in which CRAY performs its division since it
computes the reciprocal first. The possibility exists, though it may be rare, that when we
divide a tiny number by another tiny number, intending to obtain a reasonable quotient,
it is possible that when the divisor is close to the underflow threshold, its reciprocal may
overflow. This means that it is possible for a perfectly legal division to fail when computing
the reciprocal on the CRAY.

Lecture l - May 3, 1988 6

Numbers close to the underflow or overflow threshold are not at all uncommon. As
an example, consider a linear control theory problem where we compute det(A(:r)), the
determinant of matrix A(:r). The values of z when det(A(:r)) = 0 correspond to the resonant
frequencies, possibly complex numbers, which are related to stability properties. Matrix A
is usually large and sparse; in practice, it is not unreasonable for A to be 10000 x 10000.
One way to determine det(A(:r)) is by performing some form of triangular factorization on
A(z), such as Gaussian elimination. Let B(z) be the upper triangular matrix obtained from
factorizing A(z). The value of det(A(:r)) is the product of the diagonal elements of B(:r).

Let us assume that A(z) is a 10000 x 10000 matrix. "If all the diagonal elements of
B(z) are 0.7, det(A(z)) = 0.710000 which may cause an underflow. To circumvent the
underflow problem, we may scale each element of A(z) by multiplying it by 2. Sea.ling by 2
on a.binary computer will not result in any rounding errors. By sea.ling A by 2 we obtain
det(A(z)) = l.41~ which may overflow. It is, therefore, not uncommon in practice to
encounter an overflow when we scale a problem to avoid underflow, or vice-versa.

When one encounters the underflow situation in the linear control problem, there is
a tendency to assume that det(A(:r)) = 0 and that the resonant frequency has been de­
termined. The resonant frequency thus determined is wrong, but the engineer may not
be aware of it. This situation is especially apparent on computers with no hardware to
detect underflow. Programmers sometimes solve the scaling problem by scaling after the
elimination of a row or a column, but in doing so the code is no longer vectorizable.

1.6 Yet Another Programmer's Nightmare

The eigenvalues of a matrix A are the roots of its characteristic equation. Some eigenvalue
solvers compute the eigenvalues by determining the roots off (x) = det(A(:r)) = det(A-:rl).
One of the methods to compute the roots of a function f (:r) is the secant method illustrated
below:

f(x)

Using initial guesses, z 1 and z 2 , we compute the next approximation to the root by

Lecture 1 • May 3, 1988 7

If the values of /(z1) = det(A(x1)) anci /(x2) = det(A(x2)) are very small or very large,
it is conceivable that X3 is a ~eas·onable number. To obtain x3, f~:~} is required, but on
some machines like a CRAY, this may not be computable. Once again, this is due to
the need to compute the reciprocal of /(z2). Here we have an expression which seems
numerically reasonable but may malfunction due to the way cert~n arithmetic operations
are implemented.

1.7 A Funny Fact About Divide

On some computers divisions are not properly rounded, but most people are not aware of it
since we do not always use the properties of divide. There are various properties of divide,
such·,as f S 1.0 if 0 S f S h and i = fr x d, but which properties should we honor? A
problem with floating point arithmetic is that if we do not honor some of their properties,
it is very likely that there are programs which will fa.il because they depend on them. The
short program below is an excellent example which exhibits that if division is not rounded
properly, as in the IEEE 754 standard, it will terminate prematurely:

for i = 1, 2, 3, • • ·, 8000000 in turn do
for d = 2, 3, 4, 5, 6, 8, 9, 10, 12, • • •, 32768 in turn do

real Q = i/d (rounded)
real X = Q • d (rounded)
if X # i exactly then

SHOUT "X :/; i !"
STOP

endif
next d

next i
OBSERVE "X = i always!"

• J • I +° NcJ pr .. 1 ·f ! .
I

. , .

VVhen we divide an integer by an integer as in Q = £, we generally obtain a floating point
number which has been rounded. When we multiply a floating point number by an integer
as in X = Q • d we expect a floating point number which has been rounded. According
to the laws of algebra X should be an integer. On computers whose arithmetic conforms
to the IEEE 754 standard, X = i for all d. However, for computers whose arithmetic
do not conform with the standard, X # i for some j, which violates some mathematical
rules. An important point here is that if this short program can detect violation of some
mathematical rule, then there are certainly application programs which will fail because of
improper rounding.

2 Exception Handling

Exception handling is a subject that is full of prejudice and other predispositions. For
instance, in school one is taught that division by zero is a no-no and he who does it must be
punished. This trend of thought persists in the world of numerical computations for when
there is a division by zero, many machines suspend computation. A proper way to treat
division by zero, and square root of a negative number is to treat them as exceptions and
not errors. In the IEEE 754 standard, a NaN (not a number) is returned as the result of
many exceptional operations.

Lecture 1 - May 3, 1988 8

In order for software to be truly portable with only the need for recompilation, exceptions
must be handled appropriately. Exceptions do not imply errors in computation but merely
our. inability to cope with certain situations. Underflow, overflow, division by zero and
inexactness are some examples of exceptions. Exceptions are errors only if they a.re handled
improperly. A problem with exception handling is the adoption of any single policy, like
suspension of a program when a division by zero is encountered. The essence of exceptions
is that no policy adopted in advance ca.n be found unexceptionable. There are always
situations which warrant exceptions to the standard policy. That's why they're called
exceptions.

Lets us consider an example where computation suspension due to an exception is inap­
propriate. In fact, this example shows that it is not irrational to resume execution upon en­
countering an exception. A method to obtain the roots of a function/ (z) = ln(:z:) • ✓10.0 - z
caJled the secant iteration is illustrated below:

0

f(z) = ln(z)J(l0.0- z)

......

:

I
!
i
i
I

I :
!

:z: • J

Let Zi and :Z:i+l be the initial guesses, and the next guess Xi+2 > 10.0. Since x > 10.0 we
have the square root of a negative number which would raise an exception. Similarly, if the
initial two guesses are Xj and Zj+1 , we have xi+2 < 0.0 but the natural log of a negative
number also causes an exception. In the environment where one is punished for trying to
take the square rootpf the log of a negative number, the program will abort. If exceptions
are handled with care, abortion of the program is not necessary; in fact, one can always
obtain a solution to this problem. Whenever we have an exception, we know that our new
guess is outside the domain. In the root finder subroutine, we can program it so that when
the guess is outside the domain, we retract the guess and provide another guess which is
hopefully within the domain. For instance, instead of :z: ;+3, which is outside the domain, we
can use z,+2~z1+ 3 as the next guess instead. Hence, by handling exceptions appropriately,
we will eventually obtain one of the roots of /(z).

In subsequent chapters, we will explore and discuss exception handling in greater depth.

