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1 Mysteries of Floating Point Arithmetic 

This chapter serves to explain a certain state of mind where people too commonly perceive 
floating point arithmetic as a mysterious and irrational subject. It is pertinent to understand 
this all-pervasive state of mind; only then can we go on to understand why fl.eating point 
is capable of being mathematically manageable, provided we take care of its design. A 
designer must understand that he is working in a mathematical domain in which taking 
shortcuts is simply not a good practice as it may violate reasonable expectations based 
OD mathematical principles. What may seem irrelevant or unimportant to him may be 
very important to someone else. Whatever corners we cut today may affect others in the 
future just as whatever inconsistencies we experience today are the deeds of past culprits. 
Facts and examples indicate that perplexing things, some of which are intrinsic and easily 
explained, happen when care has been neglected in designs. These puzzling occurrences 
are arbitrary and avoidable. Investing resources such as time and money in careful designs 
today will eventually accrue benefits to others and is more cost effective in the long run. 
Contrary to other norms of life, when we do our jobs right in floating point arithmetic 
others will not know! 

There are certain perculiarities about floating point arithmetic which can be frightening 
and mysterious to people who are not familiar with it, as well as to people who deal with it 
every day. In floating point arithmetic, unlike in most other computing environments, you 
cannot always rely OD what you see and you may not always obtain what you anticipate. 
Listed below are some very frigtheniDg facts about floating point arithmetic : 

1. What you see is often not what you have. 

2. What you have is sometimes not what you wanted. 

3. If what you have hurt you, you will probably never know how or why. 

4. Things go wrong too rarely to be properly appreciated, but not rarely enough to be 
ignored. 

5. Items l to 4 do not constitute carte blanche to build floating point any way you like. 

Let us look at a few examples which illustrate and substantiate these facts. 
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1.1 What You Get is Not What you Expected 

Consider the following program: 

----------- Borland Turbo Basic on an IBM PC -----------

+--------------------------- Edit ------------~---------------+ 
I 
I 
I 
I 
I 

-~ I 
I 
I 
I 
I 

CLS 
I 
I 

pc 2 for is:1 to 6: p • P*P 
pp1 • p + 1 : pm1 • p - 1 

next i I 
I 
I d • pp1 - pm1 

Print" We expect d s: 2 
Print II although (p+1) -
Print 

but actually d-= 11
; d;" ,t1 I 

(p-1) c t1; (p+1) - (p-1) ; t1 • ! "I 

Print" 
End 

What you get isn't necessarily vhat you expected." I 
I 

+---------------------------------------------------------------+ 

2 

According to the laws of algebra one expects both d and (p+ 1)-(p-l) to equal 2. However, 
what one gets is d = 0 and (p + 1) - (p- 1) = 1 as shown below: 

+--------------------------- Run -----------------------------+ 
We expect d c 2, but actually d = 
although (p+l) - (p-1) = 1 . ! 

0 , 

What you get isn't necessarily what you expected. 

WHAT YOU GET ISN'T NECESSARILY WHAT YOU EXPECTED. 

I 
I 
I 
I 
I 
I 

It is evident that we are not getting what is ex"J)ected as the laws of algebra appear to have 
been violated. 

\Vhat seems mysterious, incorrect and irrational in the above program can be easily 
explained. If the value of p is a large enough power of 2, p + 1 and p - 1 are actually 
rounded top, thereby resulting in d = 0. In some computers, arithmetic operations are 
performed on arithmetic registers or stack which have greater precision than those in which 
the variables are declared. If the value of pis just large that p+ 1 rounds top but p-1 can 
be represented distinctly from p, then (p+ 1)-(p- l) yields 1. So, what seems strange and 
illogical at first can actually be explained by understanding the representation of fioating 
point numbers and the nature of fioating point arithmetic operations. 

1.2 What You See is Not Necessarily What You Get 

Here is another simple illustration in which the result does not match the expectation as 
things are not always what we perceive them to be. Consider the following program: 
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q = 3.0/7.0 
if q = 3.0/7.0 then A 
else B 

3 

One would expect A to be executed but B was executed instead. The following program, 
which prints the values of q and 3.0/7.0, provides an explanation .for the bizarre and unex
pected result. 

------------ Borland Turbo Basic on an IBM PC ------------

+------------------------- Edit ------------------------------+ 
I 

.. I 

I 
I 
I 
I 
I 
I 
I 

D:VYSIHWYG.BAS 

CLS 
q C 3.0/7.0 
Print II The value of q = 11

; q 
Print" but 3.0/7.0 c "; 3.0/7.0 
Print 
Print" What You See Is Hot Necessarily What You Get." 
End 

I 
I 
I 
I 
I 
I 
I 
I 
I 

+---------------------------------------------------------------+ 
+------------------------- Run -------------------------------+ 

The value of q = 
but 3.0/7.0 = 

.4285714328289032 

.4285714285714286 

What You See Is Not Necessarily What You Get. 

I 

I 
I 
I 
I 
I 

+----------------+-----------------------------♦----------------+ 

The values of q and 3.0/7.0 are different since 3.0/7.0 are computed but rounded to different 
precisions in each case. In fact, both q and 3.0/7.0 are approximations of the actual value 
of 3.0/7.0 which cannot be represented in finite precision. Once a.gain, we see that :floating 
point arithmetic is capable of producing counter-intuitive results which are actually not as 
illogical as they appear. People responsible for compilers can minimize much fear and panic 
by documenting such phenomena. 

1.3 How Often Do Errors Occur and Can We Ignore Them? 

When errors, which occur rarely, surface as minute imperfections and seem incomprehensi
ble, there is a tendency and willingness to ignore them. Such a compromise introduces an 
element of risk. In numerical computations, what failure rate is reasonable and tolerable? 
Engineers use concepts such ~ probability of failure, MTBF (mean time between failure), 
MTTR (mean time to repair) and confidence limits to quantify the occurrences of events. 
For instance, in the automobile or the telephone industries a failure rate of l in 1 million 
is probably reasonable and acceptable. However such an error in numerical computations 
is unacceptable and intolerable. In fact the failure rate of 1 in 1 billion is of significant 
magnitude and is intolerable. A failure rate of l in 1 billion for a computer which operates 
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a.t 10 MFLOPS or 107 flops per second a.vera.ges to the occurrence of a.n error every 105 

seconds (approximately 30 cpu hours). If an engineer uses 3 cpu hours a day, one can expect 
an ~rror to surface every 2 weeks. If it ta.kes an engineer a week to detect and debug such 
an error, a significant amount of time is spent on debugging instead of performing other 
useful tasks, which is a loss of valuable personnel res'?urces. 

1.4 Nightmares for Programmers 

Some numerical algorithms are stable in theory but in practice they may fail on some 
computers under certain circumstances. Ta.ke the following singular value decomposition 
program for instance : 

(1) .-\ = 1.0- f /h 
(2) µ = ... 
(3) P = y'-..A2_+_µ_2 

(0 Sf :5 h) 

( 4) ... = µ/(p + .-\) + ... (µ=F 0) 

By virtue of branches, 0 Sf :5 h in (1) andµ# 0 in (4). Since p ~Iµ I and Iµ I> 0, 
evaluating (p~:X) should be safe as ~ S 1.0. 

There is an unpredictable feature of the CRAY where f $ 1.0 is not guaranteed even 
though O S f $ h. \Vhen f > 1.0, which implies that A < 0.0, the evaluation of (p~,\J 

may malfunction because when µ is very tiny, we have p ~I A I which will result in a divide 
by zero in (4). As we cannot be assured that f $ 1.0 on a CRAY, we may need to test 
for .-\ # -p before entering ( 4) to avoid a divide by zero. It defies mathematical rules for 
t > 1.0, but this embarrassing situation is not an impossibility for the CRAY due to the 
v;ay division and multiplication are performed. 

• A divider is an inherently complicated device and it requires quite a large area on 
a chip. Since the number of occurrences of divides in most algorithms are relatively 
low, there is a tendency to dedicate as little resources as possible to develop it. 

One of the ways in whlch CRAY implements its division is by "division without a 
divider". Division on a CRAY is based on Newton's iteration. Given A and B, 
Q = j can be computed as follows: 

1. Get r := 1/ B approximately (by table look-up) 

2~ R = r • {2 - B • r) • • • perhaps repeated 

3. Q = A ·R 

According to Euler's formula, if I z I< 1, then 

Euler's formula implies that at the cost of 2 multiplications, one in squaring and the 
other in multiplying the factor, one can increase the number of correct digits by a 
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factor of 2. The value of r is obtained by table look-up. This process involves 2 
abbreviated multiplications whose total cost amounts to about 1 multiplication time. 
Computing R = r • (2..:. B • r) and Q = A • R requires 2 a.nd 1 multiplications, 
respectively. The expression 2 - B • r actually requires just 1 multiplication time 
since it is merely the two's complement of B • r . . This implementation of division on a 
CRAY, therefore, takes approximately 4 multiplication times,"but if two multiplication 
units are available only 3 multiplication times are needed. (Ca.n you restructure the 
algorithm to accomplish this?) This implementation of CRAY's division is heavily 
dependent on the way it handles multiplications. In other words, if its multiplications 
are inaccurate then its divisions are inaccurate too. 

•. A problem with CRA Y's implementation of division is due to the manner in which it 
performs its multiplications. The following diagram illustrates how we can multiply 
two n bit numbers : 

X 

+ ________ __ 

n bits n - m bi ts ! m bits 

The result is a 2n bit number which is then rounded to a n bit number, whereby 
the bottom n bits are dropped after rounding. Since the bottom n bits are dropped 
eventually," CRAY does not compute the lowest m (m < n) bits to speed up the 
multiplication. Since the last m bits are ignored, the carrys that they should cause 
into the leading bits do not occur, which may therefore affect the final result in 
the rounding process. CRAY has, therefore, attained speed of its multiplications by 
sacrificing accuracy. 

As CR.A.Y's multiplication is potentially inaccurate, its division, which is heavily dependent 
on its multiplication, is also potentially inaccurate. These discrepancies will eventually 
return to haunt us. An excellent example is that on a CRAY we cannot be certain of 
f $ 1.0, given that O $ f $ h. Because we ca.nnof rely on CARY's arithmetic to fully 
conform with the laws of algebra, algorithms which have been theoretically proven to be 
stable may malfunction in practice . 

1.5 Underflow and Overflow are Not Uncommon 

There is another vulnerability in the way in which CRAY performs its division since it 
computes the reciprocal first. The possibility exists, though it may be rare, that when we 
divide a tiny number by another tiny number, intending to obtain a reasonable quotient, 
it is possible that when the divisor is close to the underflow threshold, its reciprocal may 
overflow. This means that it is possible for a perfectly legal division to fail when computing 
the reciprocal on the CRAY. 
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Numbers close to the underflow or overflow threshold are not at all uncommon. As 
an example, consider a linear control theory problem where we compute det(A(:r)), the 
determinant of matrix A(:r ). The values of z when det(A(:r )) = 0 correspond to the resonant 
frequencies, possibly complex numbers, which are related to stability properties. Matrix A 
is usually large and sparse; in practice, it is not unreasonable for A to be 10000 x 10000. 
One way to determine det(A(:r)) is by performing some form of triangular factorization on 
A(z ), such as Gaussian elimination. Let B(z) be the upper triangular matrix obtained from 
factorizing A(z ). The value of det(A(:r )) is the product of the diagonal elements of B(:r ). 

Let us assume that A(z) is a 10000 x 10000 matrix. "If all the diagonal elements of 
B(z) are 0.7, det(A(z)) = 0.710000 which may cause an underflow. To circumvent the 
underflow problem, we may scale each element of A(z) by multiplying it by 2. Sea.ling by 2 
on a.binary computer will not result in any rounding errors. By sea.ling A by 2 we obtain 
det(A(z )) = l.41~ which may overflow. It is, therefore, not uncommon in practice to 
encounter an overflow when we scale a problem to avoid underflow, or vice-versa. 

When one encounters the underflow situation in the linear control problem, there is 
a tendency to assume that det(A(:r)) = 0 and that the resonant frequency has been de
termined. The resonant frequency thus determined is wrong, but the engineer may not 
be aware of it. This situation is especially apparent on computers with no hardware to 
detect underflow. Programmers sometimes solve the scaling problem by scaling after the 
elimination of a row or a column, but in doing so the code is no longer vectorizable. 

1.6 Yet Another Programmer's Nightmare 

The eigenvalues of a matrix A are the roots of its characteristic equation. Some eigenvalue 
solvers compute the eigenvalues by determining the roots off (x) = det(A(:r)) = det(A-:rl). 
One of the methods to compute the roots of a function f (:r) is the secant method illustrated 
below: 

f(x) 

Using initial guesses, z 1 and z 2 , we compute the next approximation to the root by 



Lecture 1 • May 3, 1988 7 

If the values of /(z1) = det(A(x1 )) anci /(x2) = det(A(x2)) are very small or very large, 
it is conceivable that X3 is a ~eas·onable number. To obtain x3, f~:~} is required, but on 
some machines like a CRAY, this may not be computable. Once again, this is due to 
the need to compute the reciprocal of /(z2). Here we have an expression which seems 
numerically reasonable but may malfunction due to the way cert~n arithmetic operations 
are implemented. 

1.7 A Funny Fact About Divide 

On some computers divisions are not properly rounded, but most people are not aware of it 
since we do not always use the properties of divide. There are various properties of divide, 
such·,as f S 1.0 if 0 S f S h and i = fr x d, but which properties should we honor? A 
problem with floating point arithmetic is that if we do not honor some of their properties, 
it is very likely that there are programs which will fa.il because they depend on them. The 
short program below is an excellent example which exhibits that if division is not rounded 
properly, as in the IEEE 754 standard, it will terminate prematurely: 

for i = 1, 2, 3, • • ·, 8000000 in turn do 
for d = 2, 3, 4, 5, 6, 8, 9, 10, 12, • • •, 32768 in turn do 

real Q = i/d (rounded) 
real X = Q • d (rounded) 
if X # i exactly then 

SHOUT "X :/; i !" 
STOP 

endif 
next d 

next i 
OBSERVE "X = i always!" 

• J • I +° NcJ pr .. 1 ·f ! . 
I 

. , . 

VVhen we divide an integer by an integer as in Q = £, we generally obtain a floating point 
number which has been rounded. When we multiply a floating point number by an integer 
as in X = Q • d we expect a floating point number which has been rounded. According 
to the laws of algebra X should be an integer. On computers whose arithmetic conforms 
to the IEEE 754 standard, X = i for all d. However, for computers whose arithmetic 
do not conform with the standard, X # i for some j, which violates some mathematical 
rules. An important point here is that if this short program can detect violation of some 
mathematical rule, then there are certainly application programs which will fail because of 
improper rounding. 

2 Exception Handling 

Exception handling is a subject that is full of prejudice and other predispositions. For 
instance, in school one is taught that division by zero is a no-no and he who does it must be 
punished. This trend of thought persists in the world of numerical computations for when 
there is a division by zero, many machines suspend computation. A proper way to treat 
division by zero, and square root of a negative number is to treat them as exceptions and 
not errors. In the IEEE 754 standard, a NaN (not a number) is returned as the result of 
many exceptional operations. 
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In order for software to be truly portable with only the need for recompilation, exceptions 
must be handled appropriately. Exceptions do not imply errors in computation but merely 
our. inability to cope with certain situations. Underflow, overflow, division by zero and 
inexactness are some examples of exceptions. Exceptions are errors only if they a.re handled 
improperly. A problem with exception handling is the adoption of any single policy, like 
suspension of a program when a division by zero is encountered. The essence of exceptions 
is that no policy adopted in advance ca.n be found unexceptionable. There are always 
situations which warrant exceptions to the standard policy. That's why they're called 
exceptions. 

Lets us consider an example where computation suspension due to an exception is inap
propriate. In fact, this example shows that it is not irrational to resume execution upon en
countering an exception. A method to obtain the roots of a function/ (z) = ln(:z:) • ✓10.0 - z 
caJled the secant iteration is illustrated below: 

0 

f(z) = ln(z)J(l0.0- z) 

...... 

: 

I 
! 
i 
i 
I 

I : 
! 

:z: • J 

Let Zi and :Z:i+l be the initial guesses, and the next guess Xi+2 > 10.0. Since x > 10.0 we 
have the square root of a negative number which would raise an exception. Similarly, if the 
initial two guesses are Xj and Zj+1 , we have xi+2 < 0.0 but the natural log of a negative 
number also causes an exception. In the environment where one is punished for trying to 
take the square rootpf the log of a negative number, the program will abort. If exceptions 
are handled with care, abortion of the program is not necessary; in fact, one can always 
obtain a solution to this problem. Whenever we have an exception, we know that our new 
guess is outside the domain. In the root finder subroutine, we can program it so that when 
the guess is outside the domain, we retract the guess and provide another guess which is 
hopefully within the domain. For instance, instead of :z: ;+3, which is outside the domain, we 
can use z,+2~z1+ 3 as the next guess instead. Hence, by handling exceptions appropriately, 
we will eventually obtain one of the roots of /(z ). 

In subsequent chapters, we will explore and discuss exception handling in greater depth. 


