
Computer System Support for Scientific and Engineering
Computation

Lecture 2 - May 5, 1988 (notes revised May 23, 1988)

Copyright @1988 by W. Kahan, Edward P. Freedman, and Shing Ma.
All rights reserved.

1 More About Exceptions

At the end of lecture 1 we discussed bow arithmetic exceptions can interfere with the
process of searching for a suitable value in an equation solver. The problem was that a
general equation solver cannot by itself know the domain of a function. We would have to
tell it.

Equation solving is not the only situation in which premature termination caused by
an exception can be very awkward. Searching a database presents a similar problem, since
queries do not always take into account some peculiar aspect of the data organization or
values.

Notice that again this involves a.n algorithm about which it is difficult to anticipate all
contingencies~ namely a searching process. Such a process must be robust in the face of
"illegal" operations that might otherwise cause it to crash. How would you feel if every
time you looked in the wrong drawer for your missing beige socks, you blew up? Do you
think you would ever find all your socks scattered all over your house this way? Probably
not.

Well, in a similar way, you could have an awfully tough time finding all the solutions
of many poorly behaved equations, or all the people who are bald in a database of hair
colors, unless you (or someone before you) took into account the existence of unpredictable
vagaries in the equation or data. You may not find out how your program can get blown
away until you look in places you shouldn't!

Floating point arithmetic is like the equation solver or a data base system in that it is a
general solution to a class of programming problems. These things are all alike in another
way, too. In practice, they are all incomplete, or rough, solutions. Pretty much inevitably,
therefore, they a.re full of holes.

In general, you cannot conduct searches successfully where you do not know exactly
what you are looking for, so long as the computer simply stops whenever you do something
slightly invalid.

However, it is harmless to be allowed to continue a search after visiting a place that is
off limits, as long as you are confident that what you seek couldn't have been there. It is
sufficient therefore so to phrase your queries that an invalid query may safely be treated as
false, and this usually happens automatically.

l

-··

Lecture 2 • May 5, 1988 (notes revised May 23, 1988) 2

If you decide tha.t the computer shouldn't stop, wha.t happens when it does something
plausible but invalid tha.t should ·ha.ve stopped (as we discussed before)? Now you've got
an ·answer tha.t is wrong but perhaps looks right.

So you see, you ha.ve a. dilemma., between getting caught without an answer when you
encounter an exception, a.nd getting stuck with an undetected ba.d answer when you ignore
exceptions. Fortunately, a. wa.y to resolve the dilemma does exist. It is called retrospective
diagnostics, and we will talk a.bout it in a. later lecture.

2 Examples of Aberrations

We mentioned in the last lecture that many of the computational problems introduced by
floating point implementations are extremely rare. Nevertheless, they do occur from time
to time, because of the ferocious ra.te at which computers perform calculations these da.ys,
and the large numbers of computers.

The trouble is tha.t problems a.re usually presented in terms of symptoms a.nd alleged
inferences, from which we must infer underlying causes if we a.re to act competently.

For example, consider the hypothetical letter to a computer manufacturer in Appendix
Al and the analysis in Appendix A2. One must exercise good judgment to avoid introducing
new hazards in an attempt to combat old ones.

Despite these hazards, there is a rationale that is useful in designing floating point
systems. Setting forth that rationale is the main goal of these lectures. The next several
sections present some more examples of these hazards.

2.1 What You See is Not Necessarily Exact

+------------------------- Edit ------------------------------+
I q c 3.0/7.0 I
I Print" The value of q • "; q I
I Print" but 3.0/7.0 s: "; 3.0/7.0 I
I Print I
I Print" What You See Is Not Necessarily What You Get." I

I ~d I

+------------------------- Run -------------------------------+
I The value of q c .4285714328289032 I
I but 3.0/7.0 = .4285714285714286 I
I I
I What You See Is Not Necessarily What You Get. I

Figure 2-1

Th~ BASIC program in Figure 2-1 demonstrates that two different ways of using the
result of 3.0 /7 .0 can result in two different real values when we come to print things out.
The assignment q = 3.0/7.0 stores the value in the variable q which, for lack of an explicit
declaration, has been declared single precision. But in the Print statement, the value 3.0/7.0

·•

I L,

Lecture 2 • May 5, 1988 (notes revised May 23, 1988) 3

is evaluated in a.n internal format which is wider than double precision. Both expressions
are then printed in double pr~cision. So,

• the computed value of 3.0/7.0

• the double precision value sent to binary decimal conversion for printing

• the single precision value stored in q

• and the two values printed on the page

are five different values, and none of them is 3.0/7.0.
You see, then, it helps to be aware of what conversions, implicit, explicit and even

hidden, a program will impose upon intermediate values, without telling you. And this can
vary tremendously from machine to ma.chine, from language to language, and even within
a. single implementation of a language.

There is another interesting point about the values printed out in Figure 2-1. None
of the five values mentioned above a.re exactly 4; yet neither a.re they arbitrary. Without
knowing how the machine works, we could compute how they differ from 3.0/7.0.

If we expect the machine to work in a certain way, then those differences had better
conform to our expectations, or else we will conclude tha.t the machine is not working.

The point is, although the answer you get is not necessarily exact, it doesn't mean that
what you get is necessarily unpredictable. You just have to think about it a little bit longer
in terms of your :floating point model.

2.2 Towards a Convention for Representing Zero

The program in Figure 2-2 divides floating point zero by floating point zero, and comes
up with 100.000! At least, that's what the output tells us. When we look back at the
program source, we see that we have merely chosen an output format that obscures what
we computed. Only one of the values, z, is truly zero.

It would have been helpful had z been printed simply as "0". Then it would be distin
guished in a natural way from the values z and y, which would obviously be non-zero values
too tiny to show any non.zero digits in the output format we chose.

Is there any reason why we could not agree in all instances to print just 0, possibly
signed, for a variable whose value is zero? Alas, some languages or implementations are
very picky a.bout type agreement. They refuse to print any~hing to a file that could not
subsequently be read back. Perhaps that is why, when you wish to enter O for a floating
point variable, you may be browbeaten into supplying "0.0" instead. The Pa.seal language
is notorious in this regard.

The conclusion is that we could readily adopt helpful conventions that a.id rather than
hinder debugging.

2.3 What You Expect and What You Get

Figure 2-3 illustrates that what you get is not necessarily what you expect, and it might
be hard to explain too.

Neither way of computing (p +.1)- (p- 1) yields the expected result, 2.0. The reason
is that pis so large that adding 1.0 gets lost in rounding error.

'

Lecture 2 - May 5, 1988 (notes revised May 23, 1988)

+------------------------- Edit ------------------------------+
z s 0
Y C 0.000123
x c y/100

Print Using " z c \l\t\l.\t\1\1"; z I
Print Using II y • \t\1\1.\1\1\t"; y I
Print Using 11 .x • \t\t\l_. \t\1\1"; x I
Print Using "y/x • \l\t\t.\t\t\t"; y/x I

I Print
Print 11

End
What You See Is Hot lecessarily What You Get." I

I

z • 0.000
y C 0.000
X s: 0.000

y/x = 100.000

What You See Is Not Necessarily What You Get.

I
I
I
I
I
I

♦----------------+------------------------------+---------------+

WHAT YOU SEE IS NOT NECESSARILY WHAT YOU GET.

Figure 2-2

+--------------------------- Edit ----------------------------+
p = 2: for i=1 to 6: pc P*P next i I
pp1 = p + 1: pm1 c p - 1 I
d = pp1 - pm1 I
Print II We expect d s: 2, but actually d c "; d; 11

," • I
Print II al though (p+ 1) - (p-1) = 11 ; (p+1) - (p-1) ; " . ! "I
hint I

Print 11

End
What you get isn't necessarily vhat you expected." I

I

+---+
+--------------------------- Run -----------------------------+

We expect d s: 2, but actually d-= 0 , I
although (p+1) - (p-1) • 1 . ! I

I
What you get isn't necessarily vhat you expected. I

♦------------------+------------------------♦-------------------1

WHAT YOU GET ISl'T NECESSARILY WHAT YOU EXPECTED.

Figure 2-3

I (

4

_ _;

Lecture 2 • Ma.y 5, 1988 (notes revised May 23, 1988) 5

Because pis a power of two (chosen artfully), it's represented exactly in binary single
precision, but ppl rounds top instead of p + 1, and pm.1 top instead of p- 1, in single
precision. That explains why d comes out to zero. However, this compiler uses extra
precision for evaluating subexpressions. That is why the expression (p+ 1)- (p-1) comes
out to 1.0 instead of zero. But why isn't it 2.0 ? p has been chosen to be just so large
that in that extra precision, p - 1 is computed correctly but p + 1 rounds to p. Without
knowing the precisions to which the compiler implicitly evaluates various expressions and
variables, how would one explain what happened? In fa.ct, it is possible to write a program
that will determine the precisions that the compiler uses, provided they are not chosen too
arbitrarily.

What appears to be a capricious difference between two ways of computing (p + l)
(p..:~1) in this example, and 3.0/7.0 in a previous example, is ca.used by the internal use for
subexpressions of extra precision beyond what can be carried by declared variables. This
practice is good insofar as it normally delivers better a.ccuracy but bad insofar as it creates
unnecessary anomalies.

The anomalies arise because the compiler affords no way to declare variables with the
same extra precision as it uses for subexpressions. The defect here is that it is using three
types, but denying you direct access to the widest of them. If the compiler did the decent
thing you could assign subexpressions to variables and look at them.

+-------------------------- Edit ----------------------+
I pOI • CCCC2.o\·2)\·2)\·2)\·2)\·2 I
I pBAD • (((((2.0\·2)\·2)\·2)\·2)\·2)\·2 '<<< Error 5: Illegal function call I
lhW I
I hint "Thia Error ia really cauaed 'by aiauae of the 8087'a a'tact. 11 I
I End I

+--+ +------------------------------- Run - ---------------------------+
I I
I +----------- lleaaage -------+ I
I I Ettor aearc:h: SIXTH I
I I Tille: 00:00 I
I I Line: 1 Stat: 1 Free: 190k I

♦------------+ +--------♦

+------------------♦

YOU ARE lJILIIELY EVER TO tJIDERSTilD, IIUCH LESS TO REMEDY EVERY AIONALY.

Figure 2-4

Figure 2-4 presents a situation that most likely you would never be able to explain
without very specialized knowledge (remember our third frightening fact: i/ you were hurt
by what you got, chances.are you may never figure out how or why).

In this program, pOK gets 2 squared 5 times; pBAD should get 2 squared 6 times. If
pBAD could have been computed it would have turned out to be 18446744073709551616,
which is unexceptionable. Why did the compiler decline? The only thing illegal about this
allegedly "illegal function call" is that the compiler doesn't like it.

To understand why, you have to know about the sta.ck on the 8087 numeric coprocessor.
It turns out that the compiler is not using the stack in the way it was intended. This

is a fault not so much in the compiler as in the way the 8087 was implemented (which is

....

Lecture 2 • May 5, 1988 (notes revised May 23, 1988) 6

not quite the way it was intended either). Sta.ck overflow on the 8087 is a mess that the
compiler writers, understandably., decided to try to avoid. When the compiler encounters
an. expression sufficiently complicated to threaten stack overflow, it declines to compile it.
Unfortunately, they ~ere a little bit too simple-minded, even in this particular case where
they could have got away with the computation; they begged the question. The result is
the rather unilluminating error message, "Error 5: Illegal function call."

It's not .entirely their fault. Ka.ban ha.d a hand in it. The original design for the
8087 included a scheme that would have allowed the stack to overflow comfortably into
memory, and to reload itself quickly on underflow. But the original design was altered
by implementors who claimed that they had found a better way. Because Kahan did not
follow through and check their claims, the implementation turned out to be horribly worse
instead. Consequently, nowadays, hardly anybody takes the trouble to write the software
that would handle stack over /underflow correctly. The only good example that comes to
mind is a Modula-2 compiler due out late summer 1988.

This example illustrates the extreme lengths to which you might have to go to discover
what happened. Could you figure out why it happened? What are your chances, without
the anecdote above?

2.4 Don't Divide, and Be Conquered

The implementors of the 8087 are not the only ones to have turned a shortcut into a monster.
A much more common kind of trouble a.rises because system designers are reluctant to
implement division in hardware.

Rather than devise a complicated piece of hardware with a low duty cycle that slows
down the rest of the machine by its very existence, designers have tried to implement
division without a divider. The ways to do this are based upon Euler's formula (see lecture
1). Unfortunately, this method turns into an extremely expensive way to compute correctly
rounded quotients, so expensive that most implementors a.re satisfied with quotients that
are at' best almost correctly rounded. They come so close to correct rounding that it would
seem surly to quibble about the difference. Can the difference matter?

If no programmer could discover that division was slightly incorrect except with an
extraordinarily devious program, then slightly incorrect rounding might well be acceptable.
Unfortunately for those implementors, programs exist that a.re neither devious nor very
long, yet which very likely will expose an incorrectly rounded quotient.

Figure 2-5 catches some of the problems that can occur in floating point division. This
very simple program is certain to stop prematurely if the computer's floating-point arith
metic uses a.ny other radix than 2 (binary), and almost certain to stop prematurely if division
or multiplication is not rounded according to the IEEE standard. It stops prematurely on
IBM 370s, DEC VAXs, CDC Cybers, CRAYs, and all decimal calculators. But it says "x
= i ALWAYS !" on IBM PCs that use an 80x87 math coprocessor, on all Apples that use
SANE, on all Sun-3's, on the ELXSI 6400, ~don many other systems.

In this program, we do a divide and round, and then multiply by what we divided by.
In the absence of error, this should get back where we started. But most floating point
implementations are subject to two rounding errors, one on divide and one on multiply,
with no guarantee that they will cancel. In fact, they often don't cancel; we don't get
back where we started. However, on certain machines, with certain divisors d listed in the
program, we always get back.

It should be an interesting exercise for the reader to figure out why this works on those
I

\

Lecture 2- May 5, 1988 (notes revised Ma.y 23, 1988) 7

machines that round in accordance with the IEEE standard 754. It is not at all obvious.
Don't feel bad if you can't figure it out! Lots of people with fairly strong mathematical
ability have been stumped by this simple program.

A program somewhat more complicated than this one uncovers with extremely high
probability any incorrectly rounded quotients, practically regardless of how rare they are.
It has discovered incorrectly rounded quotients quickly in division programs that had pre
viously delivered billions of randomly generated quotients correctly rounded.

♦------------------------ Edit ------~------------------------+
for i • 1 to 8000 tj. 1 j k d
for j • O to 15 tk-= 1 --- ---

for 1t • 0 to j 0 0 2
d-= tj + tk J • 2•j + 2 ... k 1 0 3
q • i/d X • q•d <----<< 1 1 4
IF IDT(x=i) THEN <----<< 2 0 5

print 11x • 11 ;x;" ROT s: It; i '<----<< 2 1 6
STOP . END IF <----<< 2 2 8 .

tk c tk+tk ' • 2·(1t+1) 3 0 9
next k 3 1 10

tj'= tj+tj ,
c: 2•(j+1) 3 2 12

next j next i 3 3 16
print II X C i ALWAYS ! II ' and d c 17, 18, 20, 24, 32,
end 33, 34, 36, 40, 48, ...

+---+
+------------------------ Run --------------------------------+
I X C: i ALWAYS ! I
+------~------------+---------------------+---------------------+

A Peculiar Property of Division and Multiplication
When Rounded According to IEEE Standard 754

Figure 2-5

Lecture 2 - May 5, 1988 (notes revised May 23, 1988) 8

3 The Cost of Precision

So ·far we have looked at some of the holes that can occur in floating point. We have not
given very much thought yet to dealing with them. What about the cost, then? How much
additional hardware or software effort is involved in getting everyt_hing as right as possible?

3.1 General Principles

Here we encounter that classic notion of economics a.nd engineering, The Law of Diminishing
Returns. That is, you reach a point where the cost of dealing with additional picayune
details begins to become enormous, so that the practical benefits accrue mu.ch :Qiore slowly
tha.ri~ the cost of achieving them.

At this point it is customary to throw up our hands, and say, "Well, it's just too costly.
We can't a.ft'ord to do it." The additional hardware cost begins to appear enormous, and
just for the sake of correcting a few rare error cases, or adding a little more precision .

Cost

hardware cos~

Precision

/~.,,...,,.--.,..

.,. .. .,. ..

Figure 2-6

... •·
,•· •· •·

.,···
.. •····· ...

Appearances are deceiving. Figure 2-6, ta.ken from some company planning presenta
tions, shows bow some people perceive the relationship between precision a.nd cost. The
cost can be thought of as the cost of floating point hardware running on some computer you
would like to manufacture. Note that the cost of higher precision grows faster than linearly
with the number of digits; it turns out that the cost goes up no faster than the square of
the number of the digits.

Figure 2-7 plots the perceived cost of programming and running a desired computation:
many users, naively and incorrectly, imagine their costs in time and effort will decrease as
precision is added.

There is a lower threshold of precision below which the job ca.n never get done. Then
there is a sharp decrease, a.nd suddenly, when you have got more than enough precision, it
doesn't help to add any more. Once the error is, negligible, making it smaller still leaves it

.,,,i

__,

-

Lecture 2 - May 5, 1988 (notes revised May 23, 1988) 9

Cost

Precision

Figure 2-7

negligible.
So in some sense, the total cost is the sum of the two curves. It will be some sort of

composite graph which says if you don't have enough precision the users can't use it; if you
have barely enough they'll find it hard to use; and if you have much too much, they'll find
it easy to use, but it will cost you too much to build. The trick is to find the optimum,
somewhere in there.

But this is wrong! This curve in fact tums out to be a phantom. And the reason is a
very strange theorem, which says that if you do arithmetic in a reasonable way (an IBM 360
is reasonable enough, a VAX is more than reasonable enough, and IEEE 754 is abundantly
reasonable enough! A CDC Cyber, a CRAY, a Univac 1100, and most TI calculators are
not reasonable enough), the only limit on accuracy is the over/underflow threshold. But
that makes it ha.rd to understand what this curve could mean.

The effect on the hardware cost curve is to make it step. There are places where the
cost of increasing precision is pretty well level, and then all of a sudden, it takes off, up to
a new plateau.

Let's now think about some arbitrary computational problem. You can consider your
problem as a space with as many dimensions as you have input data coming into your
problem. Every point in that space represents a collection of data you are going to submit
to that problem. It turns out that for very many problems (matrix inversion, eigenvalue
problems, and many others that are transcendental, there is a surface that runs through
this space on which everything bad that can happen does happen. Figure 2-8 gives a crude
2-dimensional idea of what we a.re ta.lking a.bout .

Lecture 2 .. May 5, 1988 (notes revised May 23, 1988)

This surface
corresponds
to the set
of singular

data sets for
which

computational
catastrophe

is inevitable,
even with

infinite
precision.

Figure 2-8

How many figures
do you need to
work accurately
with data this

close to the
surface of

singular data
sets?

10

A polynomial of degree 10, having 11 coefficients, lies in a space of 11 dimensions. In
particular, those polynomials having repeated zeroes lie on that troublesome surface in this
11-space, and they are the ones that cause loss of accuracy.

Well, the closer you are to the surface, the more figures you need to deal with the
difficulties. The advantage of carrying extra accuracy is that it enables you to cope with
the problems you couldn't handle adequately without.

So there is a sort of region of inadequacy around this nasty surface, whose width depends
on how much accuracy you carry. For each bit of accuracy you add, you shrink the width
of this region by a factor of two. Roughly speaking, you halve the number of problems you
can't handle accurately.

So if you carry enough accuracy to put your data outside this region, then carrying more
accuracy won't pay off any further. And this is a good rough description of what happens
for a very wide class of problems. There are, exceptions, but this covers the majority of
problems.

Figure 2-9 now illustrates how things really are. If you have too little accuracy, there's
a v~rtical line, and if you have more than that, you're OK. The problem is that you don't

ic

Lecture 2 - May 5, 1988 (notes revised May 23, 1988) 11

Cost

Precision

Figure 2-9

know where the line is. Because in practice, you don't know where the surface is. The cost
of determining whether a matrix is singular is almost as great as inverting. You might just
as well compute the inversion. It will not cost that much more.

So we don't know what the optimum is. There is a law of diminishing returns. If you add
more precision to your machine, beyond a certain point you aren't going to be increasing
the number of added customers by much. As you keep adding bits and halving the number
of problems they can't solve, eventually they will believe they can solve all their problems.
Adding more bits isn't going to make your machine more attractive to them beyond that
point.

3.2 A Rule of Thumb for Working Precision

Just how much precision should you carry? The working precision you use should be at
least twice as big as the accuracy you need, plus a few digits (say two or three). This is not
a mathematical theorem, but there are some surprising theorems that could justify such a
rule of thumb.

There are many interesti"ng problems in which you lose about half the figures you carry.
There are also some problems in which you lose almost all the figures you carry, if you do
them in a certain way. In such cases, carrying more accuracy won't really help you, as the
surface of incalculable problems is more likely to be an artifact of your algorithm than of
the physical nature of the problem.

Interestingly, if you carry enough precision, you can squeeze the surface down to just
a few points, which you can prove you can't get rid of as long as you carry only a finite
amount of accuracy.

Lecture 2 - May 5, 1988 (notes revised May 23, 1988) 12

3.2.1 An Example Using Least Squares Techniques

Le~'s consider least squares pr.oblems. A least squares problem can be _written thus:

F

choose x to minimize JI y - Fx II

where F contains independent variables, y the observed dependent variables, and :r the
unknown coefficients in a linear model. II y-Fx II is the length of the vector of discrepancies
between the the observations y and the prediction Fx.

Each element of y and row of F constitute an observation Yi made under certain cir
cumstances represented by F.;. If y is gross national product, then one column of F may
contain weather observations; another may contain tons of coal extraction, another whether
a Democrat or Republican is in the White House.

Now given some new combination of F's independent variables, what's the predicted y?
To know that requires x. xis nominally given by:

if pT Fis non-singular. Notice, however, that the elements of pT Fare roughly squares of
elements of F. Thus one can imagine that if the largest element of Fis r times the smallest,
then the largest element of pT Fis roughly r2 times the smallest element of FT F. This is
likely to cause trouble if some of the columns of F are not very independent: e.g., Rainfall
and Agricultural Production.

These imaginings can be made rigorous, but the essential conclusion is that it may take
twice as many figures to represent pT F adequately accurately as F itself required.

If F i;,.eeds all the precision it's stored in, then pT F needs twice that precision, or else
pT F will only be good to half the precision of F. Thus it is that the usual way of thinking
about linear least squares supports the general proposition "carry twice as much precision
as you need."

Lecture 2 • Ma.y 5, 1988 (notes revised Ma.y 23, 1988) 13

Interestingly enough, most reasonable linear least squares problems can be solved in a
different way: factor Finto a.:,;i orthogonal matrix Q and an upper right triangular matrix
R:·

F = Q

0

F=QR

then solve:

as a linear equation problem. Unlike FT F, no squaring is inherent in this method. Provided
the model fits the data well, you lose only the number of figures that the data deserves to
lose. On the other hand, if the fit is very bad, you get back in trouble aga.in, losing twice
as many. But then the result is pretty meaningless anyway.

3.2.2 Thickening of a Graph of an Equation

Let's suppose you would like to solve an equation. For .simplicity, let it be one equation in
one unknown. We want to know for what values of% is f(x) = 0? (See Figure 2-11.) This is
tantamount to saying that we'd like to know where the graph cuts the horizontal a.xis. Now
if, in the course of computing, you generate a certain amount of noise because of roundoff,
that noise is tantamount to thickening the graph somewhat. If the graph is very steep, you
can tolerate a good deal of thickening. You can still find the crossover point, the root of the
equation, fairly accurately. But see what happens where the graph is very-shallow. Here
we have two roots that a.re coincident, or very nearly so, and when you thicken the graph
because of noise, you can see that that causes an astonishingly larger spread in the root.
So if you can carry only a certain number of figures of accuracy, the number that you will
lose depends on whether the graph cuts steeply or in a shallow way.

Lecture 2 • May 5, 1988 (notes revised May 23, 1988)

Thickening of curve, due to
roundoff error, is the
graphic realization of

computational uncertainty. _

l
~ ' ... '......--::-----...... , , /- - - ... ' ,, , '

,- , ... '
.... •····,, "·· .. ,

,., '······/ \.\ . ', ~' ,,,,. ' ...
\ .. ' ,,,. / ... \ ,··• ... ' .., •-; '\ .. ' ., \ ' ' >• ... -- ----... ~ ✓ _

l
Thickened region covers

a wide strip of the x-axis,
obscuring the presence of

a double root, and making
difficult to determine
exactly a value for x
such that f(x) = 0.

/
Thickened region crosses x-axis
at a single steep angle, so the
band of imprecission is very

narrow in x. We get a reliably
close value for the root.

Figure 2-11

14

It turns out that the amount of accuracy you will lose depends on the number of roots
that fall within the limits of uncertainty. If you have a double root, you will lose about half
your figures. If you have a triple root, you will lose two-thirds. And for a quadruple root,
you will lose three-quarters. But a triple or quadruple root is extremely rare compared with
a double root. So you see that usually you don't lose that many figures. Usually the roots
are very simple, and the number of figures you lose depends mostly upon the difficulty of
computing the function in the first place. But if there is going to be a pathological situation,
it is very likely to be a double root, and then you will lose about half the figures you carry.

3.2.3 A Financial Example

Figure 2-12 illustrates another interesting situation where you lose half your figures. In fact,
many textbooks will tell you that you will lose them all. But you don't. In thls situation
you compute a divided difference,

/(:r)-/(y)

:r - 11

This is the slope of a secant being used to approximate the tangent to the curve shown. A
great many computations come out this way; in almost any situation involving extrapolation
you can expect something like this to occur. •

z

7 Lecture 2 .. May 5, 1988 (notes revised May 23, 1988)

I

I / I

I f i

Thickening due
to round-off.

I
/ / ,,

I I ,,
·"

x-y

f(x)-f(y)

Figure 2-12

15

Actual graph.

Lecture 2- May 5, 1988 (notes revised May 23, 1988) 16

So for example, in a financial calculation, suppose you want to compute discounted cash
flow, sometimes called the Pre.sent Value of Annuity, using the formula

PV A = 1 + (1 + i)1 + (1 + i)2 + ... (1 + it-1

But rather than compute that literally, observe that "it's a geometric series, so its sum

PVA = (1 + it-1
{1 + i)-1

is a divided difference of /(z) = (1 + z)" evaluated at z = i and y = 0.
The books will tell you that if your xis very close to your y, you run the risk of losing

all Y.OUr figures. Why? When you compute /(z) and J(y) you only get a certain number
of figures. After that they a.re just junk. Now when/(%) and /(11) get very close together,
the difference starts to get lost down in the noise. So when you do the subtract, you will
get a lot of zeroes. You lose most of your digits to cancellation.

Now many people blame the cancellation, thinking that cancellation is what caused the
loss of accuracy. But the fact is that cancellation is just the messenger that brings you the
bad news: /(z) and /(y) were contaminated by roundoff.

But now look at z and y . They don't have this problem, because you know exactly what
they are. So when you compute their difference, it will be exactly right. So the problem
is the uncertainty in the vertical values, not in the horizontal values. If you bring the two
points close enough together, you could lose all your figures.

That's how it would appear. If you u·se the divided difference form for discounted cash
flow, it would appear that you would be in trouble when i is very tiny. But if you are
conscientious, you would say, "this formula is valid if i is not equal to zero." H i is equal
to zero, or very nearly so, you just use the original series form, and add up all those terms.
This is called a removable singularity. You can get rid of it by manipulation:

if i =F 0, PV A = (l + it - l
i

if i = 0, PV A = n

This works for i = 0 but is not very accurate for i comparable in size to the least significant
bit of 1, because the rounding error in computing (1 + i) subsequently swamps everything
else. Instead compute

·r ((")) ..J. 0 PVA (l + i)n - 1
1 1 + l - 1 r ' = (1 + i) - 1

if ((1 + i) - l) = 0, PV A = n

For small i, the rounding error in the numerator is compensated by the rounding error in
the denominator! On any reasonable ma.chine you will not lose all your figures, and in fact
not more than half of them. This is another reason for the rule of thumb.

The reader is invited to try and figure out why you only lose half your figures. This is
important, because tricks like this make it possible for many financial calculators to work.

It is important to remember that it is only a rule of thumb to carry slightly more than
twice as many figures of accuracy as you need in your result. It is not true of computation
in all of its generality. It is merely something you can use to get a rough idea of what kind
of accuracy you should supply if you want to do certain kinds of engineering computations.

z

Lecture 2- May 5, 1988 (notes revised May 23, 1988) 17

3.3 Calculating Companies in Competition

An interesting side note is that certain calculators, manufactured by company H, have very
pleasant properties when you perform a particular operation on them and then invert it.
You can do this any number of times and always get the exact answer back (except possibly
for one change the first time). However, calculators manufactured by company T gradually
lose precision, and after repeating the operation several times, you get back an answer
increasingly different from what you started with.

A cute example of this is to enter a phone number into the calculator, take its natural
logarithm, and then take the exponent of the result. Company T asserted in its advertise
ments that you would get the same number back. However, it tums out that if you did
this- seven times, you would lose the lea.st significant digit of the "phone number." With
company H's calculators, on the other hand, this loss did not occur except, occasionally,
the first time.

Both companies, H and T, accepted and displayed 10 digits, but used 13 internally. The
difference is that company H used careful algorithms and rounding, and after computing,
the 13 digit internal value was always rounded to 10 digits to match the display ezactly.

Company T, however, carried 13 digits throughout, which should give better results
than 10. However, their display had a window wide enough to show only 10 out of the
13 digits carried; perhaps that's why they were somewhat careless with the least 3 digits.
Consequently, their calculator behaved in anomalous ways at times. Specifically, for certain
data their exp(ln(z)) appeared to produce z, and to do so even six times :

exp(ln(exp(ln(exp(ln(exp(ln(exp(ln(exp(ln(x))))))))))))

appeared to be z. But the seventh time, it changed, and further repetition induced ~
prolonged downward drift. That's hard for naive customers to explain. This fact was
omitted from -company T's advertisements.

In contrast, company H's algorithms might change the least significant bit displayed
once, but subsequent ln(z) and exp(z) had no effect, because there was no hidden accumu
lation of error.

In truth, company H put a great deal of care into their arithmetic in other ways as well,
and these factors also contributed to their calculator's accuracy. Consequently they sold
many calculators, a rare instance of virtue being rewarded. In most cases in :floating point,
a virtuous feeling is the only reward of virtue. The virtuous floating point processor less
often attracts the notice of its user, because it is less often wrong.

3.4 The Cost of Not Being Virtuous

Finally, not only are there rewards for virtue, but there are tremendous costs also for
someone if you are not sufficiently careful in designing the machine you sell. For instance,
when IBM changed from the old 7090 m_achines to the 360 series, there was a severe loss of
a.ccuracy, much greater than the apparent loss of precision of the new :Boating point format.

It turned out that a lot of people had data good to no more than 13 bits, so 27 bits on
the 7094 worked acceptably according to the rule "carry twice as much as you need." But
the 6 hex digits on the 360 were not quite enough, so most single.precision programs were
eventually converted to double precision, a practice that continues to this day.

Once converted to double precision, a number or programs still failed to work correctly.
IBM customer support spent a great deal to debug these programs, only to discover that

_,

. ,

Lecture 2 - May 5, 1988 (notes revised May 23, 1988) 18

some were failing due to double precision multiplication and subtraction lacking a guard
digit. Subsequently IBM spen.t tens of millions of dollars to retrofit all 360's with proper
double precision multiplication and division. But the greatest cost to IBM was that people
who previously believed IBM equipment to be infallible now knew better, and often blamed
it for their own mistakes, so that IBM customer support had to thoroughly debug many
customers' programs just to prove that the failures were not IBM's fault.

So you see, if you are virtuous, you may save yourself and others a great deal of headache
and expense, though you may never be noticed for it. But if you are careless, you can count
on someone having to pay for it.

z

1 •

{.

I

I.

'
-i

Lecture 2 - May 5, 1988 (notes revised May 23, 1988) 19

Appendix Al

An Exercise in Technical Support for Scientific Computation

Floating-point computation is beset by truths, half-truths and mistakes to an extent
little appreciated by the world at large, as this exercise will illustrate. Imagine that you
work for CRAY providing technica.1 support for its salesmen and customers, and you have
been passed the following letter. This letter is based upon actual events embellished only
slightly for didactic effect.

Dear zm,
--The Fortran function AJIOD in both the CFI' and CFT77 coapiler11 on a

CIU. T can gi're wrong reaul t11 for certain arguaent11. Bere is an exaaple:
PROGRAM:

1
2
3
4

IIIPlTI':

Otn'PUT:

foraat(2z16)
foraat (3z18)
foraat(.....)
foraat(.....)
read 1, x
read 1, y
r • aaod(x, y)
print 4, "x", "J". "r"
print 2, x , y, r
print 3, x, y, r
end

4009f9ffffffffff
4009fa0000000000

4009F~FfffffFFFF
499.99999999999818

J
4009FAOOOOOOOOOO
600.00000000000000

r
BDFABOOOOOOOOOOO

-1.818989403S45856Se-12

Thie violates the definition of AMDD(x, y) • x - AM(x/y)•y , because when
x and y aatisfy 0 < x < J , u they do here, then AMDD(x, y) ahould give
a positive nuaber x instead of the negatin nuaber x - J . This violation
crashed a long benchaark code that had worked perfectly well on an IBM 3090,
DEC VAX and Sur.i-3. The code calculates f(x,y) • SQRT(.A!!DD(x,y))•EXPC-x)
uong other thinga for innocuoua Talues x and y that are always positive.

The CRAY hu TerJ peculiar diTiaion; 240.0/3.0 doee not give exactly 80.0
and x/y above yields 1.0 exactly instead of 0.99999 ... aeon all other
coaputera and calculators that I have tried. I can tolerate aall errors ill
quotients, but negatiTe Taluee for B0D(poaitive, positive) ie too bizan:e
to tolerate in 1111 environaent where we must abare atandard Fortran codes that
run unexceptionably on all our other ■acbine11. legative Talue11 cannot occur on
the DM aachinea because they chop quotients, ao AM(x/y) cannot be wrong.
The Sun"."3 con.for.a to the IEEE standard 754, which preacribea an ezact
raainder, ao it cazmot aalfunction. The DEC Vil bu an DOD iuatruction
in ita architecture, which aay eJ:plain why ita BOD ie always correct.

The CRAY ia the odd aan out here; if you can't fix it, we don't vant it.

Yours

VVhat do you recommend that CRAY do?

i

I
j

I .

Lecture 2 .. May 5, 1988 (notes revised May 23, 1988) 20

Appendix A2

Discussion of

An Exercise in Technical Support for Scientific. Computation

The allegations about the CRA Y's peculiar division are correct as of this date; almost
all other computers and calculators do always deliver a quotient x/y < 1 despite roundoff
whenever O < x < y , so they can guarantee that AMOD(x,y) = x exactly in this case.
Indeed, on al.most all machines with binary floating- point, AMOD(x,y) is just fine so long
as x lies between 0 a.nd a.bout 2.9999•y ; on non--binary machines, between 0 and about
1.9999*y. After that, what happens is not easy to predict.

The trouble starts with the definition of AMOD(x,y) . Ideally, this is the remainder r
you would get after you carried out long division (as you learned it in school) to compute
x/y , but stopped as soon as all the digits of the quotient n that precede the decimal point
had been generated. Then r = x - n*y where OS r/y < 1 a.nd the quotient n is the integer
nearest x/y on the same side as zero; n would equal AINT(x/y) in the absence of roundoff.
Ideally r can be computed and represented exactly (unless it underflows, but let's skip
that for now) in the same floating-point format as x and y provided all the digits of n are
generated correctly; that is a challenge because there can be so many of them when lx/yl
is very big, so many that most must be rounded away by AINT(n) to fit into the same
floating-point format. Now you see where the trouble begins; the definition

AMOD(x, y) = x .. AINT(x/y)*y

could mean the ideal remainder r , or it could mean the result of computing the rounded
values x/y, AINT(x/y), AINT(x/y)*y and x .. AINT{x/y)*y in turn. Which is the correct
AMOD?

Originally, when Fortran was young, all computers computed the version of AMOD
contaminated by a few rounding errors; CRAY s still do it that way a.nd they are not alone.
Unfortunately, the contaminated AMOD(x,y) can fa.il to lie where most users expect it,
namely between O and y . Only if AINT(x/y) is computed too big in magnitude, as could
happen on machines like DEC VAXs that round quotients correctly, can AMOD have the
wrong sign; but that cannot happen on machines that chop quotients as did all the old IBM
7094s, the old CDC 6400 and 6600 (but not 7600) and many other machines, and as do all
IBM 370's and Amdahls nowadays. Perhaps tha.t explains why the wrong sign for AMOD
is such a surprise for old-timers a.nd their programs. On the other hand, a contaminated
AMOD(x,y) can easily be bigger than y , but not likely by so much as would be obvious.

All ma.chines that conform to IEEE 754/854 should be able to derive an ideal AMOD
quickly from the standards' mandatory remainder operation. Machines that la.ck a hard
ware remainder can compute it in software like that supplied in the C Math library dis
tributed with 4.3 BSD Berkeley UNIX . Similar but proprietary software resides in DEC's
VAX VMS Fortran library; it doesn't use an EMOD instruction, which is a peculiar multiply.

What should CRAY do? CRAY's floating-point hardware is too inaccurate to support
an ideal AMOD at a tolerable cost. The least intrusive alternative may be a loop to test
AMOD(x,y) for the correct sign (the same as y's), although only rarely will that test have
to correct AMOD (by adding y to it).

z

