
. \

Computer System Support for Scientific and Engineering
Computation

Lecture 4 - May 12, 1988

Copyright ©1988 by W. Kahan and Shing Ma.
All rights reserved.

1 Exception Handling Revisited

In the previous chapter we posed a problem concerning algorithms to determine any ma
chine's integer format's range. The solution to this question is not as trivial as one would
imagine.

Assignment : In a vanilla higher-level language like FORTRAN, program a way to dis
cover the full range of any ma.chine's integer format.

Discussion : There are some languages where one gets the illusion that this task can be
done quite easily, but the solution may not work on all classes of ma.chines. For
example, in the C programming language, one can assign an integer variable the value
of 1 and then use the left shift operator to shift the "l" bit left. One would argue
that when the "l" reaches the most significant bit, the integer will suddenly turn
negative. By counting the number of shifts before the integer turns negative, one
can presumably derive the full range of the machine's integer format. Even though
this procedure appears logical, it is not guaranteed to work on all classes of machines
because C can, in principle, be implemented on a decimal machine. On a decimal
machine, the left shift operator may be implemented in a different manner in software.
In such a machine, integers may not be represented in binary, but may be represented
in decimal instead. For decimal integers, the left shift operator can presumably be
simulated by doubling the value of the integer. Under this circumstances, we may not
eventually obtain the negative number that we expected.

The moral of this example is that we must be extremely careful when we design
algorithms. Designing algorithms requires an abstract model of' the computing en
vironment that takes into consideration every possibility which ma.y arise. As an
example of the complexity of constructing an algorithm, consider the program listed
in Appendix A whi~h determines the range of integers on machines whose radices are
either 2, 3 or 10. In order to determine the largest integer we must generate it, but
we won't know that we have generated the largest integer until we have gone too far.
Trying to generate an integer larger that the largest possible integer results in unex
pected results which we cannot predict. In fact, it may simply a.bort on an integer
overflow. Some computer languages have the capability of trapping an error when it

,,

1

Lecture 4 • May 12, 1988 2

is encountered, passing control to an error handler. For instance, the "ON ERROR
GOTO" and the "resume" statements in the program in Appendix A function as error
handlers. Error handling such as described _above is, in essence, exception handling.

Programmers generally try to avoid dealing with exceptions. When one begins to
work with exceptions, there is no end to them. Those of us '1/ho are sane would rather
not deal with exception handling, but some of us are willing to do the "dirty job".
Even though it makes perfect sense for us to reap the benefits of these masochists,
a majority of us a.re still unwilling to deal with exception handling as it is disgust
ingly non•sta.ndard. In most situations when we encounter a.n exception, either the
ma.chine-dependent exception handler takes over or the program aborts. Under such
an environment, how can one write a portable program to discover the full range of
any ma.chine's integer format?

A solution to the problem of discovering a m~hine's integer format's range is to
generate all consecutive integers in tum, and when the next integer generated results
in an exception we know that the previous integer was an extreme integer in the
range. A problem here, as discussed earlier, is that some m~hines simply terminate
when an exception is encountered. We must, therefore, somehow keep track of the
largest or the smallest integer successfully generated. A simple way to do this is
to write integers as they a.re successfully generated onto a file. If the integers are
generated in increasing order, and if the file buff er is emptied promptly, the largest
integer in the file upon program termination is the largest integer possible on that
particular computer. The Paranoia test program to test implementations of :floating
point arithmetic developed by W. Kahan at the University of California at Berkeley
is based on the same idea. The BASIC implementation of Paranoia is littered with
"ON ERROR GOTO" statements, but a Fortran implementation due to Tom Quarles,
George Taylor, Da.mel Feenberg and David Ga.y is full of "write" statements. Ea.ch
write statement, whose purpose is to keep track of the progress, is appropriately called
a. "milestone".

Although the procedure described appears to work in theory, in practice, one may
obta,jn rather unexpected results as the program may not abort where the exception
occurs. The computer may have executed a few other instructions before it aborts
because the compiler may overlap or rearrange these instructions, or the file buff er may
not be empty when the program terminates resulting in loss of output. Consequently,
one must be very careful to ensure that he is getting the correct "milestone".

2 Benchmarks

Benchmarks are designed to evaluate ihe performance of computer systems. Some bench•
marks a.re used to determine the speed of a system, others to measure the bandwidth of its
input•output devices or to test for the conformance of its iloa.ting point arithmetic with cer
ta,jn standards. One of the factors on which computer system customers based their decision
is by comparing benchmark results on the various systems they have under consideration.
Examples of benchmarks commonly used are Linpack, SPICE, Whetstone, Paranoia and
numerous other tests.

As a.n example of a simple benchmark program, consider the following program which
resembles one used by a.n Australian university to determine which system to acquire :

I

l

Lecture 4 - May 12, 1988 3

a = b/c
d = a/h
e = d•c
f = e•h
g = 1/-bl/c

f

The above code is enclosed in a loop where b and c are assigned different values for ea.ch
iteration. The objective of this test is to compare the accuracy and the speed of the
various systems under consideration. The correct value of g should be O but it is ofien
non-zero because of rounding errors. The computational accuracy of a system under test is
determined by the tininess of g; smaller values of g earn bonus points for the system. To be
fair, points are also deducted in proportion to the amount of time the computations take.
This way, if a system uses double precision to improve its accuracy, its computational speed
will suffer and it will lose points.

The computer company which was awarded the contra.ct was Prime. Prime's compiler
realized that since a, d and e were not referenced in other parts of the program, their
values did not have to be stored in memory; they were kept in registers, which resulted
in a substantial reduction in execution time. Prime's computational accuracy far exceeded
those of its competitors; in fa.ct, its results were exact. The reason for the exact result is
that Prime's :floating point arithmetic operations are performed in internal registers which
had greater precision than the precision of the variables. The values of b and c are first
loaded in the ·registers where b/c is computed. With the value b/c still in the register, it
is divided by h which is later multiplied by c and then by h. All these computations are
computed in registers where rounding errors occur only at the lower few bits. However,
when the result is rounded and stored in / all the noise incurred in the multiplications and
divisions is rounded away and / = b.

It should be noted that benchmarking is very important and that we should understand
it thoroughly. Computer vendors sometimes select and show only benchmarks for which
their computers are well suited. Computer customers need to really understand benchmark
results presented by computer vendors in order to make wise decisions. Interested readers
should read critically the January 1988 issue of PC Te.ch Joumal on :floating point arithmetic
benchmarking.

3 Exact Arithmetic

There are people, and there will always be people, who believe that we should represent
numbers exactly instead of using floating point number representation. It is generally
possible to represent numbers exactly, even if they involve transcendental numbers, because
there are so few of them that matter. For example, we can always represent the value of 1r

by the symbol ,r, whkh results in no rounding errors. When we encounter the symbol fin a
familiar context, like cos(f), we can replace it by O. If, however, we had used floating point

Lecture 4 - May 12, 1988 4

representation for ,r, we may not have obtained exactly O since ½ was not stored exactly.
In fa.ct, there are theorems which -state that if we must compute exactly then we may have
to wait a very long time. The ·word "exactly" in this context is usually interpreted as not
exactly "exactly", but as close as we wish provided we wa.it long enough. Since we do not
know how long is long enough, we have to compute approximately in order to obtain the
solutions in a reasonable length of time. •

When we perform computations involving fra.ctions on some calculators, we sometimes
get the impression tha.t the computations a.re exact when in fact they really are not. Inter
nally, when the integers for the fractions a.re too large, the fractions a.re approximated by
some other number representation, like floating point representation. Before the solution is
displayed, it is tested by a continued fraction technique to determine if it can be approx
imated by a pretty simple fraction. If the computed solution ca.n be approximated by a
fraction, the fra.ction is displayed giving us the illusion that the computation is exact wh~n,
in fact, the "exactness" is simply cosmetic. Such a scheme is not desirable because if we
need to compute c = a - b where a, a value very close to b, is approximated to b, then we
would obtain O instead of a very small number.

3.1 Floating Slash Number Representation

A way to represent numbers exactly by fractions is ca.lled floating slash number represen
tation. This number representation scheme has been proposed by Matula and Kornerup
in Proceedings of IEEE Symposia on Computer Arithmetic; these Proceedings also contain
many other schemes of varying merits. Interested readers should refer to the proceedings
for further details. The floating slash representation for±';: is as follow :

m n

In this representation, there is a tag field which points to the boundary between integers m
and n. It is possible to represent a wide range of numbers using the ratio of two integers
if the integers can get big enough. Floating slash representation, however, has some very
disconcerting properties. The numbers which are representable by the floating slash scheme
are incredibly variable, that is, two adjacent representable numbers can be separated by a
distance which is several orders of magnitude from that of the next adjacent representable
number. Ironically, the more bits we use to represent the integers, the wilder the variation
becomes. Although the average separation between two representable adjacent numbers
is very satisfactory, the extreme behavior is very extreme indeed. Because of the radical
variations in distances between representable numbers, the fioating slash scheme is not
widely appreciated by error analysts.

There are applications in which fioating slash and other rational arithmetic schemes are
appropriate and adequate. In problems such a.s solving small systems of linear equations by
the Gaussian elimination method and linear programming by simplex methods, one often
starts with fairly small integers and the solutions can normally be represented by simple
fractions. In general, however, these arithmetic schemes are not adequate. Another problem
with these arithmetic schemes is that, in order to represent numbers in fractions, one does
not generally know beforehand the number of bits needed to represent the integers in the
worst case. Ideally, the scheme used should be able to practically represent a very wide
range of numbers, but this is incompatible with a prior commitment to a fixed word size

Lecture 4 - May 12, 1988 5

for the representation.

3.2 Symbol Manipulators

In spite of the deficiencies of using floating slash or other rational arithmetic schemes, they
are used in symbol manipulating environments like MACSYMA,.MAPLE a.nd REDUCE.
Some symbol manipulators can solve certain problems exactly, sometimes even in closed
forms. Closed form exact solutions a.re not as attractive as they sound. As a.n example,
consider evaluating the indefinite integral

J dz
zl6- l

which ca.n be performed in closed form. The closed form solution returned by the symbol
manipulators, however, a.re not always desirable. It may be an a.wkwa.rd expression with
unreasonable coefficients. This situation is especially so when z 16 is replaced by x32 or x64•
Nonetheless, they are adequate in a wide number of applications.

Symbol manipulators are accomplished most naturally by arbitrary width multi-word
integer arithmetic. Multi-word integer arithmetic can be implemented quite easily using
the linked list structure where integers are linked together to denote the multi-word integer.
When we perform a certain operation like multiplication, we operate on the list of integers,
and produce another, possibly longer, list of integers. The LISP environment is especially
well suited for handling multi-word integers using a linked list structure. Alas, the time for
a computation can grow enormous]y with the increase in the sizes of integers used in the
multi-word scheme. The sizes of integers used in the fraction can be reduced if we reduce
the numerator and denominator to lowest terms, that is, to divide both the numerator and
denominator by their greatest common divisor using the greatest common divisor (g.c.d.)
process.

3.3 Arithmetic Using Rational Numbers

As mentioned earlier, there are certain domains where representing numbers by fractions is
adequate. If the solutions in these domains are representable by rational numbers where the
denominators are predictable, then the computations can be performed entirely in integers.
Under this condition, operations on the integers can be done very efficiently by a modu
lar technique involving the Chinese remainder algorithm. An interesting and disconcerting
point a.bout integer arithmetic is that even though all the final results are of reasonable
size, it is not unusual for the intermediate values to be enormously larger. The Chinese
remainder theorem provides a way to deal with this problem. We can quite easily compute
a collection of prime numbers which are slightly smaller than the word size of the machine.
Whatever integer we wish to represent can then be represented by its remainders modulo the
collected primes. It turns out that for all ring operations (add, subtract, multiply but not
divide) on integers, we can actually operate on the residues without any carry propagation.
Since there are no propagations, these operations can actually be performed in parallel.
Since the magnitudes of the constituents are bounded in magnitude, operations on them
are much faster than if we had operated directly on the given integers. After all necessary
computations on the residues, the Chinese remainder algorithm enables us to retrieve all
the answers from the various remainders. For further details on this nifty way of operating

Lecture 4 - May 12, 1988 6

on integers, interested readers should refer to The Art of Computer Programming: Seminu
merical Algorithms by Knuth and The Design and Analysis of Computer Algorithms by
Aho, Hopcroft and Ullman.

The range representable by floating point numbers is larger by far than the integers.
Suppose we wish to add two integers. If these integers. are in integer format and their sum is
too large, then we have an overflow. If, however, these integers are in floating point format,
their sum may not overflow, but we may lose the bottom few bits instead. The following is
an assignment for interested readers :

Assignment : Compute the following expression where A, B, C and D a.re integers, rep
resented in floating point format, which are less than half the largest representable

_integer:
M A C -=-+-N B D

Structure your computations so that there is no loss in accuracy if M a.nd N are also
representably exactly.

Hint : Use the g.c.d. algorithm.

In the computation above, it is sometimes not easy to determine if the computation has
been done without any loss in accuracy. For machines which conform to the IEEE format,
the solution is surprisingly simple. One simply has to check the inexact flag to determine
when there is any loss.

4 Floating Point Number Representation

As we have seen, there are ways of computing arithmetic exactly if we so desire. Often,
however, these methods are sufficiently complicated that we would rather use a simpler
method at the expense of some inaccuracy. At present, by far the most convenient and
simple way is the floating point scheme. The conventional :floating point scheme represents
a number x as follows:

dj E (0,1, ... ,p]
p=/3-1

where /3 is the radix and e is the exponent. There is a point somewhere in the d; field; if we
are working in the binary domain (/3 = 2), then the point is called a binary point; if /3 = 10,
a decimal point.

The encoding of floating point numbers shown above is stored in memory as shown :

X = I± I e + BIAS

For example, if BIAS= 128,

+1.234 X 106 = 12340000

when stored in memory may be as follows:

·•

/, (

Lecture 4 • May 12, l 988 7

1±1 • 134 12340

where the exponent may be a binary integer and the significant field may be 5 hexadecimal
digits. In this example, 8 hex digits a.re used : 1 for the sign, 2 for the exponent and 5 for
the significa.nd. (There are more compact encodings.)

The fields can be arranged in other permutations, but there is a very good reason for
arranging the fields as they are shown. The main reason is that this arrangement enables
making comparisons very quick and easy. H the fields are arranged in some other manner
then the numbers may have to be subtracted in :floating point format to be compared. This
way of performing comparison is clearly inefficient. Using the encoding shown above, which
has 1exicographica.l ordering properties, comparison can be achieved easily and quickly. In
lexicographical ordering, if we consider the bit string representing the floating point number
as a signed integer, the ordering of the floating point numbers is the same as the ordering of
the integers corresponding to the bit strings of the floating point numbers. In practice, this
is usually how :floating point numbers are compared. Floating point numbers represented in
the IEEE 754 standard format have the lexicographical ordering properties. Note that the
reason for the bias in the exponent is to preserve lexicographical ordering properties. Not
all current machines use lexicographical ordering for their comparisons; Burrough machines
have a separate sign for the exponent, so their floating point number representation is not
lexicographically ordered. As a consequence, comparisons on these machines are performed
the hard way.

We have not discussed where the point is located in the significand. DEC and IBM have
their points to the left of d1, but the point is between d1 and d2 in the IEEE 754 standard.
CDC Cyber 170 series places the point immediately to the right of d,,. The difference
between the placement of the point merely amounts to a change in the bias, BIAS. If the
point is moved one digit to the right, BIAS is incremented by l. Thus, by changing the
bias, we can shift the position of the point. The placement of point, therefore, is just a
matter of convenience.

We know that the position of the point is related to the bias. We still have not deter
mined what the value of bias should be, or equivalently where the point should be placed.
Changing the value of BIAS affects the range of representable numbers. For instance,
adding 10 to BIAS results has the effect of shifting the range of numbers towards zero.
So, when considering the value of BIAS, there is a question of the balance of the range of
representable numbers.

Let us consider the importance of choosing the appropriate value for BIAS. In a CDC
Cyber, the bias is chosen so that the product of the largest and the smallest positive number
is a number significantly larger than 1.0. This situation poses problems because when we
ta.ke the reciprocal of a number smaller than the largest number, we may have an underflow!

In the next chapter, we shall discuss which radix is the best and the effects of the various
methods for rounding.

Lecture 4 - May 12, 1988

10 '
20. '
30
40
so
60
70
80

• Appendix A

WHICHIRT.BAS is a.BASIC program to discover vhich integers the
computer on vhich it runs can handle in its IITEGER format.

DEFIRT A-Z' ... or INTEGER ... in other BASIC dialects.
01 • 1: IF (01>0 ARD 01•01s01) TBER 60

PRINT "Something is VERY vrong vith 1 .": STOP
02 • 01+01' ... Test the hypothesis that the machine is BIHARY
P • 02: J • 02+01' ... j s 2·p - 1
OR ERROR GOTO 220' ... and resume at 120

90 P • P+Ol: I• J: Jc I+I+Ol: D • (J-I) - I
100 IF D><D1 THEN PRINT "FLOATIHG-POIRT is used for INTEGERS~" STOP
110 IF J>I THEN 90' ... else nov i • 2·(p-1)-1 >= j s i+i+1. !
120 ON ERROR GOTO 230' ... and resume at 140
130 J • 1+01: IF J>I THEH 300' ... else nov the machine IS binary.
140 OR ERROR GOTO 240' ... and resume at 160
150 M •-I: IF M<O THEN 170' ... This ought not to overflow, but ...
160 PRINT "Negative integers malfunction!" STOP
170 ON ERROR GOTO 250' ... and resume at 200
180 J • M-01: IF J>•M THEN 200
190 PRINT P;" digits of Tvos' complement"; GOTO 210
200 PRINT P;" digits of either Sign-Magnitude or Ones' complement";
210 PRINT" BINARY (B c 2). 11 STOP
220 RESUME 120 IBM PC BASIC requires these
230 RESUME 140 RESUME statements to prevent
240 RESUME 160 ' subsequent "ERRORS" from
250 RESUME 200' tenninating the program.
300 03 • 02+01' ... Test the hypothesis that the machine is TERNARY
310 PC 02: JC 03+01 t ••• j C (3•p - 1)/2

320 ON ERROR GOTO 490' ... and resume at 350
330 P = P+01 : I= J: J = I+I+I+1
340 IF J>I THEN 330' ... else nov i c cs-cP-1)-1)/2 >= j c 3i+1. !
350 ON ERROR GOTO 500' ... and resume at 370
360 J = I+01 : IF J>I THEN 410' ... else nov i = 111 ... 111 is maximal.
370 ON ERROR GOTO 240' ... and resume at 160
380 M = - I ' . . . This ought not to overflov, but
390 IF M>cO THEN 160' ... else nov m • 222 ... 222 or 'ITT ... TIT < 0.
400 PRINT P; 11 digits of Threes' complement or Balanced";: GOTO 480
410 ON ERROR GOTO 610' ... and resume at 600
420 J = I+I: IF J<cI THEN 600' ... else j • 222 ... 222 > 0.
430 ON ERROR GOTO 240' ... and resume at 160
440 M • -J: IF M>c O THEN 160' ... else nov m • -222 ... 222 < O.
460 ON ERROR GOTO 510' ... and resume at 600
460 J s J+1: IF J>I THEN 600' ... else nov 222 ... 222 is maximal.
470 PRINT P;" digits and a sign for Sign-Magnitude";
480 PRINT II TERNARY (B = 3) 11 STOP
490 ~UME 350
500 RESUME 370

8

i7
I

i !

l t j

i .

)

Lecture 4 - May 12, 1988

510 RESUME 600
600 X • 03•03: T • N+1 '· ... Check that the machine really is DECIMAL ·, 610 P • 01 : J • 03+01 j • S•1o~p - 1
620 ON ERROR GOTO 810' ... and resume at 650
630 P • P+1: I a J: J • T•I+N
640 IF J>I THEN 630' ... else nov i • 499 ... 999 >• j • 10•i+9. !
650 ON ERROR GOTO 820' ... and resume at 670
660 K • I+01: IF K>I TBEH 700' ... else nov i is maximal.
670 ON EaROR GOTO 240' ... and resume at 160
680 M • -I-01: IF M>•0 THEN 160' ... else nov m • -500 ... 000 < 0
690 PR.INT P; 11 digits of Tens' complement"; : GOTO 770
700' ON ERROR. GOTO 800' ... and stop
710 K • I+K: IF K<cI THEN 800' ... else k • 999 ... 999 > 499 ... 999
720 ON ERROR GOTO 830' ... and resume at 740
730 J • K+01 : IF J>K THEN 800' ... else k is maximal.
740 ON ERROR GOTO 240' ... and resume at 160
750 Mc -K: IF M>=0 THEN 160
760 PRINT P;" digits and a sign for Sign-Magnitude";
770 PRINT II DECIMAL (B = 10) ." : STOP
800 PRINT "This program can't tell vhat happens to integers> ";I STOP
810 RESUME 650
820
830

RESUME 670
RESUME 740 END

9

F~oA7.-,~ -

J.2,,4,v(; E' / P ~ Ee, 'S 1 cu.1

l WNtr,.,

A/4.,,,,,,< ~
k

8 INA'Ry ~

Q fAA TE,; ,V ~ "1 r ~ a.

Oc-r.4 '-- 8
1--1 i;)c.A- bE-C. •MAL ,,

Raa+c ;3 - f tJ t,t f c,,,,ov-d :

p Q ;" ~

T !<A 1) (:OF',=-

!2. A /.-:-
7

,s ,9EST? j

.,.,o H'to,r<2

6 t-t .,,...,-o '-'-{} l-t.s ~ G -s)l' ...

I,eM 370> Amdei.l, ~ •..

1 .,.:_ ~ b:h ___. 4- ? s:1- d,~,1c; :z

X - ~:£,XPD,.._.,,t + S ,;.s Jlc:1 / d, / J, I • • - -

f'. k. b-J". ~

/d,: I&, .. / dr /

....

Q,
0 ~ e ;t f°"' e.,d- -+ B 1 ~ s ~ 2 - 1

o ~ [c:1, ct. tit, .. • cl ,. -:a. d r ·· c::I r 1 ~ r/ - 1
a-v0, f = 21. ~ .. So,n;a_ ~e.J k

-------------- --------~ ---····
So [oo ... oo] ~ Cd, c:I~ ... J, .. Jp j ~:-ff

~

I~

• ..__ ---·
,,.. ,...
t' , -
•. '·

X -
;\::. -

~=

Mo.. x-..

,--, i I.,_·: • ("J,_, d,,, ; -; j '2.J'pol'le..:t" ~ ~ to~ ,lc1·"& - --
.:t

.:2."

0

e,,..fo,,.~ri::J-

r ,([ol, cl:. - ... d 1_, d,,,] /Ji()~/IH"'I~ ;;fr 0

f
~ e, p o,uz.J +.8 t'as

-
~

--

('--'
R-a_ 1

tO -0

cl, ~ i.

C,100 .. · oo 1J -[1 oo. • aoa J
r.,ao ... ooa1

=

?

1-~~,
.2 -=

1 • (P'-,~
-Z ==

;:;,. I/ ,,
/i!..A14JG€ .Sa1t11"' & 0o~~T"-c.A-.S e !>RFCISl'oN ~---·

-::- Q k. ~>~ .2. i
'

+,·elel :11 t°ds .L L' L ~ ,l,J =- k.
I

£ >t po"e "'1 =- I

s~. a#t.J· ~;e(J •4,H<, pA. ?> I + k • (r-,) J - I

I Tow c...,o-,-tf s, ze t.u::= 1-1.f-1-fk. Gu~~ 1+.l'.,. f'

fl e111~e t:AJ- cu"' =- ~-.I' or pi-~~

=- -~~k -t- k. - 1

~ 0 ~ JJ. ~ "'a:: f .

IV q vtice_ k lo~ 6 :.:It. 41-c.,,,J' ::- - ~:a. k -f"9 '2 -1

81-<J,o. ~ y 1 0 -i ~ H,~JQ,. B,+ I
• - - ..

O\A.4 r&~>JA-~., 2. 0

OCTAL 3 2-~ '2 ~ ..,, = 0, 't I 5

H~ y:. 'I- 1

tv'rr1-1oc.,;- /1,pL>~AJ B✓ -:- (60/df>t:>"J ~ v~r;ar./ "~~) _;

81N,4Ry ~~ Qi« te~..A/~,Oy .$ Jo,.,.A./G-6 /rtl'i.~c,r,-o ~ .

0"' A76/2.A/Al'<Y 'o/ 1/Jd

Oc, r~ t- J::-- 1.'{-1~ J;~

1-/~y f;
~ L' [J;-~~ •

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
24-0
250
300
310
320
330
340
350
-:rl .,. ... ,
-~•(:,-.. ,
::::;7,:,
3:30
390
400
410
420
430
440
450
460
470
480
490
500
::i 10
f,(H)
61 0
620
630
640
650
660
670
680
6'7'0
700
710
720
730
740
750
760
770
8t)0
8l0
820
830

WHICHINT.BAS is a BASIC program to discover which integers the
' computer on which it runs can handle in its INTEGER format.

DEFINT A-Z' ... or INTEGER ... in other BASIC dialectsa
01 = 1 : IF (01)0 AND 01*01=01) THEN 60

PRINT 11 S«;>mething is VERY wrong with 1 .": STOP
02 = 01+01 ... Test the hypothesis that the ~achine is BINARY
P = 02: J = 02+01 ' ... j = 2AP - 1
ON ERROR GOTO 220' ... and resume at 120

P = P+O 1 : I = J : "'T = I+ I +O 1 : D = (J- I) - I
IF D><Ot THEN PRINT "FLOATING-POINT is used for INTEGERS." STOP
IF J>I THEN 90' ... else now i = 2A(P-1)-1 >= j = i+i+l

ON ERROR GOTO 230' ... and resume at 140
J = I+Ol : IF J>I THEN 300' else now the machine IS binary.
ON ERROR GOTO 240' ... and resume at 160
M = -I : IF M<0 THEN 170' ... This ou~ht not to overflow, but ...

PRINT "Negative integers malfunction! : STOP
ON ERROR GOTO 250' ... and resume at 200
J = M-01 : IF J>=M THEN 200

PRINT P~" digits of Twos' complement"; : GOTO 210
PRINT P;" dioits of either Sign-Magnitude or Ones' cornpiernent";
PRINT II BINARY (B = 2)." : STOP

RESUME 120 IBM F'C BASIC requires these
RESUME 140 RESUME statements to prevent

RESUME 160 subsequent "ERRORS" from
RESUME 200' ... terminating the proqram.

03 = 02+01 ' ... Test the hypothesis that the ~achine i~ TERNARY
P = 02 : J = 03 + 0 1 ' . . . j = (3-···· p - 1) / 2
ON ERROR GOTO 490' ... and resume at 350

P = P+O ·J : I = J : ,J = I+ I+ I+ 1
IF ,J>I THEI\I 330' ... else nm"' i = (3·····(F" .. -1)--1)/2 >= j = 3i+1.

ON ERROR GOTO 500' ... and resum~ at 370
J = I +01 : IF J > I THEN 41 0 ' .. n else now i = 1 1 1 ... 1 11 is ma:.-: 1. ma J .
ON ERROR GOTO 240' ~-· and resume at 160
M = -I ' ... This ouqht not to overflow~ but ...

IF M>=O THEN 160 .- ... else now m = 222 ... 222 or TTT ... TTT < 0.
PfUNT P= 11 dioits of Threes' complement o,,.. Balanced";: GOTO 480

ON ERROR GOTO 510' ... and resume at 600 •
J = I+I ~ IF J<=I THEN 600' ... else j = 222.u.222 > 0.
ON ERROR GOTO 240' ... and resume at 160
M = -J: IF M>= 0 THEN 160' ... else now m = -222 ... 222 < 0.
ON ERROR GOTO 510' ... and resume at 600
J = J+t : IF J>I THEN 600' ... else now 222 ... 222 is maximal.

pi;· INT P; " di qi ts and a si on for Si on-Magni t.Ltde 11 =
PF: I NT II TERf~ARY (B = 3) ·- . 11

: STOF· ... •
RESUME 350

RESUME 370
F,ESUME 600

N = 03*03: T = N+1 ' ... Check that the machine really is DECIMAL
F' = Cl 1 : J = 0 3 + 0 1 ' . . • j = 5 * 1 o ·····p - 1
ON ERROR GOTO 810' •a• and resume at 650

F' = P+ 1 : I = J : ,J = T* I +N
IF J>I THEN 630' ·"· else now i = 499 ... 999 ?= j = 10*i+9

ON ERROR GOTO 820' ... and resume at 670
K = !+01 : IF K>I THEN 700 ' ... else now i is ma~{ i ma!.
ON ERROR GOTO 240' ... and resume at 160
M = -I-01 : IF M>=O THEN 160' ... else now m = -500.uuOOO < 0.

PRINT P; 11 dioits of Tens' complement"; : GOTO 770
ON ERROR GOTO 800 • ■■ a and stop •
K = I+K: IF K<=I THEN 800' .". else k = 999 ... 999 > 499~".999.
ON ERROR GOTO 830' ... and resume at 740
J = K+01 : IF J>K THEN 800' ... else k is maximal.
ON ERROR GOTO 240' ... and resume at 160
M = -K: IF M>=O THEN 160

PRINT P=" digits and a sign for Sign-Ma~nitude";
F'RII\IT 11

• DECIMAL (B = 1 (>} • " : STOF'
PR INT "This oroqram. can't tel 1 what happens tc, i nt.egers > "~ I STC1F·

RESUM~ 65u
RESUME 670

RESUME 740 END

