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1 Conventional Floating-Point Formats 

Let's remind ourselves what we have to deal with. We have to deal with radix (3, which has 
to be drawn from a set of numbers 

Radix (3 E {2, 4, 8, 10, 16} 

to correspond to machines actually in existence (/3 = 4 may be an exception, but we might 
just include it in although there are no machines that I know of today that use radix 4). I 
also talked about digits dj 

Digits dj E {0,1,2, ... ,p-1,p} where p = (3-1. 

Now, conventional :floating-point representation has to pass somehow three fields: 

Sign ± 
Significand, 
Mantissa, or (d1d2 • • -d,,_1d,,], p "significant" digits of Precision 
Coefficient 
Exponent e, stored as e+ Bias, an integer. 

The sign field normally ta.kes up one bit in binary but there are other representations 
that may take up a whole character. The second field has a number of names: you could 
call it Coefficient, or Mantissa ("Mantissa" is a very bad word: originally it represented the 
fraction part of a logarithm}, or Significand. It seems that "Significand" is widely used now. 
Finally the Ezponent field is simply an integer, often stored with bias (will be explained in 
a moment). Once you got these three fields, the interpreted value is as follows. 
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±[~1d2 • • ·d,,_1d,,J x t3ep 
CDC Cyber 17x 

Burroughs B65x x 
lnteaer Coefficient 

CDC Cyber 18x 

±[ .d1 d2 • • • d,-1 d,,] x t3eo 
IBM 370 

DEC VAX 
"C" Language 

"Scientific" notation 
±(d1 .d2 • • • d,-t d,,] x t3e1 Calculators 

IEEE 754/854 
... others ... . .. 

All values are the same if exponents are correlated: 

eo = e,, + p = e1 + 1. 

Thus if you like to put the ,6-point in another place, you ca.n accommodate that simply by 
changing the bias. What it really means is that the position in which you put the point has 
very little to do with the hardware (hardware is going to use integer arithmetic anyway). 
The trouble is that the representation is non-unique: 

0.0123 = 0.123 X 10-1 = 1.23 X 10-2 

For hardware reasons it is a good idea to have a unique representation. So that is the 
purpose of normalization. A representation of a number will be called normalized if its first 
digit d1 ;e 0. 

d1 ¢ 0 for normalized nonzero number 

An unnormalized nonzero number has d1 = O but e >minimum. It is just another way to 
represent the value of a normalized number. Now whether zero is a normalized number or 
not is uninteresting and I won't argue a.bout that, except that there are some unnormalized 
zeros: 

Normalized zero : d1 = ... = dp = 0, e = standard value, usually minimum. 
Unnormalized zero : d1 = ... = d,, = 0, e ;e standard value. 

There a.re reasons for unnormalized zeros on some machines. They can be used for converting 
a number to an integer represented in fioating-point ( cf. Fortran's AINT() ). Finally there 
are something call subnormal: 

Subnor.mal(denormalized)number: d1 = 0, e = minimum value. 

Note that because of the minimum exponent, subnormal numbers are unique representations 
for their numerical values, so they are not unnormalized numbers. 

Ezamples: on a calculator with format ±d.ddd x 10:t:ee 

0.0123 x 10° is unnormalized 
1.230 x 10-2 is normalized 
0.012 x 10-99 is subnormal 
0.000 x 10° is normal zero by convention. 
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Note that the zero exponent in the normal zero is for display purposes. Internally it could 
be 0.000 x 10-99 • A more humane way is simply to display a single digit 0. That way you 

• know you really got a zero ra~her than something that's hidden in the right hand side of 
the display window. • 

2 Why are most floating-point formats intended to be nor
malized? 

The reason for the normalization is to make the hardware simpler to design, especially for 
addition and subtraction. 

Example: Add/Subtract 3.0 + 0.012 => 3.01 to 3 significant decimals. 

3.00 X 10° 0.03 X 102 0.03 X 102 

+ 1.20 X 10-2 + 1.20 X 10-2 + 1.20 X 10-2 

3.00 X 10° 0.03 X 102 0.03 X 102 

0.012 X 10° 0.00012 X 102 0.00012 X 102 

3.0ld'x 10° O.O~x 102 0.03012 X 102 

i l /. normalization 

3.01 X 10° 0.03 X 102 3.0it"x 10° 
l 

As usual just 3. !! -3.01 
in Unnormalfaed on Bum>ughs B65 x x 

arithmetic using double-width 
IBM 370 ... accumulator. (d ALGOL) 

In the :first column, when adding 0.012 and 3.0, the hardware would first discover that the 
operands' exponents are different, so it would initially do a pre-alignment. The la.st digit 
"2" has to go ~way. An interesting question is when should it go, and machines differ. Some 
machines will throw away the digit "2" before the addition, which doesn't do too much 
damage to the sum here, but you will see later that it can do a great deal of damage to 
subtraction. The point is, registers don't normally hold enough digits to keep everything 
that has been shifted right. 

Now, the second column demonstrates that if an unnormal representation of 3.00 is 
allowed, the hardware will need four extra positions to hold all the digits. That seems to 
require a lot of extra digits. Most machines have floating-point add built in such a way 
that they only carry one or two extra digits. If that is the case the sum would end up with 
an incorrect result. That is why people say that unnormalized arithmetic is less accurate. 
It is not the unnormalized number that is less accurate; rather the hardware is designed in 
such a way that if you do arithmetic with unnQrmalized operands, you may get inaccurate 
results. That could be intentional because the ·shifting process provide a way to take the 
integer part of a number. Recall (see earlier notes for ceil and floor) that to get the integer 
pa.rt of a number, you add it to~= !31>-l and then subtract ~ from the sum. The fraction 
part of z will then be rounded off . 

... 
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- p digit,• 

.-\ 1100 • • • • • • ~ • • • • • • 0001. fraction gets shifted off 

+ I :z: aWo"2Y 
11 oo . • . . • • * * * * * •I. 
1100 ............. 0001. 

F * * • • • * ••l. (integer part of:) 

That is a pa.in in the neck to get the integer part this way. There are people who say as long 
as you allow unnormalized zero in hardware, the same thing can be done faster by simply 
adding x to an aptly chosen unnormalized zero. The picture is the same as above except 
that the leading 1 of .-\ now is 0, and you only do the addition once. However, one should be 
careful about the exponent of the unnormalized zero (not necessarily p). For the hardware 
may carry extra digits (i.e., the fraction part of :r may not be thrown away entirely if there 
are only p zeros ahead of the point) and you have to compensate by putting more digits in 
the unnormalized zero. I suppose it would make more sense to have an explicit instruction 
that converts to integer. That is what the IEEE Standard specified. 

Finally, the third column on the previous page is what the Burroughs B65x x machine 
does. Burroughs originally designed its B5000 machine to suit the language ALGOL. One of 
the characteristic of ALGOL is that integer operations may result in :floating-point numbers. 
This avoids the conundrum in Fortran which would return O when computing 1/3 because 
Fortran forces the result to be an integer. So ALGOL has both integer and floating-point 
"REAL" numbers in the sense that you cannot tell them apart. This was interpreted· 
unnecessarily by the hardware people to mean that integers should look like floating-point 
numbers, and that's what they did. They encoded the :floating-point numbers in such a way 
that the floating-point encoding for at least a.n unnormalized representation of an integral 
value would coincide bitwise with the encoding for an integer. Thus an unnormalized 
number could· be as legitimate as others and in principle, any arithmetic you do with an 
unnormalized number should be the same as with its normalized counterpart. Burroughs 
accomplished that by keeping all the digits that other folks might throw away. In fa.ct, the 
arithmetic was done in a double-width register (plus a digit), and then the result would be 
shifted to the left until either the left hand register filled or the bottom register is cleared. 
That explains why on Burroughs machines it is perfectly reasonable to have unnormalized 
numbers. 

There have been various policies toward unnormalized operands. To summarize, 

• IBM 370 Prenormalizes operands before x, +; not before± (for the sake of AINT(x)). 

• DEC VAX has no unnormalized operands 

• IEEE 754/854 allows no unnormalized operands, but includes subnormal operands for 
gra.d ual underflow. 

Remark 1. Prenormalization before x and+ is built in IBM 370 hardware. It is done that 
way to avoid unnecessary loss of accuracy: otherwise you would end up with a zero product 
if half of the leading bits in both operands were zeros. Or, if you decide to normalize the 
result, then you have to figure out in advance the amount of post-shifting, and you may 
end up with something that is harder to build. (But CYDOME's CYDRA5 does work this 
way.) 

] 

-I 
_I 

...I 

.1 



f 

1,_J 

-.i 
_.j 

Lecture 5, May 17, 1988 (revision date June 24, 1988) 5 

Remark 2. Another reason for prenormalization is cheaper hardware. It is possible to do 
the multiplication with a. register- tha.t is just a. little bit wider than the leading word if all 
you want is the lea.ding word· of the product. All you need a.re normalized numbers: for 
the product of two normalized numbers (length p) must ha.ve length either 2p or 2p - 1; 
consequently you wouldn't have to carry more tha.n one extra digit (called the guard digit) 
in order to know tha.t there might be a. post-shift. • 

I• ... 
normalized operands 

X 

LL leading two digits .cannot both be zero 

Thus it's enough to use a. register with some extra bits to hold the sum of the partial 
products: 

X 

____ _,I partial product 

i sum of partial products 

ti 

3 Exponent Bias and Range Asymmetry 

Why is there a Bia.s for the exponent? Part of the reason is to compensate for where you 
ma.y have put the "point" in the documentation. However, the bias does turn up when 
you a.sk how balanced or symmetrical is the range of numbers. If you multiply the biggest 
number with the smallest normal number, then you get 

(Max Normal)x(Min Normal nonzero)~ (fj X pemos)(l X pemin) = pi+emos+emin 

If this product is too far from 1, the range is regarded a.s too a.symmetrical, and ca.uses 
troubles with expressions like ~ 

q := (small integer)/x ... ca.n over/ underflow too easily ? 

In other words, the reciprocal of the smallest number may be much bigger than the biggest 
number (or the- other wa.y a.round). In that case over/underflow may come to you as a. 
surprise. Here is another problem: 

q:=x•y/z ... what order avoids spurious over/underflow 7 

We'll come ha.ck to the above problem later. Now let's see how to choose a bias. Recall if 

X : ~I e + Bias Ud1f12 ........ dp-1dpl 
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then the interpreted value is 

X = ±(d1 ·.d2:. • dp-1 dp] X pe, emin S e ~ emaz• 

Normally the exponent field e + Bias would be stored in a :field I bits wide; thus 

0 ~ e + Bias S 21 ..:. 1. 

It follows that 
emin = -Bias, emciz = 21 - 1 - Bias. 

6 

(1) 

Therefore 1 + emcu: + emin = 21 - 2 • Bias. Tha.t explain how the choice of Bias can influence 
the symmetry of the exponent range. If you want not to ha.ve too asymmetrical a. range, 
you should choose Bias near 21- 1. If overflow is more to be a.voided than underflow ( e.g. if 
underflow is gradual), choose Bias= 21- 1 - 1. (DEC VAX1: Bias = 21- 1 + 1 predisposes 
to overflow!) 

Range Asymmetry is Severe on Some Machines: 

• CDC Cyber 17x: 

Max. magnitude ::::::: 21022+48 

Min. normal magnitude = 2-1022+47 

Hence 294 /Max. underflows ! 

• Similar trouble on Burroughs B65x x. 

IEEE 7 54, single precision: 

Max. 
Min. Normal 

Min. Subnormal 

~ 2 12s 

= 2-126 

= 2-149 

(Max)•(Min. Normal) ~ 4 
(Max)•(Min. Subnormal) ~ 2-21 

Hence 2-20 /(Min. Subnormal) overflows. 

Remark. Subnormal numbers a.re intended to cope with certain situations in addition and 
subtraction (see Lecture 7b, section 4), not multiplication and division. Dividing a. number 
by a subnormal number and getting an overflow simply tells the user the bad news of the 
earlier loss of significant digits. On ma.chines that flush subnormal numbers to zero you 
will encounter division by zero anyway. So we choose our bias by looking at (Ma.x}•(Min. 
Normal) rather than (Max)-(Min. Subnormal). 

1VAX's ma.nual said Bio.a = 21- 1 , but here we interpreted ,:,s value as in (1), whereas VAX puts the 
"point" before d1. ,. 
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Exercise: Exhibit a program that starts from any three given positive numbers x, y, z and 
computes p := x • y • z in som~ order that avoids undeserved over/underflow. Do likewise 
for q := x • y/z. • 

The first one is easy. Here is how you do i~: sort x, y, z so that, say, . . 
X 2! 1/ ~ Z > 0, 

and then compute 
p := ( X • Z) • y. 

That_ is, you multiply two extreme numbers first. You should be able to verify, if p is 
computed that way, over /underflow occurs only if it has to. The second one is not that 
easy. We could sort x,y, a.nd 1/z except 1/z might over/underflow. 

I Can you find a way? I 

I will leave to you the indistinct possibility that you might be able to find a portable program 
that will work on all machines. This is a problem that does arise in "real life" from time to 
time; cf. program SVD2 x 2. 

4 Lexicographic Order 

The format we have chosen for floating-point numbers preserves "lexicographic order". That 
is the reason we chose a biased exponent rather that an exponent with an independent sign 
(like Burroughs). Consider the string X 

String X: 

l bita 

with its floating-point value 

x = ±[d1 • d2 ... dp-tdp] X 13e, 0 5 e + Bias 5 21 - 1. 

Assume Xis Normalized (i.e., either d1 > 0 or (e +Bias)= (d1d2 .. . dp-tdp] = 0). Then 
the order of x's as floating-point values is the same as the order of X's as integers with the 
same sign-convention. This permits quick floating-point comparison without doing floating
point subtraction. Note that we must have the correct sign-convention in order to make the 
lexicographic ordering work. Let's examine three sign-conventions that come to mind: 

X (±1! e + Bias Ud1d2 ......... dp-1dJ 

-X EllWhat ... I! ... goes in here? ! 
1. Sign-magnitude, used by IBM, DEC, IEEE 754. Only the sign bit changes . 

2. l's complement, used by CDC Cyber 17x. The exponent and significand are l's
complemented as well as the sign. 

3. 2's complement, used by HP-3000, GE/Honeywell. The entire word is 2's-complemented . 

t J 
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Here are the crucial considerations: 

~ Sign-Magnitude = 1 's compl~ment has ±0, allows ±oo. 

• 2's complement has one unsigned 0, must have a negative value that either overflows 
when negated, or is an outlaw ( e.g. unsigned oo.). 

It turns out that Sign-Magnitude is best because it allows ±0. There are valuable uses 
for a signed zero in complex arithmetic, especially in conformal maps of slitted domains ( cf. 
Powell&lserles(ed.) (1987) "The state of the Art in Numerical Analysis" ch.7 Oxford U.P.). 

People may get uncomfortable a.bout signed zero because it is very difficult to understand 
how to distinguish a. +o and a -0. In fa.ct on a. well designed ma.chine they are equal: 

+o = -o. 

But, if f(x) is discontinuous at x = 0, then it may distinguish /( +0) from f (-0). Consider 
to which side of a. discontinuity the discontinuity itself should be attached: 

e.g. 

SIGNUM(x) 

SIGNUM(±0) = ±0 

Fortran SIGN(l.0,x) 

SIGN(l.0, ±0) = +1 

IEEE COPYSIGN(l.0,x) 

COPYSIGN(l.0, ±0) = ±1 

-l 
-l 
-1 

X 

"NEITHER" 

X 

"EITHER" 

X 

"BOTH" 

The discontinuity of SIGNUM function is attached to neither of the continuous pieces. The 
Fortran SIGN function attaches the discontinuity to one of its two continuous components. 
IEEE COPYSIGN function attaches the discontinuity at both sides, ma.king the graph of 
the function two closed components. 

So the ambiguity of signed zero has to be resolved only when the function is actually 
discontinuous a.t zero; otherwise you can't care: The reciprocal function is an example: if 
you take the reciprocal of zero, its sign shows up 

1.0 
±0.0 = ±oo 

1 
- =:: z even for x = ±oo. 
1/x 

It's true that m~st poeple don't care a.bout these uses, and therefore it is vitally im
portant that signed zeros be implemented in such a way that for every operation that is 
continuous at zero, they cannot be told a.part. That is true in the IEEE Standards: +o = -0 
unless you have a. discontinuous operation in mind. The signed zero propagates properly 
in the IEEE Standards, e.g., 3.0 x (-0.0) = -0.0 (on an IBM 370, 3.0 x (-0.0) = +0.0). 
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There are some conundrums about signed zero. For example, thanks to minus zero, we have 
to ask compiler writers not to replace a•- b by -(b - a) because they have opposite signs 
when they a.re zero. It OK to do (-b) + a though .. So minus zero does pose some technical 
problems in the handling of details. But those problems in all situations that I know of 
do not introduce any performance disadvantage. That's why IEEE Standards have minus 
zero: it is useful, and doesn't cost anything except to the implementors. 

5 Precision = Resolution (not Accuracy) 

Precision is a measure of the resolving power of the arithmetic; accuracy is something that 
tells !tow right or wrong the result is. If I write 1r = 3.1415902348762837 4 then the precision 
is the number of digits (18) I wrote but the accuracy is only six figures. I ca.n litter my 
inaccurate approximation of ,r to a very high precision. The distinction is necessary because 
in general people believe that if they carry more precision they will g~t more accuracy. That 
is usually true but beautiful examples (which we will come to) show that carrying more 
precision doesn't improve accuracy in every instance. 

The Relative Precision to which you can specify a number x is the following quotient: 

ulp(x) 
lxl • 

Here ulp stands for unit in the last place and if x = ±[d1 -d2 ... d,,_1d,,] x 13e, then ulp(x) = 
[O • 0 ... 01] X 13e. In general, if 13e < x < 13e+1 then ulp(x) = 13e+1-p. But there is ambiguity: 

ulp(/3e) = 13e+1-p or 13e-p 

depending on whether you look left or right. 

_Pe:_ I 
I I I I I I I I I I 

13e 
ulp( X) = 13e-p ulp( X) = 13e+1-p 

Every time you cross a power of the radix the unit in the last place jumps by a factor 
of /3. This is called wobbling precision. The larger the radix, the worse the wobble. 

a._p < ulp(x) < 131 _'P 

7J - lxl -
"Wobble" 

by factor /3 

6 Error in Floating-point Operations 

Let ® E {+,-, x,/}. Let A,B,C be the corresponding names of variables whose values 
are a, b, c. I'll use thls notation is to distinguish between the assignment statement in a 
program and the corresponding mathematically exact algebraic relation. 

Program statement "A B®C" 
produces value a = b® c Rounded 
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The discrepancy between the exact· res.ult and the rounded one is easy to figure .out if 
rounding is done in the best possible way: you will lose only half of the unit in the last 
pla:ce. 

bi) C = ± :z:.:z::z:x ...... x:u: X%X% ••• 

a = ±x.x:z:x ...... :rxx 

- 'P -

correct rounding ~ 

There are two special cases: (i) a= b© c ifit is representable exactly, and (ii) a= something 
else if over /underflow ·occurs. So values that fall between two dotted lines will be rounded 
to the center number (heavily marked): 

i I i I i I i I i I i I i I i I i I i I i I 

The only ambiguity now is what if b ® c falls midway between two adjacent representable 
values (i.e., the value lies on the dotted line)? This ambiguity gets resolved in a variety 
of ways, of which only two deserve close attention. These two roundings are both called 
correct rounding because their error doesn't exceed half of an ulp. But one is slightly more 
correct than the other. First let's look at DEC VAX. DEC VAX rounds midway case away 
from zero, i.e., up in magnitude: 

0 Vax's rounding 

Here we use a dotted left bracket to indicate that the value at the dotted line will be rounded 
to the right. IEEE 754/854 rounds midway cases to nearest even: 

J : : r 
- - - - - IEEE rounding 

Here the representable number inside each pair of dotted brackets has its least significant 
bit equal to zero. We could have rounded to nearest odd but that would be bad news. 
Rounding to nearest odd would have a propensity to convert nearly integers to definitely 
not integers. Rounding to nearest even is the qther way around; it is predisposed towards 
small integers and other simple values. 

e.g. to 4 significant decimals 

IEEE854 like DEC VAX 
{HP-71B) (HP-15C) 

3.141s '-+ 3.142 3.142 
3.140s '-+ 3.140 3.141 
3.139s '-+ 3.140 3.140 
3.138s '--f, 3.138 3.149 
3.137s '-+ 3.138 3.148 
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A fair question is why do we prefer correct rounding? The reason has been described in 
terms of the law of averages whic~ the bias in rounding is smaller if you do round correctly. 
Here is a brief argument (by the way this is not the best argument): imagine that the values 
you round vary a lot and their digits behave randomly. For correct rounding, it looks as if 
as many numbers are being rounded up as are being rounded down. Roughly speakly the 

distribution of rounding error tll look sluiething liie Con-ec:tly rwnded arit1unc,ic 

-1 0 +1 l ulps 

Here··I a.m plotting the magnitude of rounding error in ulps. What this tells us is that we 
can calculate means and standard deviations. If all the rounding errors contribute their 
effect independently, then the means look like 0. That's a. lot better than chopping (IBM 
370, Cray, Cyber 170). The error for chopped arithmetic is biased (probabilistically). On 
the average it is -½ulp: • 

Chopped arithmetic 

----_---1---0---------• ulps 

This bias shows up in many computation. For many yea.rs people have decried IBM for this 
fault because you can do computations ( e.g. a long string of multiplies and adds) where you 
see your numbers steadly and systematically drifting downwards as you keep on computing 
with them. 

The VAX's type of rounding seems to· have bias equal to O. But that's not quite true. 
Here is the reason. A typical add might not involve any pre-shifting. It is often found when 
you do a :floating-point add that the exponent of the operands are the same. The result 
may have a carry on the left, which means you have to shift one digit off: 

11 I I~ j-no error 
/>-----------..._rounded up 

can happen 

Consequently, all such rounding errors go up on a VAX. Another similar situation is a 
one-bit shifted subtract: 

111 
11 

ll I 1, j-no error 
/>----------..._again all rounding Cl"Tor goes up 

can happen 

So there is a spike near + 1 caused by the midwa.y round up. And the bias is a bit off zero. 
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I 1 _____ .... l ___ O..., ___ _.+_l ___ ulps 

Vax type rounding 

On the other hand, the IEEE rounds midway cases to nearest even, which means the 
rounding may go down as well as go up, depending on the least significant bit. So there are 
two spikes: one on -1 and one on + 1. And the bias would again very near zero. 

f' I 1 IEEE rounding 

----if .-.---•ulps 
-1 0 +l 

So that's the argument (not a very good one) for IEEE rounding in term of the law of 
averages. Unfortunately the law of averages is not something you should not depend on 
too much. Because when you get hurt by floating-point computation (which is rare), the 
pa.in is caused by the worst case, not the average. A much better argument comes about 
because certain computations are repetitive: 

loop: y = x+z 

(y,z unchanged inside the loop) 

X·= y-z 
goto loop 

This may occur in solving a large system of coupled equations, when some unknowns 
converge faster than the others. Now the question is what does the loop do to the value of 
x? A remarkable theorem says, if the value of x changes it will change once and never again, 
provided you use the IEEE rounding. If you round as the Vax does, you run the risk that 
any time you go around this cycle, the value of x may keep on drifting along one direction. 
That is the reason that we really want to round to nearest even; it prevents certain kinds 
of cyclical operations from drifting. This is a very general result and is often seen under 
the name of Harry Diamond's theorem 2. What the theorem says is roughly the following: 
if you compute the monotonic convex function y = f(x) and then its inverse x = J-1(y), 
r~peatedly, rounding off each time, then if you round the way IEEE Standard does, you 
could only make at most two changes in x. 

7 Range/Precision Tradeoff for Radices {3 = 2k 

There are machines with various radices of the form fj = 2k: 

2 Ha.rry Diamond didn't prove this theorem, but he proved something so nea.r that it's worth attaching 
his name to it. 
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Na.me /3 k • Who? 
Binary 2 1· . IEEE 754, DEC VAX, CDC, CRAY, ... 
Quaternary 4 2 ... no more ... 
Octal 8 3 Burroughs B65 xx 
Hexadecimal 16 4 IBM 370, Amdahl, ... 

The question is which radix is best? To answer this question, let's work out the wordsize, 
the range, and the precision of radix P = 21:. Consider the :floating-point word: 

Here for convenience the interpreted value has no "point" after d1: 

where /3 = 2k and 

0 ~ e + Bias S '}}-1 

0 s [d1d2 ... d,-1d,,] s /JP - 1 

Using the above notation, we have 

I Total wordsize: w = 1 +I+ p • k bits I 
Let p = /3 - 1 so (00 ... 00] ~ [d1d2 ... d,,_1d,,] S [pp ... pp]. Normally Xis normalized, i.e., 
d1 ~ 1 unless x = 0. Now the range over which X varies has 

Thus 

Ma.x.x 
Min. z > 0 

p2'-1-Bia.a X [pp ... pp] 
= po-Bia.a X [10 ... 00] 

p2'-1 X (PP - 1) 
= /3P-l 

~ 1321 = 2k-2
1

. 

Finally the worst-case precision is 

max (successor of x)- x = [100 ... 001]- [100 ... 000] = _1_ = 2k.(l-P). 

z>O Z (100 ... 000] /3P-l 

Thus 

I Worst-Case Precision: 2k•(l-p) I 

7 
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Now we ask what is the word, size of a binary format that has the same range and 
worst-case precision as /3 = 2k? The result is interesting: you end up with smaller wordsize 
if you use binary. Here is the anaiysis. Let's say we use l' exponent bits and p' significant 
bits for binary. To achieve the same range and precision, we must have· 

Thus I'= l+log2 k and p' = l+k•(p-1), a.nd the wordsize is w' = l+l+log2 k+k•(p-1) = 
w - (k - log2k - 1). Hence w - w' = k - log2k - I ~ 0 for all k ~ I. The following table 
shows how many digits get lost fork= 1, 2, 3,4: 

Name k lost bits ( k - log2k - 1) 
Binary 1 0 (-1 for Hidden bit!) 
Quaternary 2 0 
Octal 3 (2 - log23)::::: 0.415 
Hexadecimal 4 1 

Note that it seems binary and quaternary are the same. However in binary with normalized 
numbers the leading bit is 1 and you don't have to store it. You can't do that for other 
radices. So with a hidden bit, 

Binary beats Quaternary by 1 bit 
Octal by 1.415 bits 
Hex. by 2 bi ts 

That is an argument that ha.s been used to prove that binary is best; the argument is not 
that one can save a few bits using binary radix, but that for a given memory word size it has 
greater precision than other radices. not much of an argument since memory is cheap. But 
a stronger argument is WOBBLING PRECISION (see section 5). In order to understand 
the importance of wobbling precision, you should read my note ''Roundoff in Polynomial 
Evaluation, 18 October 1986". On the other hand the advantage of decimal is that people 
can understand it. So to conclude: use decimal when your machines will produce numbers 
that you expect people to read (people like tax preparers and collectors). Because they 
think decimal, run your machine in decimal so you do just what they naively imagine you 
do. Otherwise, use binary (for engineers, scientists, etc). 
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