
• Computer System Support for Scientific and Engineering
Computation

Lecture 6a - May 19, 1988 {notes revised June 20, 1988)

Copyright ©1988 by W. Kahan and C. Wilkie
All rights reserved.

1 Floating Point Problems

Two problems follow that illustrate the kinds of puzzles that afflict :floating point users. The
first puzzle is the difference between the results obtained from a simple Fortran program run
on two models of the DEC VAX family; we still don't know why the results a.re different.
The second puzzle is a challenge to Fortran and Pascal (but perhaps not C) programmers.

1.1 Unexpected Results

Consider the program shown in Figure 6a-1 and the results obtained when executed on two
machines running the same version of the operating system.

It is tempting to try various hypotheses which might explain the different results. For
example, suppose the constant 0.01 was being computed in single precision. Similarly,
suppose that the compiler neglected the READ*8 declaration, or failed to sign extend the
constant to double precision. Those hypotheses must be discarded a.s possibilities, since
they are inconsistent with the results.

Another possibility is that the compilers might not be genera.ting the same code because
of differences in the architectures. This explanation is quite plausible since, on the 8650,
for example, some of the instructions are not implemented in hardware.

1.2 Understanding underflow and overflow

The following problem wa.s assigned in the previous lecture. The formal solution is in
Appendix A, and a neater way to compute both p and q will be discussed in the· next
lecture.
Exercise: Exhibit a. program that starts from any three given positive numbers z, y, z and
computes p := z • y • z in some order that a.voids undeserved over/underflow. Do likewise
for q := :c • y/z.
To compute p: Sort z,y,z so that, say,

a.nd then compute

X 2: y 2: Z > 0,

z=(z•y)•z.

1

I
l

I
J
' 5
i

Lecture 6a - May 19, 1988 (notes revised June 20, 1988)

Welcome to Computer Center VAX 8650 VAX/VMS 4.7

$ type precis.for
REAL•B X,Y

X=O.
Ya0.01
DO 10 1=1,30000
X=X+Y

10 CONTINUE
WRITE(1,20)X

20 FORMAT(1X,'X= ',D30.20)
END

$ run precis
$ type for0001.dat .
X= 0.30000000000000888178D+03

Welcome to Computer Center VAX 11/780 VAX/VMS 4.7

$ run precis
$ type for001.dat
X= 0.29999963378907138178D+03

2
)

!9

·3
~'

l
l
~t
(:;

]
Ir-

1 •
]
• J
s

J
!!!

}
~ ..

)
~-·

!"'

r:

~l
G

-- ·1 ;~
fl .

!J
,~;;

~ J ,__~ ...
. .
J
~11
G

Lecture 6a - May 19, 1988 (notes revised June 20, 1988) 3

To compute q: We could sort :c, y, 1/ z, except that 1/z might give overflow or underflow.
Discussion: The solution to this ·exercise illustrates a problem which is not widely recog
nized. The problem is tha.t given. a relatively short program, the proof can be quite long.
In fa.ct, we might ask "When the proof is longer than the program, why trust the proof?"

• The program for p could be implemented in a single line, except on machines with
gradual underflow. The proof is provided, and is lengthy compared to the size of the
program. As for the programs for q, the first program is quite short, and works on
machines which allow branching on overflow and underflow. The second program, however,
must handle several cases. The proof of that program is quite long and tedious, even though
what we are computing is trivial.

There a.re many important math libraries, such as IMSL, NAG, and EISPACK, which
have been developed at great cost, much of which has been borne by the public. From
the ~examples above, one can see that the expense of proving the validity of this code is
enormous. The lesson here might simply be "Have nothing to do with :floating point". The
return on investment, at least from a management perspective, is quite small. For others,
however, floating-point correctness is becoming more and m~re important. For, as other
styles of arithmetic a.re introduced, we must try to avoid invalidating the current proofs
of correctness. This concern is becoming -increasingly important for operating systems
designers, who must provide concurrency, multiple tasks, parallel computations, etc. Even
compiler writers, who for the most ·part take the attitude that the compiler defines the
language, must be more aware of floating point issues.

2 The Classical Model of Roundoff

The previous chapter in trod ucted the notion of rounding and discussed several schemes used
in rounding midway cases. For those cases·, it was shown that the relative error introduced
is at most one-half of a unit in the last place (ulp). Specifically, ulp(:c) = t3e+1-p when
pe < X < pe+1 . Thus, given the relative precision of z, 14mz)' we can say that a certain
error will be no bigger than l/2ulp(:c), where ulp is bounded by the inequality

a-p < 1 ulp(:c) < al-p.
,., - lxl - ,.,

The classical model of roundoff was first clearly explained by J .H. Wilkinson. The idea
is that if you round an arbitrary real number, X, to the nearest :floating point number, x,
with p significant digits of radix /j, then

1
l:c - XIS 2ulp(X),

ignoring underflow and overflow for now. Thus, the rounded value xis related to the true
value, X; :c = X(l±(), where the relative error { is {Si:= {J1-P/2. For example, consider
rounding 1r to an approximation pi of 4 significant digits (p = 4, f3 = 10) :

1r = 3.14159265 ...
pi = 3.142

= 1r + 0.00040735 ...

= 1r • (1 + 0.00040735 •••)
7r

pi = 1r • {1 + 0.0001297 ...)

f

Lecture 6a - May 19, 1988 (notes revised June 20, 1988) 4

Using the model,

we can conclude that

101-4 e = 1.297 X 10-4 < E = -
2

- = 5 X 10-4 •

This model ca.n be applied more widely than to ~orrectly rounded arithmetic. Ii you
perform any numeric operation, the results will have to be rounded. Thus, the model can
be stated a.s:

Program statement: X = Y 0 Z

•• Actually computed: x = (y 0 z)rounded correctly top significant digits

= (y 0 z) • (1 + {) where l{I ~ 1/2/31-P

This model can often be applied to arithmetic that is not correctly rounded by increasing
e. For example, the IBM 370, with P = 16, and p = 6, 14, or 28, depending on whether you
are using single, double, or extended precision, uses

X = (y 0 z) • (1- {).

Most of the operations - division, subtraction a.nd multiplication - chop the result; and the
relative error,{, is provably less than one ulp(x). On the IBM, as well as any others that
carry a "guard digit" for subtraction, the usual model is adequate. Thus, the relative error
for subtraction can be expressed as -{3-P < e < pt-p_

A slightly different model works for machines that lack a guard digit for subtraction:

Program statement : X = Y - Z

Actually computed: x = y • (1 + () - z • (1 + t;)

wherel(I < {31-P, jt;j < p1-P, (t; = 0

2.1 What good is a guard digit?

A guard digit enables you to calculate an exact result for v - u. More specifically stated:

Theorem 1 If u and v are floating-point numbers in the same conventional format, and if

1
2 '5: u/v '5: 2,

then v - u is representable exactly in that format. (Unless it underflows, which IEEE
754/854 can't.).

To construct a proof, suppose

0 < u '5: v '5: 2u.

(The upper bound contra.ins the difference so that the difference in the exponents can't be
more than 1.) It follows that

0 '5 v - u $ u.

Without a guard digit, the value v - u, that could be represented exactly, will not be
computed exactly in some cases.

]

]

J
]

]

J
J
J

Lecture 6a - May 19, 1988 (notes revised June 20, 1988)

2.2 Assignment

Consider the triangle, with sides a, b, and c, where necessarily:

a+b ~c ~O

b+c ~a ~O

c+a ~b ~O

Or else the "triangle" is not really a triangle.

5

Its area can be calculated using a formula attributed to Heron of Alexandria (who is
thought to have lived sometime between 200BC and 200AD).

Area= Js • (s - a)• (s - b) • (s - c),

wheres= (a+ b + c)/2.
Unfortunately, that formula is numerically unstable when the triangle is needle shaped,

a.nd the area approaches zero.
Revise Heron's formula (rearrange the order of operations) to give a result correct to

within a few ulp's (presuming no underflow /overflow); you may assume a guard digit is
carried for subtraction. What happens if there's no guard digit?

•

Lecture 6a - May 19, 1988 (notes revised June 20, 1988) 6

Appendix A

EXERCISE:
. .

Exhibit a. program tha.t starts from a.ny three given floating-point numbers x, y a.nd z, and
computes p := x • y • z in some order tha.t _a.voids undeserved over/underflow. Do likewise
iorq:=x•y/z. •

SOLUTIONS: The proofs that these programs work correctly depend upon the properties
of three Environmental Constants a.ssocia.ted with the floating-point formats in which
x, y, z,pand q a.re represented, regardless of whether those constants appear in the programs.
The Overflow threshold n is the biggest finite number in that iorma.t; the Underflow

• threshold 'f/ is the smallest normalized positive number. The magnitudes of x, y and z a.re
presumed to lie between n and E'f/ inclusive where E'f/ is the smallest nonzero magnitude
and may be far tinier than 'f/ if underflow is gradual; on machines that underflow abruptly to
zero E'f/ = 'f/ except for CDC Cyber 17x's. E'f/ = 21J for these Cybers to cope with "partially
underflowed" numbers between 1J and £'f/ that behave normally in add, subtract and compare
but behave like zero in multiply and divide. Little is presumed about the product 'f/n, which
lies very far from 1 on some machines.

An obvious program to compute p and q would first obtain their magnitudes using loga
rithms; I P I= exp(In I z I + 1n I y I + 1n I z I) and I q I= exp(In I x I + ln I y I - ln I z I).
But these formulas lose accuracy badly when the da.ta. a.re very big or very sma.11; the loss is
ca.used by rounding each logarithm to working precision, and can be observed by comparing
the computed values of exp(ln I x I) and I x I when x lies near O or 1J· And computing
logarithms and exponentials wastes time. Our programs waste neither accuracy nor time.

Both programs start by sorting I x I, I y I and I z I so that I x l:::;I y 1:::;1 z I and continue
thus:

Program for p :
Compute x • z first and then p := (x • z) • y, except on a machine with gradual underflow;
on such a machine, if (x • z) underflows, recompute p := (z • y) • x.

Proof that pis correct.
If x • z overflowed, then 1 <Ix 1:::;1 y I~ n <Ix• z l<I (x • z) • y I sop deserves to overflow
too (except perhaps on a CRAY, which can overflow in certain cases when a product lies
between n/2 and n; but that is too perverse to consider here). Similarly if x • z underflowed
on a machine that underflows abruptly to zero, then

so p must underflow too. On a machine that underflows gradually, conformity with IEEE
standards 754/854 requires also the ability to detect underflow, and this should be exploited
if any of the data can be subnormal (i.e., between E'f/ and 'f/ in magnitude). Then x • z
underflows only when 1/t ~I z l~I y l~I x I~ E1J and 'f/ >Ix· z I; since n > 1/e2 on those
machines, n > z • Y so z • Y cannot overflow, and ifit underflows too, then either I z I> 1 and
then I x•y•z l=I (x•z)(z•y)/z I< 'f/2 / I z I< 'f/, or else I z I~ 1 and then I :t•y•z l<I x If/:::; 77,
and p deserves to underflow either way.

·1

1
J

l
J
J
J
. l

··~ r
r
,-

t

/':..
I ,

... . .

Lecture 6& - May 19, 1988 (notes revised June 20, 1988) 7

Programs for q :
If we could treat q as a produc.t z:" • y • (1/ z), we could compute it safely using the program
for"p; but the risk that 1/z may over/underflow precludes that option.· A safe and simple
program works on machines that allow programs to branch on over /underflow:

First swap x and y if necessary to establish Ix ISi y I;
next compute p := x • y; subsequently

if (p overflowed and I z I> 1) then q := (y/z) • x
else if (p underflowed and I z I< 1) then q := (((x/e)/z) • y) • E

else q := p/z. (For Cybers use E = 1 here, not 2.)

The validity·of this program is easy to establish provided we may presume that ✓(TJ)/t2 <
,,n < ~' as appears to be true for all machines I know. But the ability to test for
over/underflow and continue is not so common; what if over/underflow is silent? In the
absence of a (portable) way to branch on over/underflow, we must produce a spaghetti-like
code with branches that preclude spurious over/underflows. Such a program follows.

Two constants a.re needed. One is A, the smallest power of the machine's radix no smaller
than max{l, l/(e77n)}. The other is µ, the biggest power of the radix not exceeding
min{l, l/(77n)}. Multiplication by A or µ is exact, so it cannot cause underflow on a
machine that conforms to IEEE 754/854.

First sort I _x I, I y I and I z I, keeping track of z. This reduces the situation to one of three
cases, depending upon whether I z I is minimal, maximal, or neither:

In case I z I is > minima.I, say I z ISi x ISi Y I, test I y I;
if I y I> 1 then q := (x / z) • y
else q := (xi(Az)) • (Ay).

In case I z I is maximal, say I z ISi Y ISi x I, test Ix I;
if Ix J< 1 then q := (y/z) • x
else q := (y/(µz)) • (µx).

In case I z I is neither, say I x ISi z ISi y I, test both;
if Ix I> 1 then q := (y/ z) • x
else if I y I< 1 then q := (x/z) • y

else q := (x • y)/z.

The proof that this program is correct is a tedious exercise in elementary inequalitie§, and
is left to the reader. •

..
' I -f

Sae. - J. fl• f-V,"/i'41So,t . (l'loi) ,, ~014t..J,.;.., Errors ~

Af J td,r,,.; r !'r.#1 rs ... ,, 'F're...-,.,,;., - l4o fl IHM s~

HP-ISC At:L~J +I"&;.,. ~s Ha.t.dko£ (_ (91'2.

Ir ew.. ar6:-lreu/ r-eql K(). X ,S· ro-ele d ~

+/. e. ~ 4'Q. rt1 s f ,=-1 o o -t, ~ Pl, t :, -I- • "~ 6, t- ,c

-1-/,,a., J ~ "? s~. ei.<.j Ji; o-l ,,.~ 4 f ,
1~- Xf ~ i ➔ (X) ~-,

ia_,. ~L,(X)/\"X I .r;; f '
(:Z J'lfo'f'e '"Mte, f>os,s; 6, ft~ o~ OA,,.-/w .,,.t:l_p.,.. ~f.d 4- YUJW ..)

r ".,.,.ue_'' vd l.....cz.

~

0 o X· (1

'ft" :- '3. I~ I 5 q .2 b CS •
r-,t' :"" ., • 16'- :2.

= 1T-te>.oooff735 ...

p; =- (-,.,CA.a ,r) • (1 + t) .. 000 f32 f ,. ;)

=){ .. (f + S)

/(JV

r
r
,--

-
~

~

" = j~. ..-o~J ~-~~ ,, ,'c, r '5~ - J.:;. i.~ rt> >

- (::,<S e) ·(J. + ~) "'~ / J / .: ::t f 1'

Ti,.,s,.4t ,:. -pP.u J/;

~~ /'Y),,....k).
"'""''-'- l,,ov&J.F &~.,,. 'b .

3?0 :, f ::/6,J r:: 6 O<r -f4 OT 2.~

(:J 8;) 2). (1 - ~ ') ; 0~ 5 <: ~ 4-P

C;.totG'!) ,"I' 0 1£ { + , " ' ";" ~
(tt - ~) • c 1 - ~) ' - r· ~ ~ 7 4' r ,_ p .

t µ.,, •. -1,,,Jo sJ'!-r,..,,-;I(;_ .,:_ '1./'7 ~ ~tr·-'·

A s~~t'or w-oJ_p.J "1>-1Jr/4s 4, m4c..J,&.r~~ Y-/~ kc/:.. q

CG<J!l~b J:)1'61-r f.e>.,,, Sue,-r-teAr7,,o"'.J !"

X := Y- 7-
-;,(- d-(f-+?_) - ?I-(t+-'S)

~ C.O..,,,t;, 7

J
=- 1 .. 00 0 .·-· {.ooo 1,00 O ~

Yf

' : - 0- 9 'f ~ ~ - o.c:rq q '1. - o.'ftt 9 9
\

fJ. 00f/ i O.oo 1 0-001
/ ~ "' -~ ·"' - .,

~ • 0 0 0 Y fO 1. 00 r:, 'I' fr:>
_, f • Of/0 ~ 10

ID

.... ' •

;>-~; ... 'I- n~,-..s .;_, ~ s~ -E..

Ca-rtve~-~a.J J~r~J, ~ ,·;-

~ & v../v ~ :z
!)

-;.)_ ~~ 1/ - U. I S f e /' f'P .J 4! llf.;j ~ //?

F><4(tj.y '" ~d- -,Gy,;r.~,·;I

-- L.-1 ___ _..I

E!:x. ~Crl.1/

f: J\l) (7(, y

Cou L D !3G

wit..L /.Jo,

V]

~:j u. 0
• T'- ---

•~I ~ Vt'1 Lu F

l<EPIJ. c 7~~(: ?:>

~~ <O~p~-r'~-1::>

~A 5€' ~ ..

/l

-
l -,

G..+/;, ~c_

b-1-c ~ ~

~ .. Cc ~ t>

TA,·~ -,4;,;-- J A ~ /-lero,-. a-P/'lle...r.Q.,,.drr.~ '?If ~ ... ~~

(200 e, c - :2.oc, ,,A 7:) ~) ,$ A/v//,1 i:~t c A/,,L y GIAf'S "Ahl c ..

f<~s'-''-'-< L01<-R.~c7 To t.vt7/-fl'A./ A FE -'...J

4 L PS ('fr,s,H11.~ l\.o ov-e~ / "-41.da.ir /-~ .,_.J)

b"11 Ly J .,c /-' ~l.(.A ~ "t) !) I G I-:- I$- CA /:' ~ I (:

,....
t

welcome to Cyanamids ARD Computer Center VAX 8650 VAX/VMS 4;7

$ type precis.for
REAL*S X,Y
X=O.
Y=0.01
DO 10 X-=l,30000
X=X+Y •

10 CONTINUE
WRITE(l,20)X

20 FORMAT(lX,'X= ',D30.20)
END

$ run precis
$ type for00l.dat
X= 0.30000000000000888178D+03

Welcome to eyanamids ARD computer Center VAX 11/780 VAX/VMS 4c7

$ run -precls •
$ type for00l.dat
X= 0.29999963378907138178D+03
$

ProdQuot May 1 a; 1988

PROBLEM for CS 179: by Prof. W. Kahan

Exhibit a program that starts from any three given floating-point
numbers x., y and z, and computes p : = >t • Y• z i r, sorne order that
avoids undeserved over/underflow. Do likewise for q := x•y/z .

SOLUTIONS1 The proofs that these programs work correctly depend
upon the properties of three Environmental Constants associated
with the floating-point formats in which x, y, z, p and q are
represented, regardless of whether those constants appear in the
programs. The Overflo~ threshold Q is the biggest finite
number in that format; the UnderfloN threshold ~ is the
smallest normalized positive number. The magnitudes of x, y and
z are presumed to lie between Q and E~ inclusive where e~ is
the smallest nonzero magnitude and may be far tinier than ~ if
underflow is gradual; on machines that underflow abruptly to zero
~~ = ~ except for CDC Cyber 17x's. E~ = 2~· for these Cybers
to cope with "partially i.mderflowed" numbers between lJ and Et,
that behave normally in add, subtract and compare but behave
like zero in multiply and divide. Little is presumed about the
product ~Q, which lies very far from 1 on some machines.

An obvious program to compute p and q would first obtain their
magnitudes using logarith,ns; lpl = e>:p (In lxl + ln IYI + ln lzl >
and lqf = exp(lntxl + lnlyl - lnfzl >. But these formulas lose
accuracy badly when the data are very big or very small; the loss
is caused by rounding each logarithm to working precision, and
can be observed by comparing the computed values of exp(ln fxl
and I>: I when it lies near Q or t, • And computing l ogari thrr,s
and exponentials wastes time. Our programs waste neither accuracy
nor time.

Both programs start by Sorting
thus:

Program for p:

fyl and fz I and continue

Assume now that sorted lxl { tyf f lzl Compute x•z first and
then p := <x•z>•v except on a machine with gradual underflow;
on such a machine if <x•z> underflows recompute p := <z•y>•x.

Proof that p is correct.
If >: • z over f 1 owed , th en t < I>: I ~- I y I s_ Q < I>: • z I < I < >: • z > • y I
so p deserves to overflow too (except perhaps on a CRAY, which
can overflow in certain cases when a product lies between Q/2 and
Q; but that is too perverse to consider here). Similarly if X•Z
underflowed on a machine that underflows abruptly to zero, then

1 > tzl -~ fyl 2: f>:I ~ >? > lx•zl > I <>:•z>•yl
so p must underflow too. On a machine that underflows gradually
conformity with IEEE standards 754/854 requires also the ability
to detect underflow. and this should be exploited if any of the
data can be subnormal (i.e . ., between E~ ar,d ~ in rnagni tude).
Then x•z underflows only when 1/E ~ lzl ~ lyf ~ lxl 1 Et, and
.,., > lx•zl since Q > 1/E 2 on those machines, Q > Z•Y so Z•Y

ProdQuot May 18, 1988

cannot overflow and if it underflows too then either fzf > 1 and
then l>:•y•zl = I (>:•z> (z•y)/zl < 'r/

2 / lzf < 'rJ , or else fzl f 1
and then IX•Y•ZI < lxl'rJ ~ 'rJ , and p deserves to underflow
either way.

Programs for q 1

If we could treat q as a product x • Y• (1 h:. > , we could cornput e
it safely using the program for p; but the risk that 1/z may
over/underflow precludes that option. A safe and simple program
works on machines that allow programs to branch on over/underflow:
First swap x and y if necessary to establish fxl ~ lyl ;

next compute p := X•Y; • subsequently
if < p overflowed and lzl > 1 > then
else if (p underflowed and lzl < 1)

q := (y/z)•X
then

q := (((x/E)/:z)ey)e:::

else q := p/z . (For Cybers use E = t here, not 2 .>
The validity of this program is easy to establish provided we may
presume that 1'('rJ > /s 2 <)?O < t/0 • as appears to be true fc,r al 1
machines I know. But the ability to test for over/underflow and
continue is not so common~ what if over/underflow is silent?
In the absence of a (portable) way to branch on over/underflow.
we must produce a spaghetti-like code with branches that preclude
spurious over/underflows. Such a program follows.

Two constants are needed. One is ~ , the smallest power of the
machine's radix no smaller than maxCt, t/(e~Q) }. The other is
µ • the biggest power of the radix not exceeding minCt, 1/(~0)}.
Multiplication by ~orµ is exact, so it cannot cause underflow
on a machine that conforms to IEEE 754/854.

First sc1rt I>: I , lyl and lz I , keeping track of z . This reduces
the situation to one of three cases. depending upon whether lzl
is minimal, maximal, or neither:

lz I is minimal., say tzl s_ l>~I fyl In case
if lyl > t th en q : = (>: / z) • y

In case fz f
if Ix I <

In case lzl
if Ix I >
else if
else q

else q := (>:l(AZ»•<Ay) •
is ma>:i mal , say lz I• }~. IYI
then q := (ylz>•x

2: 1>:f

else q := (y/(µz))e(µ>t) •

is neither, say lxl ~ lzl f
1 then q := Cy/z)•x
lyl < 1 then q := (x/z)•Y
:= (xey) /z. .

lyl ,

test lvf

test I>: I

test both;

The proof that this program is correct is a tedious exercise in
elementary inequalities. and is left to the reader.

2

Computer System Support for Sc~entific and Engineering
Computation

Lecture 6b - May 19, 1988 (notes revised June 24, 1988)

Copyright ©1988 by W. Kahan and M. Mueller.
All rights reserved.

1 Horner's Reaurrence: Applying Wilkinson's Round-off
Error Model

How do we use Wilkinson's model of round-off error? 1 Given the coefficients aj of the
polynomial A(z) = Er a;zN-j = aozN + a1zN-l + ... + aN-1% + aN and a numerical
value z, we can compute both p := A(z) and the derivative q := A'(z) by means of Horner's
recurrence. Such problems arise often enough: to approximate interest rate payments, or to
calculate sine or cosine. Also, many equations are solved by first casting them a.s polynomial
equations, then solving the polynomials.

1. 1 Horner's Recurrence

Homer's Recurrence is defined:

Homer's Recurrence is written this way, in a program, only for short polynomials.
For longer polynomials, it is expressed in a loop; such a loop even allows simultaneous
computation of both the polynomial and its derivative.

q := O;
p := ao;
for j := 1 to N do

{ q := z * q+ p;
p := z • p + a;;}

... now p = A(z) and q = A'(z).

This fea.ture is useful, -for example, in Newton's method for solving an equation, which
uses both the polynomial and its derivative:

1 Refer to "Roundoff' in Polynomial Evaluation", W. Ka.ha.n, Class Notes, October 1986

1

Lecture 6b - May 19, 1988 (notes revised June 24, 1988) 2

It is unnecessary to calcula.t"e the derivative se~arately; instead, augment the recurrence
as above, where p = A(z) and q = A'(z), except ior rounding errors. t

More formally, we ca.n substitute for a; in the aboYe equation, a.nd so establish that for
all x we have A(x) = PN + (x - z)(qN-1 + (x - z) E~-2 q;xN-2-;)~ It soon follows that the
final values of p and q are PN = A(z) and qN-t = A'(z), respectively.

1.2 Round-off' error in Horner's Recurrence

Rounding errors that occur in these sorts of recurrences ca.n be attacked remarkably better
than most people think. By using Wilkinson's model of round-off error, we introduce
algebraic relationships that relate the things we actually compute to the things we wanted
to compute, or to the data. The computed values and the desired values a.re related in such
a._ way that, despite the fa.ct that the values of the round-off errors - Greek letters - are
unknown, it is not hard tcf propagate the inequalities and then obtain bounds for the final
error, or then perform backward error analysis, the technique made famous by Willdnson.

To get a handle on rounding error, it is important to understand the difference between
the program variable p and the mathematical value P;• The program statements

P := ao;
for j := 1 to N do p := z • p+ a;;

a.re analyzed as

Po= ao;
for j = 1 to N do Pi = z • P;-1 + a;; (except for round-off)

The value p; is the name of the contents of the register whose name is p when j is about
to be incremented. The value of the program variable p is properly analyzed in terms of p;,
although Pi is not explicitly defined in the program. The point is that we should be sensitive
to where a.nd how the value of a program variable changes, for then we can manageably
express round-off errors:

Po= a;;
for 1· = 1 to N do p · = z•P;-i ·(l+C,-i)+ci; •

J 1-11'; ,

Ea.ch arithmetic operation introduces a. round-off error; (; and 1r; represent the total ef
fect of all errors introduced during the P" iteration of the loop.

All we know about a.n individual rounding error is that its magnitude is bounded by
some value!, which depends, among other things, on the ma.chine's radix, arithmetic, and
rounding. {A ma.chine that does not use guard digits in arithmetic operations introduces yet
another "Greek letter" into every arithmetic calculation, but otherwise does not disturb the
computation. In particular, in eva.lua.tingpolynomia.ls, ma.chines that operate without guard
digits do·not introduce serious disasters, just added complication in the error analysis.) •

- .j

]
]

]

J
J

]

J
]

J
J
J
.J
.J
_}

Lecture 6b - May 19, 1988 (notes revised June 24, 1988)

To take account of all rounding errors in the loop:

q := O;
p:= ao;
for j := 1 to N do

{ q := z. q + p;
p := z • p +a;;}

we work out the perturbed recun-ence:

P-1 = q_1 = O;
Po= ao;
1ro = 1eo = O;
for ,· = 1 to N do { q · = i:•qi-2f 1+"i-2+J'i-1 > •

,-1 l+"i-1' '

... and f/N-1 = (N = 0.

1.3 Analyzing round-off error

• 3

What do we do a.bout these Greek letters? There a.re two strategies: backward error analysis,
and running error analysis. In the course of computation, we find that we have calculated
ezactly a slightly different polynomial. This is the beauty of backward error analysis: we
infer our result is no worse than if we miraculously accomplished perfect computation on
the same problem except that somebody we do not know ca.me along and changed a0 by
something on the order of n units in the last place, a 1 by something a bit less than that,
and so on." This explanation is satisfactory especially when the coefficients are not known.
exactly. If the coefficients were calculated by means that introduced errors bigger than n
units in the la.st place, then the error in calculating the polynomial may not make things
appreciably worse. This is the sort of argument Wilkinson used to point out that, in many
situations, this much error is quite satisfactory, despite the fact that the computed function
value and zero may be utterly wrong (see Figure 1). If the zero is utterly wrong, at least we
know that it is the correct answer for a polynomial with only slightly different coefficients.
Theorem: Only if the given polynomial is very close to a polynomial with double, triple
or higher order zeros can the zeros change drastically.

What else can we do about perturbation? How wrong is the perturbed result? Rather
than saying the computed zero is "right" for some polynomial whose coefficients we do not
know, how can we estimate how wrong the zero of the polynomial is? If we do not know
how wrong a computation may be, then there is some chance the result is entirely wrong•
in which case, why bother to perform the calculation in the first place1

Our goal is to calculate the uncertainty of the zero shown in Figure 2.

Lecture 6b - Ma.y 19, 1988 (notes revised June 24, 1988) 4

]
I

f

. • • • • • . Envelop~ con taming the
/ • • .. polynomial to which the

/ / -.......... ·~ calculated zeros could
/ ./ ·"··· ;e attributed ~actly.

_: I _... ••• ··-.. x··. :'

J,--.... ·-•• ···-... ~-/-.::.:·······i
..J....!...._. • •• •• •

] -
J
J

! !~·· Exact va.luv·· •• ·········_.
: f / of polynomial.
:: f
i;
'=·
: In terva.ls containing
: calculated zeros.

]
•.

]

]

Figure 1: Calculated zeros may be exactly those of a nearby polynomial. j

-·,

J
Uncertainty

of zero. ..-··· ...• •· J
r-7_ ... ·•••• .. ··••••

.·· .. •• .. ·• .. ·• .. · .. ·
___,.,...._ .. _···_··_J _uncertainty of

function value.

J
J

Figure 2: Uncertainty of computed zero due to roundoff in function value.
_I

J
__j

.J

f

Lectu~ 6b - May 19, 1988 (notes revised June 24, 1988) 5

1.3.1 When to quit?

We calculate error bounds in order to answer one of life's big questions : how do we know
when to quit? At some point in a.n iterative process, dithering starts. That is, suppose we
are· solving some equation and ·we do not have a nice, neat closed formtila for the solution.
Most books supply an arbitrary stopping point: quit when the difference 4 between two
computed iterates is less tha.n some threshold. But •how is the ,hreshold chosen? If the
threshold is too large, the result may be greatly in error; if the threshold is too small for
a given equation, rounding error may force the computed results always to lie outside the
ribbon of acceptable results, and so the program chugs on forever (see Figure 3).

Ribbon of acceptable results.

. • • . . . ~---------~-. . • • . .
f .· .· _.,._,...._~__,,

Uncertainty of zero.

Figure 3: Computed values dither.

How does a programmer deal with this problem? He or she often passes i~ to the user
of the progra~. However, users are often less well equipped· than the programmer to deal
with this issue.

Another approach is to terminate the computation when it starts to dither. On the
average, this yields a better answer if errors are random. But what if the errors are not
random? Such examples are easily constructed, especially from the exponential function. A
very.bad approximation from a numerical point of view may be physically plausible; thus,
it is easy to terminate a computation much too soon.

For example, suppose we wa.nt to compute the zeros of /(z) = er - 1, and we choose

Newton's method. Then, Zn+t = Zn -
12~;: s::= Zn - 2.~". For large values oi z, we have

Zn+t s::= Zn• If Zn+t is indistinguishable from z 11, which happens when the stopping criterion
is less than their difference, the computation may terminate, even though the current "best"
estimate of the zero is still much further than the stopping criterion from the true value of
the zero (see Figure 4).

. ...

..... ·•.•.· •. . . ·. _:·.::\:-:::=-/}.-J/t\\:\f Wf /:tJ/.":;:"-:/.'._<•/./ ..):-=::> ·. · ·.·: .. ·.-.:/\~--:~--: • ••• · .. ·· ._.;. · =>·.- :-<.-/_/f\Ibfo?ft·

Lecture 6b - May 19, 1988 (notes revised June 24, 1988) 6

t

/(i) < stopping criterion

-)(

f
True zero, i. f f

Calculated zero, i.

Figure 4: Program stops, but i could be utterly wrong.

1.3.2 Running Error Analysis

A running error analysis provides a robust stopping criterion. The following excerpt from
"Roundoff in Polynomial Evaluation" demonstrates how to apply this mode of thinking to
accoun~ for the rounding errors introduced by all the arithmetic operations: •

In our example, PN is an estimate for A(z), the desired quantity. To esti
mate the difference, and thus to obtain a.n upper bound on the error, from the
perturbed recurrence substitute for for a; in the definition of A(z). Then, for
all z,

A(z)'= PN + Ef (1r;z -(;z)p;zN-t-;

+(z - z)(qN-1 + E[;1-1(1';z -11;z)q;zN-2-; + (z - z) E[;1-Z q;zN-2-;).

From this it follows that A(z) = PN + E:(1r; - (;)p;zN-;

a.nd

A'(z) = fN-1 + Ef-1(("; - TJ;)q; + ((N - j)1r; - (N - 1 - j)(;)P;)zN-t-;

• Since no rounding error appears more than once in each of these formulas, the
nonzero Greek letters can be replaced by ±t to get best-possible bounds for the
accumula.ted effect of roundoff:

j
C

]
f

J
f

]
I

J
f

]
f

J
J
f

Jt J
(

]
,.
...

J
(

-1
I:

J
t: ,]
~

D.

r .- Lecture 6b . May 19, 1988 (notes revised June 24, 1988)

where r :=I z I;

J_A'(z);9N-J I <I qN-1 I +2 Ef-2 f q; I rN-t-i+ I qo I rN-1

+ r:f-1(2N - 2j -1) IP; I rN-l-j + (N - 1) I Po I rN-l_

The right-hand side of these inequalities are polynomials in r with coeffi•
cients derived from Ip; I and I q; I, so they can be computed by recurrence too.
To do that, here is an augmented recun-ence:

,. :=I z I;
q := O;
p := ao;
e :=IP l;d := -~;

for j := 1 to N do
{ q := z • q + p;

d := r • d + e+ I q + q I - IP I;
p := z • p+ a;;
e := r • e+ I p + p I; }

e := e- Ip I;
d:= d- lq I;

Now IA<.zJ-el < e and fA'C~l-91 < d except for over/underflow and ignorable
roundoff' incurred during the calculation. Verifying that the last two inequalities
do follow from the previous two is a challenging exercise in algebraic manipu
lation; that verification will confirm that the two sides of each inequality could
approach each other arbitrarily closely in the event, albeit unlikely, that all the
rounding errors had magnitudes € and appropriate signs.

7

The final error bound is not enormously pessimistic; in fact, it is a good estimate for
machines that chop figures, such as in the IBM architectures. The degree of pessimism is
of order ..jn. In the worst case, the error estimate is only off by' a factor of two. To see
this, consider the average error, and the sum of variances between the roundoff' error and
the average error. .

Such an augmented recurrence is a.ii inexpe~ive way to compute the width of the rib
bon. Thus, we have a thoughtful way to decide when to quit the iteration. We compute,
simultaneously, an estimate of the polynomial, and some approximation to the width of
the ribbon. Given this knowledge about the width of the ribbon, we can stop the iteration
naturally, in places where the polynomial is being computed in a ragged fashion. 2

2See Laguerre's Theorem, stated in "Roundoff' in Polynomial Computation", and "A Stopping Criterion
' for Polynomial Root Finding," Duane Adams, Communications of'the ACM, Vol, 10! No. 10, October 1967.

Lecture 6b - May 19, 1988 (notes revised June 24, 1988) 8

1.3.3 Comments on running error- analysis

A good trick to use in the augmented recurrence is to compute pin extended precision, and
compute e in single precision. There is some economy in that the recurrence is the same,
but the constants we multiply by a.re smaller.

p := zp+ a;;
e := lzle + IPli

There is a Perverse Theorem, which states that is it possible to write a vanilla program
in Fortran, C, etc., and achieve an accuracy that is limited only by the exponent range of
the machine. Such techniques would be useful here, and will be discussed further when we
talk about Kulisch's methods. These methods amount to an awkward way to implement
extended precision.

Note that we have ignored overfiow and underflow. It is possible to accommodate
overflow and underflow, and this subject will a.rise a.gain when we justify gradual underflow.

1.4 Conclusions

There are systematic ways to estimate round-off errors; there a.r~ good reasons to do it; the
only prerequisite is a trustworthy model. Furthermore, even on ma.chines· that lack guard
digits, in this particular computation, the only effect is that the actual recurrence is a bit
messier to compute• there is an extra "Greek letter". Even for the Cray, this method allows
us to obtain error bounds and to decide when to terminate the iteration.

Note: If you're extremely careful about computing the function value and the error
bound, you may find that the function is never smaller than the error bound.

This leads us to One Final Theorem: If the stopping criterion is set to double the error
bound, then eventually the computed value will come out less than the error bound.

2 A more delicate approach to error analysis

Wilkinson's model is not adequate to explain all rounding errors. Due to wobbling precision,
the bound is frequently too large by a factor of the radix, /3. In general, no such inequality
handles error modeling exactly, since we're dealing with a discrete set. That is, there are
things that happen that do not fit into the model· the model could never be used to prove
anything about these events.

Recall that Cray was confronted with an angry letter: "AMOD on the Cray doesn't
work! Fix it!" None of us will sell our Cray stock: we know Cray won't change AMOD,
but we also know that it won't deflect the current of world affairs.

How much can one do, on a Cray, to make it right?
The Fortran standard defines AMOD(z, y) := z - Lz/yJ • y
Claim: On a reasonable ma.chine, if O < z < y, then Lz/yJ < 1.0
Un-proof: There is no way, using Wilkinson's model alone, to prove or disprove this

claim.
Reason: Choose z and y to be adjacent numbers, so. that y is a power of the radix,

and z is just slightly smaller. If all we know about quotients of p-significant digit numbers
with radix /3 is that the computed value of ; = (true i) • {1 ± 3/31-P) (and that is all

.1

J
J
J
J
J
J .

J
]

J
J
j
~-

J ..
..

J
J
j
'-

j
'

I

l
l.

f "
i

'

. .,
)

·1

7
7
"7
....

• '

j

;

j

'

Lecture 6b - Ma.y 19, 1988 (notes revised J•ine 24, 1988) 9

we know when we use the standa.rd (1 :I:!)· (a 0 b) model), then we cannot prove that
O < 2: < y ~(computed i) < 1. •

• For, if y = 1 and z = 1- {i-'P, then the computed value of i = (1 ~ {3-~) • (1 ± 3/31-'P).,
This lies in (1 - (3/3 + 1)/j-'P + ... , 1 + (3/j - 1)/J-'P]. The lower bound is less than 1, but
the upper bound is greater than 1 + {31-P.

3 Summary

We have seen that this model of error analysis is very useful in most situations, yet not uni
versally applicable. In the next lecture, we'll see a truly delicate analysis using a universally
applicable model.

,. r '3

