[}

Computer System Support for Scientific and Engineering
Computation
Lecture 7a - May 24, 1988 (notes revised June 24, 1988)

Copyright @1988 by W. Kahan and David Goldberg.
All rights reserved.

1 Numerical Analysis in C

Consider the problem of computing z - y/z when the final result does not overflow or un-
derflow. Is there a way to compute this expression so that none of the intermediate results
overflow or underflow? Although this appears to be a tricky problem in general, the C
library provided with UNIXTM (and some other operating systems as well) contains ldexp
and frexp library routines which make the problem quite easy. The definition of these
functions is

double ldexp(x,n) = z - 2"
double frexp(x,&n) = z/2* where k is chosen so that 0.5 < |z/2¥| < 1.0

As a side eﬁ'ecf, frexp sets the variable n to the value k. The variable x is a double, and n
is of type int. The problem has the following one line solution:

z - y/z = ldexp(frexp(x, &i) - frexp(y, &j) / frexp(z, &k), i+j-k) .

There are two problems with this solution. The first is minor; the compiler might evaluate
the second argument to ldexp before the first, in which case i, j, and k would be unitialized,
instead of having the values computed by frexp. This problem can be easily fixed by breaking
the expression into two lines. The second is more serious: frexp and ldexp implicitly assume
you are on a binary machine. It isn’t obvious what ldexp should do on a non-binary machine
with base 8. If the definition is changed to 28" it will be exact, but will break code that
assumed the base was 2. If it is left as 2™ it won’t be exact. The appendix contains more
details on frexp and ldexp.

1.1 Changes to C

This suggests some changes that might be made to C and its standard libraries. The first
would be to introduce log:: and scalb and use them in place of frexp-and ldexp in new codes.
Logb and scalb are recommended in IEEE 854 and are similar to ldexp and frexp, except
they are defined to use the machines’s radix. This would solve the problem mentioned in the
previous section, namely provide a way of computing z - y/z without overflow or underflow.

Lecture 7a - May 24, 1988 (notes revised June 24, 1988) 2

The second change has to do with multiword arithmetic. Most hardware provides access
to the carry bit after an add instruction, enabling a very efficient multiword add to be
programmed. However, most high level languages don’t give the programmer, access to the
carry bit. That means that multiword arithmetic packages can’t be written both portably
and most efficiently. To be most efficient it would have to be in assembly language in order
to get at the carry bit, but then it wouldn’t be portable. This problem would be solved if
the standard C library provided routines for multiword arithmetic. When C was ported to
a new machine, an assembly coded version of the multiword arithmetic routines would be
expected to reside on that machine. ?

The third change has to do with multi-dimensional arrays. In C, the declaration for a
one dimensional array doesn’t need to specify the size of the array. Thus you can easily write
a subroutine to sort an array of arbitrary size. However the situation is different for two
dimensional arrays. The size of one of the array dimensions must be specified as a constant
at compile time. This makes it awkward to write subroutines that handle two dimensional
arrays. In particular, it complicates translating numerical routines from FORTRAN to
C. Its not difficult to add this extension to C. In fact, the GNU C compiler allows array
declarations to have variable dimensions.

2 The Case for Guard Digits

Since floating point hardware can only represent a subset of all floating point numbers,
most calculations on floating point hardware will incur some error. An earlier lecture
discussed how the addition of a guard bit could make subtraction more accurate. Does
this one extra bit really matter? Here’s an example where it does. The appendix discusses
Heron’s formula /s(s — a)(s — b)(s — ¢). This formula is numerically unstable, and can
give inaccurate results for triangles that are needle-like, that is, where the length of one
side is close to the sum of the lengths of the other two sides. The appendix shows a way to
rearrange the calculation so that it is stable. The proof uses the fact that if 1/2 < p/g < 2
then p — ¢ is exact. This fact holds on hardware with a guard digit, but may not hold on
other hardware.

In other words the guard digit is important not because it adds one more bit of accuracy,
but because it guarantees an algebraic relation that lets you reason about computations.

3 Error Analysis of Inner Products

Recall that the classical model of roundoff error goes like this. If X, Y, and Z are the names
of variables, and if x, y, and z are their values as represented in the computer, and if a
program assigns X =Y ® Z, then z = (y® z)(1 4+ £), where [£| < ¢, and ¢ is a constant that
depends only on the floating point hardware being used. We previously used this model
to analyze polynomial arithmetic. In this section, we will use it to study scalar products.
The formula for scalar product is § = 37, A;B;, or to put it another way, § = §,,, where
So=0and S; = S;_1 + 4;B;. In the classical model this means that

8j = (sj-1+a;-bj-(1+7;))/(1- 0;),

1 A future lecture will present an efficient method of multiword arithmetic for machines that don’t provide
access to the carry bit.

Lecture 7a - May 24, 1988 (notes revised June 24, 1988) 3

where le' < €, la’,l < €, a,nd 8= do =0. Multiplying thru by 1- a’j gives
(8j— 8j—1) — ajbj = sjo; + a;b;m;,

and then summing on j gives the error
n n ‘n
8n— Y abj =3 asbjmi+ sjo;
1 1 2
and taking the absolute value gives the error bound

n n n
lsn = azbsl < €3 lajbil + 3 Isl)-
1 1 2

So if a program that computes an inner product also wants to compute an error estimate,
it could use the following program to compute E.

S=0; E=0; !
if N > 0 then {
E = -1A[1] = B[1]1;

for j =1 to N do {
P = A[j] = B(j];
S=5S+P;
E=E+ |S]| + |P|
}

X

A bound for the error would then be ¢-E. This calculation shows the usefulness of an add-
magnitude instruction (that is, an instruction that takes the absolute value of a register
and adds it to another register). If a machine has an add-magnitude instruction, then the
calculation above can be performed with fewer instructions and using fewer registers.

One thing you might notice about the error is that it can be bigger than the inner
product 3" a;b; itself. Is this is an anomaly that would go away with a different kind of
error analysis? The answer is no. Interval analysis may give a slightly tighter error bound,
especially on a base 16 machine. The reason is that the ulp can be smaller than ¢ by a factor
of 3, but this is ignored by classical error analysis. When S is 16 this could make error
bounds from interval analysis as much as 16 times smaller than the one above. However
when the inner product is close enough to zero, that is the vectors @ and b are close to
orthogonal, the error will become larger than the inner product no matter what kind of
error analysis you use.

The error committed in computing inner products can be reduced slightly by sorting
the numbers. However, a much better way of reducing the error is to use distillation, which
will be covered later. Distillation improves precision by splitting a; and b; into two pieces
of equal size, and computing a;b; using four multiplies.

3.1 Backward Error Analysis
We can also do a backward error analysis for inner products. Looking at the formula

a1h (14m [:;abzllwr:! + azbs(1 + 73)

l-03

8n =

)

J

L

i

No——

Lecture 7a - May 24, 1988 (notes revised June 24, 1988) 4

we see that if we set

o' b - a1by (14 m)
T (M- aa)(1-03)--(1-0) ~
aybh = a2b2(1 + 72)

(1-03)(1-03):--(1-0n)

then s, = ¥ ab! exactly. That is, the error in s, can be thought of as coming from errors
in the input. From the formula above, the error in computing an inner product of n terms
can be accounted for by an error of about n places in the last digits of the e; and b;. For
more details, see J.H. Wilkinson’s book Rounding Errrors in Algebraic Processes.

BEGT T

~

-~ = ey e e

.0
~;

-

b
0

e -

Uses

Miriam Blatt’s One-line C Program

<

to compute
Q = XxY/Z

without spurious over/underflow:

2xX |, and

double }dexp(X, N)
double frexp(X, &N)

Xs28 , with

double X ;
int N ;

and frexp sets N as a SIDE-EFFECT so that
1/2 < abs(frexp(X, &)) < 1.0

double X, Y, Z, @ ;
int H

Q

i, 3§, k;

ldexp(frexp(X, &i)xfrexp(Y,&j)/frexp(Z,&k), i+j-k)

13§

4

/:_&‘A-Tu&. E S worTH /4:DD/A/6—
To C
4

7, (oa b g scalb «lFoma f‘e,é Yo 5‘74//447'

Frexp K& Adexp

=, Mu M - word :;ll"ej,g.- Ap> X sS«ubTrRAT
& MurTipey
Qe "L(—Aj on a rra-j s o 7"//¢ €T

3. Ab | 5(7 Yo declare X vre ference
MU-T(- Surhscor IPT ARRAY ARGo# & Sz
e"sif_"e a sdwa{/p;né V/_u;’/ as %_7

& re Aoc(amz) g ve ’[efe"'ﬂ-eg oq?‘gf.J@
be fove "%‘7 are paessed es arjeme«y‘;

<8, arre g rype ALmllnl

L__L mnmmciaBes& en?’s

ef. R Stallman's enu

)
1
i A\
:ifi‘

ap~ep-mg-

F AR MEod

Rl R F L K] []

Tom e

——

-m

L)8

boll I ol (B ¢

—— ——

-

TN

Punm'wj Emr - Aﬁa@y'; o

ScAhALAR PRobDuCT

S HE O;
dor =l o A de Si= S'rﬂj"Bj
PRPRR ?'C}umuﬁfg Nowu S = 2.” /4‘ « BJ- .

P ~
P S, - zﬂojaﬁ = 2 e..é..'n: -+ Z;’.S.c;

| 50— =%a.5| = £-(=¥ la-b1 t =7 0s) .
. . . a

——

cee wew | 8-Z¥as«w) £ e-F.

Note wusefulvess of ADD-MAGH ITUDE instrueyecnm

Yo Soave Pejzgfe,r - space

17

Ckoos.e Q Fos;'f-l;? fn“'eﬂer m = {, 2’%';"')
5“’?(052 for real 2 and “ that OC<x <m-gq.

aaP

———— — ‘7
M ot Com puted (Z/j) < wm ? i .t1

{\
1 1
M=t Yes, compated (x/g) = m)l
éf"dy&,j : md\x 5 every PMS:M;UQ. rbu.nja.v:;» ,:
m =2 Yes for ra dig @""' < i
n— . “J
No fr even radin @ >4 ; ;
Ty x= g'-3 4= ?@p‘ ?
w23 No. 3
- - _ 4 - 27 :
3 g=2, == 3.2 4—) g=2 -t .
o .
n‘bo'(-éa-r\’h:'f : Snj %?f ‘ljée- 5 o<x<j"lj
. ¢
Max (7/_*_1) Occcevs whe . 2= _3"' . o~
: ¢
Then %/y = 1- 174 ¢ 4-gF]
€
L, Rounded (x/,) & 11— @7 < 1 J
\ e ‘

Represestoble /

.
[&
3

i

C
-
=

EXM(iej

Prove that +he cow-?uj'-ee} wvelue of

2.0 » X/(i.o-f— X*X)
'
cznnot eoxceod { O for any
75[04)(9;:7‘— fa;rj > i arith mek
6 Rounpe® corret!, or
crHoPrPeD 'c.prre,,t((7)

J

fer what RANGCES of Flootins —
7>0¢:4f New bers X wlll ¥ he

%fwsst.an

(X —0.58Y*x 2.0 + X
be computed ExAcTLy 7
The answer depends “p o FHe raa'?g;()-
‘f’j 2 ’ 10, 76 .

3‘ -]
[

Iy ld

Iy X

AT C e
R o < Sy X3

Does SQRT(K*)(\-'-' ARS T ?
..7;: :{ 74" 10 ”':j . AC.C“:HJS /?ou0>€b ‘aﬁC(-‘?.
(WNVor croeped

/' w!‘u’.‘ ?)

Let x= O,31622 7766 1
{

' = O .,10000 ocoooce 53

>
J
1’3 = O, 31622 7766 '\ T75...

— 2 = O.3/622 776672 T 1/"7- voundzsd .

=

Co SarT (xxx) £ A8s (xD he co .

/:-' tu/m:/ ‘Proro ' 4 (‘Oy o'F ﬂuméér's X
ca n we e«/.eg,." SaRT(xrx) = ARS(x) ?
0,5 <2 < 4710 A/
Yio < = < 5.0 abod B2 ¥4
Yio <= < A abe? 632 %
Tn qemacal it V0.1 <% <x< x < O.5
+he Fropor‘h’:ou o SaeT(x*) = = '5
aboud % +x

-~

N,

P R_™f

-l B .b

F -.0.'\“‘ -.-'l-;.

wof

O I !

1

bd !

s

o e

e ™

"~

P v ca

Computer System Support for Scientific and Engineering
Computation
Lecture 7b - May 24, 1988 (revision date June 24, 1988)

Copyright ©1988 by W. Kahan and K.C. Ng
All rights reserved.

t
1 More on quotient

The floating point numbers are represented in a rather specific way in order to handle certain
kinds of problems. One of them was the one that arose on the Cray. Here I generalize it a
little bit. Assuming 0 < X < Y, should you expect AMOD(X,Y) to return X and not, as
the Cray did, to return X —= Y < 0 ? I explained that happened on the Cray because the
divide on the Cray is a little bit hard to predict. On all other machines, given 0 < X < Y,
the quotient (X/Y)rounded is always strictly less than 1. That is true on IBM machines,
Burroughs’, DEC’s, calculators, Sun’s, and so on, but not true on the Cray. And that
was the problem that led to the letter (in real life) that I paraphrased for distribution in a
previous lecture. Often AMOD is programmed as

X - | X/Y]-Y.

The trouble with this formula is that the rounding errors in the quotient and the multipli-
cation can cause too much damage even before the subtraction.

There are machines which do AMOD correctly in the sense that you get an exact result.
For example: those machines that have IEEE remainder in them, the Dec VAX running
under VMS (VMS fortran library), and APL running under IBM 370.

But on machines that merely use the above formula for AMOD, rounding each term,
one could ask a reasonable question: assume 0 < X,0 < Y, will AMOD(X,Y) assuredly
return a non-negative result? For some machines like IBM 370 the answer is yes, and
easy to prove. On an IBM 370 the quotient and multiplication are chopped, making the
result of computing [X/Y | - Y always a little smaller than X, and hence the subtraction
is always non-negative. Perhaps it is for that reason that people haven’t noticed that on
many occasions the AMOD on IBM 370s returns a result that is bigger then Y, violating
the definition of AMOD.

Now consider the following question: Choose the positive integerm = 1,2, or 3. Suppose
forrealz and y that 0 <z < m - y.

Must computed(z/y) < m ?

Ha

1 Lecture 7b - May 24, 1988 (revision date June 24, 1988) 2

when m=1: Yes, computed(z/y) < m for every radix, every reasonable rounding. -
; Proof. Say f*! < y < 7,0 < z < y. Max(z/y) occurs when z = y — 1. Then

H =1- - (- p 1 - P .
z/y=1-1/y < 1- 7P, Hence computed(z/y) < 1-p77. <-.1
¢ : ’ Representable! ..
i when m=2: Yes for radix 8 = 2; No for even radix # > 4; Tryz = f? -3,y = %-/3? -1,
- when m=8: No. Try =2,2=3-2P-4,y=27- 1.
i
Exercises.

1. Prove that the computed value of

20x X
10+ X+ X

cannot exceed 1.0 for any floating-point X if- arithmetic is rounded correctly, or
chopped correctly.

2. For what ranges of floating-point numbers X will the expression (X-05)*20+X
be computed ezactly? The answer depends upon the radix; try 2,10,16.

T ‘. 33-1

Remark on exercise 1. Despite 3 or 4 rounding errors (2.0* X in general is not exact because
the machine may not be binary), you can prove that the displayed quantity can never exceed
i 1. But you cannot prove it by using the e-like model that we used for polynomial and scalar
product. This is a2 valuable thing because often people who do this are going to compute
something like arcsin(1%,,-) (the function arcsin cannot accept arguments greater than 1).

' Remark on exercise 2. The second exercise has to do with the comment that was made
toward the end of lecture 6. The expression (X — 0.5) * 2.0 + X happens to be computed
exactly in the neighborhood of the place it vanishes. The expression looks like 3z — 1 rear-

oy

so that can’t happen. If X is near 1/3, it will in fact never vanish. If you believe an equation
[solver should be made to stop when the function vanishes, or when it is smaller then the
| - - rounding ‘error in the computation, then this is an instance for which your program will
never stop (because there is no rounding error).

ranged in a funny way. It would vanish when X equaled 1/3, but 1/3 is not representable,

B

Lecture 7b - May 24, 1988 (revision date June 24, 1988) 3

2 Does SQRT(X * X) = |X|?

Everybody who works in the customer support department in a computing company is
exposed to this problem from time to-time when naive customers complain that the square
root of a square (or the square of a square root) didn’t come back. Here is an example using
10 significant decimals rounded correctly (npt chopped; why not?):

Let z = 0.31622 77661
z2 = 0.10000 00000 S3...

— y = 0.10000 00001 = z * z rounded
V¥ = 0.31622 77661 75...

— z = 0.31622 77662 = /¥ rounded

Hence SQRT(z * z) # |z| here.

Notice that in each instancq rounding has been done in the best possible way. Since the
relation is not satisfied in general we can ask for what proportion of numbers z can we
expect SQRT(z * z) = |z|? We find

for 0.5 <z<+10 All!
Vil <z<5 about 82%

VI0 <z < /101 about 63%

In general if V0.1 < £ < z < # < 0.5 the proportion of SQRT(z * z) = z is about Z + .
These figures are obtained experimentally but it is possible to show that you couldn’t do
better than that. It is-impossible, no matter how you round, to satisfy the identity with
higher proportion in those particular ranges. I am going to show you how to déal with this
problem, up to a point.

3 How often at best can SQRT(X * X) = | X|?

3.1 A Counting Argument.

Assume p significant digits of radix B in the usual notation. How many floating-point
numbers lie in a B-ade (all the numbers that have the same exponent)? Since the answer
depends only on the word size, we simply choose a typical S-ade interval [37P-1, 87 — 1] and
count. It happens that all floating-point numbers in this interval are integers and one can
easily see that there are 87 — gP=1 of them.

1. Considerfirst 1< 2 <z <2< /A< pB. Therangeof y=22is 1< 2 <y< 2 < f.
The number of 2’s and y’s are

#(z%) = (B -p)=(2-12)-p
#o'o) = (-8) 1= (2+5): -#(z's)
> 2-#(z's)

Hence z could conceivably be recovered from y: z = /7.

e YU X Y W NI T e N

E X S T

N o)

| A N S RN T

LR

— A’

-y

Lecture 7b - May 24, 1988 (revision date June 24, 1988) 4

1 . B

expanded by squaring

1 VB B

2. Consider second \/§<:E<z<a‘:<1. Therangeofy:zzis%<5:2<y<.5:2<1.

The number of z’s and y’s are

#(z) = iy (B -PrY)=(6-2)-p"
#Ws) = (82-482)-7= (2 +2) - #(z%)

Thus

I £ 4+ & < 1 then at most (£ + £) of
the z’s can be recovered from y’s.

Hence if % < £ < z < & < } then SQRT(z * z) = z at most (& +) of the time.

1
\\shrunk by squaring
1 1
Vi ot

Exercise. How often at best can we expect SQRT(2)*SQRT(z) = z? Assume p significant
digits of radix 8, and consider 1 < £ < z < £ < . Show that the fraction of such z’s for
which SQRT(z) * SQRT(z) = z cannot exceed

1 1
——— -
Vit+Vio 2

1

(]

]
1
[

3.2 More analysis on whether SQRT(z * z) = |z|.

We need consider only the ranges max(1/1/B, %) < z < 1 and 1 < z < /B, since a counting
argument says that we cannot always expect SQRT(z*2z) = z elsewhere in \/1/8 < z < /.
We will use the following notation: :

)

Lecture 7b - May 24, 1988 (revision date June 24, 1988) 5

[ezpression] = correctly rounded value of (ezpression)
= (expression) £ yulp(ezpression)

B ify<z<l
ulp(z) "{ﬁ"’ ifl<z<p

We also assume multiplication is correctly rounded. Define

y
z

2] = 2+n-up(a?) ...|n|<
SQRT(y) = F+¢-ulp(yd) ...[<

where o = error bound for SQRT program. SQRT is usually done in software, and the
question is how accurate the software has to be in order to be able to satify the identity
z = z. If SQRT is correctly rounded, then o = % Otherwise one could expect an error
bound up to about a unit in the last place on a reasonable quality SQRT program. Note
that the IEEE standard requires a correctly rounded square root. On a VAX, o is less than
something like 0.50001. So {et’s allow an error bound a little bit looser than the perfect
SQRT program. We assume 1 > o > I.

The interval /T/B < {z : z # 1} < +/B is chosen so that we always have ulp(z) =
ulp(y) = ulp(z) (to simplify the error analysis). Here is the reasoning for \/I/8 < z <

1-p8-7:
VI[B < z < 1-p°
= 3 £ y=[z-z] < 1-26°

1
z
ag

= 7 < z=SQRT(y) < 1
= ulp(z) = ulp(y) = ulp(2) = f~7.
And here is the reasoning for 1 + 81~? < z < /F:

14677 < z < VB
= 1428-7 < y=[z-2] < B
= 1 < z=SQRT(y) < B

=> ulp(z) = ulp(y) = ulp(z) = g7

Soy = z?+n-ulp and 2z = \/F+(-ulp. Now although z may not equal z, the difference must
be a multiple of ulp. Hence |z — z|/ulp must be a small integer, and “z = z” is equivalent
to |z = z|/ulp < 1”. Our question is then

How accurate must SQRT be (i.e., how small ¢ > |(|) to imply]’ﬁfl <1?

This question turns out not very hard to answer. In general, evaluation of f(p) — f(g) can
be rewritten as L(_Lﬂg)_ x(p-gq). And M can often be simplified a lot symbolically if
f is an algebraic functlon (something tha.t you compute with a finite number of +,—, X, +
and \/» Of you solve a equation with the left hand side of the equation computed that wa.y).
In our case, it is the square root function, and we have

VP-Va= u(p 9=

7t \/—(P—Q)-

Thus,

J o lead Tl

A

»

o Y- -

=~

i

rv

[

IR P

-

Lecture 7b - May 24, 1988 (revision date June 24, 1988) 6

z=z _ (yF+(-up)—vy—n-up
up - ~ulp
=C+ UJ
\/'+"
“t3

near enough provided the radix is not equal to 4 (you have to do something differently when
B = 4). Therefore, if we take a bound for { and a bound for 7, we arrive an approximate

bound
sl oy 12
Wi
fo<t:=1- 025/,/' then surely |z zl/ulp < 1, and hence SQRT(z * z) = z. The

critical value of ¢ is %, since we can’t keep o < 1. Here we plot the graph of t := 1-0.25/ /%
as a function of y: .

4

1
A fy)=1-2%
/ —
// 3
-~ 4
I.'.’
=
ra

..' 1
2
£ N
7 ry

n".;

§

0

V=% i : i 1 2 4 8 16
y is on a logarithmic scale

The graph above shows that, if y = z2 falls into the region where Y(y) > }, then it is
possible that SQRT(z » z) = |z|, provided that & < ¢(y). For a binary machine the range
for y(= 22) is } < y < 2. On that range #(y) > t(;—) =1-1//8 = 0.6464466.... So for a
binary machine you don’t need a perfect SQRT program in order to get SQRT(z * z) = |z|.
Therefore, checking that identity on a binary machine is not a good test for square root. In
quaternary, the bound is not good enough around y = i- and we will look at that later.

What about a hexadecimal machine? If you have a number in [%, 1], then its square
will fall into [{, }). Since #(y) < % in that region, there is just no way to get the square
root of a square always to come back. There are simply not enough eligible squares (certain
distinct numbers in that region will have their squares coalesced after' rounding). But we
do expect the square root of a square to come back if the SQRT is correctly rounded and
v %

Lecture 7b - May 24, 1988 (revision date June 24, 1988) 7

3.3 Conclusions

1. if ¢ < 3 (i.e. errorin SQRT(Y) is bounded by 2ulp(vY)) then SQRT(X* X)=
' throughout 1< X </P.

2. If 6 < 1—1/v/8 = 0.6464466... and § = 2 then SQRT(X * X) = |X| for all X (a
benefit of binary).

3. If o = % (i.e. SQRT is correctly rounded) then SQRT(X * X) = |X]|

o forall X if 8 < 4,
o for} < X < Aif >4,
e but not for all X in the range /I/f < X < }if B> 4.
4. For quaternary, 8 = 4, it is not necessary for SQRT to be correctly rounded in order
to have the identity. There is a delicate argument that shows SQRT(X * X) = | X]| for

all X only if the result is computed with more than half again as many quaternary
digits as you will return, and then rounded.

VY [xxooo [... xxX |

rounded &om73/2 accuracy.

5. I hope you can appreciate that none of the proofs I showed above will work if all we
had was the standard model. If you use the ¢-model, it’s too weak to permit us to draw
appropriate conclusions. Instead, by knowing exactly how the arithmetic works you
can rigorously prove certain empirical observations not explainable by conventional
means.

4 A Preview of IEEE Arithmetic: Gradual Underflow

In the next lecture I will tell you more about IEEE arithmetic. You have already had some
idea of how we do error analysis and that will help to justify some of the things in the
standard. For instance, we can understand why the standard specifies binary arithmetic
at least in 754 because binary is clearly best. There are things that work in binary that
don’t work in any other radix. An example is the square root of a square (it also works for
quaternary but I don’t think anybody would use quaternary). So you can understand one
of the reasons for binary. The other reason is that when you use the cruder argument for
your error analysis the error bound that you got could be sloppy by factors as big as the
radix. That’s why we choose a small radix instead of a big one in order to avoid this type
of floppyness (called “wobbling precision”).

X = |£]| ezponent | fraction |
1

implicit bit

The standard takes advantage of the fact that a normalized number in binary always
has a leading bit 1. You can imagine there is a 1 just before the fraction digits for almost
all the numbers (there are some exceptions). The leading bit of a normalized floating-point
number is always non-zero, so why bother to store it? You gain a little bit of memory

.

Lecture 7b - May 24, 1988 (revision date June 24, 1988) 8

space. This means in consequence the IEEE Standard single precision word is noticeably
better than other machines (they.exist) that use an explicit leading bit. Where does this
trick come from? Well, it’s actually call Goldberg’s Variation, it appeared in Comm. ACM
sometime around 1961. He really wrote an article to explain why an IBM 7090, which has
27 significant bits, really wasn’t quite so good as 8 significant decimals. He said if they had
merely put in one more bit, which they could have done as above, then everything would be
fine and they would have 28 bits with the same word size, always better than 8 significant
decimals.

Goldberg was also responsible for gradual underflow. The numerical interpretation of a
typical floating-point representation is

X = esponent-Bias (1 4 fraction), if ezponent >0 (1)

You may ask why not use ezponent > 0 in (1)? (On a VAX, “ezponent = 0” is a signal
that the whole result X will be regarded, regardless of fraction, as zero if the sign is positive,
“Reserved Operand” if negative. Why IEEE doesn’t do that will become clear later.) But
when ezponent = 0, you simply could move the implicit leading 1 to the exponent field as
is done below.

X = £2'-Bis (0 4 _fraction), if ezponent = 0

This was invented by Goldberg. It provides “gradual underflow”. Actually I implemented
it in a 7090 at about the same time. It works.

A picture may help to understand the meaning of gradual underflow. We can consider
only positive floating-point numbers. In this whole scheme there is a smallest normalized
number m = 21-Biae,

underﬂowf'gap“hhllllig|=||lll [I T B I

flushed to I

zero
0 m 2m 4am 8m
(m=21—3i¢n)

Here each vertical tick stands for a floating-point number. Please observe that each time
you cross a power of 2, the density of numbers changes by a factor of 2. In other words, the
gap on one side of the power of 2 is twice (or half) as big as the gap on the other. But what
is going to happen at m? The figure above shows what happened on a VAX: underflow
gets flushed to zero. Unfortunately that means that when an underflow occurs the error
is comparable with the gap between 0 and m, which is enormously bigger (relatively and
absolutely) than the error in numbers that you try to create somewhere in the next binade
(m,2m). If you create a number in (m,2m), it will be rounded to one of the floating-point
number in that range and the error would be bounded by m-2-Precizion, byt over the region
(0, m) the error could go up to m. The ratio of the rounding error bound across m is thus
something of the order of 2P7¢ci*%on_ So for single precision (precision = 24), the gap on the
left hand side of m is 224 (~16 million) times bigger than the other side. Therefore when
underflow occurs it makes an error look enormous compared with a rounding error that you
would make in a nearby region.

What Goldberg’s Variation does is merely fill in this (0, m) gap the same way as on the
right of m. The density is now constant from 2m to zero.

"’

Lecture 7b - May 24, 1988 (revision date June 24, 1988) 9

gradual
.underflow

Now, you see, when you try to create a number in (0, m), you will only make an absolute
error which is comparable with the error you make on (m,2m). That says, at least for
some purposes (when absolute error is important), underflow makes an error comparable
with rounding error. When you expect to add whatever it is that may have underflowed to
something else probably bigger, you will lose no more to gradual underflow then must be
lost to roundoff anyway.

C 2]
'] I b

L a+b]'—:
lost by roundoff

underflow threshold

lost by gradual underflow

Consider adding a and b where a is slightly bigger than the underflow threshold and b is
slightly less. If underflow got flushed to zero, then b is lost entirely. But if underflow is grad-
ual, then the part lost to underflow is the shadowed portion, which is unimportant because
it will be lost in roundoff anyway. This kind of computation occurs so often that it is worth
going to the bother of doing this, especially on machines with a relatively narrow exponent
range. For example, a PDP-11, or a VAX in F and D format has exponent range out to only
10%33; the same is true for IEEE single. Or even an IBM machine, because its range gets
around 10%76, That is a very narrow exponent range. Why I say that will become clear later
when you look at the relationship between the number of significant figures you might carry
and the exponent range, and you will see that you start to feel very uneasy. On the other
hand, it is true that in VAX G or H format, or IEEE double you might be less inclined to
worry about underflow because the exponent range is 1039, and it is not likely to bother
_ most people. It will bother only programmers who are very conscientious. Remember I said:
if -12- < p/q < 2 then p— q is exact. It seems like a valuable property. Unfortunately on ma-
chines that flush underflow to zero, that property will be violated. You see if p,¢ € (m,2m),
then p — ¢ < m will be flushed to zero. If underflow is gradual, however, p — ¢ will be rep-
resented ezactly by a subnormal number. So there is an example of a theorem, which is
preserved by gradual underflow, and lost if you flush to zero. Let’s take another example.
IF (X.NE.Y) ... { Z/(X-Y) willbe O.K.}
That’s a predicate you might see in Fortran. Somewhere else in the program you might see
IF (X-Y.NE.O) ... { Z/(x-Y) willbe O.K. }

However, unfortunately, one of these predicates can malfunction if underflow is not gradual.
On a VAX or on ar IBM 370, if you use IF (X.NE.Y) ..., you may discover X and Y are
allegedly unequal, and then you may go to do that divide but that’s too bad, because X -Y
may underflow to zero. That can’t happen on a machine with gradual underflow. So there
are some valuable uses of gradual underflow. You may find some extensive discussion on
this matter in a paper by Jim Demmel in SIAM J SCI STAT. COMP Vol S5 #4 Dec 1983
pp887-919. In Demmel’s paper there are significant examples where reliable software is
much easjer to write with gradual underflow then without.

-

r N |

i

e

v

Lecture 7b - May 24, 1988 (revision date June 24, 1988) 10

What we have done here is not to extend the exponent range. The extension of range is
inconsequential. What’s happening is that certain kind of theorems are true with gradual
underflow and not with flush to zero. Furthermore, gradual underflow is not something that
was invented for the IEEE Standard. It was implemented for the 7090 and ¥094 in about
1962. It worked and made a lot of matrix codes ran better. In 1966 it was implemented
at Stanford on a Burroughs B5500, a machine that was replaced by an IBM 360/67 in
1967, so it didn’t have a very long life span. It was implemented on an IBM 360 at the
University of Waterloo in 1966 also, but it was never adopted by IBM. It is feasible on IBM
370 hardware, but to make it work, you have to change the underflow trap handler to make
underflow gradual. All codes will continue to work except a test for underflow that tests
whether a number is zero. When gradual underflow occurs, bits can be lost without losing
all of them. So if you have a code that tests for underflow by looking for zero, it could be
fooled. The right thing to do is to test the underflow flag. On an IBM 370 if you enable
the underflow trap, which you must do if you want underflow to be gradual, you would get

an underflow flag. But people in Fortran didn’t want any flags back in 1967, none at all.
[{

[

(m———— Wy
3

.,_..
v

o i -y

prmanee wn
- ;
e N T

‘.

P

B T o)
N NP
U

izé

fow OFTEN AT BesT chsrs SRRT Owax = ££° . -
- B o -—-—--—-—-——-**-'-"."v—-———---— -
Ce o A e . e .
Oun’érj j e‘”{— ? "j'dJ:"Lg an‘c f'd.dIf-* F.
Latevrval F?-I‘ x = FP—I Aqs 7:-,,:':.4/
PP— ‘5”" arjuwmedts 3. F-dJe.
< . . A
Gns‘rc’er -74/'5)‘ 1 - "“/ <x < = < [5
1 -
Tl = ERox - o "é-;.\°f‘°-'
P - € -
o
j'zz; {<%Z‘ J:z“ £" - F v
a‘(J's) = (‘5\:"—513- FT” = (;:1-;)0#(’ <)
P

> 2¢ (s
e 2 codd be vecov-eved '7{'9”‘ g ? z=4/;.

AA——_“

Con:"..’;"-r Srrowad % % 1/P < ;é < X < ; - 1 .

Flas) = ;:;p.(ﬁtf"':: xz_z)‘FP
gy ==x7 1/{9< >‘£’<‘j=z’ < 2° = /
L Mys)= (RS2 .gT = (ErE)F(x)
JE mex =< 1 “+he w —:I wmost (&+32) of
e o o cor be recovered Lo g’ ‘
o AL f¢<—;<z<>:<'/2_ £ : e ——
Her SOCT(vex} = X " : ®
al mos? (X143) of ~le Ais .

/é.&); ¥ /%y

!z‘u'

Ej(evC(ze .

o orren

ExreecT

Assuwt‘ T

AT

S@RT (xYy»e2 = X g

e <

CHr CIE
7

e'[f‘aab;.,, (’:)

A
<, . < >< < ﬁ.

SeRTIrxYrx > = X g

. </
And comsedeoy l < =
S'oe.., “J;"aJ "f'/-Q #a.;j 4-‘9;-' o[
S cwher h
TGy m'l/ e o ‘—-i

§ o D omin g -

) i

-

.

Lo I S I

‘g

" ® me_ me ~ e

N~

132

-

Beck o WHETHCR SORT MxaX) = AbS(¥>
o ovtbmed v .l 7 s'e . J{::-“Q it ra.al:.",, e
LUQ nee d wvse..éf:\- ﬂ'/g 7'{\9 'd-o*g.es
”“"“/'_/7‘71/2)<x<i and 1<z<4//:-3
Sence & ce%)‘fq‘i? argeraeT sas A uf s
C"‘f""-‘“f e/,,“,f \ SORT(xexYT X elsecthers im 4/'/;"'- "/F

-

%fa)(z-;- e [‘ff"sr:w 1 = uﬂb}‘} "OG-'J"‘J Vdj*-& o" ./Q-Vf/““:.’-r‘o-.‘
(erpresscn) £ % ulp (e,fresn;,.\,.

I

Vs //P o < 1 -r-;!a_-'_ 1 u’f »’9: = P'P

1<x<r; e - ‘-r

.
’

.L.ésu w e - My o ecad . o /5 corre /‘f’y rvw.di?e/ .

1
D‘?",'r.r ;" = ,’:x-?j 2.22*7'df-/7?\ : :?’.‘{'."

A

2 = 5'3&'-"/3) = 4/5"‘ ’S.ul{;,("\/; . Sre 07,
o = eror bow.d Lor SQrT Pregranr

Asswm, 1> &= '/2' . O‘.:l/,_ E SerT I mgl;, -r‘ou,o_-"o—-«’.

R o I o T S o e
v .

o
D r. SRR VA L

e o eeasee e e e e e e S et EREE WSt e e
P e e 2 R o et " a % . LRI A SRR LA B S PRI M ST PSR DR AL P St Al e T N AL S
TR T T e T Ty T L T T T e 1 T D T L T L e L T e TR T

..
)

131

Lc
0
»~
N
'y
n
X

o
+
~3
-~
X

VP < 2.—5057/,7'\ <« 1 or { € 2 = SORT/,} < (5
wp (21 = whp 1) =dpl2) '-‘(“P or = éa-p
'
g = =" <.l 2 - OUETE
" l_i:‘ - a swadt oJ egcr
M:\P .
g P p i_;__:.i’l < 1"
“p .

/F‘L.

—

-

-~
.

iy

N -~

_{q ey

B 1

oo
"

e

Ul L

- %

-

- ™

Lol &

‘L

o

»a

™1

el

aut,

»

——— -
i ‘ l
!
i
x = S‘ -+ .. x = 3—7"‘-.:‘
. + =
{ ‘ j
i \.‘: - ‘7
- 24/.9.
Q ' q!':
® o '3-" <. e - Sommanem—
L™] - Eaaad
s “ A4 L
-
4 /4 ;e s
, rr < - - = - o, : T oL
< e X t = 1 V_'j_- 7004 Surely e
, 59("‘/ x,x\ - K
. . - . ’
C‘Y'.‘,'fﬂ xS ,; ; Sewr o) e/ IV Yer k‘_a_f: o*‘ /:
i
]
— .
i.b
S
{»:
-
i
(.
) k..
D
.
.‘(-

33

Ve
(ONCLu SosrsS
I£f o < %. (ce. Swetl¥) = /v = %_uzf a4/ \
¥he SQRT(X+x) = X Y roughod | < x.c-»%/j?,
4
s r~ < J—,f? = 0. b46<e 44 and f__::_
VF e, SRRT/XIX\ = g5 X" oA, ALl X ¢
. . #’
(4 A€’IQ.£(::/ o[E//JAR.» '\7 .
- , / . -— . s
L o~ = Y (7. SmeT forr@..‘)‘; rourdol .
Trey SQRT(X* &Y = 465 /%X’ Ar <l x :r Bg <
Gnrs 4 .
2 Afor é < X < A/-F-; £ @ > <
Dbjlﬂjf avs.un'br,f ,;‘uv,,s 5&27/)("')(}9,6_6:/;,—.‘ -/-:m o4/ /'
N N G T S I O B I s N vy

——

V'O‘M'_dpgj Trow :/'z gerrwrs e,
-

;._9_ L4 r g (o) t | o~ L— _‘4)'.... ¢

]

Rl TR,

Y SR -

L .

cra)l g ae

T

B

"

-

