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1 Numerical Analysis in C 

Consider the problem of computing z • y / z when the final result does not overflow or un
derllow. Is there a way to compute this expression so that none of the intermediate results 
overflow or underflow? Although this appears to be a tricky problem in general, the C 
library provided with UNIX™ (and some other operating systems as well) contains ldexp 
and frexp _library routines which make the problem quite easy. The definition of these 
functions is 

double ldexp( x,n) = x • 2" 

double frexp(x,&n) = z/fk where k is chosen so that 0.5 5 lx/2"1 < 1.0 

As a side effect, frexp sets the variable n to the value k. The variable xis a double, and n 
is of type int. The problem has the following one line solution: 

z • y/z = ldexp(frexp(x, &i) • frexp(y, &j) / frexp(z, &k), i+j-k) . 

There are two problems with this solution. The first is minor; the compiler might evaluate 
the second argument to ldexp before the first, in which case i, j, and k would be unitialized, 
instead of having the values computed by frexp. This problem can be easily fixed by breaking 
the expression into two lines. The second is more serious: frexp and ldexp implicitly assume 
you are on a binary machine. It isn't obvious what ldexp should do on a non-binary machine 
with base /j. If the definition is changed to x/j" it will be exact, but will break code that 
assumed the base was 2. If it is left as x2" it won't be exact. The appendix contains more 
details on frexp and ldexp. 

1.1 Changes to C 

This suggests some chang-es that might be ma.de to C and its standard libraries. The first 
would be to introduce logr: and scalb and use them in place offrexp.and ldexp in new codes. 

' Logb and scalb are recommended in IEEE 854 and are similar to ldexp and frexp, except 
they are defined to use the machines's radix. This would solve the problem mention~ in the 
previous section, namely provide a way of computing z • y/z without overfiow or underllow. 
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The second change has to do with multiword arithmetic. Most hard ware provides access 
to the carry bit after an add instruction, enabling a very efficient multiword add to be 
programmed. However, most high level languages don't give the programme~ access to the 
carry bit. That means that multiword arithmetic packages can't be written both portably 
and most efficiently. To be most efficient it would have to be in as~embly language in order 
to get at the carry bit, but then it wouldn't be portable. This problem would be solved if 
the standard C library provided routines for multiword arithmetic. When C was ported to 
a new machine, an assembly coded version of the multiword arithmetic routines would be 
expected to reside on that ma.chine. 1 

The third change has to do with multi-dimensional arrays. In C, the declaration for a 
one dimensional array doesn't need to specify the size of the array. Thus you can easily write 
a subroutine to sort an array of arbitrary size. However the situation is different for two 
dimensional arrays. The size of one of the array dimensions must be specified as a constant 
at compile time. This makes it awkward to write subroutines that handle two dimensional 
arrays. In particular, it cqmplicates translating numerical routines from FORT RAN to 
C. Its not difficult to add this extension to C. In fact, the GNU C compiler allows array 
declarations to have variable dimensions. 

2 The Case for Guard Digits 

Since floating point hardware can only represent a subset of all floating point numbers, 
most calculations on floating point hardware will incur some error. An earlier lecture 
discussed how the addition of a guard bit could make subtraction more accurate. Does 
this one extra bit really matter? Here's an example where it does. The appendix discusses 
Heron's formula Js(s - a)(s - b)(s - c). This formula is numerically unstable, and can 
give inaccurate results for triangles that are needle-like, that is, where the length of one 
side is close to. the sum of the lengths of the other two sides. The appendix shows a way to 
rearrange the calculation so that it is stable. The proof uses the fact that if 1/2 S p/q S 2 
then p- q is exact. This fact holds on hardware with a guard digit, but may not hold on 
other hard ware. 

In other words the guard digit is important not because it adds one more bit of accuracy, 
but because it guarantees an algebraic relation that lets you reason about computations. 

3 Error Analysis of Inner Products 

Recall that the classical model of roundoff error goes like this. If X, Y, and Z are the names 
of variables, and if x, y, and z a.re their values as represented in the computer, a.nd if a 
program assigns X = y ® z' then z = (y ® z )(1 + e), where 1e1 s E, and E is a constant that 
depends only on the floating point hardware being used. We-previously used this model 
to analyze polynomial arithmetic. In this section, we will use it to study scalar products. 
The formula for scalar product is S = Li=t A;B;, or to put it another way, S = Sn., where 
So= 0 and S; = S;-1 + A;B;. In the classical model this means that 

s; = (s;-1 +a;· b; • (1 + r;))/(~ - u;), 
1 A future lecture will present an efficient method of multiword arithmetic for ma.chines that don't provide 

access to the carry bit. 
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where lr;I < E, lo-;I < i, and so= <io = O. Multiplying thru by 1- u; gives 

(s;-- s;_i) - a;b; = s;o-; + a;b;1r;, 

and then summing on j gives the error 
n n • n 

Sn - I:a;b; = Ea;bpr; + I:s;u;, 
1 1 2 

and ta.king the absolute value gives the error bound 

n " n 
lsn - L a;b;I S t(L la;b;I + L ls;l). 

1 1 2 

3 

So if a program that computes a.n inner product also wa.nt.s to compute an error estimate, 
it could use the following program to compute E. 

s = O; ECO; f 

if N > 0 then { 

} 

E = -IA[1] * B[1]1; 
for j = 1 to N do { 

P = A [j] * B (j J ; 
S = S + P; 
E = E + ISi + IPI 

} 

A bound for the error would then be E•E. This calculation shows the usefulness of an add
magnitude instruction (that is, an instruction that takes the absolute value of a register 
and adds it to .another register). Ha machine has an add•magnitude instruction, then the 
calculation above can be performed with fewer instructions and using fewer registers. 

One thing you might notice a.bout the error is that it ca.n be bigger than the inner 
product E a;b; itself. Is this is an anomaly that would go a.way with a different kind of 
error analysis? The answer is no. Interval analysis may give a slightly tighter error bound, 
especially on a base 16 machine. The reason is that the ulp can be smaller than E by a factor 
of /j, but this is ignored by classical error analysis. When /j is 16 this could make error 
bounds from interval analysis as much as 16 times smaller than the one above. However 
when the inner product is close enough to zero, that is the vectors ii and bare close to 
orthogonal, the error will become larger than the inner product no matter what kind of 
error analysis you use. 

The error committed in computing inner products can be reduced slightly by sorting 
the numbers. However, a much better way of reducing the error is to use distillation, which 
will be covered later. Distillation improves precision by splitting a, and bi into two pieces 
of equal size, and computing aib, using four multiplies. 

3.1 Backward Error Analysis 

We can also do a backward error analysis for inner products. Looking at the formula 

e1161 (1+1r1 l+e1262(1+"2l + a b ( 1 + 1r ) 
t'-0'2 3 3 3 

Sn= 1- 0"3 •• ·., 
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we see that if we set 

, b' a1b1(l + 1r1) 
al 1 = (1- 0'2)(1 - 0'3) • • • (1 - O'n) 

, b' a2b2(l + 1t2) 
a2 2 = (1- 0'2)(1- 0'3) •··(l- O'n) 

then Sn= E a~b~ exactly. That is, the error in Sn can be thought of as coming from errors 
in the input. From the formula above, the error in computing an inner product of n terms 
can be accounted for by an error of about n places in the last digits of the ai and bi. For 
more details, see J.B. Wilkinson's book Rounding Em-ors in Algebraic Processes. 
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double frexp( x. &.N) 

double X 
int N 

and frexp sets N 

1/2 i abs( frexp(X, 

X, Y, Z, Q; 
i, J, k ; 

= 2N*X • and 

= X/2N with 

as a SIDE-EFFECT 

&.N) ) < 1.0 
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f 
1 More on quotient 

The floating point numbers are represented in a rather specific way in order to handle certain 
kinds of problems. One of them was the one that a.rose_ on the Cray. Here I generalize it a 
little bit. Assuming O < X < Y, should you expect AMOD(X, Y) to return X and not, as 
the Cray did, to return X - Y < 0 ? I explained that happened on the Cray because the 
divide on the Cray is a little bit hard to predict. On all other machines, given O < X < Y, 
the quotient (X/Y)round.ed. is always strictly less than 1. That is true on IBM machines, 
Burroughs', DEC's, calculators, Sun's, and so on, but not true on the Cray. And that 
was the problem that led to the letter (in real life) that I para.phrased for distribution in a 
previous lecture. Often AMOD is programmed as 

X- LX/YJ ·Y. 

The trouble with this formula is that the rounding errors in the quotient and the multipli
cation can cause too much damage even before the subtraction. 

There are machines which do AMO D correctly in the sense that you get an exact result. 
For example: thme machines that have IEEE remainder in them, the Dec VAX running 
under VMS (VMS fortran library), and APL running under IBM 370. 

But on machines that merely use the above formula for AMOD, rounding each term, 
one could ask a reasonable question: assume 0 < X, 0 < Y, will AMOD(X, Y) assuredly 
return a non-negative result? For some machines like IBM 370 the answer is yes, and 
easy to prove. On an IBM 370 the quotient and multiplication are chopped, making the 
result of computing LX/Y J • Y always a little smaller than X, a.nd hence the subtraction 
is always non-negative. Perhaps it is for that reason that people haven't noticed that on 
many occasions the AMOD on IBM 370s returns a result that is bigger then Y, violating 
the definition of AMOD. 

Now consider the following question: Choose the positive integer m = 1, 2, or 3. Suppose 
for real z and y that O < z < m • y. 

I Must computed(x/y) < m? I 

1 
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when m=l: Yes, comJ1Uted(z/y).< m for every radix, every reasonable rounding.·. 
Proof. Say {JP-1 S 1J S /JP,0 •< z < 11• Max(z/y) occurs when z = 11 - 1. Then 
z/y = 1-1/y S 1- {J-": H~ce comJ1Uied(z/1J) S ~ -/J-",.._ <.l . 

¥ . 

R.e,,-uentmble! 

when m=2: Yes for radix /J = 2; No for even radix ·(j > 4; Try z .= /J" - 3, 1/ = ½/J" - 1. 

when m=3: No. Try {J = 2,z = 3 • 2" - 4,y = 2"- 1. 

Exercises. 

1. Prove that the computed value of 

2.0.x 
l.0+X•X 

C&DJ1ot exceed 1.0 for any floating-point X if· arithmetic is rounded correctly, or 
chopped correctly. f 

2. For what ranges of floating-point numbers X will the expression (X - 0.5) • 2.0 + X 
be computed ezactly? The answer depends upon the radix; try 2,10,16. 

• 3z-1 

---------~ X 

Remark on exercise l. Despite 3 or 4 rounding errors (2.0•X in general is not exact because 
the machine may not be binary), you can prove that the displayed quantity can never exceed 
1. But you cannot prove it by using the €-like model that we used for polynomial and scalar 
product. This is a valuable thing because often people who do this are going to compute 
something like arcsin( 1;~2) ( the function arcsin cannot accept arguments greater than 1 ). 

Remark on exercise 2. The second exercise has to do with the comment that was made 
towa.rd the end of lecture 6. The expression (X- 0.5) • 2.0 + X happens to be computed 
exactly in the neighborhood of the place it vanishes. The expression looks like 3z - 1 rear
ranged in a funny way. It would vanish when X equaled 1/3, but 1/3 is not representable, 
so that can't happen. If Xis near 1/3, it will in fact never vanish. If you believe a.n equation 
solver should be made to stop when the function vanishes, or when it is smaller then the 

- rounding ·error in the computation, then this is an instance for which your. program will 
never stop (because there is no rounding error). 

' I I 
-~4-



Lecture 7b - May 24, 1988 ( revision date June 24, 1988) 3 

Everybody who works in the cus~onier support department in a computing company is 
exposed to this problem from time to·time when naive customers complain that the square 
root of a. square ( or the square of a. square root) didn't come ba.ck. Here is a.n eocample using 
10 significant decimals rounded correctly (n~t chopped; why not?): . 

Let z = 0.31622 77661 
z2 = 0.10000 00000 53 ... 

'-+ 1J - 0.10000 00001 = z • z rounded 
~ = 0.31622 77661 76 ... 

'-+ z - 0.31622 77662 = ~rounded 

Hence SQR7(z • z) ~ lzl here. 

Notice that in ea.ch insta.ncq rounding has been done in the best possible way. Since the 
relation is not satisfied in general we can ask for what proportion of numbers z can we 
expect SQRT{z • z) = lzl? We find 

for 0.5 < z < v'io 
.Jio <z<5 
v'io < z < v'iiIT 

All! 
a.bout 82% 
about 63% 

In general if v'oT < i < z < z < 0.5 the proportion of SQRT( z * z) = z is about z + z. 
These figures a.re obtained experimentally but it is possible to show that you couldn't do 
better than that. It is· impossible, no matter how you round, to satisfy the identity with 
higher proportion in those particular ranges. I am going to show you how to deal with this 
problem, up to a point. 

3 How often at best can SQRT(X * X) = IXI? 

3.1 A ~ounting Argument. 

Assume p significant digits of radix /J in the usual notation. How many :floating-point 
numbers lie in a /J-ade (all the numbers that have the same exponent)? Since the answer 
depends only on the word size, we simply choose a typical /J-ade interval (/JP-1 , {3P - 1) and 
count. It happens that all floating-point numbers in this interval are integers and one can 
easily see that there are /JP - /JP-1 of them. 

1. Consider first 1 < i < z < i < ..flJ < {J. The range of 1J = z2 is 1 < i 2 < '!/ < z2 < /j. 
The number of z 's and 1J 's are 

#(z's) -
#(y's) 

5:t ~ (/JP - /JP-1) = (z - z) • /JP-1 
_ (z2 - ! 2). /jP-1 = (i + i) • #(z's) 
> 2 • #(z's) 

Hence z could conceivably be recovered from y: z = ,fi. 
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1 

2. Consider second .Jf < .£ < z < i < 1. The range of y = z2 is¼< x 2 < y <.i2 < 1. 
The number of z's a.nd y's are 

Thus 

#(z's) = 1~ljp . (P' - p,-1) = (i - x). p, 
#(1,'s) = (i2 - x2) • p, = (i + x) • #(z's) 

If z + z < 1 then at most ( i + x) of 
the z's can be recovered from y's. 

Hence if¼< x < z < i <½then SQRT(z • z) = z at most (z + x) of the time. 

1 
7J 

1 
7! 

1 
i 

shrunk by squaring 

1 
2 

Exercise. How often at best can we expect SQRT(z) • SQRT{x) = z? Assume p significant 
digits of radix P, and consider 1 < x < z < i < {J. Show that the fraction of such z's for 
which SQRT(z) • SQRT{z) = z cannot exceed 

1 1 
,Ii+ y1.< 2· 

3.2 More analysis on whether SQRT(:c * :c) = lxl. 
We need consider only the ranges max( ./fTP, ½) < z < 1 and 1 < z < ,//J, since a counting 
argument says that we cannot always expect SQRT(z•z) = x elsewhere in ../fTP < z < ../71. 
We will use the following notation: 
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(expression] = correctly rounded value of (expression) 
= (expression)± ½ulp(expression) 

ulp{ X) ·_ { {3-P if ¼ < X < 1 
- ~l-p if 1 < X < /3 

We also assume multiplication is correctly rounded. Define 

y = 
z = 

(x • x] 
SQRT(y) 

= x2 + '1 • ulp(x2) 

= Ji+ ' • ulp( Ji) 

5 

where u = error bound for SQRT program. SQRT is usually done in software, and the 
question is how accurate the software has to be in order to be able to satify the identity 
z = x. If SQRT is correctly rounded, then u = ½• Otherwise one could expect a.n error 
bound up to a.bout a. unit in the last pla.ce on a rea.sona.ble quality SQRT program. Note 
tha.t the IEEE standard requires a. correctly rounded square root. On a VAX, a is less than 
something like 0.50001. So let's allow a.n error bound a little bit looser than the perfect 
SQRT program. We assume 1 > u 2: ½• 

The interval .Jf[li < {x : x ¢ 1} < His chosen so that we always have ulp(x) = 
ulp(y) = ulp(z) (to simplify the error analysis). Here is the reasoning for ,JfTP < x ~ 
1 - p-P: 

,JfTP < X S 1 - /3-P 
==> ¼ S Y = (z • X] S 1 - 2,8-P 
==> ¼ < z = SQRT(y) S 1 
==> ulp{x) = ulp(y) = ulp(z) = p-P. 

And here is the reasoning for 1 + pt-p S x < v'lJ: 

1 + pt-p S X < v'7J 
==> 1 + 213t-p S y = (x • x] S ,8 
==> 1 S z = SQRT(y) < /3 
==> ulp{x) = ulp(y) = ulp(z) = {31-P. 

Soy= x2 +fl•ulp and z = y'y+( •ulp. Now although z may not equal x, the difference must 
be a multiple of ulp. Hence lz - xlf ulp must be a small integer, and "z = x" is equivalent 
to "lz - xl/ulp < 1". Our question is then 

How accurate must SQRT be (i.e., how small u ~ 1(1) to imply ~ < 1? 

This question turns out not very hard to answer. In general, evaluation of J(p) - f(q) can 
be rewritten as J{p)-/(q) x (p-q) And /{p)-/{q) ·ca.n often be simplified a lot symbolically if p-q • p-q 
/ is a.n algebraic function ( something that you compute with a finite number of+, - , x, +, 
and .;, or you solve a equation with the left hand side of the equation computed that way). 
In our case, it is the square root function, a.nd we have 

Thus, 
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Z-% 

ulp 
_ (Ji+(: ulp}- v'Y - '1 • ulp 
- . ulp 

'1 
=(+vj+z 

TJ ~,+-2.jj 

6 

••• % = VY - TJ. ulp (, 

near enough provided the radix is not equal to 4 (you have to do something differently when 
/j = 4). Therefore, if we take a bound for ( a.nd a bound for TJ, we arrive a.n approximate 
bound 

If er :S t := 1 - 0.25/.../i then surely )z - zl/ulp < 1, a.nd hence SQRT(z • z) = z. The 
critical value oft is ½, since we can't keep cr < ½• Here we plot the graph oft := 1-0.25/ ..fy 
as a. function of y: 

Y - 1 -m 

; 

l 

f 

½ 1 2 
y is on a. logarithmic sea.le 

4 8 

1 

! 
4 

0 
16 

t(y) = 1- 75 

The graph a.hove shows that, if y = z2 falls into the region where t(y) ?!: ½, then it is 
possible that SQRT(z • z) = lzl, provided that cr :S t(y). For a binary machine the range 
for y(= z2) is ½:Sy :S 2. On that range t(y) ?!: t(½) = 1-1/../8 = 0.6464466 .... So for a. 
binary ma.chine you don't need a perfect SQRT.program in order to get SQRT(z • z) = )zl. 
Therefore, checking that identity on a binary machine is not a good test for square root. In 
quaternary, the bound is not good enough around y = ¼ and we will look at that later. 

What about a hexadecimal machine? If you have a number in [¼, ½1, then its square 
will fall into [ ,k; ¼1- Since t(y) < ½ in that region, there is just no way to get the square 
root of a square always to come back. There are simply not enough eligible squares ( certain 
distinct numbers in that region will have their squares coalesced after· rounding). But we 
do expect the square root of a square to come back if the SQRT is correctly rounded a.nd 

1 • 
y ?!: 4• 



Lecture 7b - May 24, 1988 (revision date June 24, 1988) 7 

3.3 Conclusions 

1. if u < j (i.e. error in SQRT(Y} is bounded by julp( v'Y)) then ~QRT(X * X) = X 
• throughout 1 S XS -llJ. 4 

2. If u < 1 - 1/~ = 0.6464466 ... a.nd /3 = 2 then SQRT(X ~ X) = IXI for all X (a 
benefit of binary). 

3. If u = ½ (i.e. SQRT is correctly rounded) then SQRT(X • X) = fXI 

• for all X if /3 S 4, 

• for ½ < X < ,H if /j > 4, 

• but not for all X in the range '1lfP < X < ½ if /3 > 4. 

4. For qua.ternary, /j = 4, it is not necessary for SQRT to be correctly rounded in order 
to ha.ve the identity. Tl/-ere is a delicate argument tha.t shows SQRT{X •X) = IX( for 
all X only if the result is computed with more tha.n half a.gain as many quaternary 
digits as you will return, and then rounded. 

~: !xx ........ 11 ....... xxxl 

rounded &om 3/2 accuracy. 

5. I hope you can appreciate tha.t none of the proofs I showed above will work if all we 
ha.d was the sta.nda.rd model. If you use the i-model, it's too weak to permit us to draw 
appropriate conclusions. Instead, by knowing exactly how the arithmetic works you 
ca.n rigorously prove certain empirical observations not explainable by conventional 
means. 

4 A Preview of IEEE Arithmetic: Gradual Underflow 

In the next lecture I will tell you more about IEEE arithmetic. You have already had some 
idea of how we do error analysis and that will help to justify sorr.e of the things in the 
standard. For instance, we can understand why the standard specifies binary arithmetic 
at least in 754 because binary is clearly best. There are things that work in binary that 
don't work in any other radix. An example is the square root of a square (it also works for 
quaternary but I don't think anybody would use quaternary). So you can understand one 
of the reasons for binary. The other reason is that when you use the cruder argument for 
your error analysis the error bound that you got could be sloppy by factors as big as the 
radix. That's why we choose a small radix instead of a big one in order to avoid this type 
of :floppyness ( called "wobbling precision"}. • 

X = I± I e:i:ponent I 
t 

implicit bit 

fraction 

The standard takes a.dva.ntage of the fa.ct tha.t a. normalized number in binary always 
has a leading bit 1. You can imagine there is a 1 just before the fraction digits for almost 
all the numbers ( there are some exceptions). The leading bit of a normalized floating-point 
number is always non-zero, so why bother to store it? You gain a little bit of memory 

j 
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space. This means in consequence the IEEE Standard single precision word is noticeably 
better than other machines (they. exist) that use an explicit leading bit. Where does this 
tri~k come from? Well, it's actually call Goldberg's Variation, it appeared in Comm. ACM 
sometime around 1961. He really wrote an article to explain why an IBM 70bO, which has 
27 significant bits, really wasn't quite so good as 8 significant decimals. He said if they had 
merely put in one more bit, which they could have done as above, then everything would be 
fine and they would have 28 bits with the same word size, always better than 8 significant 
decimals. 

Goldberg was also responsible for gradual underflow. The numerical interpretation of a 
typical floating-point representation is 

X = ±2e:ponent-Bia• • {l + .fraction), if exponent > 0 • {l) 

You may ask why not use exponent ~ 0 in {1)? (On a VAX, "exponent= 0" is a signal 
that the whole result X will be regarded, regardless of fraction, as zero if the sign is positive, 
"Reserved Operand" if negative. Why IEEE doesn't ao that will become clear later.) But 
when exponent= 0, you simply could move the implicit leading 1 to the exponent field as 
is done below. 

X = ±21-Biaa • (0 + .fraction), if exponent = 0 

This was invented by Goldberg. It provides "gradual underftow". Actually I implemented 
it in a 7090 at about the sa.me time. It works. 

A picture may help to understand the meaning of gradual underflow. We can consider 
only positive floating-point numbers. In this whole scheme there is a smallest normalized 
number m = 21-Biaa. 

I 
0 m 2m 4m 8m 

(m=21-B•a.) 

Here each vertical tick stands for a floating-point number. Please observe that each time 
you cross a power of 2, the density of numbers changes by a factor of 2. In other words, the 
gap on one side of the power of 2 is twice ( or half) as big as the gap on the other. But what 
is going to happen at m? The figure above shows what happened on a VAX: underflow 
gets :flushed to zero. Unfortunately that means that when an underflow occurs the error 
is comparable with the gap between O and m, which is enormously bigger {relatively and 
absolutely) than the error in numbers that you try to create somewhere in the next binade 
( m, 2m ). If you create a number in ( m, 2m ), it will be rounded to one of the :floating-point 
number in that range and the error would be bounded by m-2-prcciaion, but over the region 
{0, m) the error could go up to m. The ratio ofthe rounding error bound across m is thus 
something of the order of 2Jn'eciaion. So for single precision (precision = 24), the gap on the 
left hand side of mis 224 ( -16 million) times bigger than the other side. Therefore when 
underflow occurs it makes an error look enormous compared with a rounding error that you 
would make in a nearby region. 

What Goldberg's Variation does is merely fill in this (0, m) gap the same way as on the 
right of m. The density is now constant from 2m to zero. 
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-~~w lll'j'l1~11111.ll~ I 

4m Sm 

aubuarmal numbers 

Now, you see, when you try to create a number in (0, m), you will only make an absolute 
error which is comparable with the error you make on ( m, 2m ). That says, a.t least for 
some purposes (when absolute error is important), underflow makes an error comparable 
with rounding error. When you expect to add whatever it is that may have underflowed to 
something else probably bigger, you will lose no more to gradual underflow then must be 
lost to roundoff anyway. 

-: ,:_f .Jl--
4

...::~:b ===!=. :=i=~==r IC16t by graduaJ underflow 

lost by roundoff 
underilow threshold 

Consider adding a and b where a is slightly bigger than the underflow threshold and b is 
slightly less. H underflow got flushed to zero, then bis lost entirely. But if underflow is grad
ual, then the part lost to underflow is the shadowed portion, which is unimportant because 
it will be lost in roundoff anyway. This kind of computation occurs so often that it is worth 
going to the bother of doing this, especially on machines with a relatively narrow exponent 
range. For example, a PDP-11, or a VAX in F and D format has exponent range out to only 
10=38; the same is true for IEEE single. Or even an IBM machine, because its range gets 
around 10=76• That is a very narrow exponent range. Why I say that will become clear later 
when you look at the relationship between the number of significant figures you might carry 
and the exponent range, and you will see that you start to feel very uneasy. On the other 
hand, it is true that in VAX G or H format, or IEEE double you might be less inclined to 
worry about underflow because the exponent range is 10::1::3os, and it is not likely to bother 

. most people. It will bother only programmers who are very conscientious. Remember I said: 
if ½ S p/ q S 2 then p - q is exact. It seems like a valuable property. Unfortunately on ma
chines that :flush under:flow to zero, that property will be violated. You see if p, q E ( m, 2m ), 
then p- q < m will be flushed to zero. If underflow is gradual, however, p- q will be rep
resented ezactly by a subnormal number. So there is an example of a theorem, which is 
preserved by gradual underflow, and lost if you :flush to zero. Let's take another example. 

IF (X.RE. Y) . . . { Z/(X-Y) will be 0.K.} 
That's a predicate you might see in Fortran. Somewhere else in the program you might see 

IF (X-Y. HE. 0) . . . { Z/ (X-Y) will be 0.K. } 
However, unfortunately, one of these predicates ca.n malfunction if underflow is not gradual. 
On a VAX or on an IBM 370, if you use IF (I.HE. Y) ... , you may discover X and Y are 
allegedly unequal, and then you may go to do that divide but that's too bad, because X-Y 
may underflow to zero. That can't happen on a machine with gradual underflow. So there 
are some valuable uses of gradual underflow. :You may find some extensive discussion on 
this matter in a paper by Jim Demmel in SIAM J SCI STAT. COMP Vol S 14 Dec 1983 
pp887-919. In Demmel's paper there are significant examples where reliable software is 
much easier to write with gradual underflow then without. 
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What we have done here is not_toextend the exponent range. The extension of range is 
inconsequential. What's happening is that certain kind of theorems are true with gradual 
underllow and not with flush to zero. Furtliermor~, gradual underflow is not something that 
was invented for the IEEE Standard. It was implemented for the 7090· and f094 in a.bout 
1962. It worked and made a lot of matrix codes ran better. In 1966 it was implemented 
at Stanford on a Bunoughs B5500, a machine tha~ was replaced by an IBM 360/67 in 
1967, so it didn't have a very long life span. It was implemented on an mM 360 at the 
U Diversity of Waterloo in 1966 also, but it was never adopted by IBM. It is feasible on IBM 
370 hardware, but to make it work, you have to change the underflow trap handler to ma.ke 
underflow gradual. All codes will continue to work except a test for underflow that tests 
whether a number is zero. When gradual underflow occurs, bits can be lost without losing 
all of them. So if you have a code that tests for underflow by looking for zero, it could be 
fooled. The right thing to do is to test the underflow flag. On an mM 370 if you enable 
the underflow trap, which you must do jf you want underfiow to be gradual, you would get 
an undedlow flag. But people in Fortran didn't want any flags back in 1967, none at all. 

f 
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