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1 A Peek at the IEEE Standard 

Before we discuss several features of the IEEE standard for :floating-point arithmetic, the 
following two misprints in the document ANSI/IEEE Std 854-1987, IEEE Standard for 
Radix-Independent Floating-Point Arithmetic, should be noted : 

1. On the right hand column of page 8, replace 

(i) Numbers for the form (-l) 8 bE(dod1d2 • • • dp-1 ), ... 

by 

(i) Numbers for the form (-l) 8 bE(do. d1d2 • • • dp-1), ... 

2. At the bottom of the left hand column of page 16, replace 

For x positive and finite, ... 

by 

For x nonzero and finite, ... 

1.1 Radices 

The IEEE standards do not permit as many different radices as they appear to allow. Even 
though the IEEE standard 854 is "Radix-Independent", radices 2 and 10 are the only two 
supported; IEEE standard 754 allows only radix 2. The restriction on the radix does not 
appear anywhere else in the text of the 854 standard aside from the statement indicating 
the restriction. The reason for the limitation is ma.inly political more than anything else. 
There is no way for IBM or its imitators, all of whom use hexadecimal as radix, to conform 
to the rounding schemes of the IEEE standard without massive changes to current code. 
For the same reason it is inconceivable for Burroughs, which uses octal as radix, to conform 
to the standard. As a consequence, it serves no purpose to support octal, hexadecimal 
or other radices beside binary or decimal, since it is unlikely that IBM or Burroughs will 
redesign their old products to conform to any IEEE standard. The. IEEE standards are, 

1 



Lecture 8 - May 26, 1988 (notes revised June 13, 1990) 2 

therefore, applicable to new machines designed and built in recent years, most of which use 
binary or decimal radices. 

The reasons for preferring binary radix, '{3 = 2, to decimal radix, f3 = 10, or vice-versa, 
are very weak. Decimal radix is most appropriate for people who actually look at the 
output. The HP 71B, which uses radix 10, conforms to the IEEE 854 standard almost 
perfectly. Unfortunately, there are not many machines which conform to the standard 
and use radix 10, so there is not much software for these machines. Until there are more 
of them there will not be much software designed for them, and until there is sufficient 
software support people are reluctant to build these ma.chines. This vicious cycle is unlikely 
to be broken. 

Lots of machines conform to the IEEE standard 754 using radix 2. The reason for 
preferring f3 = 2 is not primarily because people don't want to see the output, but because 
binary has many advantages: simpler error analysis, for instance. 

Consider the following statement in a language like Fortran : 

X = B □ C, 

where D is a floating point operation like +, -, x or /. Because of the way numbers are 
stored in memory, we actually find that 

X = (b D c)(l ± e), 

where x, b, c are the respective values stored for the variables whose names are X, B, C 
and ±e is a small quantity introduced by roundoff. The trouble here is that the small 
perturbation e is not bounded sharply. Because of the way floating point works, the bound 
e is pessimistic for some numbers: pessimistic by a factor {3, the radix used. When we 
consider representable numbers less than and greater than 1.0, we see that the gaps for the 
numbers greater than 1.0 are larger than those smaller than 1.0. In fact, the gaps between 
representable numbers greater than 1.0 are f3 times larger, as shown below: 

I I I I I I I I I I I I -
1.0 {3 X 6 

Since the uncertainty { is a bound for all possible errors, it must be able to accommodate 
errors arising from representing numbers both to the left and right of 1.0. Therefore, the 
uncertainty e is especially pessimistic for results x just smaller than a power of the radix 
when a large radix is used, which makes error analysis somewhat ugly. 

There is a peculiar propensity among micro~optimizing programmers to optimize certain 
kind of expressions. For example, consider the following : 

constant C = 1.003215 ... 

E=XxC 
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A conscientious programmer may replace the above code by 

constant D = 0.996795 ... 

E=X/D 

3 

where the constant D ls the reciprocal of the constant C. The reason for using D instead 
of C is because the expected magnitude of a rounding error for C is /J times that for D. 
The fact is that until we actually consider the values of C and D closely, we don't really 
know the exact rounding error in each case. There are lots of examples where C is a better 
approximation than D. However, since we usually do not know the actual digits of C and 
Dor what machines the program is supposed to run on, we may just divide X by D to be 
on the safe side. 

Tricks such as those described above are actually used in practice. For instance, in the 
implementation of certain transcendental functions in the library, constants which suffer 
from less rounding error are used except when divisions are too much slower than multipli
cations. 

Another way to compute E, more accurate than the previous two schemes, is by 

E=X+CX 

where C = C-1. Since C is very close to 1.0, C is quite small. As a result the rounding error 
in representing C and in the multiplication are inconsequential, so effectively there is just 
one rounding error, that is, in the addition. The. trick here is to throw in an extra arithmetic 
operation, the addition; in most cases, the total cost of an addition and a multiplication is 
less than a division. 

1.2 Why Use Large Radices? 

1.2.1 Eff'ect of Radix on Speed 

Why did IBM use hexadecimal radix? IBM's decision to use hexadecimal as its radix is 
based on some experiments performed by Sweeney. He discovered that, on binary machines, 
the shifts resulting from normalizations are usually short, often less than 4 bits. In other 
words, results obtained from arithmetic operations seldom require long normalization shifts 
of 4 bits or more. There is a proponderence of short shifts because shifts arising from 
multiplications and divisions are at most 1 bit, and even additions and subtractions rarely 
encounter massive cancellations. 

Sweeney reasoned that if we forego short normalizations, computations can go consider
ably faster. His reasoning led to the idea of using hexadecimal as the radix in :floating-point 
number representation. 

Consider the way floating point-numbers are represented in the IBM 790 : 

± I exponent+DIAS I . d1d2 
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If d1 = 0 normalizations are needed when the radix /3 = 2. Sweeney's tests indicate that it 
is quite rare for d; = 0 where j = 1, ... , k ~d k 2:: 4. If a hexadecimal radix is used, no 
normalization is needed when k :5 3. Thus, Sweeney's results suggest that we seldom need 
to normalize if hexadecimal radix is used, which means that much time can be saved. 

Actually there is another reason for using hexadecimal radix besides the reduction in the 
incidence of normalizations. Computers like the IBM 360 Model 30 had 1 byte wide busses. 
Because memory is accessed in bytes, it appeared that one could microcode arithmetic to 
run faster if one does not use single bit shifts, but uses nibble (half-byte) shifts instead. 
However, it turns out that the running time was lengthened for machines such as the the 
IBM 360 Model 65 and 75 because they had hardware for arbitrary binary shifts and were 
slightly slowed when restricted to nibble shifts. 

1.2.2 Effect of Radix on Precision 

The floating point representation for single precision numbers on an IBM machine is shown 
below: 

± exponent+64 

Three leading 
bits can 

vanish in a 
normalized 

number 21 bits 

7 bits 24 bits 

whose range is from ±2- 260 = ± 16- 65 to ±2 252 = ± 1663 . The IEEE standard's single 
precision numbers are represented as : 

± 

implicit 1. 
! 

exponent+64 I d1d2 

8 bits 

whose range is from ±2- 128 to ±2 128 . . .. 

23 bits 

For the IBM computers, a normalized number may have zeroes for the first three bits 
of its significand field, so in the worst case there are just 21 bits of precision. The IEEE 
standard, on the other hand, has 24 bits of precision (23 bits in the significand and 1 
implicit bit). Thus, although the range for the IBM machines is larger than that of the 
IEEE standard's, the latter has 3 extra bits of precision. 

On the IBM 7094, which had 27 bits in the significand field and about the same range 
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as IEEE single, there were not many complaints about underflow and overflow problems. 
The drop from 27 to 21 bits of precision was a major disaster. When 21 bits were used, 
the effect of roundoff became very apparent; programs which worked fine when 27 bits w.ere 
used suddenly gave strangely inaccurate results. 

This drop in the number of bits crossed the magic threshold where a rule of thumb 
states that one should carry at least about twice as many bits in the intermediate values as 
in the accuracy desired (see the discussion on A Rule of Thumb for Working Precision in 
lecture 2). H the number of digits used is more than the threshold, the chance is high that 
we will not see the effects of roundoff in the computations except in numerically unstable 
algorithms; in such algorithms, the best solution to circumvent problems due to roundoff 
error is to use a more stable algorithm, if available. Engineers often require about 12 bits 
of accuracy, so 27 bits are above the threshold whereas 21 bits are below. As a result of 
this phenomenon, single precision numbers with hexadecimal radix acquired a very bad 
reputation. 

So the attempt to speed up floating-point arithmetic on a range of machines, by using 
hexadecimal radix, actually slowed down faster models. Furthermore, there is no evidence 
indicating that Sweeney performed his experiments on hexadecimal machines. If Sweeney's 
experiments were performed just on binary machines, his results may not apply to hexadec
imal machines. 

For reasons stated above the IEEE 854 standard does not include hexadecimal radices. 

1.3 Single and Double Precisions 

1.3.1 Exponent and Significand Widths 

First consider the IEEE 754 standard floating point formats. The single precision format 
has 32 bits as depicted below : 

IEEE Std. Single ± 

Implicit 1. 
i 

rucponent+127 I d1d2 

8 bits 

and the double precision has 64 bits as shown below: 

23 bits 
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IEEE Std. Double 

lµiplicit 1. 
·•• i 

± exponent+1023 I d1d2 

11 bits 

6 

52 bits 

We will discuss another format in the IEEE standard, the extended format, in future lec
tures. The exponent widths of the single and double formats are different, 8 and 11 bits 
wide, respectively. 

Consider another machine, the DEC Vax, whose :floating point formats are quite similar 
to those of the IEEE standard. Its single and double formats are 32 and 64 bits wide, 
respectively, and are illustrated below : 

Implicit 1. 
i 

DEC Vax Single ± exponent+ 129 I d1d2 d22d23 

8 bits 23 bits 

Implicit 1. 

' 
DEC Vax Double ± exponent+129 I d1d2 ds4dss 

8 bits 55 bits 

The single and double formats are called "F" and "D" formats, respectively. There were 
rumors that DEC received numerous complaints about the D format because those of its 
customers who had come from using CDC Cybers too often encountered severe overflow and 
underflow problems. DEC introduced a new format, first in software then in microcode, to 
solve this problem. This new format, called the "G" format, is shown below: 

DEC Vax G Format ± 

Implicit 1. 
i 

exponent+1025 I d1d2 

11 bits 52 bits 

It has 11 bits in the exponent field. Note that the DEC Vax F and G :floating point formats 
are quite similar to those of the IEEE standard. However, in all of DEC's Vax formats, when 
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exponent+BIAS=0, the rest of the significant bits d; are ignored: the number is treated as 
zero if the sign is "+", as a "reserved" operand if the sign is "-". The latter precipitates a 
trap when used as an operand for any floating point operation, even a MOVE. 

What is actually wrong with the D format? Its exponent range is too narrow for its 
precision. The D format has 55 bits of precision, which means that the roundoff error,(, is 
of the order 2- 55 . Unfortunately, the smallest representable number on this machine is just 
2- 128. This means that if we cube the roundoff error, it will underflow as a consequence. 
Taking cubes of numbers are not uncommon; it arises quite often in many interesting matrix 
algorithms, such as the QR algorithm for solving eigenproblems. This means that on the 
DEC Vax D format, underflow may occur for certain algorithms, and the program will 
terminate prematurely. Ideally, we would like to be able to raise the rounding errors to at 
least the fourth power without any underflow problems. Notice that this requirement is 
satisfied by the F and G formats. 

1.3.2 Portability of Programs 

There is another kind of trouble which one has to deal with when porting programs between 
various computers. This problem has nothing to do with what was discussed previously, but 
arises because of the peculiarity of some computer languages that do not defend programs 
from mistyped arguments. For instance, assume that we have a function : 

function foo (A, ... ) 
single A 
{ 

} 

and in the main program, we have: 

double D 

• • • foo (D, ... ) 

Here, we have a situation where an argument declared as of double format is passed to 
a function which expects the argument to be of the single format. On a DEC Vax what 
happens appears to be pretty innocuous because the single precision number which foo() 
expects is within a rounding error of the first 4 bytes of the 8 byte double precision number 
as shown below : 

± I exponent+BIAS I d1 • • • d23 dss 

passed to foo() 
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The value which is manipulated by foo() is a single precision entity which is the value of ~. 
the double precision number chopped to a single precirion number. This is the reason foo() 
produces reasonable answers. 

On the other hand, if we had used machines with the IEEE format, we would not be so 
(un)lucky. On these machines, the exponent field of a single precision number is narrower 
than that of the double precision number. If foo() picks up a double precision number in 
lieu of a single precision number, the number it obtains most probably is not at all close to 
the number the caller intended. This situation is not unexpected since some of the exponent 
bits are treated as part of the significand field shown below : 

± I exponent+BIAS I d1 • • • d20 

treated as ± and 
exponent+ BIAS 

treated as 

d1d2 • • • d23 

The reverse situation, where a single precision number is passed to a function doo() which 
expects a double precision number, is even more. interesting. Here we have a situation where 
doo() attaches arbitrary bits to the single precision number passed to it and treats them as 
part of the double precision number it expects : 

± exponent+BIAS 

treated as ± and 
exponent+ BIAS 

d1d2d3d4 ... d23 ? 1 ? 

treated as 

d1d2 • .. dss 

I ... ? ? ? I • • • I 
I 

Consequently, irrespective of the number representation format (DEC Vax or IEEE stan
dard), the solution obtained is very likely wrong, and may even vary from call to call because 
the "?" bits change even though the intended argument does not. 

Bugs arising from mismatch of argument types occur quite frequently. Such bugs are 
rather difficult to diagnose during debugging on the DEC Vax because the results may be 
wrong to double-precision but look O.K. to single. 

1.3.3 U nder:flow and Overflow Problems 

We have discussed why the D format in DEC Vax is regarded as having too narrow an 
exponent field. If we use the same argument as for the Vax to decide how wide the range of 
the exponent field should be, we'll come to the conclusion that the exponent range for double 
precision in the IEEE standard is wider than necessary because we can raise the rounding 
error to a pretty high power before it underflows. However, there are reasons for using 
8 and 11 bits for single and double precisions, respectively. The reason for using double 
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precision numbers is not merely for adding precision to a computation when there isn't 
enough precision in single precision numbers, J?.ut also to cope with overflow and underflow 
problems when the exponent range is inadequate. 

Consider the evaluation of the polynomial 

P(x) = aoxn + a1xn-l + ... + an-tX + an 

where the coefficients of the polynomial are single precision numbers. We will discover fairly 
quickly that we'll encounter serious underflow and overflow problems even for modest values 
of n. For example, suppose n = 7, x = 1010 and I a0 1~ 1.0. Although these values are not 
unreasonable, the value of P( x) easily exceeds the range of single precision numbers. The 
largest single precision number allowed is 1038, but P( x) is of the order 1070

• So it is not 
uncommon to encounter overflow and underflow problems when we work in single precision 
for polynomials of reasonable degrees. 

It turns out that if a polynomial has very large degree, we will encounter several other 
problems too. A majority of polynomials of large degrees suffer terribly from rounding 
errors. This is the reason for not evaluating P(x) the obvious way, but using Homer's 
recurrence instead. If we have an eigenvalue problem where the matrix is 100 x 100, instead 
of evaluating its characteristic polynomial P( x) of degree 100, we operate on the matrix in a 
very unobvious manner. We almost never compute P(x) directly because to do so we need 
the coefficients of the polynomials. Rounding errors in the coefficients and in evaluating 
P( x) can very often destroy the roots of the polynomial. So, besides the risk of overflow 
and underflow problems in the process of evaluating P( x) directly, there is also the risk of 
inaccurate results arising from inaccurate coefficients. 

It is not uncommon to evaluate polynomials of small degrees directly. Even though the 
effects of roundoff errors are not so severe, there is still the possibility of range problems. 
Double precision numbers can be used to circumvent this problem by evaluating and storing 
P(x) as a double precision entity. By adding 3 bits to the exponent, we can raise the smallest 
or the largest number to the power of 8 before underflow or overflow problems occur. This 
is a generous increase in the range of permissible numbers. 

1.4 Thou Shalt Have Single Precision Numbers 

There is a peculiarity in the IEEE standard 754 which states that we must have single pre
cision numbers, hut double precision numbers are optional. Some implementations support 
just single precision numbers and not double precision numbers; this is often adequate for 
signal processing and graphics. Otherwise, most people compute in double precision most 
of the time, if they can. 

Do they really need single precision numbers? By the rule of thumb argument discussed 
in lecture 2, single precision numbers are often not sufficient in most of our computations, 
but double precision numbers are often more than enough. This argument is unexpected 
and may not be easily understood by naive_ users, most of whom would argue that single 
precision numbers are adequate because most"'data can be stored in single precision and 
single precision numbers require less storage and shorter data transmission time. This 
argument happens not to be the chief reason for the need of single precision numbers. 

The principal reason for using single precision numbers is that it is easier to debug 
numerical software when single precision numbers are used. It is extraordinarily difficult to 
debug software with a wide word because the probability of discovering that something has 
gone wrong is, roughly speaking, proportional to 2-(number of bits). Recall that A = B □ C is 
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stored as a= (b □ c)(l +e) in memory. The probability of detecting an error is proportional ~ 
toe. Since e ~ 2- 23 in single precision and e ~ 2- 53 in double precision, it is much more 
likely for us to discover that something has gone wrong in the former. See J. Demmel 's paper 
on "The Probability That A Numerical Analysis Problem Is Difficult", in Mathematics of 
Computation, April 1988. 

1.4.1 Rounding Errors - Singularities and Unstable Algorithms 

A problem can be mapped into an n-dimensional space where a point in the space is defined 
by the data of the problem. For instance, the quadratic equation ax2 + bx + c = 0 can be 
mapped into a 3-dimensional space where a point in space is determined by the coefficients 
a, band c. Similarly, the solution of a problem can be mapped into the solution space. The 
solution space for ax2 +bx+ c = 0 contains all possible roots of all quadratic equations. 
Consequently, solving a problem is essentially the process of mapping a point in the problem 
space to a point in the solution space. 

For certain problems, surfaces exist in the problem space such that points lying on the 
surfaces represent singularities. If we attempt to solve a problem whose point lies on one 
of these surfaces, we will encounter problems. For instance, quadratic equations whose 
coefficients are very close to those with double roots often require many extra digits in 
the computations. These are equations where if we alter the coefficients slightly we obtain 
double roots. 

Referring to Figure 1, for most points in the problem space, rounding errors of the order 
e will result in errors proportional to i in the solution. The solution error can be worse if 
the point is near a self-intersecting surface of singularities, or it can be better in the sense 
that it can lose at most half the figures carried. The following example illustrates the latter : ,~ 

Consider the matrix inversion problem 

data A---+ solution X = A- 1 

where the data A is subject to an error .6.A inducing a corresponding error fl.X in X : 

and if 

then 

with relative error 

II .6.A II 
E~ -·11~11 

fl.X ~ -X(fl.A)X 

IIAXII II X II ~II fl.A II • II X II . 
The distance of A to the nearest singular matrix 

and since 

1 
d~ II XII' 
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Figure 1: Data. space and surface of singularities. 

11 



Lecture 8 - May 26, 1988 ( notes revised June 13, 1990) 12 

the relative error 
II LlX II E II A II 
IIXII ~ d • 

The number of figures carried is -log(e) and the number of figures in agreement with a 
point on the surface is log(~). The number of correct figures in X ·is 

II LlX II 
-log( II XII ) = -log(e) - log( II A'II r 

d 
= numbers of figures carried- numbers of figures of agreement 

Hence the numbers of figures lost equals the number of figures in agreement, which implies 
that at most half the figures carried are lost in this case. 

The above discussion implies that the relative error is smaller in double precision than 
in single precision because e is smaller in the former. Hence, if a point lies near a surface of 
singularities, we are more likely to detect that something has gone wrong if single precision 
is used. 

Another reason rounding errors are more noticeable in single precision has to do with 
the way we format computer output. We usually print floating-point numbers up to approx
imately six decimal digits because this is about the number of digits an average person can 
grasp comfortably. Because we often format the output to print no more than half a dozen 
digits, we do not notice the loss of digits to the right of the sixth digit. Since the number 
of digits we print in single precision is about the same as the number of digits present, any 
problem resulting from rounding errors is very noticeable, but if double precision is used 
and the lowest few digits are perturbed, the perturbations are unobvious because some of 
the digits are not printed. Consequently, there's a higher probability that anomalies in ~-
results are detected when single precision is used. 

Another problematic surface in the problem space is a result of the method used to 
solve a problem. For instance, the roots of quadratic equations whose roots are of great 
disparity - that is, one is tiny and the other is gargantum - are well defined. However if 

h r. ul -b:1::""b2-4ac) d • h b • d we use t e 1orm a z = 2 a to etenmne t e roots, we may o tam unexpecte 
results. The coefficients of equations whose roots are of great disparity satisfy b2 > ac. 
When b2 > ac, by rounding off 4ac, b2 - 4ac ~ b2 where the bottom few bits may be 
inaccurate. Consequently, the bottom few bits of .j(b2 - 4ac) ~ b may also be wrong, and 
b - ../C.b2 - 4ac) may have a string of zeroes followed by these uncertain last few bits. When 
the result is normalized, it may appear perfectly all right, but it may actually be nonsense. 
Usually we do not realize that cancellation has occurred unless we follow the computations 
closely. 

Without the above discussion, what is the probability that we'll encounter a problem 

which ultimately lead us to the conclusion that z = -b:1::.JJ:
2

-
4

ac) is a bad formula? The 
probability of having massive cancellations in double precision is much lower than in single 
precision, so it is advisable to work in single precision during debugging because it enor
mously increases the odds, even when testing at random, of detecting symptoms of the loss 
in accuracy. 

1.4.2 Debugging Strategies 

Suppose we want to test our programs with a set of data, perhaps chosen at random. How 
do we know if our programs are producing the correct solutions? \Yell~ we can run our 
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programs in both double and single precision and if their corresponding solutions disagree 
in early digits we know that something suspicious has happened. 

Alternatively, we can substitute the solution obtained into the equation and see if both 
sides of the equation agree to a large extent. If substituting alleged roots for x makes the 
value of ax 2 + bx + c very tiny or zero in magnitude, we know that our roots are quite 
reasonable. So, we really do not need double precision because by using the substitution 
technique with single precision we can actually determine if our roots are plausible by 
considering how well they satisfy the equation. 

2 Simulating Single Precision with Double Precision 

There are people who strongly believe that we should build only double precision hardware. 
With double precision, we can actually compute as if to single precision by computing each 
operation in double precision and then rounding it. 

One of the advantages of implementing only double precision is that we can optimize 
the hardware for double precision. One such example is the SPUR project at Berkeley. 

Let us use the following notation : 

[expression) = (expression) rounded correctly top significant digits, and 

□ = an operation like +, - , x or /; not ✓· 

As usual the radix /3 E {2,8, 10 or 16}. 

Exercise : By how much must q exceed p to guarantee that 

for all x = [x],, and y = [y],,? 

Answer : q = 2p is enough if /3 2:: 4 or if D :/; ±; q = 2p + 1 is enough, always. 

In the IEEE standard, the number of significant digits in the double precision is more 
than twice that of the single precision. Thus, in the standard we can simulate single 
precision arithmetic by double precision arithmetic provided we have the "Round-to-Single" 
operation follow each double-precision arithmetic opration. What follows are the proofs that 
the Answer is correct. 

2.1 0 is X 

Theorem 1 If [x],, = x and (y]p = y then [x x y]2,, = x x y. 

Proof : When we multiply two integers the wioth of the product is at most the sum of the 
widths of the factors; to be precise, it is either the sum or the sum minus one because 
the leading digit may be zero. We can think of the numbers as if they a.re integers 
because the significant digits will not be altered and the point can be taken care of 
easily. The product of multiplying two p digits integers together is shown below: 
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I XXX XXX I INTEGERS 

X I yyy yyy I f3P- l 5 Y 5 {31' - 1 
f3P- l 5 Y 5 /31' - 1 

I zzz zzz I I zzz zzz I /327'- 2 5 X • Y < f32P - 1 

2p 

From the discussion and the illustration above, it is obvious that 2p digits are sufficient. 
The examples below show that if you use fewer than 2p digits, you'll be sorry. 

100001 X 111111 = 100000 011111 

111011 X 101101 = 100001 011111 

101111 X 101111 = 100010 100001 

110001 X 110001 = 100101100001 

In the examples, p = 6 and /3 = 2. In this example, pairs of 6 bits numbers are 
multiplied and their results have the property that if they were first rounded to 11 
bits and then to 6 bits, they would be incorrectly rounded. 

The numbers of the example above were generated artfully with "P-Adic" arithmetic 
and Hensel's "Lifting". For examples with very small word-size, one can use exhaustive 
search. The artful technique will be discussed later when we discuss how to test 
multiplication and division. 

2.2 D is / 

Theorem 2 If [x],, = x and [y],, = y then [[x/y]2,,],, = [x/y],,. 

Proof: Normalize the quotient so that 

1//3<q=x/y<l, 

and assume that y, the divisor, is an integer satisfying 

f3P-1 5 y 5 {31' - 1. 

The assumption on y can be accomplished by scaling. If (q]p = q then we are done, 
so let us assume that [q],, ::fi q. Let the two p-digit numbers adjacent to q be q = [q],, 
and q = [q]p where 

q = I •qqq qqq I< q < ij = .__I •q_qq ___ q_qq___.l+ __ l ·o_o_o ___ 0_01___.I 

Let 
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_I •q_qq ___ qiii_] 

p+l 

where 6 = f Since we carry twice as many digits asp, we are done when q = fj. So, 
let us assume that q ~ ij and 

N = 2/jPq = 2x _I q_q_q ___ q_qq_•6--'I • 

Multiplying q by /3" shifts the point immediately to the left of 6, and multiplying it 
by 2 makes Nan integer (recall that 6 = i). 
The magnitude of the difference between _the quotient q and ij is 

_ x N 2(3Px-Ny 
I q - q I = I y - 2,8P I = I 2/jPy I 

which is a ratio of two integers because 

{Jx = ,8qy > y ~ fJP-1. 

Note that fjx is as large as the smallest floating-point number beyond which all floating 
point-numbers are integers. The numerator 2/J"x-Ny is not zero because we assumed 
that q :f: ij, so we have 

I q - q-I > _l_ > 1 - 1 /J-2P(l + p-p + {J-2p + ) 
- 2f3Py - 2/3P(/3P - 1) - 2 •• • 

which implies that I q - q I> ½fJ- 2P. Hence, 

either q < q- ½fJ- 2P = _J •_qq_q _____ qq_q_l J (6 - l)ppp • • • PPP I 6 

or q > ij + ½P-2
P = J •qqq qqq 116000 000 16 

When such a q is rounded to 2p digits and then to p digits, the results are the same 
as if it were rounded top digits once. Therefore, 

[[q)2p)p = (q)p. 

We have shown that 2p digits are sufficient for division, but are they necessary? Do 
we really need q ~ 2p to ensure that 

[[x/y]q]p = [x/y],,? 

The answer is yes! The following example demonstrates that 2p digits are necessary : 

5000/9999 = 0.5000 5000 5000 5000 
4999/9999 = 0.4999 4999 4999 4999 

If correctly rounded, the answers should be 0.5001 and 0.4999 respectively, but if-less 
than 2p digits are used, they may both be 0.5000 instead. The above example is in 
decimal numbers; it is left as an exercise for interested readers to generate a similar 
example for binary numbers. 
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2.3 D is -

Theorem 3 If [x]p = x > y = [Y]p > 0 then [[x - Yhp+i]p = [x - y]p• 

Proof: Subtraction is the first disappointment because 2p+l digits are needed for rounding 
to work correctly. Actually 2p+l digits are needed in binary only; other radices require 
only 2p digits. We shall prove that 2p + 1 digits are sufficient and necessary by case 
analysis using pictures. • 

When we add two numbers, pre-shifting .is often necessary to align the points of the 
operands. Consider the following cases : 

Case 1 : y is shifted ~ p digits. 

I XXX XXX I 

1 zzz zzz 1 

When y is shifted ~ p digits, the result is no wider than 2p digits. Hence, 
[x - y)2p = X - y. 

Case 2 : y is shifted ~ p + 2 digits. 
Without loss of generality, assume that y is shifted by p + 2 digits : 

I XXX XXX I 

oo I yyy 

.... 1 ?_.z_z _____ z_z_z __ lPP_I _11_1 _____ 11_.1_1 

Recall that p = fj - 1. When the result is rounded to 2p digits we may obtain 

either _I 1_.z_z _____ z_z_z_l pp _I 1_.1_1 ___ 1_.1_1 .... I 

or ..... 1x_x_x ___ x_xx ...... 100 ..... 1 o_oo ___ o_oo ...... 1 

where no carry propagates out of the bottom p digits in the former but it does 
in the latter. When the former is subsequently rounded to p digits, it'll round 
up and produce x as the final solution, which is correct; the latter clearly rounds 
to x. So, [x - y]2p = x = [x - y]p• 

Case 3 : y is shifted p + 1 digits. 
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I XXX XXX I 
of YYY 

... I _? z_z _____ z_z_z---J!P ... 1 z_z_z _____ z_z_z~' 

The most significant digit of the result may be a zero, in which case we have only 
2p digits and there is no problem, that is, [x - y]2p = x - y. Assume that the 
most significant bit is nonzero. When rounding to 2p digits and /3 ¥: 2 we'll get 

1 zzz zzz I p ... I __ n_o_n_-_ze_r_o_es __ 

and consequently [[x - Yhp]p = x = [x - y]p• 

However, if /3 = 2 and we round to even, using 2p bits is not sufficient. Consider 
the following situation : 

I XXX XXX I 
ol 111 1111 

1 zzz zzz 1 000 001 I 
2p+ 1 

When rounded to 2p digits we get 

1 zzz zzz 1 000 ooo 1 

When the above is further rounded to even top digits, th~ final answer depends 
on the digit z: if z = 0 then we round down; otherwise, we round up. Therefore, 
[[x - y]2p]p < x = [x - y]p when i =··O. In general, [[x - YhP+t]p = [x - Y]p holds 
for all radices. 

2.4 Dis+ 

Theorem 4 If [x]p = x ~ y = [y]p > 0 then [[x + YhP+t]p = [x + Y]p-

Proof: As in subtraction, 2p + 1 digits are needed for addition. Let us consider the 
following cases : 

Case 1 : y is pre-shifted by ~ p digits. 
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I XXX XXX I 
+ I yyy yyy 

1 zzz zzz I 

~ 2p 

The result has no more than 2p digits, so [x + y]2,, = x + y. When y is preshifted 
by p bits, the most significant p digits of the result is x and y is the p least 
significant digits. 

Case 2 : y is preshifted by 2: p + 2 digits. 

I XXX XXX I 
+ 00 I YYY yyy I 
I XXX XXX 00 yyy yyy I 

When rounded to 2p digits, we obt~.n either 

I XXX XXX 01 ??? ??? I 
which is x when rounded top digits. Hence, we have [[x + y]2,,],, = x = [x + y]p. 

Case 3 : y is preshifted by p + 1 digits. 

I XXX XXX I 

+ ol yyy yyy I 
I XXX XXX O YYY YYY I 

when rounded to 2p digits, we may get 

I XXX XXX 1 ??? yyy I 
Using an argument similar to that of Case 3 for subtraction, we have 

[[x + Y]2p]p = x = [x + y],, if /J 2: 4 

[x + Yhp+I = x + y if fJ = 2 

~ 
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In the next lecture we shall discuss the case where D = ✓· In summary, if we wish we 
may design our hardware optimized for double precision computations and achieve the effect 
of single pred-sion computations by rounding down. In other words, we can convert single 
precision numbers to double precision, compute in double precision and then round to single 
precision as if single precision arithmetic were available. A consequence of this scheme is 
that single precision computations may be slowed down, relative-to an independent single 
precision implementation; but because we speed up arithmetic generally, there are fewer 
arithmetic formats to decipher in the arithmetic unit, and double precision arithmetic may 
be faster. 
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