
Computer System Support for Scientific and Engineering
Computation

Lecture 8 - May 26, 1988 (notes revised June 13, 1990)

Copyright @1988 by W. Kahan and Shing Ma.
All rights reserved.

1 A Peek at the IEEE Standard

Before we discuss several features of the IEEE standard for :floating-point arithmetic, the
following two misprints in the document ANSI/IEEE Std 854-1987, IEEE Standard for
Radix-Independent Floating-Point Arithmetic, should be noted :

1. On the right hand column of page 8, replace

(i) Numbers for the form (-l) 8 bE(dod1d2 • • • dp-1), ...

by

(i) Numbers for the form (-l) 8 bE(do. d1d2 • • • dp-1), ...

2. At the bottom of the left hand column of page 16, replace

For x positive and finite, ...

by

For x nonzero and finite, ...

1.1 Radices

The IEEE standards do not permit as many different radices as they appear to allow. Even
though the IEEE standard 854 is "Radix-Independent", radices 2 and 10 are the only two
supported; IEEE standard 754 allows only radix 2. The restriction on the radix does not
appear anywhere else in the text of the 854 standard aside from the statement indicating
the restriction. The reason for the limitation is ma.inly political more than anything else.
There is no way for IBM or its imitators, all of whom use hexadecimal as radix, to conform
to the rounding schemes of the IEEE standard without massive changes to current code.
For the same reason it is inconceivable for Burroughs, which uses octal as radix, to conform
to the standard. As a consequence, it serves no purpose to support octal, hexadecimal
or other radices beside binary or decimal, since it is unlikely that IBM or Burroughs will
redesign their old products to conform to any IEEE standard. The. IEEE standards are,

1

Lecture 8 - May 26, 1988 (notes revised June 13, 1990) 2

therefore, applicable to new machines designed and built in recent years, most of which use
binary or decimal radices.

The reasons for preferring binary radix, '{3 = 2, to decimal radix, f3 = 10, or vice-versa,
are very weak. Decimal radix is most appropriate for people who actually look at the
output. The HP 71B, which uses radix 10, conforms to the IEEE 854 standard almost
perfectly. Unfortunately, there are not many machines which conform to the standard
and use radix 10, so there is not much software for these machines. Until there are more
of them there will not be much software designed for them, and until there is sufficient
software support people are reluctant to build these ma.chines. This vicious cycle is unlikely
to be broken.

Lots of machines conform to the IEEE standard 754 using radix 2. The reason for
preferring f3 = 2 is not primarily because people don't want to see the output, but because
binary has many advantages: simpler error analysis, for instance.

Consider the following statement in a language like Fortran :

X = B □ C,

where D is a floating point operation like +, -, x or /. Because of the way numbers are
stored in memory, we actually find that

X = (b D c)(l ± e),

where x, b, c are the respective values stored for the variables whose names are X, B, C
and ±e is a small quantity introduced by roundoff. The trouble here is that the small
perturbation e is not bounded sharply. Because of the way floating point works, the bound
e is pessimistic for some numbers: pessimistic by a factor {3, the radix used. When we
consider representable numbers less than and greater than 1.0, we see that the gaps for the
numbers greater than 1.0 are larger than those smaller than 1.0. In fact, the gaps between
representable numbers greater than 1.0 are f3 times larger, as shown below:

I I I I I I I I I I I I -
1.0 {3 X 6

Since the uncertainty { is a bound for all possible errors, it must be able to accommodate
errors arising from representing numbers both to the left and right of 1.0. Therefore, the
uncertainty e is especially pessimistic for results x just smaller than a power of the radix
when a large radix is used, which makes error analysis somewhat ugly.

There is a peculiar propensity among micro~optimizing programmers to optimize certain
kind of expressions. For example, consider the following :

constant C = 1.003215 ...

E=XxC

Lecture 8 - May 26, 1988 (notes revised June 13, 1990)

A conscientious programmer may replace the above code by

constant D = 0.996795 ...

E=X/D

3

where the constant D ls the reciprocal of the constant C. The reason for using D instead
of C is because the expected magnitude of a rounding error for C is /J times that for D.
The fact is that until we actually consider the values of C and D closely, we don't really
know the exact rounding error in each case. There are lots of examples where C is a better
approximation than D. However, since we usually do not know the actual digits of C and
Dor what machines the program is supposed to run on, we may just divide X by D to be
on the safe side.

Tricks such as those described above are actually used in practice. For instance, in the
implementation of certain transcendental functions in the library, constants which suffer
from less rounding error are used except when divisions are too much slower than multipli
cations.

Another way to compute E, more accurate than the previous two schemes, is by

E=X+CX

where C = C-1. Since C is very close to 1.0, C is quite small. As a result the rounding error
in representing C and in the multiplication are inconsequential, so effectively there is just
one rounding error, that is, in the addition. The. trick here is to throw in an extra arithmetic
operation, the addition; in most cases, the total cost of an addition and a multiplication is
less than a division.

1.2 Why Use Large Radices?

1.2.1 Eff'ect of Radix on Speed

Why did IBM use hexadecimal radix? IBM's decision to use hexadecimal as its radix is
based on some experiments performed by Sweeney. He discovered that, on binary machines,
the shifts resulting from normalizations are usually short, often less than 4 bits. In other
words, results obtained from arithmetic operations seldom require long normalization shifts
of 4 bits or more. There is a proponderence of short shifts because shifts arising from
multiplications and divisions are at most 1 bit, and even additions and subtractions rarely
encounter massive cancellations.

Sweeney reasoned that if we forego short normalizations, computations can go consider
ably faster. His reasoning led to the idea of using hexadecimal as the radix in :floating-point
number representation.

Consider the way floating point-numbers are represented in the IBM 790 :

± I exponent+DIAS I . d1d2

Lecture 8 - May 26, 1988 (notes revised June 13, 1990) 4

If d1 = 0 normalizations are needed when the radix /3 = 2. Sweeney's tests indicate that it
is quite rare for d; = 0 where j = 1, ... , k ~d k 2:: 4. If a hexadecimal radix is used, no
normalization is needed when k :5 3. Thus, Sweeney's results suggest that we seldom need
to normalize if hexadecimal radix is used, which means that much time can be saved.

Actually there is another reason for using hexadecimal radix besides the reduction in the
incidence of normalizations. Computers like the IBM 360 Model 30 had 1 byte wide busses.
Because memory is accessed in bytes, it appeared that one could microcode arithmetic to
run faster if one does not use single bit shifts, but uses nibble (half-byte) shifts instead.
However, it turns out that the running time was lengthened for machines such as the the
IBM 360 Model 65 and 75 because they had hardware for arbitrary binary shifts and were
slightly slowed when restricted to nibble shifts.

1.2.2 Effect of Radix on Precision

The floating point representation for single precision numbers on an IBM machine is shown
below:

± exponent+64

Three leading
bits can

vanish in a
normalized

number 21 bits

7 bits 24 bits

whose range is from ±2- 260 = ± 16- 65 to ±2 252 = ± 1663 . The IEEE standard's single
precision numbers are represented as :

±

implicit 1.
!

exponent+64 I d1d2

8 bits

whose range is from ±2- 128 to ±2 128

23 bits

For the IBM computers, a normalized number may have zeroes for the first three bits
of its significand field, so in the worst case there are just 21 bits of precision. The IEEE
standard, on the other hand, has 24 bits of precision (23 bits in the significand and 1
implicit bit). Thus, although the range for the IBM machines is larger than that of the
IEEE standard's, the latter has 3 extra bits of precision.

On the IBM 7094, which had 27 bits in the significand field and about the same range

Lecture 8 - May 26, 1988 (notes revised June 13, 1990) 5

as IEEE single, there were not many complaints about underflow and overflow problems.
The drop from 27 to 21 bits of precision was a major disaster. When 21 bits were used,
the effect of roundoff became very apparent; programs which worked fine when 27 bits w.ere
used suddenly gave strangely inaccurate results.

This drop in the number of bits crossed the magic threshold where a rule of thumb
states that one should carry at least about twice as many bits in the intermediate values as
in the accuracy desired (see the discussion on A Rule of Thumb for Working Precision in
lecture 2). H the number of digits used is more than the threshold, the chance is high that
we will not see the effects of roundoff in the computations except in numerically unstable
algorithms; in such algorithms, the best solution to circumvent problems due to roundoff
error is to use a more stable algorithm, if available. Engineers often require about 12 bits
of accuracy, so 27 bits are above the threshold whereas 21 bits are below. As a result of
this phenomenon, single precision numbers with hexadecimal radix acquired a very bad
reputation.

So the attempt to speed up floating-point arithmetic on a range of machines, by using
hexadecimal radix, actually slowed down faster models. Furthermore, there is no evidence
indicating that Sweeney performed his experiments on hexadecimal machines. If Sweeney's
experiments were performed just on binary machines, his results may not apply to hexadec
imal machines.

For reasons stated above the IEEE 854 standard does not include hexadecimal radices.

1.3 Single and Double Precisions

1.3.1 Exponent and Significand Widths

First consider the IEEE 754 standard floating point formats. The single precision format
has 32 bits as depicted below :

IEEE Std. Single ±

Implicit 1.
i

rucponent+127 I d1d2

8 bits

and the double precision has 64 bits as shown below:

23 bits

Lecture 8 - May 26, 1988 (notes revised June 13, 1990)

IEEE Std. Double

lµiplicit 1.
·•• i

± exponent+1023 I d1d2

11 bits

6

52 bits

We will discuss another format in the IEEE standard, the extended format, in future lec
tures. The exponent widths of the single and double formats are different, 8 and 11 bits
wide, respectively.

Consider another machine, the DEC Vax, whose :floating point formats are quite similar
to those of the IEEE standard. Its single and double formats are 32 and 64 bits wide,
respectively, and are illustrated below :

Implicit 1.
i

DEC Vax Single ± exponent+ 129 I d1d2 d22d23

8 bits 23 bits

Implicit 1.

'
DEC Vax Double ± exponent+129 I d1d2 ds4dss

8 bits 55 bits

The single and double formats are called "F" and "D" formats, respectively. There were
rumors that DEC received numerous complaints about the D format because those of its
customers who had come from using CDC Cybers too often encountered severe overflow and
underflow problems. DEC introduced a new format, first in software then in microcode, to
solve this problem. This new format, called the "G" format, is shown below:

DEC Vax G Format ±

Implicit 1.
i

exponent+1025 I d1d2

11 bits 52 bits

It has 11 bits in the exponent field. Note that the DEC Vax F and G :floating point formats
are quite similar to those of the IEEE standard. However, in all of DEC's Vax formats, when

Lecture 8 - May 26, 1988 (notes revised June 13, 1990) 1

exponent+BIAS=0, the rest of the significant bits d; are ignored: the number is treated as
zero if the sign is "+", as a "reserved" operand if the sign is "-". The latter precipitates a
trap when used as an operand for any floating point operation, even a MOVE.

What is actually wrong with the D format? Its exponent range is too narrow for its
precision. The D format has 55 bits of precision, which means that the roundoff error,(, is
of the order 2- 55 . Unfortunately, the smallest representable number on this machine is just
2- 128. This means that if we cube the roundoff error, it will underflow as a consequence.
Taking cubes of numbers are not uncommon; it arises quite often in many interesting matrix
algorithms, such as the QR algorithm for solving eigenproblems. This means that on the
DEC Vax D format, underflow may occur for certain algorithms, and the program will
terminate prematurely. Ideally, we would like to be able to raise the rounding errors to at
least the fourth power without any underflow problems. Notice that this requirement is
satisfied by the F and G formats.

1.3.2 Portability of Programs

There is another kind of trouble which one has to deal with when porting programs between
various computers. This problem has nothing to do with what was discussed previously, but
arises because of the peculiarity of some computer languages that do not defend programs
from mistyped arguments. For instance, assume that we have a function :

function foo (A, ...)
single A
{

}

and in the main program, we have:

double D

• • • foo (D, ...)

Here, we have a situation where an argument declared as of double format is passed to
a function which expects the argument to be of the single format. On a DEC Vax what
happens appears to be pretty innocuous because the single precision number which foo()
expects is within a rounding error of the first 4 bytes of the 8 byte double precision number
as shown below :

± I exponent+BIAS I d1 • • • d23 dss

passed to foo()

Lecture 8 - May 26, 1988 (notes revised June 13, 1990) 8

The value which is manipulated by foo() is a single precision entity which is the value of ~.
the double precision number chopped to a single precirion number. This is the reason foo()
produces reasonable answers.

On the other hand, if we had used machines with the IEEE format, we would not be so
(un)lucky. On these machines, the exponent field of a single precision number is narrower
than that of the double precision number. If foo() picks up a double precision number in
lieu of a single precision number, the number it obtains most probably is not at all close to
the number the caller intended. This situation is not unexpected since some of the exponent
bits are treated as part of the significand field shown below :

± I exponent+BIAS I d1 • • • d20

treated as ± and
exponent+ BIAS

treated as

d1d2 • • • d23

The reverse situation, where a single precision number is passed to a function doo() which
expects a double precision number, is even more. interesting. Here we have a situation where
doo() attaches arbitrary bits to the single precision number passed to it and treats them as
part of the double precision number it expects :

± exponent+BIAS

treated as ± and
exponent+ BIAS

d1d2d3d4 ... d23 ? 1 ?

treated as

d1d2 • .. dss

I ... ? ? ? I • • • I
I

Consequently, irrespective of the number representation format (DEC Vax or IEEE stan
dard), the solution obtained is very likely wrong, and may even vary from call to call because
the "?" bits change even though the intended argument does not.

Bugs arising from mismatch of argument types occur quite frequently. Such bugs are
rather difficult to diagnose during debugging on the DEC Vax because the results may be
wrong to double-precision but look O.K. to single.

1.3.3 U nder:flow and Overflow Problems

We have discussed why the D format in DEC Vax is regarded as having too narrow an
exponent field. If we use the same argument as for the Vax to decide how wide the range of
the exponent field should be, we'll come to the conclusion that the exponent range for double
precision in the IEEE standard is wider than necessary because we can raise the rounding
error to a pretty high power before it underflows. However, there are reasons for using
8 and 11 bits for single and double precisions, respectively. The reason for using double

Lecture 8 - May 26, 1988 (notes revised June 13, 1990) 9

precision numbers is not merely for adding precision to a computation when there isn't
enough precision in single precision numbers, J?.ut also to cope with overflow and underflow
problems when the exponent range is inadequate.

Consider the evaluation of the polynomial

P(x) = aoxn + a1xn-l + ... + an-tX + an

where the coefficients of the polynomial are single precision numbers. We will discover fairly
quickly that we'll encounter serious underflow and overflow problems even for modest values
of n. For example, suppose n = 7, x = 1010 and I a0 1~ 1.0. Although these values are not
unreasonable, the value of P(x) easily exceeds the range of single precision numbers. The
largest single precision number allowed is 1038, but P(x) is of the order 1070

• So it is not
uncommon to encounter overflow and underflow problems when we work in single precision
for polynomials of reasonable degrees.

It turns out that if a polynomial has very large degree, we will encounter several other
problems too. A majority of polynomials of large degrees suffer terribly from rounding
errors. This is the reason for not evaluating P(x) the obvious way, but using Homer's
recurrence instead. If we have an eigenvalue problem where the matrix is 100 x 100, instead
of evaluating its characteristic polynomial P(x) of degree 100, we operate on the matrix in a
very unobvious manner. We almost never compute P(x) directly because to do so we need
the coefficients of the polynomials. Rounding errors in the coefficients and in evaluating
P(x) can very often destroy the roots of the polynomial. So, besides the risk of overflow
and underflow problems in the process of evaluating P(x) directly, there is also the risk of
inaccurate results arising from inaccurate coefficients.

It is not uncommon to evaluate polynomials of small degrees directly. Even though the
effects of roundoff errors are not so severe, there is still the possibility of range problems.
Double precision numbers can be used to circumvent this problem by evaluating and storing
P(x) as a double precision entity. By adding 3 bits to the exponent, we can raise the smallest
or the largest number to the power of 8 before underflow or overflow problems occur. This
is a generous increase in the range of permissible numbers.

1.4 Thou Shalt Have Single Precision Numbers

There is a peculiarity in the IEEE standard 754 which states that we must have single pre
cision numbers, hut double precision numbers are optional. Some implementations support
just single precision numbers and not double precision numbers; this is often adequate for
signal processing and graphics. Otherwise, most people compute in double precision most
of the time, if they can.

Do they really need single precision numbers? By the rule of thumb argument discussed
in lecture 2, single precision numbers are often not sufficient in most of our computations,
but double precision numbers are often more than enough. This argument is unexpected
and may not be easily understood by naive_ users, most of whom would argue that single
precision numbers are adequate because most"'data can be stored in single precision and
single precision numbers require less storage and shorter data transmission time. This
argument happens not to be the chief reason for the need of single precision numbers.

The principal reason for using single precision numbers is that it is easier to debug
numerical software when single precision numbers are used. It is extraordinarily difficult to
debug software with a wide word because the probability of discovering that something has
gone wrong is, roughly speaking, proportional to 2-(number of bits). Recall that A = B □ C is

Lecture 8 - May 26, 1988 (notes revised June 13, 1990)

stored as a= (b □ c)(l +e) in memory. The probability of detecting an error is proportional ~
toe. Since e ~ 2- 23 in single precision and e ~ 2- 53 in double precision, it is much more
likely for us to discover that something has gone wrong in the former. See J. Demmel 's paper
on "The Probability That A Numerical Analysis Problem Is Difficult", in Mathematics of
Computation, April 1988.

1.4.1 Rounding Errors - Singularities and Unstable Algorithms

A problem can be mapped into an n-dimensional space where a point in the space is defined
by the data of the problem. For instance, the quadratic equation ax2 + bx + c = 0 can be
mapped into a 3-dimensional space where a point in space is determined by the coefficients
a, band c. Similarly, the solution of a problem can be mapped into the solution space. The
solution space for ax2 +bx+ c = 0 contains all possible roots of all quadratic equations.
Consequently, solving a problem is essentially the process of mapping a point in the problem
space to a point in the solution space.

For certain problems, surfaces exist in the problem space such that points lying on the
surfaces represent singularities. If we attempt to solve a problem whose point lies on one
of these surfaces, we will encounter problems. For instance, quadratic equations whose
coefficients are very close to those with double roots often require many extra digits in
the computations. These are equations where if we alter the coefficients slightly we obtain
double roots.

Referring to Figure 1, for most points in the problem space, rounding errors of the order
e will result in errors proportional to i in the solution. The solution error can be worse if
the point is near a self-intersecting surface of singularities, or it can be better in the sense
that it can lose at most half the figures carried. The following example illustrates the latter : ,~

Consider the matrix inversion problem

data A---+ solution X = A- 1

where the data A is subject to an error .6.A inducing a corresponding error fl.X in X :

and if

then

with relative error

II .6.A II
E~ -·11~11

fl.X ~ -X(fl.A)X

IIAXII II X II ~II fl.A II • II X II .
The distance of A to the nearest singular matrix

and since

1
d~ II XII'

Lecture 8 - May 26, 1988 (notes revised June 13, 1990)

... •
... •

... •····· .. • .. •···· .. -·-· ~

:
: _

{: \
... :
.:

\.
• . .. l

·•. ..•·
··•....... •·········

/ ... -·····:>•·~\-··\

(. ,.).)
............................

Self-intersecting
surface of

singularities.

Surface
containing all
singularities .

Figure 1: Data. space and surface of singularities.

11

Lecture 8 - May 26, 1988 (notes revised June 13, 1990) 12

the relative error
II LlX II E II A II
IIXII ~ d •

The number of figures carried is -log(e) and the number of figures in agreement with a
point on the surface is log(~). The number of correct figures in X ·is

II LlX II
-log(II XII) = -log(e) - log(II A'II r

d
= numbers of figures carried- numbers of figures of agreement

Hence the numbers of figures lost equals the number of figures in agreement, which implies
that at most half the figures carried are lost in this case.

The above discussion implies that the relative error is smaller in double precision than
in single precision because e is smaller in the former. Hence, if a point lies near a surface of
singularities, we are more likely to detect that something has gone wrong if single precision
is used.

Another reason rounding errors are more noticeable in single precision has to do with
the way we format computer output. We usually print floating-point numbers up to approx
imately six decimal digits because this is about the number of digits an average person can
grasp comfortably. Because we often format the output to print no more than half a dozen
digits, we do not notice the loss of digits to the right of the sixth digit. Since the number
of digits we print in single precision is about the same as the number of digits present, any
problem resulting from rounding errors is very noticeable, but if double precision is used
and the lowest few digits are perturbed, the perturbations are unobvious because some of
the digits are not printed. Consequently, there's a higher probability that anomalies in ~-
results are detected when single precision is used.

Another problematic surface in the problem space is a result of the method used to
solve a problem. For instance, the roots of quadratic equations whose roots are of great
disparity - that is, one is tiny and the other is gargantum - are well defined. However if

h r. ul -b:1::""b2-4ac) d • h b • d we use t e 1orm a z = 2 a to etenmne t e roots, we may o tam unexpecte
results. The coefficients of equations whose roots are of great disparity satisfy b2 > ac.
When b2 > ac, by rounding off 4ac, b2 - 4ac ~ b2 where the bottom few bits may be
inaccurate. Consequently, the bottom few bits of .j(b2 - 4ac) ~ b may also be wrong, and
b - ../C.b2 - 4ac) may have a string of zeroes followed by these uncertain last few bits. When
the result is normalized, it may appear perfectly all right, but it may actually be nonsense.
Usually we do not realize that cancellation has occurred unless we follow the computations
closely.

Without the above discussion, what is the probability that we'll encounter a problem

which ultimately lead us to the conclusion that z = -b:1::.JJ:
2

-
4

ac) is a bad formula? The
probability of having massive cancellations in double precision is much lower than in single
precision, so it is advisable to work in single precision during debugging because it enor
mously increases the odds, even when testing at random, of detecting symptoms of the loss
in accuracy.

1.4.2 Debugging Strategies

Suppose we want to test our programs with a set of data, perhaps chosen at random. How
do we know if our programs are producing the correct solutions? \Yell~ we can run our

Lecture 8 - May 26, 1988 (notes revised June 13, 1990) 13

programs in both double and single precision and if their corresponding solutions disagree
in early digits we know that something suspicious has happened.

Alternatively, we can substitute the solution obtained into the equation and see if both
sides of the equation agree to a large extent. If substituting alleged roots for x makes the
value of ax 2 + bx + c very tiny or zero in magnitude, we know that our roots are quite
reasonable. So, we really do not need double precision because by using the substitution
technique with single precision we can actually determine if our roots are plausible by
considering how well they satisfy the equation.

2 Simulating Single Precision with Double Precision

There are people who strongly believe that we should build only double precision hardware.
With double precision, we can actually compute as if to single precision by computing each
operation in double precision and then rounding it.

One of the advantages of implementing only double precision is that we can optimize
the hardware for double precision. One such example is the SPUR project at Berkeley.

Let us use the following notation :

[expression) = (expression) rounded correctly top significant digits, and

□ = an operation like +, - , x or /; not ✓·

As usual the radix /3 E {2,8, 10 or 16}.

Exercise : By how much must q exceed p to guarantee that

for all x = [x],, and y = [y],,?

Answer : q = 2p is enough if /3 2:: 4 or if D :/; ±; q = 2p + 1 is enough, always.

In the IEEE standard, the number of significant digits in the double precision is more
than twice that of the single precision. Thus, in the standard we can simulate single
precision arithmetic by double precision arithmetic provided we have the "Round-to-Single"
operation follow each double-precision arithmetic opration. What follows are the proofs that
the Answer is correct.

2.1 0 is X

Theorem 1 If [x],, = x and (y]p = y then [x x y]2,, = x x y.

Proof : When we multiply two integers the wioth of the product is at most the sum of the
widths of the factors; to be precise, it is either the sum or the sum minus one because
the leading digit may be zero. We can think of the numbers as if they a.re integers
because the significant digits will not be altered and the point can be taken care of
easily. The product of multiplying two p digits integers together is shown below:

Lecture 8 - May 26, 1988 (notes revised June 13, 1990) 14

I XXX XXX I INTEGERS

X I yyy yyy I f3P- l 5 Y 5 {31' - 1
f3P- l 5 Y 5 /31' - 1

I zzz zzz I I zzz zzz I /327'- 2 5 X • Y < f32P - 1

2p

From the discussion and the illustration above, it is obvious that 2p digits are sufficient.
The examples below show that if you use fewer than 2p digits, you'll be sorry.

100001 X 111111 = 100000 011111

111011 X 101101 = 100001 011111

101111 X 101111 = 100010 100001

110001 X 110001 = 100101100001

In the examples, p = 6 and /3 = 2. In this example, pairs of 6 bits numbers are
multiplied and their results have the property that if they were first rounded to 11
bits and then to 6 bits, they would be incorrectly rounded.

The numbers of the example above were generated artfully with "P-Adic" arithmetic
and Hensel's "Lifting". For examples with very small word-size, one can use exhaustive
search. The artful technique will be discussed later when we discuss how to test
multiplication and division.

2.2 D is /

Theorem 2 If [x],, = x and [y],, = y then [[x/y]2,,],, = [x/y],,.

Proof: Normalize the quotient so that

1//3<q=x/y<l,

and assume that y, the divisor, is an integer satisfying

f3P-1 5 y 5 {31' - 1.

The assumption on y can be accomplished by scaling. If (q]p = q then we are done,
so let us assume that [q],, ::fi q. Let the two p-digit numbers adjacent to q be q = [q],,
and q = [q]p where

q = I •qqq qqq I< q < ij = .__I •q_qq ___ q_qq___.l+ __ l ·o_o_o ___ 0_01___.I

Let

Lecture 8 - May 26, 1988 (notes revised June 13, 1990) 15

_I •q_qq ___ qiii_]

p+l

where 6 = f Since we carry twice as many digits asp, we are done when q = fj. So,
let us assume that q ~ ij and

N = 2/jPq = 2x _I q_q_q ___ q_qq_•6--'I •

Multiplying q by /3" shifts the point immediately to the left of 6, and multiplying it
by 2 makes Nan integer (recall that 6 = i).
The magnitude of the difference between _the quotient q and ij is

_ x N 2(3Px-Ny
I q - q I = I y - 2,8P I = I 2/jPy I

which is a ratio of two integers because

{Jx = ,8qy > y ~ fJP-1.

Note that fjx is as large as the smallest floating-point number beyond which all floating
point-numbers are integers. The numerator 2/J"x-Ny is not zero because we assumed
that q :f: ij, so we have

I q - q-I > _l_ > 1 - 1 /J-2P(l + p-p + {J-2p +)
- 2f3Py - 2/3P(/3P - 1) - 2 •• •

which implies that I q - q I> ½fJ- 2P. Hence,

either q < q- ½fJ- 2P = _J •_qq_q _____ qq_q_l J (6 - l)ppp • • • PPP I 6

or q > ij + ½P-2
P = J •qqq qqq 116000 000 16

When such a q is rounded to 2p digits and then to p digits, the results are the same
as if it were rounded top digits once. Therefore,

[[q)2p)p = (q)p.

We have shown that 2p digits are sufficient for division, but are they necessary? Do
we really need q ~ 2p to ensure that

[[x/y]q]p = [x/y],,?

The answer is yes! The following example demonstrates that 2p digits are necessary :

5000/9999 = 0.5000 5000 5000 5000
4999/9999 = 0.4999 4999 4999 4999

If correctly rounded, the answers should be 0.5001 and 0.4999 respectively, but if-less
than 2p digits are used, they may both be 0.5000 instead. The above example is in
decimal numbers; it is left as an exercise for interested readers to generate a similar
example for binary numbers.

Lecture 8 - May 26, 1988 (notes revised June 13, 1990) 16

2.3 D is -

Theorem 3 If [x]p = x > y = [Y]p > 0 then [[x - Yhp+i]p = [x - y]p•

Proof: Subtraction is the first disappointment because 2p+l digits are needed for rounding
to work correctly. Actually 2p+l digits are needed in binary only; other radices require
only 2p digits. We shall prove that 2p + 1 digits are sufficient and necessary by case
analysis using pictures. •

When we add two numbers, pre-shifting .is often necessary to align the points of the
operands. Consider the following cases :

Case 1 : y is shifted ~ p digits.

I XXX XXX I

1 zzz zzz 1

When y is shifted ~ p digits, the result is no wider than 2p digits. Hence,
[x - y)2p = X - y.

Case 2 : y is shifted ~ p + 2 digits.
Without loss of generality, assume that y is shifted by p + 2 digits :

I XXX XXX I

oo I yyy

.... 1 ?_.z_z _____ z_z_z __ lPP_I _11_1 _____ 11_.1_1

Recall that p = fj - 1. When the result is rounded to 2p digits we may obtain

either _I 1_.z_z _____ z_z_z_l pp _I 1_.1_1 ___ 1_.1_1 I

or 1x_x_x ___ x_xx 100 1 o_oo ___ o_oo 1

where no carry propagates out of the bottom p digits in the former but it does
in the latter. When the former is subsequently rounded to p digits, it'll round
up and produce x as the final solution, which is correct; the latter clearly rounds
to x. So, [x - y]2p = x = [x - y]p•

Case 3 : y is shifted p + 1 digits.

Lecture 8 - May 26, 1988 (notes revised June 13, 1990) 17

I XXX XXX I
of YYY

... I _? z_z _____ z_z_z---J!P ... 1 z_z_z _____ z_z_z~'

The most significant digit of the result may be a zero, in which case we have only
2p digits and there is no problem, that is, [x - y]2p = x - y. Assume that the
most significant bit is nonzero. When rounding to 2p digits and /3 ¥: 2 we'll get

1 zzz zzz I p ... I __ n_o_n_-_ze_r_o_es __

and consequently [[x - Yhp]p = x = [x - y]p•

However, if /3 = 2 and we round to even, using 2p bits is not sufficient. Consider
the following situation :

I XXX XXX I
ol 111 1111

1 zzz zzz 1 000 001 I
2p+ 1

When rounded to 2p digits we get

1 zzz zzz 1 000 ooo 1

When the above is further rounded to even top digits, th~ final answer depends
on the digit z: if z = 0 then we round down; otherwise, we round up. Therefore,
[[x - y]2p]p < x = [x - y]p when i =··O. In general, [[x - YhP+t]p = [x - Y]p holds
for all radices.

2.4 Dis+

Theorem 4 If [x]p = x ~ y = [y]p > 0 then [[x + YhP+t]p = [x + Y]p-

Proof: As in subtraction, 2p + 1 digits are needed for addition. Let us consider the
following cases :

Case 1 : y is pre-shifted by ~ p digits.

Lecture 8 - May 26, 1988 (notes revised June 13, 1990) 18

I XXX XXX I
+ I yyy yyy

1 zzz zzz I

~ 2p

The result has no more than 2p digits, so [x + y]2,, = x + y. When y is preshifted
by p bits, the most significant p digits of the result is x and y is the p least
significant digits.

Case 2 : y is preshifted by 2: p + 2 digits.

I XXX XXX I
+ 00 I YYY yyy I
I XXX XXX 00 yyy yyy I

When rounded to 2p digits, we obt~.n either

I XXX XXX 01 ??? ??? I
which is x when rounded top digits. Hence, we have [[x + y]2,,],, = x = [x + y]p.

Case 3 : y is preshifted by p + 1 digits.

I XXX XXX I

+ ol yyy yyy I
I XXX XXX O YYY YYY I

when rounded to 2p digits, we may get

I XXX XXX 1 ??? yyy I
Using an argument similar to that of Case 3 for subtraction, we have

[[x + Y]2p]p = x = [x + y],, if /J 2: 4

[x + Yhp+I = x + y if fJ = 2

~

Lecture 8 - May 26, 1988 (notes revised June 13, 1990) 19

In the next lecture we shall discuss the case where D = ✓· In summary, if we wish we
may design our hardware optimized for double precision computations and achieve the effect
of single pred-sion computations by rounding down. In other words, we can convert single
precision numbers to double precision, compute in double precision and then round to single
precision as if single precision arithmetic were available. A consequence of this scheme is
that single precision computations may be slowed down, relative-to an independent single
precision implementation; but because we speed up arithmetic generally, there are fewer
arithmetic formats to decipher in the arithmetic unit, and double precision arithmetic may
be faster.

. - l·. :

e::·
• j C.:·
, : (.:::

c_·
, ~ C:
-~ f":·

,•

(
t

73y

f<t:t.J.~ ~
'Prec.,'s,~ -p

E

(L)tp~f,.:.,) 'f"Ot.A.~J.tJ 'On"~:!S 'f'~ f $ 11 .eJ~,

ope,..~ +, .. • 1'-;, / or -ti'"
-·•--·- -- .-...-·---·

J-lt:,1,(,/ MIA t:.""' /l,f 'lc,' 1 ~>ce&-S.b 'F
f

,o Gu A-~ iV"TE' E ,fl AT

[

,-...

-

A .. hJC.< ~ !lp .
~I,,(!}~

•r ~if i - ,~ fl•
~ ' ;; ~)

.
n.ot • • or- , t , -

1pt-{
.

~l-\:0 ~ j ~ 'J a.l1.~.ut j.; ., i - IS -

' .
L,C.te)(•.•)oc>:,j

!11~~ . .:t;l'J}

e1'--r.

-------·-·.

_j

-----')·•-: --~-----~--- •.. ~ -·-··---·---•--·· _.,._ -- ---

) If (,cJ,. : ..:. ca..,.J. r':! 1,. : ::,
~ -H..o.... r. ~)(:1 J = ~ .,, '""' ~
! ~p j

J
1 --~·--·----·•-------·· •••• • ..

G•c • -~F:ir(

..,.. __,,,,...,..,_'-""--]
" l Jf 11 ~ • ,., ,, 1]

]
,.

f J
i < 2p]

)
I

]
j

10000-t x 111 f11 -- f 00 o e, 0 0 1 1 1 \ 1 .J
!

1 1 I O 1 ·1 > f o 1 1 0 1 = J
{

1 0 ,, "': 1 ~ 10 , 111 1 0 Q 0 10 1 00 DO 1]
~

(. -- i ao ro 1 10:> 001 J
C

J
I • 1) EK'-"~ sc,!.~, $44 t"d, ;1 p ,c; s WfA .'/ • Q ~

s) '' P-AJ:c '1
A,.;+t~.J.c~ &._ I-le~$,! "L,:/".,J/~ '' ,_

t

) J
(:

J
j
&:

.·. ·.:: ·. : ..

,,,,,,,.,-....;.._ ____________ ~----.

If

w 1/f < i;-= xi~ < i
f"'-1 p

~ r ~ j ~ ~ _,

['J, Jr :: ,, we O re I-,~ ,; ~J) 0 ~ t 1,1 tl'li..11 ['] p :J /, •

i = r i J, ~ i=Cil,, b ~ a.J j a. e E> "'j

p - s 0 . · J 0 ·, t l1 ~. l.M? rs H-a:J
u • --··--- "

~ ~ .•.ri1 :_ ... _~!; 1 < \ < i =

N ,.. 2 ? 1' f = 2" .• 1!~·:~.tZ'i'~?.

I ~ N I (2 (JP~ - Al:1 I
'"5 - :Zr-, p ::: -;2~'P .'.:I i -

r ~ = r " :, ~ ~ ~ ~ ,-,
-0 1t-f \ ~ 1

~ 0 ,

:2.r'r':l

f) ~,~~r < - -7.p
• I) t i - i r -

c:n

'
> - .,. J. -2 r, -

t z.. ~ -

" r ri12p Jp -6 0

l

r
[

[

[

[

r
[

[

[

[

[

[

[

[

[

[

[
r

0

~

OQ

000 QC, ~IC ••• xx.)

c:JdJ t ~z. -aa :-J
l_r __) j J [1-!· a-11 ~ J

r

(t:; c; ... c; ~1 .. --
r~ .. -~ocj t.I

\ .,
dL~ -~.:I ~ d H,.J

[~lc;-~J J 1 ~t+
\

0< [dkJ - h < ~ ::: [elk] jJ) -- '5 I ~ -
_J '--~-.___,

c~ i!- • -- C ~ 1 ooo · · o o 1 •.

0

0 0

0
t> 0

'----------. ,,.------ ~

,., .
tr ~- :::1 J:2p J p < "C. = r~ .. :11-r

/ff ~s Cd se.

j

~
]

J
J
J
J
J
J
J
J
J
J
J
J
J
J
.J

J

L

lf ~

J.{ r~ J p .:= ,c :! :1 =- r !11 r > 0

He.'YI f [x +'j 1 ::i,,,.,] r : C ;..+_j 1r

or ;l :, ;.!- p-res~:?leJ f:J p Jj ;\ ~c J
'-, _,

~ .z.,-
{71'-··- ..,.,,]

-\- [,,,,_:1_'3_· -_ --~-~]~

tA.evi
i(~~4 [[~ 'J J 2-p] p =~ - [~.,,J]P ,

;t ~=2. f;,c:;. ~ J 2pt-, :::- -:::t"-,. 'j

.J

1
]

J
J
J
J
J
J
J
J
J
J
J
J
J
]

J

