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1 Multiword Arithmetic

An earlier lecture mentioned that hardware containing an “add with carry” instruction will
be able to implement multiprecision add very efficiently. It also mentioned that if the result
of a + b is the bit pattern s, then a + b has a carryout exactly when s < a, where the
compare is an unsigned one. Thus you could write a multiprecision package in C, since C
has an unsigned compare operation.

Exercise : Code multiprecision add and subtract both in C and in assembly language on
your local computer and compare how fast they run.

Here’s the specification for a simple multiprecision package. A multiprecision number
is an array [Dp—1 D2 ...D; Dg). When the bits in these words are concatenated you get
a n - w bit integer in two’s complement, where w is the number of bits in a single word.
ADDLI(&D,2S,n) should add the two multiprecision numbers D and S and put the result in
D. SUBLI(2D,&S,n) should subtract S from D and put the result in D. The value of these
functions is 0 if there is no overflow, +1 for positive overflow and —1 for negative overflow.
The order in which the successive words Dg, Dy, ...are stored in memory (increasing or
decreasing addresses) is left up to each implementation. .

2 Simulating Single Precision in Double Precison

Recall the situation of a hardware designer who wants to simplify a design by building
only double precision hardware. Can single precision be simulated by first rounding each
arithmetic result correctly to double precision, then rounding that result correctly to single
precision? Using our notation [z], to mean z rounded correctly to p significant digits we
need to know for which g, {[z ® y]¢)p = [z ® y]p, where ® ranges over common operations.
In the last lecture, we studied this situation for addition, subtraction, multiplication and

division, and concluded that ¢ > 2p + 1 is enough. In this section, we study the case of
square roots.

Theorem 1 If [z}, = z > 0, then [[\/z)), = [V/Z), provided ¢ > 2p+ 1 for radiz B > 4,
and g > 2p+ 2 for radiz f = 2.
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Figure 1: Graph of 462+ 4(2N +1)¢+1

Proof: Scale z so that §7~! < /T < §. Let N = |/Z). Then
BPr<NSVZISN+1<p.
Define £ = +/Z —~ (N + 3) so that 0 < [¢| < .
Now 4z = (26 + 2N +1)® = 462 + 4(2N + 1)+ (2N +1)? so that
482 +4(2N + 1) = 487V (z/BP1) - (2N + 1)?

= 8(3p /8P - NV + 1))2) -
= §(M)-1,

where M is an integer. That’s because 387~ is an integer since § is even, N(N +1)/2 is an
integer because one of N or N + 1 is even, and z/8P-1 is an integer because z has p digits
and z > $?-2, Since either 8M ~ 1 < —~1 or 8M —1 > 7 then also 462 +4(2N + 1) < ~1
or 42+ 42N +1)6> 7.

Consider the first case. From the graph of 462 + 4(2N + 1)¢ + 1, shown in Figure 1, we

see that since this quantity is nonpositive, £ must be left of the rightmost zero. From the
quadratic formula, the zeros are

—eN+1)+ JONFI¢ =1
Y :

Picking the larger root and multiplying throngh by —(2N + 1) -~ V2N +1)7 =1 gives

1, _
6’2(2N+1)+\74T2N= g ) ey i 8(N+1) 5? 7

thus /Z < N + 1 - 15-7. In a diagram

' N |.[o111...1 ]111000
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Figure 2: Graph of 462 + 4(2N +1)¢ -7

| N ].[4999...9]875000

where each box holds p digits, and the top line represents the case when 8 = 2, the bottom
line f = 10. From this we see that {\/Z], is N. If the rightmost box becomes  when
rounding to g digits, then if NV is odd the final rounding to p digits will result in N 4 1. So
in order for [[vz],], = [v/Z]p, the rightmost box must contain 0111...1. This will happen
if the ¢ rounding is to 2p+ 2 digits or more (remember that the actual value of \/Z is less
than the number in the picture). For a radix greater than 2, only 2p + 1 digits are needed.

The second case is when 4£2 + 4(2N + 1)§ — 7 > 0. The graph of this quadratic, shown
in Figure 2, has two positive regions. Since || < 1, £ must lie to the right of the rightmost
zero. The analysis proceeds as in the first case and with the same conclusion about the
value of g. This completes the proof.

Here’s an example to show that the theorem is best possible. Let z = (87 — 1)5P. Then
using the binomial theorem

VZ = \[(Br-1)8 = \[B%(1 - B-P) = P(1+ (-5"))}
p (1 s 3o+ B2 e HO=VG=D gy )

1 1 1
P o =3P — 2P _...
A 2 8'6 16[3

So just as in the proof, /z < N + 1 — 137, where N = 7 — 1. And N is odd. So in this
example [/Z]p, = N but if 8= 2, [[\/Z)2p+1)p = N + 1.

3 Error Analysis of the Quadratic

In this section we will perform an error analysis for finding the roots of a quadratic equa-
tion. The analysis is quite complex, even for such a simple problem. Every time hardware
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designers cook up new floating point hardware that invalidates the assumptions in an error
analysis, the analysis has to be done all over again. This points up one advantage of using
a standard like IEEE 754/854.- Once the hard work of performing an error analysis for this
standard is done, it can be shared by all users of the standard.

We're going to study the equation Az2 — 2Bz + C = A(z - Z;)(z — Z_). In order to
make the following formulas simpler, we have made a harmless substitution and used —2B
instead of the more usual B as the coefficient of z. The familiar formula for the roots is

B+ VBT ZAC
Zy = = . (1)
The roots satisfy the relations
2B
Zo+Z_ = - (2)
2.
Z,-z. = WE-AC (3)
c A
Z+2. = < (4)

We will make heavy use of these formulas in our error analysis. Its easy to see that the
formula for Z_ can be numerically unstable. If B2 is much larger than |AC], then there
will be considerable roundoff error when computing vB? — AC =~ |B| and when this is
subtracted from B (or added to B if B < 0), cancellation will be dxsastrous However, this

is can be avoided by changing the formula: multiply the numerator and denominator by
B ¥ vVBZZAC to get the better formula

S 5)
B VvBZ-AC

What is less obvious is that when B2 =~ AC, then no matter which formula we use, up
to half the digits can be lost. This is a good example of the general principle mentioned
earlier, that you should carry about twice as many digits in a calculation as you want in
your final result.

Zy =

3.1 Forward Error Analysis

We can make some simplifying assumptions about the coefficients of the quadratic. We
can assume A > 0 (otherwise multiply the quadratic by —1) and we can assume B > 0
(otherwise multiply the roots Z_ and Z; by —1 and then swap them, so that Z, remains
the largest root). We will now do a forward error analysis for the case B2 3 |AC|. Since

B >0,
Z,| _|B+VvB*-AC|_|(B+VvB*-AC)*| 4B?
v bl b s o

7. AC ~taq >t 6)

Using the classical model of roundoff, the computed value z; corresponding to Z is

Bx(1+2¢)vB2 - AC
N .

z4 = (1£2¢)

There are two different meanings of &. The bold X correlate with the two different roots
of the quadratic. The nonbold + represent uncorrelated roundoff errors.
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The error of (1 & 2¢) in front of the square root requires some explanation. Because
B2 » |AC|, the roundoff error committed in computing AC doesn’t contribute to the
roundoff error in B2 — AC. Thus the error in B2 — AC is (1 + ¢)?, one from the square
and the other from the subtract. Taking the square root reduces that'to 1 + ¢, but then
you need to factor in another 1+ ¢ for the error committed in computing the square root.
Using (2) and (3) we can rewrite the equation as

s = (1£26) (-Z—*'—;—z-:i(l + 2€)£i;2-—z-'-) )
2 = (1£20Z, (1 +e(1— E)) " (@)
Z4
Since |Z_/Z| <1 from (6),1-2¢<1+e(l-2_/Z,) <1+ 2¢ 50 we end up with
24 = (1 + 26)(1 + 2€)Z+ =~ (1 + 4€)Z+. (9)

To get the other root, go back to (7) to get
2. = (1x2)(Z2_xe(Z4 -2.))
= (1£2¢) (1 + e(-? - 1)) z.

~ (1£30(1% e%)z_

(1 +(3+ %)e) 2. (10)

where we used (6) in the last step. So we see that when B2 » |AC| and B > 0, the smaller
root Z_ may have lost as many as 3 4+ (4B2/|AC]|) ulps. So it is quite possible that none of
the figures in Z_ are meaningful.

As we mentioned above, we can avoid this disastrous cancellation by picking whichever
formula of (1) and (5) doesn’t involve cancellation. Or more precisely

Algorithm 1 (Quadratic Formula) Let D = B2 — AC. Then if D < 0 compute the

complez roots using Zy = (B £ iv/=D)/A, otherwise compute the real roots using S =
B+ /D sign(B), Z_=C/S and Z, = §/A.

Q

3.2 Backward Error Analysis
We will now perform a backward error analysis of the quadratic formula.

Theorem 2 The computed roots z differ from the true roots Z, by at most a few ulps
more than if the coefficients A, B, and C had first been perturbed by at most a few ulps.

Proof: The actual value of D is
d= B%*1+4 &)= AC(1 + 7). (11)

Each greek letter in this proof will represent 1 or 2 rounding errors. In the equation above,
we used the version of error estimate suitable even for machines without a guard digit, and
each of x, 7 actually represent two rounding errors. If d < 0 then

2y = %(1+ B) + i?ﬂ +6). (12)

. g
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To do a backward error analysis, we need to find A', B', C'yand D' = B7? — A'C’ so that

B’:l:t\/_D_ B v—=d

Ze = — (1 + B)xi ——(1 +8). - (13)
This will exhibit z4 as ezactly the roots of a slightly perturbed quadratic. Suppose we let
A = A (14)
B' = B(1+ B) (15)
C' = Cl+7). (16)

Then clearly the real parts of (13) are equal. To compute v, we equate the i xmagmary parts
and get

V=D = JV=d(1+6)
B(1+ 8- AC(1+1) = (1+6)*(B*(1+x)- AC(1 +7))
149 = 32 <z (@487 -(1+620+0) + (148671 +7)

149 = ZE(2[3-26—~)+(1+6)’(1+1).

Since d < 0, then D < 0 and B2/|AC| £ 1 s0 v is just a few ulps. You might wonder why
d < 0 implies D < 0. On almost all machines (the Cray is an exception), the products B- B
and A-C are computed internally to full precision and then rounded in some fashion. Since
if z < y then [z]; < [y], for all the standard types of rounding, then if B2 < AC it follows
that the computed values satisfy 62 < ac.

To deal with the case d > 0 note that

s = (B+Vd-sign(B))1+0)
= = 040
zp = %(0+C+)-

In a simple backward error analysis, the computed quantity is exactly the solution of a
slightly perturbed problem. This was the case when d < 0. If only life were so simple.
In many cases, even after perturbing the original problem, we still don’t get the computed
quantity exactly, but only within a few ulps. This is the situation we are in now. If we let

A = A
B = B, l+x .
l14x
¢ = C,
then calculation shows that l3£-Z_ and TFeTsa; 2+ are exact roots of A'z?~2B'z+C' =
0, where
1+6= |8| —(1+a)\/1+gw
T b+ V2 —ac o] + Vb2 — ac

So when d > 0, the actual roots differ by just a few ulps from the exact roots of a perturbed
equation one of whose coefficients differs from the original by a few ulps.
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3.3 Multiple Roots

What we really want to know. about the roots computed from algorithm 1 is how many
significant digits they contain. The forward error analysis answered that question when
B2 3 |AC| (equation(9)). What about the general case? Backward error analysis told us
that the computed roots differed only a few ulps from the roots of a perturbed equation.
But perhaps the roots of the perturbed equation are nowhere near the roots of the original
- equation. We can analyze this by looking at the quadratic AZ3 ~ 2BZ; + C = 0 and
considering the root Z, = Z,.(A,B,C) to be a function of the coeﬂicxents Then if we
differentiate implicitly with respect to the variable A, we get Z% + 2AZ+-5;‘h 2B-g;f- 0
and solving for -aazth gives

8z,  -I% -22 -7
0A ~ A(22,-2) A(2Z4- z+ —Z.) A(z*-2.)

using (2) and (3). We can repeat this calculation differentiating with respect to B and C
to get

824 _ -Z2

0A ~ A(Z+-~-2Z.) (17)
0Z, _ 2Z,

0B ~ A(Z+t-2Z.)

02, -1

aC ~ A(z+r-2Z.)

We conclude that when the two roots are close together, a small change in any one of the
coefficients will make a large difference in the value of the root z. So in this case, backwards
error analysis doesn’t give us any information about how many significant digits algorithm 1
generates. We will need to do a forward error analysis.

When the roots are nearly equal, the crucial roundoff error comes from D.

d = B*(1xk)-AC(1%m)

(B - AC

= A? (lih)-——(ﬂ:hﬂ:ﬂ’))

Zy - 2Z_ trtw
- 2 +
= (1%x)A (( . ),+ 1Mz‘;z_)

where we used (3) and (4). Taking square roots gives

=(1% /2)\[ Zs = *1" trz.2..

To simplify this, we use the fact that if p > ¢ > 0 then

p-qsx/;ﬂ-q’s\/pzﬂ’swq
so p % q is at least as large as /p? = ¢2. Using this together with Z; = Z_, we conclude

that
? = (1% x/2) (——-Z+ ; 2- 4 \[*"*"lmz |)

- .v-!)
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vD

= (1xx/2) (Tilztl Zetr

1+«

If Z; has p significant figures in base 3, then the errors x, 7 are about §~? so that \/[x £ 7]
is about A~?/2 and the error term | Z,|\/[x £ 7| has about half as many digits as [Z..|. From
the formulas

B V-
Zy = i + tT
B . vd
Z+ = 'Z + s1gn(B)T
Z. = ¢
- B + sign(B)Vd

we can see that the error in computing d swamps out the other errors, and sowhen Z,. = Z_,
we lose at most half the digits.

Is there a way to compute the roots to full accuracy when they are nearly equal? One
solution is to compute D = B? — AC in double precision, so that when we lose half the
figures, we are back to full single precision. If double precision isn’t available we can simulate
it by splitting each number into 2 parts. Then multiplying two such quantities together
will require 4 single precision multiplies. Another trick is to scale A, B, and C to integers
and use the remainder function. See the paper Rational Arithmetic in Floating Point for
details.

As the zeros of a quadratic get closer, the formulas for the partial derivatives (17)
suggest that the rounding error grows like 1/|Z4 — Z_|. On the other hand, we have just
showed that the rounding error never consumes more than half the digits. Why does the
rounding error plateau? One possible explanation involves scaling the quadratic to make
the coefficents integers. The constraint that the coefficients are integers puts a limit on how
close the roots can be. This is studied in a paper by Mignotte.

3.4 General Comments on Quadratics

The argument above used the explicit formula given in algorithm 1. It turns out that we
don’t need any explicit formulas. If all we know is that there is some algorithm satisfy-
ing Theorem 2, then we can prove that you can compute roots which have at least half
their figures correct, and when the zeros are far apart, the roots are in error by at most
max(Z4,2_)/|Z4 — Z_| ulps.

When we use the naive formula for solving the quadratic and when A = AC/B? = 0,
formula (10) shows that the error is about 1/|A| ulps. This is no accident. A recent paper
by James Demmel in Mathematics of Computation (April 1988) shows that in general, you
lose about 1/|)A| ulps where A is the distance to a singularity. With the naive formula, the
singularity occurs when A = 0 so the distance is just |A|. Another example occurs when the
roots become equal, A = 1. In this case, equation (17) suggests that the roundoff error is
1/(|1 - A]), which again is the reciprocal of the distance to the singular set.

The quadratic equation also illustrates another principle, namely that you are more
likely to find problems with an algorithm if you perform it in single precision. Imagine that
you carry out your calculations with p bits of precision, that-you print out and compare
the first n bits with the correctly computed result, where n < p. The roundoff error
will have to exceed p — n bits before you notice it. If you are using the naive formula
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for solving quadratics, the roundoff error is 1/]A| ulps, as we observed above, so we will
observe a discrepancy between what is actually computed and what should be computed
only if 1/|A] < 2"~?. If we use double precision (p = 53) and compare with an answer

correctly computed to single precision (n = 24) we will notice a discrepancy only when
IA] < 2-2° = .000000002.

4 Single Precision vs Double Precision

We have previously stressed the importance of doing calculations in single precision. How-
ever, there are some calculations where no matter how careful you are, single precision just
isn't enough. Consider the recurrence zp4+; = 4Vz,(1 — z,) which arises in discrete dy-

namical systems. Suppose that we choose V' = 0.997068882545 and compute the z’s using
a program like this.

double v = 0.997068882545
float fnf(x) {

float tmpl, tmp2;

tonpl = 4%v=x;
tmp2 = tmpi*(1 - x);
return(tmp2) ;
}
X =v;
for i= 1 ton {
for j=1 to 20
x = fnf(x);
print i, x;

}

Figure 3 shows the results of running this program first in single precision with 24
significant bits, and then in double precision with 53 significant bits. In the program, the
constant v# ends with a # which causes it to be stored in double precision, even in the
single precision version of the program. When run in double precision, we discover that

ZTp420 X ZT,. However, roundoff error destroys this relationship when computed in single
precision.
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e Program =-=-- -~ Results -
D:ITERN.BAS li= 83 x = ..9970688825449633
defdbl a-z : REM Double | i = 84 x = .9970688825449634
v# = 0.997068882545 |l i= 85 x = .9970688825449633
def fnf(x) |l i= 86 x = ,9970688825449634
local o1, 02 | i= 87 x = .9970688825449633
ol = 4evi#*x : 02 = o1*(1-x) | i = 88 x = .9970688825449634
fnf = 02 : end def |l i= 89 x = .9970688825449633
x = v# |l i= 90 x = .9970688825449634
input "How many loops", n li= 91 x = .9970688825449633
print "Initial x = ";x | i= 92 X = .9970688825449634
for i=1 to n | i= 93 x = .9970688825449633
for j=1 to 20 li= 94 x = .9970688825449634
x = fnf(x) : next j li= 95 x = .9970688825449633
print "i = ";i;" x = ";x l1i= 96 x = .9970688825449634
next i li= 97 x = .9970688825449633
end I i= 98 x = .9970688825449634
1i= 99 x = .9970688825449633
| i= 100 x = .9970688825449634
D:ITERN.BAS li= 3 x = .7717265486717224
defsng a-z : REM Single | i = 4 x = .7567538619041443
v# = 0.997068882545 1 i 5 x = .9641148447990417
def fnf(x) 1i= 6 x = .3844239115715027
local o1, o2 li= 7 x = .5180658102035522
ol = 4%vi*x : 02 = o1*(1-x) | i = 8 x = .9968630075454712
fnf = 02 : end def li= 9 x = .1617649644613266
x = v |l i= 10 x = ,712332010269165
input "How many loops", n li= 11 x = .6466721296310425
print "Initial x = “;x | i= 12 x = .9350763559341431
for i=1 to n | i= 13 x = .1641836315393448
for j=1 to 20 li= 14 x = .7653287053108215
x = fnf(x) : mnext j l|i= 15 x = .5457952618598938
print "i = “;i;" x = ";x | 1= 16 x = .9818066954612732
next i |l i= 17 x = .3048334121704102
end | i= 18 x = ,1700769513845444
| i= 19 x = 1.167876459658146E-002
| i= 20 x = .232066810131073

Figure 3: Single and double-precision summation
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5 Compensated Summation

Consider the problem of computing a very long summation TN z;. There are three common
situations where this calculation arises. The obvious one is estimating an infinite series.
Two other applications are numerical quadrature and ordinary differential equations. We
briefly indicate how the numerical solution of an ordinary differential equation of the form
%{l = f(y) results in computing a long sum. Using the fundamental theorem of calculus

et -ue) = [ vds= [ s

vt = w0+ (L[ fusa0)
= y(t)+r-av(f).

The quantity that we have called av(f) is an approximation to the integral. The integral

can’t be computed exactly, but represents an average of f. Different approximations form
the basis for different solution methods. But no matter which method is used, to compute
the value of y at {, you start with the value at ¢ and add many summands ((f - t)/7 of
them) to get the value of f(2).

The obvious program for computing a long sum is

s = X[0]
for j=1toN {

S =35 + X[j] /*s[j] =5s(j-1] + X[3j] =/
}

When N is very large, then classical error analysis tells us that
N N
SN = sz(l + E)N'H" x Zz,-(l + (N +1-=3)e).
) [

In other words, the error bounds are huge. In particular, the contribution of the early
summands can be completely lost due to roundoff error. The simplest way to improve the
accuracy of long summations is to compute them in a higher precision. If they are already
being computed in the highest precision, there is a method called Compensated Summation
that can improve the accuracy at the cost of only 3 extra operations. A technique similar to
this for fixed point numbers was first used around 1950 by S. P. Gill. The method explained
below was introduced by Meller in a paper in BIT around 1960, and independently by
Kahan. The program works like this.

S = X[0];
C = 0;
for j= 1 to N {

Y = X[j] + C; /* Y[3]1 = X[3] + c[j-1] =/

T=S +Y; /% T3] = S{5-1] + Y[3] =/
Ce(S-T)+Y; /= C[j] = (s[j-11 - T[§]) + Y[3j] =/
S=T; /* S[3) = T(3] =/

Iy e oty i
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To see why this improves accuracy, consider the following diagram of the procedure.

+Cn
a
<

{
et
= |

+{( W
[H-c

Each time we add in a summand, there is a correction factor C which will be added in
on the next loop. So first we add the correction C;_; from the previous loop to X, giving
us a corrected summand Yj. Then we add this summand to the running sum S;_;. The
low order bits of Y (namely Y}) are lost in the sum. Next we compute the high order bits
of Y by computing S;_; — T;. When we add that back into Y we will have recovered the
low order bits of Y. These are the bits that were lost in the first sum in the diagram. They
become the correction factor for the next loop. Figure 4 is a numerical example illustrating
how well the method works.

The explanation given above is only a heuristic: it doesn’t always hold exactly, as the
following example in decimal with 5 digits of precision shows.

Si1
Y;

Sj+Y;=T;

Si-1

(Sj-1—T;)

Y;
(Si1-T3)+Y;=Cj

0.99998
0.99998
1.99996 —  2.00000
0.99998
-1.00002 — -1.00000
.99998
~0.00002

The expected correction factor is —~0.00004, but the algorithm yields —0.00002 instead. In a
paper in BIT, S. Linnainmaa introduced refinements to the algorithm to try and avoid this
anomaly. But a better approach is to simply recognize that the explanation given above
is not intended to be exact, and instead rely on an error analysis. The error analyis of
compensated summation is surprisingly hard. The result is that

N N
SN = z::,-(l + E)k + O(ch)z iz;l,
0 .0

where & is a small integer.
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D:COMPSUM.BAS Line 3
defsng a-z

s=20: s8c=0: ¢c=0:

for n=1 to 100001 step 2
x = 6930/(n*n - 0.25)

I

|

I

|

|

| 8 = 8+x : ds¥# = ds# + x
| y=x¢c: tc=8Cc+y

| c= (sc-tc) +y : 8C = tc
|

|

|

]

|

!

next n
print "Single sum =
print "Compensated sum =
print "Double sum =
print " 3465#pi =
end

Censemceccamc—naa Run ---
10884.833984375
10885.583984375
10885.5838892153
10885.61854468863

ISingle sum
|Compensated sum
IDouble sum

| 3465+*pi

Col 44 Insert|

ds# = 0

";8

".8¢C

“:;ds#

u. 3465%4*atn(1#)

Figure 4: Compensated Summation at work.
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53 ség. bits vs, 24 siq. bots
Turbo EBasic -
File Edit Run Compile Options Setup Window Debua
Edit Run 1
D: ITERN. BAS Line 1 Col 13 i = I ¥ = J997068BBB82544%94633
H> defdbl a-z cee 53 33 boks i = 84 X = .997068882544%6T4
v# = 0,99706888254% i = 8% N = WP97068BB2544963F
def fnf(xn) i = B6 X = .997068BB8254496=4
local ol, o2 i = 87 ¥ = LT97068882544963F
ol = 4%kv#ikx 1 02 = ol%x(1-%) i = 88 N = L9970688825449474
fnf = 02 : end def i = 89 N = L9P70688B2544963%3
X = v# i= Q0 = L, 9R70688825449674
input "How many loops”". n i= @i o= L9970688825447633
print "Initial . » = “zx i = 92 o= J997068R82544946T4
for i=1 te n i= 3 Ho= L997068882544963F
for ji=1 to 20 i = 94 X o= 9970688BB825449634
» = fnf(x) @ next j i = 95 N = LFF706BBEBRT44963F
primnt "i = "gig" o= Min i = Q& ¥ o= J997046B8832544%46T4
next i —-li = @7 N o= LP97068BB25447633
end i = 98 ¥ = 9970688825449634
i = 99 » o= JQ9706BBBE544F62X
Line: 15 Stmt: 20 Free: 170k i = 100 ¥ =  ,99706888254494634
Fil-Help FS-Zoom Fé-Next F7-6Gotoc SCROLL-Size/move Alt-X-Exit
Turbo Basic
File Edit Run Compile Options Setup Window Debtug
Edit Run
D: ITERN. BAS Line 1 Col 13 |1 = 3 o=  J771724685486717272
’{> defsng a-= vor 24 5iq. biFs i= 4 ¥ = J756753R86190451447
v = 0.9797046888254% i= g ¥ = .96411484479904517
def fnf () i= 6 o= L, 384427911571 5027
local ot, of i = 7 o= LD1804658102035522
ol = 4%vé%y : 02 = ol¥(i-x) i = 8 Ho= L9P68630075454712
fnf = o2 : end def i= 9 ¥ = L16176479644615246
o= v i= 10 o= (Z123F2010269165
input "“How many loops", n i= 11 ¥ = JHB6LTZ21296F10423
print "Initial ¥ = "y i= 2 ¢ = L 93D0763559341451
for i=1 to n i= 13 o= L1641836715393443
for j=1 to 20 i= 14 X o= L76SIEE7OSII0ORZILE
¥ = fnf(x)  next j i= 15 » = ,S5457952618598578
print "i = "ziz"® ¥ o= "iu i= 16 ¥ = .92818066954612732
next i i= 17 ¥ = JX048334121704102
end’ i = 18 ¥ = . 1700769513845444
i= 19 w = 1,167876432658144E-002
Line: 15 Stmt: 20 Free: 190k i = 20 N o= L232066810131073
%, = # Z 2, - (1—2.) > V = 0.997062282 2545 P
Zende %o >¢ = =, .
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Turbo Easic

File Edit Run Compile Options Setup Window Debuqg
Edit - Trace 1
D:COMFSUM.BAS Line 3 Col 44 Insert
defsng a-:z
E =0: sc =03 c=02: ds# =0
for =1 to 100001 step 2
® = 6930/ (n¥kn — 0.25)
& = g+ : ds# = ds# + »u
Yy = x+c ¢ tc = s8C + vV
€ = (sc—tc) + vy : s8sc = tc
next n
print "Single sum = ":s
print "Compensated sum = "“jsc
print "Double sum = ";ds#
print " 34465xpi = "3 F46T%4%katn (1#)
end Run
Single sum = 10884.833984375
Time: 00:00 Compensated sum = 10885.883984375
Line: 14 Stmt: 21 Free: 190k Double sum = 1088%5.583889:153
J446SKpi = 10885, 61854468863
Fil-Help FS-Z2com Fé-Next F7-Gote SCROLL-Size/move Alt-X-Exit
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