
....

• Computer System "Support for Scientific and Engineering
Computation

Lecture 10 - June 2, 1988 (notes revised June 21, 1988)

Copyright @1988 by W. Kahan and David Goldberg.
All rights reserved.

1 Multiword Arithmetic

Reca.11 that we earlier discussed adding integer multiword arithmetic operations to the defini
tion of C. The advantage of doing this would be toga.in efficiency over writing multiprecision
integer routines in C. Such a program for add might look like this:

unsigned c, a[J, s □;

C • 0
for i • 1 ton {

if (c •• 0) {

}

s[i] • a[iJ + b[i];
c • (s[i] < a[i]);

} else {

}

s[i] • a[iJ + b[i] + 1;
c • (s[i] <= a[i]):

How does this compare with an assembly language coded routine? A representative from
HP reports that on the HP precision architecture, an assembly coded routine takes 5 + 5N
cycles to add two N word arrays. The C version takes 5 + (13 + C)N cycles, where C varies
between O and 1 depending on how often t~ere is a carry. On the other hand, the MIPS
contingent reports that a MIPS processor takes from 11-14 cycles per iteration (depending
on the carries). But if an add with carry intruction were added to the MIPS architecture,
it would only speed up to run at 8 cycles per iteration.

2 Nonstandard Numerical Theories

Just as the real world is filled with bitterly controversial topics like abortion and evolution,
so is the numerical analysis world. In this section we discuss some of these controvers.ial
theories.

1

I

I
I

I

I

'.

Lecture 10 - June 2, 1988 (notes revised June 21, 1988) 2

2.1 Significance Arithmetic .

Significance arithmetic was invent~ in the early sixties by Ashenhurst and Metropolis. The
id~ is that if rounding errors have contaminated the lowest k bits of a _number, those bits
should be thrown away. In significance arithmetic, the contaminated bits are thrown away as
the computation proceeds. The hope is that the final answer will have at least the required
number of significant digits. If so, a complicated error analysis would be unnecessary. For
exa.mple, if a number were only accurate to 5 digits on a decimal ma.chine that carries
13 digits, instead of representing it as 3.141592653589 x 10 °, you would represent it as
0.000000031416 x 108• You might reject this theory on philosophical grounds, noting that
in real life context suggests that 3 is exact, but 3 x 1017 is most likely not exact. However,
we readily discern a more precise reason why significance arithmetic is not a good idea.

When you are given a number like 3.14 x 10° in significance arithmetic, the assumption
is that the enor is about 1 place in the la.st digit, that is 1 x 10-2 • If the error in 3.1416 is
3 x 10-2, we have to either underestimate it by writing 3.14 or overestimate it by writing
3.1. In either case, we have lost information. So no matter what rules you come up with
for disca.rding contaminated bits, once those rules have been picked you can cook up an
example whose true error bounds differ quite a bit from what is implied by the number
of bits in the final answer. In binary, this could differ as much as ½ bit per arithmetic
operation. Thus after n computations, the best error bound could differ from the implied
error bound by as much as a factor of 2"/2 either way.

2.2 Probabilistic Analysis

Another approach to roundoff error is to deal with probabilities. Since most interesting
numerical calculations involve many arithmetic operations, we could appeal to the central
limit theorem which says that when you add together many random variables with com
parable variances, you get a. nearly normal distribution. But of course when you perform
a particular calculation, you're not interested in the statistics of roundoff error, but rather
the roundoff error in your particular calculation. If you are doing a crucial calculation,
having a inconect error bound could be disastrous. It doesn't help you to know that the
error bound is correct "on average".

An argument in favor of probabilistic analysis says that incorrect error bounds are quite
rare, and if you consider the cost of an incorrect error bound times the probability of such
an event, things work out well in the long run. There a.re two problems with this argument.
The first is that you often can't measure the cost of a wrong answer. The second is that
rare events occur in the tail of the normal distribution, and convergence of a sum of random
variables is fastest at the center, and slowest at the tails. In fact, the farther out in the tail
you are, the slower the convergence.

Another problem with the probabilistic approach is that in most computation, only
two or three roundoff errors really affect the final answer. In computing the roots of a
quadratic equation, the enor is serious only when 62 and cc mostly cancel, so only the two
roundoff' errors incured in computing each of 62 and 4cc really matter. Another example is
linear equations. If you use Gaussian elimination to convert a matrix to upper triangular
form, almost all the roundoff error will be in the diagonal element corresponding to the
sma.llest pivot, and in that element the roundoff error will be almost entirely due to a. few
arithmetic operations. So modelling roundoff. error as a normal distribution is often not
realistic. However, this doesn't mean ·that there is no place for probabilistic analysis. It is

Lecture 10 - June 2, 1988 (notes revised June 21, 1988) 3

useful when testing programs. You can run your program with many different inputs, and
compare the computed output to the correct answer. If the statistics of the resulting errors
doesn't match your probabilis\ic erro· analysis, you can suspect there is either ~n error in
your program or in your analysis of i ~.

2.3 Interval Arithmetc

In interval arithmetic, the error bounds of quantities are carried throughout the calculation.
For example, if we know that the variable X lies somewhere in the interval (i,z], and Y lies
somewhere in the interval (y, y), then X+ Y lies somewhere in (i+y, i-+y). When computing
these bounds you must round down (towa.rds -00) when computing i + y, and round up
(towards +00) when computing i + y. Because most pre-IEEE hardware doesn't allow you
to round both up and down, you have to estimate the effect of rounding. This is usually
done by multiplying by 1 ± €, as in classical error analysis.

There are a number of problems with interval arithmetic. The first has to do with
quantities that can be represented exactly without any rounding error. For example when
computing 3 + 7 there is no rounding error. However, in an implementation of interval
analysis in which you multiply by 1 ± € to estimate rounding error of the bounds, you would
lose the information that 3 + 7 is exact.

The second problem has to do with the fact that in interval arithmetic, to perform an
operation on an interval, you perform that operation on the endpoints of the interval. And
you do this step by step for each arithmetic operation. This can be too pessimistic. For
example, suppose you want to compute y = z2 - :r, and suppose that z E [0.49,0.51). Now
the graph of z2 - z is a parabola whose minimum is at :r = 0.5, so [0.49, 0.51] is carried
to [-.25, -.2499). But in a program that computes y = :r 2 - :r by first computing z = z2

and then y = z - :r, we first get that [.49,0.51) is carried to [.2401, .2601] and then carried
to [-.2601, -.2299), which is much too pessimistic. The problem is that interval analysis
assumes the errors are uncorrelated, which is not the case in this example. However there
is a trick you could use, namely rewrite :r2 - z as (z - ½->2 - t· For more complicated
expressions finding the trick may not be so easy, and for functions of several variables it
isn't possible in general.

When we analyze a calculation with interval analysis, we start with an interval and
then perform the calculation on that interval. As long as all the steps in the calculation
are continuous, at each step the interval gets transformed into another interval. But in
a calculation involving two or more variables, intervals get replaced by boxes (squares,
cubes, etc). And when we subject a box to a continuous operation, it will in general get
transformed into a twisted shape that is not a box. In order to proceed to the next step of
interval analysis, we will have to replace that twisted shape by a box that contains it. If
we're very unlucky, this new box nught include a singularity that was quite far away from
the original twisted shape (see Figure 1). However, this problem is not quite as serious as
it seems. First of all, as long as the operations are differentiable, they a.re locally linear
and so will take small boxes to shapes that are almost boxes. If the boxes start to get too
large, they can be partitioned into a set of smaller boxes, and we can operate on each box
independently, taking their union at the end (see Figure 2). Of course this gets expensive
in large dimensions. Dividing each edge of the box in half increases the number of boxes by
2" in dimension d.

Besides these drawbacks, using interval arithmetic makes calculations noticeably slower.
Most programmers don't care enough about error analysis to slow down their calculations

1:
11;
J
J:

I

1

J
_J

l

J
l

_j

J
J

Lecture 10 - June 2, 1988 (notes revised June 21, 1988) 4

/(X)
' .

-x '
0 0

F(X)-

Figure 1: An unexceptional 2-dimemiona.1 interval X maps to a region /(X) whose smallest
enclosing interval is F(X), which also contains the origin.

f

0
___,...

0

Figure 2: Previous problem improved by subdivision.

II

Leceure 10. June 2, 1988 (notes revised June 21, 1988) 5

that much. It is probably for this reason that none of the standard languages offer any
support for interval analysis. This makes interval programming awkward, and in turn
decreases its use still further. For all these reasons, interval analysis is not widely used.
However, it is useful for searching and optimization problems (see the next section), and it
does provide a very useful language for describing errors.

Two references for interval arithmetic are Methods and Applications of Interval Analaysis
by R. E. Moore (published by SIAM, 1979) and Introduction to Interval Computations by
G. Alefeld and J. Herzberger (Academic Press, 1983). The first is easy to read, the second
is much more mathematical.

2.4 Iteration

There is a class of numerical problems that can be ca.st in the form of finding a fixed point
for a function t/,, that is solving t/,(:a:) = :. In many cases, we can solve this equation by
iterating :i+t = tJ,(:a:i). For example, to find the roots of /(:a:)= 0, we search for the fixed
point of t/,(:a:) = :a: - /Jrir. A useful fact to know about fixed points is

Theorem 1 {Brouwer) If B is a closed and bounded conve:t region, and tJ, is a continuous
function satisfying t/,(B) ~ B, then tJ, has a feed point.

A closed region is one that contains its boundary. Thus {(:a:, y) : :a: 2 + y2 < 1} is not
closed, but {(:a:, y): :z: 2 + y2 S 1} is closed. In one dimension (Bis an interval) the proof is
easy. For two dimensions it's harder. See Graves's ca.Iculus book or Algebraic Topology: An
introduction by William Massey. For the general case see Topology From the Differentiable
Viewpoint by John Milnor. The Brouwer theorem doesn't say anything about how many
fixed points there might be. One such result is

Theorem 2 If tJ, is a contraction mapping, that is ltJ,(z) - tJ,(z')I < l:a: - :a:'I, then tJ, has a
unique fized point.

Interval arithmetic is quite useful for solving fixed point problems. Instead of using boxes
starting with size O and growing due to roundoff error, start with a large box, so large that
you know it contains a fixed point (you ca.n use the Brouwer theorem to find such a box). If
there is a fixed point in B, it must be in B n tJ,(B), and then in B n tJ,(B) n tJ,(B n <f,(B)),
As we iterate, the boxes should close in on the fixed point, not only lo·cating its position, but
also providing an error bound. As mentioned above, the image of a. box is not necessarily
a. box, so we have to replace the image by a box containing it. If this expansion isn't too
bad, the boxes will close in on a solution.

Besides Newton's method, another example of iteration arises in solving linear equations,
that is A£ = b. Suppose we have a program P that takes A and band produces an
approximate solution E +- P(A, b) so that AE ~ b. Then we can compute a residual
r0 = b - AE = A(£ - .i). Now we iterate and compute c .,_ P(a, ro), so that Ac~ ro =
A(£ - t) and thus c ~ £ - .F. Usually E + E will be a. better approximation to z than z;

and in fact will usually have twice as many correct figures. We can continue the process
by letting ri = b - A(E + c). This process only works if rs is computed accurately. If our
previous estimate for £ is any good at all, b a.nd AE will be close, and when we subtract
them to compute~' there will be a lot of cancellation. However, if we compute AE- bin
double precision (or if we were already using double precision, then compute it in quadruple
precision), then the calculation should be good enough. And in fact there is a theorem that
says that except for certain pathological cases, computing in double precision is as good as

J

I

J
(

-~,
:Ji

(

]

j

J
l
]

I

l
l

_J

J
J

Lecture 10 - June 2, 1988 (notes revised June 21, 1988) 6

you can do. Tha.t is, using higher precision to compute AE- b won't improve the accuracy
of the final (single precison) result.

Iteration can also be used to.solve nonlinear equations. The method uses the multidi
mensional version of Taylor's theorem.

i(E + i) = f(r, + i'(zJi + · • ·.

In this equation, I'(E') is a. matrix, called the Jacobian. If z is close to the zero of i, then
i(z + y) = 0 for a small value of y, and the high order terms of Taylor's formula. are
negligible. Thus we can refine our first guess i by adding y to it, where y is computed from
I'(z)i = -f(F). And this is a. linear equation of the type we just discussed. This method
of solvfog non-linear equations is used in the ACRITH package.

2.5 The Super-Accumulator

Even if re, = b - AE is computed in double precision, it might not be exact. That is,
it might not have the same value as if it were computed in infinite predsion and then
rounded. Kulisch and Mira.nker have proposed using a super-accumulator to compute inner
products exactly. Their theory is explained in Computer Arithmetic in Theory and Practice
(Academic Press, 1981) a.nd A New Approach to Scientific Computation (Academic Press,
1983). The crux of their method is to accurately compute results to single precision by
doing all calculations in single precision except for inner products, which a.re computed
exactly in the super-accumulator.

K ulisch a.nd Mira.nker do not describe their methods as an encoding of multiple-precision
arithmetic, but that's what's really going on. Consider a.gain the algorithm for solving
ax= b:

Azi:::: b z1 P(A,b)
ri = b-Azi z2 P(A,fi)
r2 = b - Azi - Azi Z3 P(A, ii)

The solution to the equation is zi + z2 + z3 + • • •, which is really a. multiple precision
encoding. At ea.ch step of the iteration, we must operate on each of the x-i separately. And,
a.teach step we must recompute Azi in the super-accumulator, unless we a.re willing to store
in memory all the bits of Azi, which could be a. lot of storage if the largest a.nd smallest
summands differ dramatically in size.

2.6 ACRITH

ACRITH is a package that runs on IBM mainframes and utilizes the Kulisch-Miranker
super-acumula.tor theory. Here is one anomaly that occurs on release 3 of that system.
Entering the following nonlinear system and initial guesses

a - 2 X 10-9 = 0 a = 2 X 10-9

b- 5 x 108 = 0 b = 5 X 108

x - (1- a) = 0 % = 1
z + ay-1 = 0 y = 1

3z - by+ (b- l)z - (2 - 3a) = 0 z = 2

Lecture JO - June 2, 1988 (notes revised Ju11_e 21, 1988) 7

causes ACRITH to fail with the message SIHGULAR JACOBIAN. However, renaming the
variables to

' z- 2 X 10-9 - 0 z = 2 X 10-9

11- 5 X 108 = 0 11 = 5 X 108

:r: - (1- z) = 0 z = 1
z + zb-1 = 0 b = 1

• 3z - 11b + (11- l)a - (2- 3z) = 0 a = 2

successfully computes a solution with a = 1 and the other values unchanged. All the
variables are computed to within one figure in the last place. The exact output of ACRITH
is shown below:

Unlmovn

A
B
X
y
z

Unknovn

A
B
X
y
B

Result La.st correction

o.10000000000000000+01 -0.3289D-25
o.10000000000000000+01 -0.3289D-25
0.9999999980000000D+OO -0.1283D-16
0.5000000000000000D+09 -0.0000D+OO
o.20000000000000000-os -0.3053D-25

Result

(0.9999999999999999D+OO 0.1000000000000001D+01)
(0.9999999999999999D+OO • 0.1000000000000001D+01')
(0.9999999979999999D+OO, 0.9999999980000001D+OO)
(0.5000000000000000D+09, O.S000000000000001D+09)
C o.19999999999999990-oa. o.20000000000000010-oa)

In this example, it is probably not the Kulisch-Miranker theory that is at fault, but
rather a problem with the implementation. It appears that ACRITH orders the variables
in alphabetical order. Since the matrix associated with this nonlinear system is very nearly
singular, changing the order of the rows in the matrix is enough to make the difference
between success and failure.

.. t
(

]

1
i
~
j

f

1
J
J

,~J
(

J
I

J
\

j
J

t

j
~

J
(

J

. -· ·- -·-

" A := -g + C "
··-· . • - - . ·-

~ -=- (bef.t:.)• (.1

-f-~ ~"M ?GtV $,A-,£ b
. --- .. - -

N

+ 6(,,1"£~) ~ I ~; I .

(>.JJ J:i.._ "-',r2r < ~)

BJ ~ i,j- ec,o,-r Is. ~ ~

No-~- CoNtl~U'TL0/.1 AL- ~lo14-;?,V&- P"o,;<,/'8,

-D .j. 0"'-r; y1,. wt~ t' ~/Ir' S ~~ •

------ ... -· . ----- -- .• --·-- --·-·- - ••• -

Turbo Basic:
File Edit Run Compile Options

Edit
D:COMPSUM.BAS Line 3

defsng a-z
Col 44 Insert

S = 0: SC= 0: C = 0: ds# = 0
for n=1 to 100001 step 2

x = 6930/(n*n - 0.25>
$ = s+x: ds# = ds# + x
y = x+c: tc = sc + y
c: = <sc-tc) + y: sc = tc
ne>:t n

pri r,t "Si nql e sum = ": s
print "Compensated sum= ";sc
pri. nt. "Double sum = 11

: ds#
prir,t " 3465*pi = 11

; 3465*4ieotr.C1#)
end

Setup

Time: (J(>: 00
Line: 14 Stmt: 21 Free: 190k

Sin9le sum =
Compensated sum=
Double sum =

Window Debuo

Run
10884.833984375
l 0885. 58398 .. 1375
10885.5838892153

= 10885.61854468863

Fl-Help F5-Zoom F6-Next F7-Goto SCROLL-Size/move Al t-X-E:-:i t

S:
Sc,,

I••

---- ----·--

--

c.
J

y. =)(. . -+- C . I
J ~ .J -

-,: • s· Y:
..,J ~·· .) ---··•-

- - ~. = CS,--. -T;) -~ ~.i

:5.
.J

---~ I .
. --., . - - . - - . - . -

.
I.J Ntrr E ~A-c 7

5 s~ .~.

o. t:tf:f91 g
O.'iq~o/g

2.0000

O ,9'l't't g

? -

_j

]

~
]

]

]
].

J

,

j
1"8\" •.

- 1. 0000 ! --1.0"'.Jl
-- -o.,ooooi..

._ 0.0000 cf J
{

J 7
•

t

(Th:s CA-N'T 'f'l.l'fPP&,v ,",, B,...v19 iey, J
_ ----- .. __ .. I#~ Ct1of'PG b H~11~e~ /) _ t.

_ c~~~ .---~ ~?- re;,~~6' • :- ~\~~~~-~~ -:~·=-·--i- ?,- - --1
C

'.'}
~

. -------- ·--
(-,;

-- ---·--- -• -- \
\

[

I

-

~.

I ,
I
I

j
I

I
\

/"
I
I
I
I
I
\
\
I
I

\

!Vu wt e-rt c al Q u..• J. ra, 1,,,c < ~

Trctj .e. e h:IT ~ PT"O ".e. ""-.S

C OrJ;,,&t') 'D:ff«~~ £1u.a:f-.:-.,)

dS :f{S) -
de -

--4> S(-c+?-) = Sr-t) ~ ,.,.. -F(Sr-{))

1
-t•~

~ .; -l(~/e1)els- ~~~{f). t
'i"

~
,,~

: - ~

-i-s~. i~
~

~; ;::- -e
J

" t·
J ----------------~·-.

1 I J

.. - - - ·-·· - - +.. -

'·-__ s.,..";.· ~----) ~

C

s. ,_ X~ • C: : :. CJ • ' - ., :;

-1',,. ,.i= I io N eJo
i y· ~- x. -+ c. -,- J-1) J .. J

T . - S. -+ y. -, -
J J-• J ✓

c. . - (SJ· .. , -t) .,. y. -:J ..J

S· . - T: 1 . - ~

.J J J

C]\ I r I S; .. , c., ... , s ...
~

f ,: X.; \ + [Y.:

--- ··----- --- --·· -- . - --··- •

.
~

·- -----· I

! ~-- • .. :.: • : ' . . . :.--- .
J

l
]

~i

.I

]

]

]

]

]

~]

]

J
J

\

j
'
J .
.J

i

J
l

~l
(

I

\. ··- -

-------------------- --· ••••

ii- D c.o

.
I

S : ~ S • S}t.J.J { ~ , "'S) ~

2_ :::. C/S ~
2+ :=- 5r'4

~ m Q :.,,,.;f A!.,;.. ~~ A C ~-4 .7
(~~·-r,~ J): ~ 6 ?_,,,a.~

-

po~ ~ RA-r10A/14~ A-IC,YII-Alt<.=r, C ;#1

~ uA rr,vt;.-· Po,#'T.

II ., .

53 2..4- .I

File Edit Run
Turbo [iasi c: ------------------:

Compile Options Setup Window Debuo ~I
---------------------------------------~

Edit Run
D:ITERN.BAS Line 1 -Col 13 i = B"'!P ... , >: = .99706888:544~633

~ defdbl a-z53 s~. .. .:-+-s i = 84){ = .997068882544~634

I v# = ,,. 997068882545 i = 85)(

def fnf <>: > i = 86 >:
1 oc:a.l 01. o= i = 87 X

ol = 4*v#h: . o2 = cl*< 1->:) i = 88 X .
fr,f = o2 . end def i = 89 ►; .

)(= v# i = 90 ,.
input "How many I oops", n i = 91 >:
prir.t "Initial >: = " :); i = 9 """' .. X

for i=l to n i = 93 >:
for j=l to 20 i = 94 >:

>: = ,f nf (>: > ne>:t j i = Q5 >~
print " i = II: i : 11): = II :)~ i = 96 >:
ne:.:t i i = 97 >:

end i = 98)!

i = 99 >:
Line: 15 Stmt: 20 Free: 190k i = 100 :{

Fl-Help F5-Zoom F6-Next F7-Goto SCROLL-Size/move

TLlrbo Basic
File Edit RLtn Compile 0Dtion~

Edit
D:ITERN.BAS Line 1 Col 1::;
de- ➔- snQ a-:: ... 2~ •:J· ,:::rs
v# = 0.997068882545
def fr,f<:•:>

1 ocr.11 c,1.. c,2
ol = 4*v#-.;•:
fnf = o2: end def

>: = v#
input "How mar,·,.·
~•rint. "Ini ti eo.l
f 01- i=l to n

.for j=1 to 2C>

l oops 11
• n

>, -. -

>: = fnf <x > : ne>:t j

end

pr i r,t "i = "; i; " x = ": >:
next i

i =
i =
i =
i =
]. =
i =
i =
i =
i =
i =
i =
i =
i =
i =
i =
i =
i =

~

·-'
4
~

'"'
6
7
8
9
10
11
12 >c =
13
14
15
16
17
18 Y. =
19), -. -

= .99706888:5449633
= .99706888254496~~
= .9Q7068S825449633
= .9970688825449634
= .99706898:54496~3
= .99706S882544q61~
= .99706888:544~633
= _q97068882544q6~4
= .9970688825449633
= .9970688825449634
= .9Q7068B8:5~4963~
= .99706888~544~6~4
= .99706888~544~6~3
= .997068882544Q634
= .99706~882544Q633

= .99706988:5449634

]
.7717265486717=~~
.756753861904144~
.9641148447990417
.38442391157150=7
.518065810~0355::
.99686~007~45471=
.1617649b446t:26b

]

]
.712=320102~91~~
.64667212963104~5
.9350763559~414~1
.16418363153~3448
.765328705~]09715
.5457952618598938
.981806695461273~
.3048334121704102 I
.170076951384~444
1.167876459658l46E-002

J
.J

Line: 15 Stmt: 20 Free: i = 20 190k x = .232066810131073 ______ .____ _____]

··- 4-V. 'X •
" '

