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1 Multiword Arithmetic 

Reca.11 that we earlier discussed adding integer multiword arithmetic operations to the defini
tion of C. The advantage of doing this would be toga.in efficiency over writing multiprecision 
integer routines in C. Such a program for add might look like this: 

unsigned c, a[J, s □; 

C • 0 
for i • 1 ton { 

if (c •• 0) { 

} 

s[i] • a[iJ + b[i]; 
c • (s[i] < a[i]); 

} else { 

} 

s[i] • a[iJ + b[i] + 1; 
c • (s[i] <= a[i]): 

How does this compare with an assembly language coded routine? A representative from 
HP reports that on the HP precision architecture, an assembly coded routine takes 5 + 5N 
cycles to add two N word arrays. The C version takes 5 + (13 + C)N cycles, where C varies 
between O and 1 depending on how often t~ere is a carry. On the other hand, the MIPS 
contingent reports that a MIPS processor takes from 11-14 cycles per iteration (depending 
on the carries). But if an add with carry intruction were added to the MIPS architecture, 
it would only speed up to run at 8 cycles per iteration. 

2 Nonstandard Numerical Theories 

Just as the real world is filled with bitterly controversial topics like abortion and evolution, 
so is the numerical analysis world. In this section we discuss some of these controvers.ial 
theories. 
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2.1 Significance Arithmetic . 

Significance arithmetic was invent~ in the early sixties by Ashenhurst and Metropolis. The 
id~ is that if rounding errors have contaminated the lowest k bits of a _number, those bits 
should be thrown away. In significance arithmetic, the contaminated bits are thrown away as 
the computation proceeds. The hope is that the final answer will have at least the required 
number of significant digits. If so, a complicated error analysis would be unnecessary. For 
exa.mple, if a number were only accurate to 5 digits on a decimal ma.chine that carries 
13 digits, instead of representing it as 3.141592653589 x 10 °, you would represent it as 
0.000000031416 x 108• You might reject this theory on philosophical grounds, noting that 
in real life context suggests that 3 is exact, but 3 x 1017 is most likely not exact. However, 
we readily discern a more precise reason why significance arithmetic is not a good idea. 

When you are given a number like 3.14 x 10° in significance arithmetic, the assumption 
is that the enor is about 1 place in the la.st digit, that is 1 x 10-2 • If the error in 3.1416 is 
3 x 10-2, we have to either underestimate it by writing 3.14 or overestimate it by writing 
3.1. In either case, we have lost information. So no matter what rules you come up with 
for disca.rding contaminated bits, once those rules have been picked you can cook up an 
example whose true error bounds differ quite a bit from what is implied by the number 
of bits in the final answer. In binary, this could differ as much as ½ bit per arithmetic 
operation. Thus after n computations, the best error bound could differ from the implied 
error bound by as much as a factor of 2"/2 either way. 

2.2 Probabilistic Analysis 

Another approach to roundoff error is to deal with probabilities. Since most interesting 
numerical calculations involve many arithmetic operations, we could appeal to the central 
limit theorem which says that when you add together many random variables with com
parable variances, you get a. nearly normal distribution. But of course when you perform 
a particular calculation, you're not interested in the statistics of roundoff error, but rather 
the roundoff error in your particular calculation. If you are doing a crucial calculation, 
having a inconect error bound could be disastrous. It doesn't help you to know that the 
error bound is correct "on average". 

An argument in favor of probabilistic analysis says that incorrect error bounds are quite 
rare, and if you consider the cost of an incorrect error bound times the probability of such 
an event, things work out well in the long run. There a.re two problems with this argument. 
The first is that you often can't measure the cost of a wrong answer. The second is that 
rare events occur in the tail of the normal distribution, and convergence of a sum of random 
variables is fastest at the center, and slowest at the tails. In fact, the farther out in the tail 
you are, the slower the convergence. 

Another problem with the probabilistic approach is that in most computation, only 
two or three roundoff errors really affect the final answer. In computing the roots of a 
quadratic equation, the enor is serious only when 62 and cc mostly cancel, so only the two 
roundoff' errors incured in computing each of 62 and 4cc really matter. Another example is 
linear equations. If you use Gaussian elimination to convert a matrix to upper triangular 
form, almost all the roundoff error will be in the diagonal element corresponding to the 
sma.llest pivot, and in that element the roundoff error will be almost entirely due to a. few 
arithmetic operations. So modelling roundoff. error as a normal distribution is often not 
realistic. However, this doesn't mean ·that there is no place for probabilistic analysis. It is 



Lecture 10 - June 2, 1988 (notes revised June 21, 1988) 3 

useful when testing programs. You can run your program with many different inputs, and 
compare the computed output to the correct answer. If the statistics of the resulting errors 
doesn't match your probabilis\ic erro· analysis, you can suspect there is either ~n error in 
your program or in your analysis of i ~. 

2.3 Interval Arithmetc 

In interval arithmetic, the error bounds of quantities are carried throughout the calculation. 
For example, if we know that the variable X lies somewhere in the interval (i,z], and Y lies 
somewhere in the interval (y, y), then X+ Y lies somewhere in (i+y, i-+y). When computing 
these bounds you must round down ( towa.rds -00) when computing i + y, and round up 
(towards +00) when computing i + y. Because most pre-IEEE hardware doesn't allow you 
to round both up and down, you have to estimate the effect of rounding. This is usually 
done by multiplying by 1 ± €, as in classical error analysis. 

There are a number of problems with interval arithmetic. The first has to do with 
quantities that can be represented exactly without any rounding error. For example when 
computing 3 + 7 there is no rounding error. However, in an implementation of interval 
analysis in which you multiply by 1 ± € to estimate rounding error of the bounds, you would 
lose the information that 3 + 7 is exact. 

The second problem has to do with the fact that in interval arithmetic, to perform an 
operation on an interval, you perform that operation on the endpoints of the interval. And 
you do this step by step for each arithmetic operation. This can be too pessimistic. For 
example, suppose you want to compute y = z2 - :r, and suppose that z E [0.49,0.51). Now 
the graph of z2 - z is a parabola whose minimum is at :r = 0.5, so [0.49, 0.51] is carried 
to [-.25, -.2499). But in a program that computes y = :r 2 - :r by first computing z = z2 

and then y = z - :r, we first get that [.49,0.51) is carried to [.2401, .2601] and then carried 
to [-.2601, -.2299), which is much too pessimistic. The problem is that interval analysis 
assumes the errors are uncorrelated, which is not the case in this example. However there 
is a trick you could use, namely rewrite :r2 - z as (z - ½->2 - t· For more complicated 
expressions finding the trick may not be so easy, and for functions of several variables it 
isn't possible in general. 

When we analyze a calculation with interval analysis, we start with an interval and 
then perform the calculation on that interval. As long as all the steps in the calculation 
are continuous, at each step the interval gets transformed into another interval. But in 
a calculation involving two or more variables, intervals get replaced by boxes (squares, 
cubes, etc). And when we subject a box to a continuous operation, it will in general get 
transformed into a twisted shape that is not a box. In order to proceed to the next step of 
interval analysis, we will have to replace that twisted shape by a box that contains it. If 
we're very unlucky, this new box nught include a singularity that was quite far away from 
the original twisted shape (see Figure 1). However, this problem is not quite as serious as 
it seems. First of all, as long as the operations are differentiable, they a.re locally linear 
and so will take small boxes to shapes that are almost boxes. If the boxes start to get too 
large, they can be partitioned into a set of smaller boxes, and we can operate on each box 
independently, taking their union at the end (see Figure 2). Of course this gets expensive 
in large dimensions. Dividing each edge of the box in half increases the number of boxes by 
2" in dimension d. 

Besides these drawbacks, using interval arithmetic makes calculations noticeably slower. 
Most programmers don't care enough about error analysis to slow down their calculations 
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Figure 1: An unexceptional 2-dimemiona.1 interval X maps to a region /(X) whose smallest 
enclosing interval is F(X), which also contains the origin. 
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Figure 2: Previous problem improved by subdivision. 
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that much. It is probably for this reason that none of the standard languages offer any 
support for interval analysis. This makes interval programming awkward, and in turn 
decreases its use still further. For all these reasons, interval analysis is not widely used. 
However, it is useful for searching and optimization problems (see the next section), and it 
does provide a very useful language for describing errors. 

Two references for interval arithmetic are Methods and Applications of Interval Analaysis 
by R. E. Moore (published by SIAM, 1979) and Introduction to Interval Computations by 
G. Alefeld and J. Herzberger (Academic Press, 1983). The first is easy to read, the second 
is much more mathematical. 

2.4 Iteration 

There is a class of numerical problems that can be ca.st in the form of finding a fixed point 
for a function t/,, that is solving t/,(:a:) = :. In many cases, we can solve this equation by 
iterating :i+t = tJ,(:a:i). For example, to find the roots of /(:a:)= 0, we search for the fixed 
point of t/,(:a:) = :a: - /Jrir. A useful fact to know about fixed points is 

Theorem 1 {Brouwer) If B is a closed and bounded conve:t region, and tJ, is a continuous 
function satisfying t/,(B) ~ B, then tJ, has a feed point. 

A closed region is one that contains its boundary. Thus {(:a:, y) : :a: 2 + y2 < 1} is not 
closed, but {(:a:, y): :z: 2 + y2 S 1} is closed. In one dimension (Bis an interval) the proof is 
easy. For two dimensions it's harder. See Graves's ca.Iculus book or Algebraic Topology: An 
introduction by William Massey. For the general case see Topology From the Differentiable 
Viewpoint by John Milnor. The Brouwer theorem doesn't say anything about how many 
fixed points there might be. One such result is 

Theorem 2 If tJ, is a contraction mapping, that is ltJ,(z) - tJ,(z')I < l:a: - :a:'I, then tJ, has a 
unique fized point. 

Interval arithmetic is quite useful for solving fixed point problems. Instead of using boxes 
starting with size O and growing due to roundoff error, start with a large box, so large that 
you know it contains a fixed point (you ca.n use the Brouwer theorem to find such a box). If 
there is a fixed point in B, it must be in B n tJ,(B), and then in B n tJ,(B) n tJ,(B n <f,(B)), .... 
As we iterate, the boxes should close in on the fixed point, not only lo·cating its position, but 
also providing an error bound. As mentioned above, the image of a. box is not necessarily 
a. box, so we have to replace the image by a box containing it. If this expansion isn't too 
bad, the boxes will close in on a solution. 

Besides Newton's method, another example of iteration arises in solving linear equations, 
that is A£ = b. Suppose we have a program P that takes A and band produces an 
approximate solution E +- P(A, b) so that AE ~ b. Then we can compute a residual 
r0 = b - AE = A(£ - .i). Now we iterate and compute c .,_ P(a, ro), so that Ac~ ro = 
A(£ - t) and thus c ~ £ - .F. Usually E + E will be a. better approximation to z than z; 

and in fact will usually have twice as many correct figures. We can continue the process 
by letting ri = b - A(E + c). This process only works if rs is computed accurately. If our 
previous estimate for £ is any good at all, b a.nd AE will be close, and when we subtract 
them to compute~' there will be a lot of cancellation. However, if we compute AE- bin 
double precision ( or if we were already using double precision, then compute it in quadruple 
precision), then the calculation should be good enough. And in fact there is a theorem that 
says that except for certain pathological cases, computing in double precision is as good as 
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you can do. Tha.t is, using higher precision to compute AE- b won't improve the accuracy 
of the final (single precison) result. 

Iteration can also be used to.solve nonlinear equations. The method uses the multidi
mensional version of Taylor's theorem. 

i(E + i) = f(r, + i'(zJi + · • ·. 

In this equation, I'(E') is a. matrix, called the Jacobian. If z is close to the zero of i, then 
i(z + y) = 0 for a small value of y, and the high order terms of Taylor's formula. are 
negligible. Thus we can refine our first guess i by adding y to it, where y is computed from 
I'(z)i = -f(F). And this is a. linear equation of the type we just discussed. This method 
of solvfog non-linear equations is used in the ACRITH package. 

2.5 The Super-Accumulator 

Even if re, = b - AE is computed in double precision, it might not be exact. That is, 
it might not have the same value as if it were computed in infinite predsion and then 
rounded. Kulisch and Mira.nker have proposed using a super-accumulator to compute inner 
products exactly. Their theory is explained in Computer Arithmetic in Theory and Practice 
(Academic Press, 1981) a.nd A New Approach to Scientific Computation (Academic Press, 
1983). The crux of their method is to accurately compute results to single precision by 
doing all calculations in single precision except for inner products, which a.re computed 
exactly in the super-accumulator. 

K ulisch a.nd Mira.nker do not describe their methods as an encoding of multiple-precision 
arithmetic, but that's what's really going on. Consider a.gain the algorithm for solving 
ax= b: 

Azi:::: b z1 ..... P(A,b) 
ri = b-Azi z2 ..... P(A,fi) 
r2 = b - Azi - Azi Z3 ..... P(A, ii) 

The solution to the equation is zi + z2 + z3 + • • •, which is really a. multiple precision 
encoding. At ea.ch step of the iteration, we must operate on each of the x-i separately. And, 
a.teach step we must recompute Azi in the super-accumulator, unless we a.re willing to store 
in memory all the bits of Azi, which could be a. lot of storage if the largest a.nd smallest 
summands differ dramatically in size. 

2.6 ACRITH 

ACRITH is a package that runs on IBM mainframes and utilizes the Kulisch-Miranker 
super-acumula.tor theory. Here is one anomaly that occurs on release 3 of that system. 
Entering the following nonlinear system and initial guesses 

a - 2 X 10-9 = 0 a = 2 X 10-9 

b- 5 x 108 = 0 b = 5 X 108 

x - (1- a) = 0 % = 1 
z + ay-1 = 0 y = 1 

3z - by+ (b- l)z - (2 - 3a) = 0 z = 2 
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causes ACRITH to fail with the message SIHGULAR JACOBIAN. However, renaming the 
variables to 

' z- 2 X 10-9 - 0 z = 2 X 10-9 

11- 5 X 108 = 0 11 = 5 X 108 

:r: - (1- z) = 0 z = 1 
z + zb-1 = 0 b = 1 

• 3z - 11b + (11- l)a - (2- 3z) = 0 a = 2 

successfully computes a solution with a = 1 and the other values unchanged. All the 
variables are computed to within one figure in the last place. The exact output of ACRITH 
is shown below: 

Unlmovn 

A 
B 
X 
y 
z 

Unknovn 

A 
B 
X 
y 
B 

Result La.st correction 

o.10000000000000000+01 -0.3289D-25 
o.10000000000000000+01 -0.3289D-25 
0.9999999980000000D+OO -0.1283D-16 
0.5000000000000000D+09 -0.0000D+OO 
o.20000000000000000-os -0.3053D-25 

Result 

( 0.9999999999999999D+OO 0.1000000000000001D+01) 
( 0.9999999999999999D+OO • 0.1000000000000001D+01') 
( 0.9999999979999999D+OO, 0.9999999980000001D+OO) 
( 0.5000000000000000D+09, O.S000000000000001D+09) 
C o.19999999999999990-oa. o.20000000000000010-oa) 

In this example, it is probably not the Kulisch-Miranker theory that is at fault, but 
rather a problem with the implementation. It appears that ACRITH orders the variables 
in alphabetical order. Since the matrix associated with this nonlinear system is very nearly 
singular, changing the order of the rows in the matrix is enough to make the difference 
between success and failure. 
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Turbo Basic: 
File Edit Run Compile Options 

Edit 
D:COMPSUM.BAS Line 3 

defsng a-z 
Col 44 Insert 

S = 0: SC= 0: C = 0: ds# = 0 
for n=1 to 100001 step 2 

x = 6930/(n*n - 0.25> 
$ = s+x: ds# = ds# + x 
y = x+c: tc = sc + y 
c: = <sc-tc) + y: sc = tc 
ne>:t n 

pri r,t "Si nql e sum = ": s 
print "Compensated sum= ";sc 
pri. nt. "Double sum = 11

: ds# 
prir,t " 3465*pi = 11

; 3465*4ieotr.C1#) 
end 

Setup 

Time: (J(>: 00 
Line: 14 Stmt: 21 Free: 190k 

Sin9le sum = 
Compensated sum= 
Double sum = 

Window Debuo 

Run 
10884.833984375 
l 0885. 58398 .. 1375 
10885.5838892153 

= 10885.61854468863 

Fl-Help F5-Zoom F6-Next F7-Goto SCROLL-Size/move Al t-X-E:-:i t 

S: 
Sc,, 
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File Edit Run 
Turbo [iasi c: ------------------: 

Compile Options Setup Window Debuo ~I 
---------------------------------------~ 

Edit Run 
D:ITERN.BAS Line 1 -Col 13 i = B"'!P ... , >: = .99706888:544~633 

~ defdbl a-z ... .53 s~. .. .:-+-s i = 84 ){ = .997068882544~634 

I v# = ,,. 997068882545 i = 85 )( 

def fnf <>: > i = 86 >: 
1 oc:a.l 01. o= i = 87 X 

ol = 4*v#h: . o2 = cl*< 1->:) i = 88 X . 
fr,f = o2 . end def i = 89 ►; . 

)( = v# i = 90 ,. 
input "How many I oops", n i = 91 >: 
prir.t "Initial >: = " : ); i = 9 """' .. X 

for i=l to n i = 93 >: 
for j=l to 20 i = 94 >: 

>: = ,f nf ( >: > ne>:t j i = Q5 >~ 
print " i = II: i : 11 ): = II : )~ i = 96 >: 
ne:.:t i i = 97 >: 

end i = 98 )! 

i = 99 >: 
Line: 15 Stmt: 20 Free: 190k i = 100 :{ 

Fl-Help F5-Zoom F6-Next F7-Goto SCROLL-Size/move 

TLlrbo Basic 
File Edit RLtn Compile 0Dtion~ 

Edit 
D:ITERN.BAS Line 1 Col 1::; 
de- ➔- snQ a-:: ... 2~ •:J· ,:::rs 
v# = 0.997068882545 
def fr,f<:•:> 

1 ocr.11 c,1.. c,2 
ol = 4*v#-.;•: 
fnf = o2: end def 

>: = v# 
input "How mar,·,.· 
~•rint. "Ini ti eo.l 
f 01- i=l to n 

.for j=1 to 2C> 

l oops 11
• n 

>, -. -

>: = fnf <x > : ne>:t j 

end 

pr i r,t "i = "; i; " x = ": >: 
next i 

i = 
i = 
i = 
i = 
]. = 
i = 
i = 
i = 
i = 
i = 
i = 
i = 
i = 
i = 
i = 
i = 
i = 

~ 

·-' 
4 
~ 

'"' 
6 
7 
8 
9 
10 
11 
12 >c = 
13 
14 
15 
16 
17 
18 Y. = 
19 ), -. -

= .99706888:5449633 
= .99706888254496~~ 
= .9Q7068S825449633 
= .9970688825449634 
= .99706898:54496~3 
= .99706S882544q61~ 
= .99706888:544~633 
= _q97068882544q6~4 
= .9970688825449633 
= .9970688825449634 
= .9Q7068B8:5~4963~ 
= .99706888~544~6~4 
= .99706888~544~6~3 
= .997068882544Q634 
= .99706~882544Q633 

= .99706988:5449634 

] 
.7717265486717=~~ 
.756753861904144~ 
.9641148447990417 
.38442391157150=7 
.518065810~0355:: 
.99686~007~45471= 
.1617649b446t:26b 

] 

] 
.712=320102~91~~ 
.64667212963104~5 
.9350763559~414~1 
.16418363153~3448 
.765328705~]09715 
.5457952618598938 
.981806695461273~ 
.3048334121704102 I 
.170076951384~444 
1.167876459658l46E-002 

J 
.J 

Line: 15 Stmt: 20 Free: i = 20 190k x = .232066810131073 ______ .____ _____ ] 

··- 4-V. 'X • 
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