
I
(

~

I Computer System Support for Sci~ntific and Engineering
Computation

Lecture 13 - June 14, 1988 (notes revised July 6, 1988)

Copyright © 1988 by Jim Valerio.
All rights reserved.

This pa.per discusses three topics. First how the Intel 80387 computes transcendental
functions, then some observations a.bout the Intel 80960 floating point architecture, and
finally some comments about the IEEE 754 standard.

1 Transcendental Approximations Using Cordie

This section addresses two questions:

• How does the Intel 80387 use the Cordie algorithms in its approximation of transcen
dental functions?

• Why does the Intel 80387 use the Cordie rather than some other approach?

1.1 The Intel Transcendental Milieu

Intel put support for transcendental functions into the instruction set of the SOSi. This is the
embarkation point for understanding why and how Intel's current floating-point processors
support logarithmic, exponential, a.nd trigonometric instructions.

1.1.1 Lineage

The 8087 has five transcendental functions: FPTAN, FPATAN, FYL2X, FYL2XP1, and
F2XM1. Each instruction uses the Cordie technique and is highly accurate [l]. The math
ematics and algorithms were developed by W. Kahan. For implementation reasons. the
instructions restrict the operands to reduced domains, and this limitation necessitates a
software interface layer for nearly every application.

Intel's Common Elementary (CEL) function library [21 provides a relatively complete
set of the common real and complex valued elementary transcendental functions.).lany
math packages are disappointing in the results they deliver. CEL is more complete and
produces better results than a.ny other math package that runs on Intel numeric processors.
For a. variety of reasons, though, few people know of its e..~stence and even fewer use it.
The appropriateness of supplying ha.rd ware support for just kernel approximation functions
has been questioned because of CEL 's lack of commercial success.

The 80387 was Intel's first major re.implementation of the 8087. It incorporates myriad
improvements over the original 808i implementation, mostly by bringing the arithmetic up

1

Lecture 13 - June 14, 1988 (notes revised July 6, 1988) 2

to date with the IEEE standard. In the area of support for transcendental functions. more
complete argument reduction 'Yas· provided for the 5 instructions, a.nd 3 new instructions
were added: FSIN, FCOS, and FSINCOS (which delivers sine and cosine simultaneously).
These additions are a compromise response to requests for single-instruction approximation
functions suitable for use as inline math functions.

The 80960 has a significantly different floating-point architecture than the 8038;. but
shows the common 8087 transcendental function heritage. It supports the same functions
(less FSINCOS) as the 80387, but provides them in three precisions and implements full
argument range reduction for the trigonometric instructions. The two architectures corre
spond more closely than it might appear on the surface: the 8038; was implemented by
wrapping its architecture around the 80960's floating-point unit. One consequence of this
is that tradeoff's made in one design are reflected in the other.

1.1.2 Guidelines for Putting Approximations in Silicon

Committing an approximation function to hardware is unlikely to be an unqualified suc
cess. Delivering any result other than the mathematically correct result rounded to the
destination format is open to criticism. Delivering a result more slowly than a software
implementation can raise questions of why the function is in hardware. Dedicating sig
nificant amounts of chip area to support transcendental functions is usually better spent
improving the speed of vector multiplication. In short, the silicon implementation should
be fast, accurate, and cost nothing.

The 80387 and 80960 approach is to provide a small number of kernel functions from
which a.ll the usual functions can be readily calculated. The exceptions to this guideline.
sine and cosine, are included because they are perhaps the most common approximation
functions, and can be effectively calculated from tangent using the few e.--<tra bits of precision
available in the internal data paths.

The approximations must be highly accurate. The algorithms implemented in the
387 /960 turn out to be accurate to over 62 bits, with the error usually under two ulps
of 64 significant bits. This accuracy is economically achievable with the caref~l choice of
approximation functions and by taking advantage of the three or four extra mantissa bits
available in the hardware to support rounding.

In the absence of correctly rounded results, the most important property to maintain is
monotonicity. Preserving the monotonic properties of the mathematical functions tends to
preserve the characteristics of the mathematical computations carried out in floating point
arithmetic, better than highly accurate but non-monotonic approximations do. Choosing
monotonic algorithms turns out to be difficult. One advantage of the Cordie algorithms
used in the 387 /960 is that they have been pro~ed to be monotonic.

The approximations must be fast. They must compare favorably in e.--<ecution speed
with responsibly implemented table-driven approximations on the same hardware. One
way to look at this requirement is that the user should not feel tempted to reimplement
the functions. Most approximation algorithms can be improved with minimal expense up
to a particular limit for the hardware, after which the improvements become much more
expensive and difficult. Another way to interpret the "fast" requirement is the approxima
tion algorithm should not go beyond the point well implemented by the hardware. In the
387 /960 environment, this means maintaining all intermediate computations in no more
tha.n 68 significant bits, and generally eschewing divisions (and to a lesser e."ttent multipli
cations).

I
:]

~.

I
I
I
]

I
]

I

··1

~1

l
l
t
f

I
1
l ~l
f

I r
Lecture 13 - June 14, 1988 (notes revised July 6, 1988) 3

Last, the approximation instructions should implement full operand range reduction.
One important reason to support the full range is that the slightly wider internal data paths
a.re· usually sufficient to a.void roundoff errors in the operand reduction: Another reason is
that despite all the obvious limitations. programmers will try to use these instructions as
substitutes for the corresponding library functions. •

1.2 Approximations, such as Tangent

The following sections show in greater detail how the 80387 and 80960 go through the
various steps and compute an approximation of the tangent function.

The approximation of a. function a.cross the full operand range is usually an in\·olved
process. The algorithms a.re characteristically case analyses followed by straight-line code.
Broadly speaking, the case analyses fall into three categories: special operand handling,
algebraic reductions, and the function approxima.tic;>n proper. Only the last categdry has
much room for creative algorithms.

Special operand handling weeds out non-numerical operands, operands where the func
tion isn't defined, and operands where the function is exactly defined and no approximation
is needed. Algebraic reductions exploit symmetries inherent in the target mathematical
function to reduce the operand range to a smaller, more tractable range over which the
approximation is carried out. The proper choice of algebraic reductions is crucial to the
preservation of mathematical identities in the approximated function. Special operand han
dling and algebraic reductions steps a.re found in the 38i /960 but not the 8087.

After algebraic reductions, the 38i /960 approximation technique is to divide the three
ranges of operands. Tiny operands a.re often trivially approximated using the source operand
with perhaps a. multiplication. Intermediate range operands are approximated using a sim
ple rational function based on one of the Pa.de approximations• of the function. The larger
operands are transformed into the intermediate or tiny range using the Cordie argurnen t
reduction technique, where one of the two previous approximations can be used.

1.2.1 Special Operand Handling

The special operand handling for t.he tangent function is straightforward. The usual ~a~
propagation rules are followed for ta.n(Na.N). A subnormal operand is handled as if it
were normalized into a wider internal format and then considered as any other normalized
operand. The invalid operation exception is signaled for tan(±-x>).

The most interesting special case is tan(±0), which returns its source operand ±0 as an
exact result. All other finite operands signal the inexact e:<ception t.

1.2.2 Algebraic Reductions

Ea.ch numeric operand u is algebraically reduced to u' such that 0 < u' < 71" /4. in preparation
for the approximation step.

The identity
tan(u) = tan(u rem ,r)

• A Padi 1.pproxima.tion is a. quotient o(two -polynomials. The coefficients o(the polynomials are chosen
so that u many u poasible Taylor coefficeata of the quotient ma.Leh the Taylor coefficents o(the (unction
being approximated.

'This is ma.thematically correct, beca.use evaluating a trigonometric (unction at a. nonzero rational value
always results in a.n inationaJ number. Look up t.he Gelfand-Schneider theorem in a number theory book.

Lecture 13 - June 14, 1988 (notes revised July 6, 1988) 4

is guaranteed by computing
u' = u ieee~m 1r

and working with that modified operand, which takes on values in the range -1r /2 < u' <
1r /2. Since tan{ -u) = - tan(u), and tan(;r /2 - u) =. cot(u) for O < u < 1r /2. the correct
value is returned by computing: •

tan(u) =
T(u') ifO<u'<1r/4

t(1rJ½-1a') if 1r/4 < u' < 1r/2

-T(-u') if -r/4 < u' < 0

1 (,,.j1~u') if -fr /2 < u' < -tr /4

where T(z) represents the approximation of the tangent of z.
The preceding paragraph's references to r are a prevarication. Actually, the 387 /960 use

a machine representation of 1r with 66 significant bits. Using the slightly wider representa
tion avoids the problematic cases (sign selection at the zeros and singularities) in the sine,
cosine and tangent where, with only 64 bits of significance, the computed u' is O modulo
the machine-1r. Note that full range reduction requires that the trigonometric instructions
be interruptable and resumable because the full range reduction can take a long time. (The
worst case for the 80960 is nearly 5 milliseconds.)

1.2.3 The 8087 Tangent Approximation

The 387 /960 use a modified version of the Cordie and rational approximations used by the
8087; the 8087 approach is explained first, and the 38i /960 technique is described in terms
of its differences from the 8087.

The first step of the 8087 tangent approximation is the Cordie "pseudo-divide", where
an operand u is decomposed into a sequence of quotient bits qi E {O, l} and a reduced
operand Un, using:

n-1

U = L qi ·Ti+ Un, Un < Tn-1 < 2-(n-l)

i=O

where Ti = arctan(2-i). Since arctan{:r) < z for postive z, this decomposition guarantees
that Tn-1 < 2-(n-1). The decomposition can always be performed because each time Ti is
subtracted, the relation Ui < Ti-t continues to hold. Initially, u = q0To+u1, with q0 = 0 and
u1 = u < ¼ = To. Using induction, assume Ui < Ti-1 • If Ui < Ti, qi = 0 so Ui+l = Ui < Ti;
otherwise, qi = l and Ui = Ti + u;+ 1 , so again

The la.st inequality relies on 2Ti > Ti-l • This result can be derived from the identity

• tan(:z:) + tan(y)
tan(z - y) = 1,: tan(z) tan(y)

by taking the arctangent or both sides of

.l

··1 ,•

! .,

l
I

I
I

I
.I

J

]

]

J
I

J
(

~ _]

~.l
(

I

I
I

I

I

f

r,
r

~

Lecture 13 - June 14, 1988 (notes revised July 6, 1988) 5

The rational approximation computes two values, z" and Yn, whose quotient approxi
mates the tangent function:

The relative error E,. of this approximation is about than -hu! t.
The Cordie "pseudo-multiply" preserves the relationship of x and y being proportional

to the co&(u) and sin(u):

That is, if !i+t = tan(ui+l), and if Yi and %i are computed as shown, then from the
••+l

tangent sum-of-angles identity given above, it is easy to check that f = tan(Ui+l + qrri) =
tan(u,). The accuracy of the pseudo-multiply depends on the accuracy of the original Ti

and the cumulative error when computing the z and y values.
The monotonicity of this approximation is demonstrated by proving that the rational

approximation is monotonic, that the Cordie transformations are monotonic and that the
composition is monotonic.

The 808i chooses n = 16. This guarantees that E,. < 2-65 for the rational approxima
tion. Choosing n = 33 would allow the simple approximation tan(u n} = Un, at the cost
of usually 1; more Cordie pseudo-divide and pseudo-multiply steps. It turns out that the
rational approximation is faster, since it only requires one multiply, and two shifted adds.

1.2.4 The 387 /960 Tangent Approximation

The 387 /960 tangent approximation incorporates several improvements to the 8087 ap
proach. Algorithmically, two of the improvements are interesting.

First,since the 38i/960 do a.rgumentreduction and don!t require the argument u ~ -:if~.
the z and y results can be divided as y/x or x/y, depending on whether the tangent or cotan
gent branch of the approximation is desired. This division happens with the unrounded.
67-bit z a.nd y values, which delivers a more accurate result than the 8087 approach of
rounding :: and y and delivering them as results.

The other significant improvement is, rather than computing x, as a number proportional
to cos(u), computing z, as proportional to 1 - cos(u). The changes are to split the rational

• approximation step into two sequences. The first computes •n and Yn as:

Yn 3 • Un
-=--r-·
::" u"

The pseudo-multiply then computes:

Yi = Yi+l +qi· (3 - Zi+t) • 2-•
z, = •i+l + q, • Yi+l • 2-•

1The Taylor series for ta.n(u) is 11 + "f- + 1;r- + ... while 1,!-:_J = u(l -~)-1 = u(l + ~ + (~)2 +. ·•).
The diff'erence of these two series is 7i- + O(u1)

..

Lecture 13 • June 14, 1988 (notes revised July 6, 1988)

After this, the actual tangent ~pproximati~n T(u) is:

T(u)= -3 Yo .
-zo

6

The new approach allows Zi to accumulate error ol\ly in the last few bits, whereas the
r~ative error in the original approach tends to swamp the z value.

At the cost of another 32 mantissa. constants and a somewhat slower tangent Cordie
approximation, the z and y could be computed to the actual sin(u) and 1- cos(u) rather
than just proportional to the sine and cosine.

1.2.S Cordie Equations and Implied Exponents

The mathematical formulation of the Cordie transformations tends to obscure the mag
nitudes of the numbers being computed. The Cordie transformations have the important
property that the magnitudes of the intermediate and final results are tightly bounded. The
387 /960 e.~loits these bounds to maximize the precision of the approximations.

For the Cordie (and other) operations, the 387 /960 hardware treats each floating-point
number as a fixed-point mantissa with an implied e."<ponent. Both the mantissa and expo
nent are manipulated in scratch registers of the appropriate width.

The inner loop for the tangent pseudo-divide is roughly this (for clarity in the pseudo
code presentation of the algorithms below, the record elements ".m" and ".e" represent the
mantissa and (unbiased) exponent portions of the number):

/• u.e is both the exponent of u and the loop counter•/
loop vhile u.e >• -15;

q :• q shl 1; /• the bits q[i] are packed into q •/
if u.m >• arctan_2[u.e].m then

u.m :• u.m - arctan_2[u.e].m;
4 := 4 + 1; /• q[i] • 1 •/

end if;
u.m :a u.m shl t:
u.e :• u.e - 1;

end loop:

On the 387 /960, each iteration of the pseudo.divide loop requires one clock cycle.
The inner loop for the tangent pseudo-multiply is roughly this:

y.e • -15;
x.e • 2•y.e;
loop vhile q <> O;

if (q and 1) <> 0 then
x.m :• (x.m + y.m) shr 2:
y.m :• (3 - (y.m shr (-x.e)) + x.m) shr 1;

else
x.m :• x.m shr 2;
y.m :• y.m shr 1;

end if:
x.e :• x.e + 2;
y.e :• y.e + 1;

!
;]
~

:1

1
1

]

]

)
(

J
(

I
(

J
(

J
• }

~1
(

I

r

J
1

Lecture 13 - June 14, 1988 (aotes revised July 6, 1988)

q := q shr 1;
. end loop;

7

On the 387 /960, the pseudo-multiply loop requires one clock cycle if the quotient bit is 0,
or five cycles if the quotient bit is 1. • •

Both the pseudo-multiply and pseudo-divide loops ma.y iterate less than sixteen times.
The pseudo-divide jumps into the first iteration where the quotient bit might be non-zero.
and the pseudo-multiply stops as soon a.s the final % and y results a.re known. For single
precision computations, no rational approximation is necessary after the Cordie reduction
of the operand.

1.3 Implementation Requirements and Costs

The other six transcendental approximations are similar in complexity and implementation
to the tangent. One potentially non-obvious attribute of the Cordie algorithm for arctangent
is that it uses the same set of mantissa. constants used by the tangent approximation. (The
arctangent pseudo-divide does simple shifts and adds., and the pseudo-multiply uses the
arctangent constants.) A similar inverse relationship holds between the logarithm and
exponential instructions: only fifteen constants of the form log2(1 + 2-i) are required.

It turns out that only four Cordie approximations a.re required: tan(u), a.rcta.n(y/x).
- log2'1 - u), and exp2(u} - 1. The two logarithm functions use different argument re
ductions to get to the same core approximation function. Because the 38i /960 does full
range reduction on the logarithm approximation, the result is guaranteed to be monotonic
(unlike the 8087 /CEL implementation). The sine and cosine functions are calculated using
the algebraic half-angle identities with tangent:

sinz
2 ta.n(z/2) = 1 + ta.n2(z/2)

cos:r
1 - tan 2(:r /2) = 1 + ta.n2(:r/2)

= 1- ta.n{:r/2) sin(x)

In the 80387, FSINCOS requires one additional multiplication beyond· the algebraic com
putations performed for FSIN a.lone.

The argument for supporting transcendental instructions has always been stronger for
the 80387 than it was for the 80960. Besides compatibility issues, the 8038i is a dedicated
floating-point processor, whereas the 80960 is a general-purpose processor. This translates
into the 960 having more alternatives for other ways to best use the chip area.. The end
result was the 960 FPU design is area limited; and generally trades off speed for space.
However, the 387 dependency on the 960 design set the ba.se guidelines for functionality.

When evaluating the cost of implementing transcendental instructions, it is convenient
to divide the costs into two categories: hardware and microcode. For the 387 /960. the
hardware costs were relatively small, but the microcode cost was more significant.

Both the 80387 and 80960 a.re microcoded machines, so the additional costs of decoding
extra opcodes for transcendental and dispatching the microcode is neglible. The major
hardware costs are illustrated by the dotted area in Figure 1.

The Cordie operations require 33 mantissa. constants {67 bits wide) and a 16-bit shift
register for the quotient bits. The rational approximations need two additional mantissa.
constants for the logarithm and exponent. The only other significant hardware impact is

Lecture 13 - June 14, 1988 (aotes revised July 6, 1988)

Abus Bbus -----------
I -----------
1<--> I Scratch I<-->
I I Rags I
I -----------
1
1------v
I ----~------
1 I Shifter I

I -----------
I<-----+ +----->
I
1------v v------
1 -----------
1 Adder

I ----------- \ __
I<-----+

1 • <••I Control I
I <••I PLA I
I -----------
1

I ------------1 .<••I More PLA I
I ------------
1 .

I -------------I<-->
I .
I
I .
I .

'-·--1

I Mantissa I .
I Constants I .

I Qbits I

.. Cordie Support ...

I Item

Figure 1: A Gen~ric Floating-Point ALU with Cordie Support

I Sq Mils I % FPU area I

16-bit shift register 180 0.9
40 PLA minterms 625 3.1
33 mantissa constants 500 2.5
Total 1305 6.5

Table 1: FPU Area for Transcendental Support

8

the control PLA, which has 40 of 115 minterms dedicated to implementing the 8 Cordie
operations and the primitive arithmetic operations needed to compute the rational approx
imations.

The chip area required for this hardware support is summarized in Tables 1 and 2.

1.4 Measures of Effectiveness

Although the size of the implementation is a valid measure of the quality of a hardware
supported transcendental function implementation, the more interesting and more impor
tant measures are execution speed and result quality.

Table 3 lists the execution times, in microseconds, of the transcendental instructions.
Table 4 summarizes the results of running the Whetstone benchmark. This benchmark

is quoted because of its unnaturally high sensitivity to transcendental function performance.
especially cosine. The numbers represent thousands of Whetstones per second.

Table 5 summarizes the results or running Alex Liu 's elementary function accuracy and
monotonicity tests. The minimum and maximum observed result is reported for the tested

]
\

J

]

I

·.: L.

\. -

Lecture 13 - June 14, 1988 (notes revised July 6, 1988) 9

Microcode Microcode Area • Hardware+llicrocode
Processor Words %ROM Sq Mils ~ chip Sq Mils % chip

80387 850 33.2 1200 1.4 2505 3.0
80960 315 10.3 1070 0.7 2375 1.5

Table 2: Chip Area for Transcendental Support

I Instruction j 16 MHz j 20 MHz I 25 MHz I

z=~-1 20.9 16.7 13.4
z = y log2(x) 27.4 21.9 17.5
z = y log2 (1 + x) 36.3 21.0 16.8
z = ata.n2(y,z) 21.9 17.5 14.0
z = tan(z)· 20.2 16.2 12.9
z = sin(z) 27.6 22.1 17.6
z = cos(x) 27.6 22.1 17.6

Table 3: 80960 Tra.nscenden tal Instruction Times

System MWhetstones
Single Double

Sun386i 1.3 1.0
Sun-3 /280+68882 1.4 1.4
80960KB, 16MHz 3.4 3.3
Sun-3/280+ FPA 4.1 2.9
80960KB, 20MHz 4.2 4.0
Sun-4/280 5.8 3.9

Table 4: Various Whetstone Benchmark Times

lkt

Lecture 13 - June 14, 1988 (notes revised July 6, 1988) 10

I Function I Interval Min I Ma."<: I N).i!E I

Single Precision
SIN(X) [+o.oooe+oo, +1.s;0e+oo) -5.31OOe-01 +5.3100e-Ol 0
COS(X) [+o.oooe+oo, +1.sr0e+oo) -5.3100e-01 +3.0000e+oo 0
EXP(X) [-1.03ie+00, +l.008e+00) -5.0200e-Ol +5.0200e-01 0
EXPMl(X) [-l.037e+00, +l.008e+00) -5.0800e-01 +5.0800e-Ol 0
LOGlP(X) [-2.928e-01, +4.142e-Ol) -5.31OOe-01 +5.3100e-01 0
ATAN(X) [-6.553e+04, +6.553e+04) -5.1600e-01 +5.1600e-01 0
LOG(X) (+7.071e-Ol, +l.414e+00) -5.3100e-01 +5.3100e-0l 0

Double Precision
SIN(X) [+o.oooe+oo, +1.s;0e+oo) -5.4100e-01 +5.3600e-0l 0
COS(X) [+o.oooe+oo, +1.s10e+oo) -1.8686e+0l +-5.3300e-01 0
EXP(X) (-1.037e+00, +1.008e+00) -5.0200e-01 +5.0300e-0l 0
EXPMl(X) [-1.03ie+00, +1.008e+00) -5.0900e-O 1 +5.0900e-01 0
LOGlP{X) (-2.928e-0l, +4.142e-Ol) -5.3200e-O 1 +5.3500e-01 0
ATAN(X) [-6.553e+04, +6.553e+04) -5.1iOOe-01 +5.1600e-01 0
LOG(X) [+7.07le-01, +1.414e+00) -5.3500e-O 1 +5.3200Hll 0
Eztended Precision
SIN(X) (+0.000e+00, +l.5i0e+00) -l.19i0e+00 + l.6350e+oo 0
COS(X) [+0.000e+00, +1.5i0e+00) -4.0000e+04 + 1.6580e+oo 0
EXP(X) [-1.037e+00, + 1.008e+00) -l.5040e+00 +1.3090e+00 0
EXPMl{X) [-1.03ie+00, +l.008e+00) -l.96i0e+00 +2.5880e+oo 0
LOGlP(X) [-2.928e-01, +4.142e-01) -l.06i0e+oo + l .0040e+00 0
ATAN(X) [-6.553e+04, +6.553e+04) -l.4480e+00 +l.7720e+oo 0
LOG(X) (+7.07le-01, +1.414e+00) -1.0730e+oo +1.1450e+oo 0

Table 5: Alex Liu's Elementary Function Test Results for 80960

interval for each function, a.long with the number of monotonicity errors (NME) detected.
The 80960 numbers were obtained selecting 64 partitions with 2500 random points per

pa.rti tion. This ca.used the test of a.11 three precisions to run for most of a three.day weekend
on a dedicated 80960 system. The large errors seen in cosine are due to the test program
not correcting for the ma.chine representation of 1r used by the 80960§.

No results a.re currently available for the 80386/8038i.
More interesting is a comparison of hardware approximation speeds to today's best

software implementations. Two high quality software packages a.re those of K·C Ng and
Peter Ta.ng. Ng's is a. double precision package distributed with the Berkeley Unix 4.3bsd
libm source. Tang's is a single precision package that uses large tables and double preci
sion arithmetic to simplify approximations. Neither package is directly comparable with
the 387 /960 approximations, although both have important, comparable qualities. Both
packages share the property of being highly accurate (error bounded by a.bout two ulps},
and no monotonicity violations.

The double precision package computes results roughly eleven bits less accurate than
the 387 /960. For the higher precision more terms must be added to the polynomial ap•

IWhen z =: y, coa(z) = sin(y - z) =:: y - z, so the value of cosine is very sensitive to the stored value
of r.

1
:]

I
l
]

I
I
J
]

]

]

]
I

J
(

J

l
l

~)
• '

I
I
I

I
.· r
,-

Lecture 13 - June 14, 1988 (notes revised July 6, 1988) 11

I Library I Time Uni ts f Operations I Constants

Double 49-52 13-16·adds, 16 mul, 1 div 13 (12 shared).
Single 19 3 a.dds, 6 mul, 1 div 5 (a.ll unique)
80960 14 2 a.dds, 1 mul, 1 div, 1 cordic 16 (shared)

Table 6: Comparison of Polynomial Tangent Approximation Execution Speed

proximation. The double precision package takes the approach of minimizing the number
of constants required, which is attractive for a microcode implementation.

The single precision package would also need several more terms to compute an approx
imation as accurate as the 38i /960. This package's approach of using the wider precision
for intermediate results matches the advantage exploited by microcode for better precision.
although microcode doesn't ha_ve the substantial padding that a single precision result com
puted using double precision affords. The large table approach ta.ken by the single precision
package is unacceptable for a. microcode implementation, but fair to consider because a.ny
hardware/microcode solution will be measured against software solutions.

Table 6 summarizes how the tangent approximation compares between the two software
packages a.nd the 80960 ha.rdwa.re implementation. The argument is assumed to be in the
[0, 1r /4) interval since all three implementations apply the same special operand checks and
algebraic reductions to reduce the operand to that range. The ina.pplicabilities of the pack
ages, as discussed above, are ignored. The register setup and branching overhead, memory
latency for constant fetches, and so on a.re assumed to be comparable for all implementa
tions, a.nd therefore not counted; only the conceptual floating-point operations are counted.
These assumptions a.re all generous to the software implementations.

The "time units" column represents the total operation time for the approximation.
normalized to a generic 80960 add time unit. Multiplies a.re optimistically considered twice
an add time, divides twice a multiply time, and a Cordie 3 times slower than a divide. The
"constants" column reports the number of unique floating-point constants required by the
approximation.

So, for the 80960 ha.rdwa.re, the Cordie approach approximates the tangent function more
accurately a.nd faster than some very good software libraries. On the other hand~ tangent is
probably one of the most favorable comparisons. The most demanding comparisons would
be sin(x), cos(x), ln(x), and exp(:r).

1.5 Why Cordie?

It is commonly thought that in today's world of multiplier arrays and cheap memory. tran
scendental approximations a.re best implemented with polynomial algorithms and large table
interpolation. But the above data. show that for the 387 /690 the Cordie approach is faster
a.nd more accurate.

But speed is not the only consideration in the 387 /960 context:

• The 80387 requires a. high degree of compatibility with the 8087. Using the same
approximation technique ensures this compatibility.

• Fa.st and accurate polynomial or rational approximations may not, even today. be
known.

Lecture 13 - June 14, 1988 (notes revised July 6, 1988) 12

• Space limitations in the 80960 significantly a.ff'ect FPU implementation. There is
insufficient die a.rea for an array multiplier or for storing la.rge tables. This precludes

• any algorithm that requires a large number of multiplications or table interpolation.

• The Cordie algorithms are well understood by .Intel. The microcode requirements.
constant table sizes, and special purpose hardware costs are all easy to estimate from
prior e.~perience.

• Polynomial approximations can be difficult to prove monotonic. The 387 /960's Cordie
and rational approximations have been proved to be monotonic.

If the 387 /960 were to be reimplemented with a fast hardware multiplier so ·that a
software polynomial approach was faster than the present Cordle hardware approach, other
considerations could still mitigate in fa.vor of the Cordie approach.

2 A Case for 80960-Style Extended Precision

The 80960 microprocessor architecture presents an IEEE floating-point programming model
in which floating-point operands, operations, and e.~ceptions are well integrated with the
rest of the architecture. This section is a collection of insights obtained during the definition
implementation, and subsequent programming of the 80960 processor. For an overview of
the 80960 architecture, and its support for floating-point operations and data. types, see [4].
One novel attribute of the architecture is its support for mixed-precision arithmetic. This
support leads to a natural a.nd desirable style of evaluating floating-point expressions.

2.1 Computing Q • X•Y /Z

Miriam Blatt's· "One Line" C Program to compute Q • X•Y /Z, found in Lecture 7a, looks
like the following when coded for the 80960 C compiler:

#define REAL
#define LEN

float
1

asm REAL logb(REAL x)
<
1.reglit(LEN) return; reglit(LEN) x:

logbnr x,return
}

asm REAL scalb(REAL x, int e)
{
%reglit(LEN) return: reglit(LEH) x: reglit a:

scaler e,x,return
}

I•
* Compute so as to avoid all spurious overtlov and undertlov (sic).
• q • x•y/z:
•I

1
)

I
I
I

)

I
l
i

l
i

l
l
l

~t
\

- '; t ... r.:
r
I-

• ~ ~:.::
·._: <.".

~-:~-

·_ .}~ t:::-

?~ ~
'•• ...

Lecture 13 - June 14, 1988 (notes revised July 6, 1988)

REAL
· mblatt(REAL x, REAL y,· REAL z)

{
int ex , ey, ez;
REAL sx, sy, sz;
REAL sq;

ex• (int) logb(x);
ax• scalb(x, -ex);
•Y • (int) logb(y);
sy • scalb(y, -ey);
ez • (int) logb(z);
sz • scalb(z, -ez);

sq• sx•sy;
sq• sq/sz;
return sca.lb(sq, ex+ey-ez);

}

This compiles into:

.align 4
.globl _mblatt

_mblatt:
logbnr gO,g13 • ex• (int) logb(x);
cvtzri g13,r3
subi r3 ,0 ,r11 I sx • scalb(x, -ex);
scalar r11,g0 ,r7
logbnr g1,g13 • ey • (int) logb(y);
cvtzri g13,r15
subi r15,0,r11 I sy • scalb(y, -ey);
scaler r11,g1,r6
logbnr g2,g13 I az • (int) logb(z);
cvtzri g13,r14
subi r14,0,r11 I sz. scalb(z, -ez);
scaler r11,g2 ,rs
mulr r7,r6,r4 • sq• sx * sy;
divr r5,r4,r4 I sq • sq / sz;
addi r3,r1S,r11 I return scalb(sq, ex+ay-ez);
subi r14,r11,r9
scalar r9,r4,gO
rat

13

While better than sorting the numbers, this is not a particularly fast way to compute
Q. The approach also has other deficiencies: for example, it does not correctly handle cases
where the operands a.re infinities or NaNs.

For the 80960, the one-line C program to compute the e."tpression is the simple writing
of the expression, which compiles to the following code:

.. , ...
. -

Lecture 13. June 14, 1988 (notes revised July 6, 1988)

I q • x•y / z:
mulr
divr

gO,gl,fpO
g2,fp0,g0

2.2 Extended is not Quad

14

It is important to distinguish "doubling" a data type from "extending" a da.ta type. You
go to Double from Single, or Quad from Double, because you want a different data type.
You go from Double to Double-Extended because you want to simplify the evaluation of
double expressions.

There is an implicit assumption, not there when a precision is doubled, that extended
precision is almost as fast as the base precision being extended. A reasonable rule of thumb
is to expect the performance impact of using extended precision to be no more than 10
percent over using the base precision. A larger impact seems to trap users into avoiding
extended precision for routine expression evaluation.

The wider e.."Cponent range of extended precision is at lea.st as important as the extended
precision because it eliminates most concerns a.bout spurious overflow a.nd underflow. Extra.
exponent range is cheap and does not affect performance.

2.3 Extended Precision Reduces Cycle Count

Consider how to a.ccura.tely compute J:r: 2 + y2 in double precision without the benefit of
extended precision. Ignoring some setup conditions, here is how the cabs is done in the
Berkeley 4.3bsd math library:

if :r:/y > 2

if x/y ~ 2

Clearly an extended precision evaluation of J:r:2 + y2 will be faster here. The differ
ence in speed attainable by not supporting extended precision will never account for the
additional time to compute the additional adds and divides.

Admittedly, not all functions are this difficult to compute in double precision. However,
nearly every non-trivial expression is easier to accurately compute with an extended preci
sion. In the limit as operations get faster and have more uniform execution times, extended
precision allows faster eva.lua.tion of expressions by sheer reduction in opera.tion counts.

2.4 Mixing Extended and Other Dat~ Types Reduces Cycle Count

It is probably not sufficient to support operations on e..'ttended operands so that explicit
con versions to and from extended precision are required before operating on the da.ta.

Consider the evaluation of

on a. machine that has separate arithmetic instructions for ea.ch precision a.nd a. full com
plement of conversion instructions:

fcvtd.e x,ro
fmul.a rO,rO,rO
fcvtd.a y,r1

l
(

t

l
t
l
.t
l

)
(

l
C

l
i
(

I
l

~1
l

r

i~

f
i •

....

Lecture 13 - June 14, 1988 (notes revised July 6, 1988)

fm.ul.e rl,rl,rl
f add. e rO ,rl ,rO •
fsqrt.a rO,rO
fcvte.d rO,z

15

Conversions between floating-point data formats is relatively cheap to do at the execu
tion interface. As floating-point operations get faster, the conversions will start to account
for a significant amount of the execution time. The solution is not to a.void extended preci
sion, but to support extended precision operands mixed with other data widths in operands.
The computation of z looks like this on the 80960:

mulrl x,x,fpO
mulrl y,y,fpl
addrl fp0,fp1,fp0
sqrtrl fpO,z

2.5 Problematic Extended Implementations

In extended-accumulation register models, like the 68881 and the 808i, the results always
a.re stored in e.~tended precision. The means that a. double rounding will be incurred when
the computed result is stored back in single or double format.

The precision control abomination exists to mitigate the double rounding problem. In
the 68881, for example, one can set the precision control to a narrower format and obtain
a. correctly rounded single or double precision result. However, by doing this one loses the
benefits of extended precision. The 8087 family doesn't lose all the benefits, in that the
significa.nd is rounded but the exponent range remains extended. Unfortunately this means
that the 8087 family cannot produce correctly rounded double precision results in the event
of overflow or underflow1.

In both cases, changing the precision control is rarely done. This is because, done with
any regularity, it significantly slows down the code.

2.6 How iC960 Compiler uses Extended

Here's what DAXPY looks like in 80960 assembly language:

• I•
I • level-1 BLAS simplitied
• •I
I void
I da.xpy(in't n, REAL da., REAL •dx, in't incx, REAL •dy, in't incy) . {
• int i;

_daxpy:

•

.a.lign 4

.globl _da.xpy

lda
for Ci• O; i < n; i +• 1)
(g4) [gO•S] ,r3

1Bowever, rounding & number fint to double precision and tben lo single precison is the same as rounding
immeclia1.el7 l.o single precision, u was proven earlier in these lectures.

•

Lecture 13 - June 14, 1988 (notes revised July 6, 1988)

c:mpobge g4,r3,.ISO
subo 8,g6,g6

.I81:

•

.ISO:

ldl
addo
cmpo
addo
ldl
mulrl
addrl
stl
bge

ret . }

dy Ci] • dy [i] + . da•dx [i] :
(g4),r4
8,g4,g4
r3, g4
8,g6,g6
(g6) ,r6
r4,g2,fp1
r6,fp1,r6
r6, (g6)
.I81

16

An example how key variables can use extended precision is seen in the 80960 imple
mentation of DDDT:

I
I

• • • • •
I

• •

_ddot:

•

•
.I100:

•

I•
• forms the dot produce of tvo vectors.
• uses unrolled loops for increments equal to one .
• jack dongarra, linpack, 3/11/78 .
•I

REAL
·ddot(int n, REAL •dx, int inc:x, REAL •dy, int inc:y)
{

inti:
long doubie dtemp;

.align 4

.globl _ddot

dtamp • (REAL) 0.0;
movre Of0.0,fpO

for (i • 0; i < n; 1 +• 1)
lda (g1)[g0•8],r3
cmpobge g1,r3,.I99

dtemp • dtemp + dx[i]•dy[i];
ldl (g1),r12
ldl (g3),r8
addo 8,g1,g1
c:mpo r3,g1
addo 8,g3,g3

I
]

.~

t
I
I
]

I
J

I
l

(

J
(

l
l

l
(

1
(

l
~(

1
(
I

I

i ,

r.·
r

I~

I
I

.. (

••. :. t.~·
·_>; c---:.

Lecture 13 - June 14, 1988 (notes revised July 6, 1988) li

mulrl r12,r8,fp3
addrl fp0,fp3,fp0
bge .I100

.199:
I return dtemp;

movl fpO,gO
ret . }

3 Some Problems with the IEEE 754 Standard

1. IEEE 754 has not been enough to get libraries "in the spirit of 754". Libraries need
to be characterized in terms of quality, just like the arithmetic.

2. The trapping exception handling model wrong. It is the worst part of the 80960
floating-point architecture. Exponent wrap around is useless. Instead, hardware
should deliver original operands and default result for traps. This allows consistent
software/hardware exception handling. Also need to spec what operations can change
results (e.g. comparisons? integer conversions?).

3. Extended formats should not need to support denormalized numbers. Should be
explicit strong recommendations on how to use and think of e.~tended.

4. The required double rounding of wider-narrower should be rela..xed.

5. Integer overflow in association with fp operations should be better specified? Draw
dividing_line between int/fp exceptions. Spec integer overflow as something different
than invop.

6. Round to integral value operation should always produce exact result.

7. The rounding mode should be compilation mode. Allow option of encoding in instruc
tion (not dynamically changeable). Library routines effectively required to save/restore.
Mode prevents compile-time constant evaluation. Mode not useful for interval arith
metic. Use as indicator for numerical stability is questionable: recompile ok II. And
why not 3 modes: rn, rz, ro (for bindec conversions).

8. Expression evaluation needs good guidelines.

9. Binary/decimal conversions too loosely specified. Too much hand waving. Too few
good routines out there. Need good test suite. S/W implementation issue, not hard
ware. Difficult issues address formatting in fi.."<ed amount of space.

10. Truncated integer conversion needs better a.ck in spec.

11. NaNs need better spec, as is aren't and can't be portably used.

n Unless you are testing the stability or commercial code. £or which the source is not usually available

Lecture 13 - June 14, 1988 (notes revised July 6, 1988) 18

References

(lf Ra.fi Nave. "Implementation of Transcendental Functions on a Nu.merics Processor".
Microprocessing and Microprogramming 11 (1983) 221-225. North-Holland.

(2] 80!81 Support Library Reference Manual Intel Corporation. 1985.

(3] Eugene H Spafford, John C. Flaspohler. A Report on the Accuracy of Some Floating
Point Math Functions on Selected Computers. Software Engineering Research Center,
Georgia Institute of Technology. GIT-SERC-86/02.

(4) 80960KB Programmer's Reference Manual. Intel Corporation, 1988.

...... ,

I
I
I
]

l
I
I
J

;

J
~ I

I

Transcendental ·Approximations Using Cordie

• The Intel Transcendental Milieu

• Approximations, such as Tangent

• Implementation Requirements and Costs

• Measures of Effectiveness

• Why Cordie?

1

Lineage

• 8087

• CEL library

• 80387

• 80960

2

Guidelines for Putting Approximations in.

Sil.icon

• kernel functions

• accurate

• monotonic •

• fast

• full ope.rand reduction

3

Approximations, such as Tangent

• Special Operand Handling

• Algebraic Reductions

• The 8087 Tangent Approximation

•)he 387 /960 Tangent Approximation

• Cordie Equations and Implied Exponents

4

Special Operand Handling

• usual rules for tan(NaN)

• tan(±<X>) signals invalid operation

• tan(±0) = ±0

5

Algebraic Reductions

• tan(u) = tan(u.rem 1r)

• Tangent/Cotangent

T(u')

tan(u) =
1

T(1r L 2-u')
-T(-u')

-1

T(1r /2+.u')

• machine-1r and true 1r

if O < u' < 1r / 4
if 1r/4 < u' < 1r/2

if -1r / 4 < u' < 0
if -1r/2 < u' < -1r/4

6

The 8087 Tangent Approximation

• Pseudo Divide

n-1

• U = L qi • Ti + Un
i=O

• Rational Approximation

Y _ 3 • Un --
x 3 - u2~

n

• Pseudo Multiply

Yi

7

The 387 /960 Tangent Approximation

• Pseudo Divide

n-1

U = L qi • Ti + Un

i=O

. • Rational Approximation, Part 1

Y~ _ 3 • ·Un --
Xn u2

n

• Pseudo Multiply

.
Xi = Xi+l +qi· Yi+l • 2~i-

•. Rational Approximation, Part 2

T(u) = 3 Yo
-xo

8

Implied Exponents, Pseudo Divide

loop while u.e >= -15;

q • = q shl 1;. .
if u.m >= arctan_2[u.e] .m then

u.m • = u.m - arctan_2[u.e] .m; .
q • = q + 1; .

end if;

u.m ·= u.m shl 1; .
u.e ·= u.e - 1; •

end loop;

9

Implied Exponents, Pseuqo Multiply

y.e = -15;

x.e = 2*y.e;

loop while q <> O; .
if (q-and 1) <> 0 then

x.m • = (x.m + y.m) . shr 2-;

y.m • = (3 - (y.m shr (-x.e)) •

else

x.m • = x.m shr 2; •

y.m • = y._m shr 1; •

end if;

x.e • = x.e + 2; •

y.e • = y.e + 1; .
q • = q shr 1; .

end loop;

10

+ x.m)

Cordie Flows

• arctan(y/x) uses arctan(2-i) constants

• sin/cos from tan(u/2)

11

A Generic Floating-Point ALU with Cordie

Support

Abus Bbus

------------ • I
I<--> I Scratch I <-->I I

<==I Control I
<== I 'PLA

Regs I

----------- I

1------v I .<==I More PLA I
I . ------------

I Shifter I 1 .

I --------~----• •

I<~----+ +----->I I<--> I Mantissa I .
I . I Constants I .

1------v v------1 I . -------------
1 ----------- I •

Adder .I I . ---------

----------- \ I I Qbits I -- -·-- .
12

FPU Area for Transcendental Support
I Item I Sq Mils I % FPU area I •

16-bit shift register 180 0.9
40 PLA minterms 625 3.1
33 mantissa constants 500 2.5
Total 1305 6.5

Chip Area for Transcendental Support

Microcode Microcode Area
Processor Words % ROM I Sq Mils % chip I
80387 850 33.2 1200 1.4
80960 315 10.3 1070 0.7 I

i

13 _

80960 Transcendental Instruction Times
I Instruction I 16 MHz I 20 MHz I 25 MHz I

z = 2x - 1 20.9 16.7 13.4
z = y log2(x) 27.4 21.9 17.5
z = ylog2(l +x) 36.3 21.0 16.8
z = atan2(y, x) 21.9 17.5 14.0
z = tan(x) 20.2 16.2 12.9
z = sin(x) 27.6 22.1 17.6
i = cos(x) 27.6 22.1 17.6

14

Various Whetstone Benchmark Times
I System I MWhetstones I

Single I Double

Sun38-6i 1.3 1.0
Sun-3, 68882 1.4 1.4
80960KB, 16M Hz 3.4 3.3
Sun-3, FPA 4.1 2.9
80960KB_, 20MHz 4.2 4.0
Sun-4 5.8 3.9

15

I Function I Interval
Single Precision
SIN(X) [+o.oooe+oo, +1.s1oe+oo) -5.
COS(X) [+o.·oooe+oo, +1.s1oe+oo) -5 ..
EXP(X) [-1.037e+oo, +1.oose+oo) -5.
EXPMl(X) [-1.037e+oo, +1.oose+oo) -5.
LOGlP(X) [-2.928e-Ol, +4.142e-Ol) -5.
ATAN(X). [-6.553e+04, +6.553e+04) -5.
LOG(X) [+7.071e-01, +1.414e+oo) -5.

Double Precision
SIN(X) • I +o.oooe+oo, +1.s7oe+oo) -5.
COS(X) [+o.oooe+oo, +1.s1oe+oo) -1.:
EXP(X) [-1.037e+oo, +1.oose+oo) -5.
EXPMl(X) [-1.037e+oo, +1.oose+oo) -5.
LOGlP(X) [-2.928e-Ol, +4.142e-Ol) -5.
ATAN(X) [-6.553e+04, +6·.553e+04) -5.
LOG(X) [+ 7.07.le-01, +1.414e+oo) -5.

Extended Precision
SIN(X) [+o.oooe+oo, +1.s1oe+oo) -1.:
COS(X) [+o.oooe+oo, +1.s1oe+oo) -4.(

EXP(X) [-1.037e+oo, +1.oose+oo) -1: ..
EXPMl(X) [-l.037e+oo, +1.oose+oo) -1. ~
LOGlP(X) [-2D928e-Ol, +4.142e-Ol) -1.(
ATAN(X) [-6.553e+04, +6.553e+04) -1.,
LOG(X) [+1.011e-01, +1.414e+oo) -1.(

Comparison of Polyno-

mia I Tangent Approximation Execution S·peed
I Library I Time Units I Operations

Double 49-52 13-16 adds, 16 mul, 1 div
Single 19 3 adds, 6 mul, 1 div
80960 14 2 adds, 1 ·~ul, 1 div, t COi

17

Why Cordie?

• 8087 compatibility

• fast, accurate polynomial approx unknown

• chip area limitations

•· prior experience with Cordie

• provable monotonicity

18

Some 80960-Related Exercises

1. Prove or disprove that signaling the inexact exception
for all non-zero finite IEEE format floating-point tangent
operands is mathematically correct.

2. Under what conditions can the computed tangent signal
overflow or underflow on the 80960?

3. An early version of the 387/960 hardware accumulated a sticky bit
in the least significant mantissa bit on right shifts, rather than
simply dropping the bits shifted off. Explain why the hardware was
changed, and how this affected the representation of the arctan(2A-i)
values.

4. Explain the larger error reported by Alex Liu's t~sts for the
extended precision EXPMl function.

\/alevio
,-3 °SUl,t <3g

"Floating-point numbers are like sand piles:

every time you move one you lose a little sand

and pick up a little dirt."

The Elements of Programming Style .

"That's not funny!"

Jim Valerio

1

Vttlu,o
IL/: J;Jo.e, ~

80960 Floating-Point Architecture

Observations

• Overview of· 80960 Floating-Point Architec

ture·

• A Case for 80960-Style Extended Precision

• Improving the IEEE Standard·

2 .

A Case for· 80960~Style Extended Precision

• Computing Q = X*Y/Z

• Extended is not Quad

• Extended Precision Reduces Cycle Count

• Mixing Extend$d, Other Formats

• P·roblematic Extended Implementations

3

#define REAL

#define LEN

float

1

· asm REAL logb (REAL x)

{

%reglit(LEN) return; reglit(LEN) x;

logbnr x,return

}

asm REAL scalb(REAL x, int e)

{

%reglit(LEN) return; regl~t(LEN) x; reglit e

scaler e,x,return
}

I*
* Compute so as to avoid all spurious overf

* q = X*y/z;

*I
REAL

4

mblatt(REAL x, REAL y, REAL z)
{

}

int ex,. ey, ez;

REAL sx, sy, sz;

REAL sq;

ex - (int) logb(x);

sx - scalb(x, -ex); -
ey - (int) logb(y);

sy - scalb(y, -ey);

ez - (int) logb(z); -
sz - scalb(z, -ez); -

sq·- sx*sy;

sq - sq/sz;

return scalb(sq, ex+~y~ez);

0

6

.align 4

.globl _mblatt

_mblatt:

logbnr .go ,g13 # ex - (int)

cvtzri g13,r3

subi r3,0,r11 # sx - scall

scaler r11,g0,r7

logbnr g1,g13 # ey - (int)

cvtzri g13,r15

subi r15,0,r11 # sy - scalt

scaler r11,g1,r6

logbnr g2,g13 # ez - (int)

cvtzri. g13,r14

subi r14,0,r-11 # sz - scalt

scale.r r11,g2,r5

mulr r7,r6,r4 # sq - sx *
divr r5,r4,r4 # sq - sq I
addi r3,r15,r11 # return sec

subi r14,r11,r9

scaler r9,r4,g0

5

q = x*y / z;

mulr

divr

gO ,g1 ,fpO

g2,fp0,g0

6

Extended is not Quad

• doubling vs. extending

• simplify expression evaluation

• 10 percent penalty·

• wider exponent range

7

Answers to Exercises

1. You've got me.
I seem to recal~ there's a theorem that guarantees this, but I
can't produce it.

2. Tangent can never signal overflow because the largest
possible result is less than 1/(2A-66), which is
representable in single precision. Tangent will signal
underflow when the source operand 'u' is less than the smallest
normalized number in the destination format. Note that underflow
is guaranteed because the 80960 detects loss of accuracy by
inexact result, and the tangent is guaranteed to be inexact.

3. The change was made for two reasons, both associated with the error
analysis. Fir~t, the error analysis was easier when the direction of
the rounding caused by right ·shifts was known. This precipitated
rounding up each log2(1 + 2A-i) constant, as a way to counteract the
rounding down performed by right shifts. The second reason for the
shift change as to make monotonicity proofs feasible.

4. The operand is multiplied by 64-bit rounded value of log10(2) before
issuing the exponential instruction; the operand of the exponential
instruction has been rounded twice.

