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1 Argument Reduction for Elementary Function Evalua­
tion 

It is not unusual for a calculator or computer to give an error message when asked to evaluate 
cos(l063). The logic of this is as follows. In order to actually compute cos(10 63), you need 
to find a.n integer n so that 0 S 1063 - 2mr < 21r, and then evaluate cos(l063 .;.. 2n~). To 
evaluate cos z when O S z < 2,r-, first use trigonometric identities to reduce the argument 
to a still smaller range ( of a possibly different trigonometric function) like (0, iT /4), then use 
a series approximation, or interpolate from a table to evaluate over this smaller range. In 
order for 0 S 10~ - 2mr < 21r, 2mr has to have a.bout as ma.ny digits as 1063• On a decimal 
calculator, the·first 63 digits or so will cancel when subtracting. In order for any bits in the 
difference to be significant, 2mr has to be accurate to at least 63 digits, which means that 
1r must be computed to a.t least 63 decimal digits. Since most calculators and computers 
don't store 1r to this accuracy, after they compute 1063 - 2n~ there a.re no significant bits 
left. Thus they signal an error. 

1.1 Preserving Identities 

There a.re several problems with this approach. The first is that users normally associate 
errors with underflow or overfiow or singula.rites. None of these a.re present when computing 
cos 1063 • Thus signaling an error is misleading. A second problem is that cosine of large 
arguments is not the only case where evaluating. trigonometric functions can be inaccurate. 
Consider cos : when : == y. Then cos : = sin( f - : ) == i - z. In a. decimal calculator that 
displays 10 digits, carries 13 internally, and stores 1r to 13 digits, cancellation will destroy 
a.bout 7 of the 10 digits in:. Thus most of the digits in the result will be meaningless. And 
yet certainly a calculator shouldn't display a.n error message when evaluating cosine near f. 

There a.re at least two altema.tives to signaling an error when presented with cos(l0 63). 

One is to assume that% is exact, and compute cos 1063 accordingly. This will require having 
stored more than 63 digits of 1r. Another approach is to ma.lee trigonometric identities hold. 
Thus even though cos 1063 might not have a.ny correct bits, it will still be true (to within a 
few ulps) that sin2 1063 +cos2 1063 = 1, and that sin(2x 1063) = 2sin 1063 cos 1063, and so on. 
The argument in favor of this approach is that in real calculations. the arguments to cosine 
a.re likely to be even less accurate than the computer's approximation to "'. so the extra. 
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time and e:cpense of computing cosine e..u.ctly is rarely worth it. For example on a binary 
computer, 1063 can't be represented e..uctly. Incidentally, you might wonder why anyone 
would ever want to compute the cosine of large arguments. One example is computing the 
wave front far from an antenna (that is, many wavelengths away from the antenna). This 
might require computing the value of a trigonometric function or"large argument directly. 
or indirectly thru approximations like J.,.(z) = [¼ (cos(z - ½mr - ¼,r-) + O(lzl-1)). In 
either case, what is usually important is not the value of cos z, but rather how it relates to 
cosy where lz - YI < lzl. If trigonometric identities like cos z - cosy = 2 sin r!v sin riv 
are preserved, the calculation is much more likely to be reasonable. It is worth noting that 
this approach does not say that you can compute cosine inaccurately as long as it preserves 
some random identity. Rather, cos should be computed as accurately as possible, but the 
bits which can't be determined from the argument should be chosen so as to preserve all 
trigonometric identities that do not explicitly reference ~-

A method of doing argument reduction that preserves tr_igonometric identities is as 
follows. This is the method used in the Intel 8087 and Motorola 68881. Let Il be the value 
of ,r as represented in the machine, that is "machine pi". Compute r = zRE~I .g., where 
REM is the IEEE standard remainder function. This is defined by the equation r = x - n ~. 
where n is the integer nearest the exact value z/ If, and even in case of a tie. Let trig(x) be 
one of the trigonometric functions sinz, cosz, tanz or cotx. Then simply compute trig(x) 
as ±trig1(r) where trig1 is selected using the identities 

sin(z - ½) = - cosz 
cos(z - f) = sin x 
tan(x - ½ )= cotz 
cot(x - J) = - tanz 

We need to show why this preserves trigonometric identities. First we observe that 

Theorem 1 If trig is one of the functions sin, cos, tan or cot, then tri!J(x(l + !)) = 
(1 + k!)trig(x) for some modest constant k, when xis in the range lxl Sf, for any integer 
n. 

To prove this, use the Taylor approximation trig( x( 1 + ! ) ) = trig( x + :ct) ::: trig( x) + 
utrig'(z). Thus showing trig(x(l+t)} = (l+kt}trig(x) is the same as showing lxtrig'(x)I S 
kltrig(z)I- In the following table 

xf'(x) f(z) 
%COS% sinx 
zsinx COS% 

zsec2 z tanz 
zcsc2 z cotz 

it is easy to check that when lzl S ,f, each entry in the left column is always bounded by 
a small constant times the corresponding entry in the right column. This completes the 
proof. 

Let trig be the true value and TRIG the computed value of a trigonometric function. 
For an arbitrary argument x, using the range reduction method involving REM. we have 
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since in the reduced range we will assume an algorithm for TRIG1 satisfying TRIG1(:r) = 
(1 + £)trig1(z). Also 

n ( 1r r n) r r . ~ 
trig1(% - m2) = trig1 (z n - m2>;- = (1 :!: £)t,rig1(:rn - ~2) = (1 :!: t'.)trtg(:r n> 

using theorem 1, since 1r /Il = 1 ± t'., Thus 

TRIG(z) = (1 :!: 2t:)trig(:r ~ ). 

What this means is that identities like sin(2:r) = 2 sin :r cos z that remain true when :r is 
replaced by az will still hold true after argument reduction ( to within a. few ulps ). using 
a = r /Il, which differs from l by a fraction of an ulp. 

The effect of computing trig(z(r /Il)) when trig(:r) is requested is to horizontally stretch 
or shrink the graph of trig by a. factor Il/1r. This causes a phase shift in scientific or 
engineering calculations at large radia.n arguments, but it is otherwise no more harmful 
than, say 

• changing the dielectric constant of air by 1r /Il. 

• changing the wavelenth by a. factor Il/r. 

• changing the distance from an antenna. systematically by a factor of ;r /Il. 

In computation of complex exponentials ez+iv = ez( cosy + i sin y), the effect of II is a. 
change of phase without any effect upon magnitudes (of electric fields and gradients, ... ). 
Consequently, the use of II instead of 1r might be judged harmless to a.II scientific and 
engineering computations that do not explicitly involve the knowledge of more digits of" 
than Il has. 

The ma.in cost of this method is that computing the REM function requires doing 
long division and takes about 1 step for each bit of the quotient, and so can be quite time 
consuming when n is large. One other point that deserves mention has to do with the special 
values of the trigonometric functions. Suppose that :r = Ij exactly. Then is cos x = O? And 
if so, is it +0 or -0, which a.re distinct in the IEEE standard? The simplest way around 
this is to store f to a few more bits of precision than the user has available, so that x = q. 
can never happen. A relevant mathematical fact is that a. trigonometric function evaluated 
at a rational number of radians is always irrational e.."<tept possibly when the argument is 
01. 

1.2 Exact Argument Reduction 

Hopefully the last section convinced you that it is not necessary to compute trigonometric 
functions to within a few ulps when the arguments are extremely large. However, there is 
a reasonably efficient technique for doing this that was discovered independently by Bob 
Corbett when he was a. student at Berkeley, and by Mary Payne a.t DEC. If you use the 
naive method of argument reduction, computing cos 2" would require using a.t lea.st a.n ~ 
bit approximation of ,r when reducing 2" to range. Their method stores a.s ma.ny bits of ~ 
as a.re needed, but uses only the few that really matter. 

1Trua (ollow■ Crom the Gelrand-Schneider theorem. See Tranacendental Number Theory by Alan Ba.ker 
or Topia in Number Theory Vol 2 by Le•eque . 
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Argument reduction requires finding an integer n so that z + nf = f !f, where 1/1 ~ ½­
To ~ompute trig(z), compute :rtrig1(/J) instead. Since all the trigonom~tric functions have 
a period of 2,r or less, n only needs to be determined mod 4 in order to figure out which 
trig1 to choose. The equation above is equivalent to ¾z + n = f, so we only need to know 
the low order 2 bits of the integer part of ¾z. and the j, most significant bits of the fractional 
part of fz, where pis the number of bits in the precision we are working in. Consider the 
following diagram of the multiplication of ¼ ( = .1010002 • • •) with :r . 

. 101000 
X xxxxOO 

xxxxx 
xxxx 

XXX 
xx 

xxxxxx 

xxvvvvvv vvv 
00000000. 
xxxxxxuu.uuu 
xxxxxxuu.uuu 
xxxxxxuu.uuu 
xxxxxxuu.uuu 
xxxxxxuu.uuu 

To keep the picture simple, we assumed that the precision p was 4. Since we only are 
interested in the low order 2 bits of the integer part, we only care about the bits labeled u. 
These are generated from the bits marked v in ¾, which extend p + 2 bits to the left of the 
binary point of z. In particular, when we carry out the multiplication, instead of using all 
the bits of¾, we only need to use some of them. Of course, we must store many bits of ¾­
even though we only use a few of them in any particular argument reduction. 

Suppose we have hardware that can multiply two p precision floating point numbers 
exactly, that is, produce a product with 2p fraction bits. Then the details of exact argument 
reduction go something like this. If :r = /2e with ½ ~ / < 1 and p is the precision, then 
we skip the first e - 2 - p bits of l. that is replace l. with z = {l.2e-2-P}2-(e-l-p) ,r' ff' ;T' • 

where {t} = t - ltJ represents the fractional part oft. Then we break z into p bit chunks 
z = zo + z12-, + z22-2P + • · •· Next we compute zo = z • Zo, and :r1 = z • z1 • 2-P exactly 
as 2p precision_ numbers. Finally, we would like to add zo and z 1. If we add them using 2p 
precision arithmetic, the low order p bits of z 1 will be lost. So first replace z 0 = n + f with 
z~ = n mod 4 + f and then compute y = rc, + z1. The integer part of y gives the integer 
part ¾ z modulo 4, which is all that matters. And the fractional part of y has almost p 
correct bits of the fractional part of ¾z. 

The Vax™ does not have an 'instruction for exact multiplication. However, it does 
have an EMOD instruction, that takes a floating point number with p bits of precision and 
multiplies it by a floating point number with p+ k bits of precision to return a result whose 
integer part is stored as a 32 bit integer, and whose fractional part is stored as an ordinary 
p precision floating point number. The adjustment factor k is equal to the number of bits in 
the exponent field. This instruction can be used in place of an exact multiply when carrying 
out the argument reduction. . 

One problem with this method is that the bits in the product immediately to the right 
of the binary point might be zero, which would require additional multiplications of z by 
more digits of¼ in order to get p normalized bits of significand. In IEEE double precision. 
if you started out with an z that was near the largest representable number, there would be 
about 211 bits of¼ in the top line of the diagram. If sufficiently many zeros kept appearing, 
you might need to keep computing until the factional pa.rt of the diffference underflowed. 
That would require another 211 bits of ¼ to be stored. It can be shown that there is a 
limit to how many zeros can appear to the right of the binary point, and consequently why 
slightly more than 211 bi ts need be stored. 
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