
. '
r

Computer System Support ·for Scientific and Engineering
Computation

Lecture 14 - June 16, 1988 (notes revised .July 6, 1988)

Copyright @1988 by W. Kahan and David Goldberg.
All rights reserved.

1 Argument Reduction for Elementary Function Evalua­
tion

It is not unusual for a calculator or computer to give an error message when asked to evaluate
cos(l063). The logic of this is as follows. In order to actually compute cos(10 63), you need
to find a.n integer n so that 0 S 1063 - 2mr < 21r, and then evaluate cos(l063 .;.. 2n~). To
evaluate cos z when O S z < 2,r-, first use trigonometric identities to reduce the argument
to a still smaller range (of a possibly different trigonometric function) like (0, iT /4), then use
a series approximation, or interpolate from a table to evaluate over this smaller range. In
order for 0 S 10~ - 2mr < 21r, 2mr has to have a.bout as ma.ny digits as 1063• On a decimal
calculator, the·first 63 digits or so will cancel when subtracting. In order for any bits in the
difference to be significant, 2mr has to be accurate to at least 63 digits, which means that
1r must be computed to a.t least 63 decimal digits. Since most calculators and computers
don't store 1r to this accuracy, after they compute 1063 - 2n~ there a.re no significant bits
left. Thus they signal an error.

1.1 Preserving Identities

There a.re several problems with this approach. The first is that users normally associate
errors with underflow or overfiow or singula.rites. None of these a.re present when computing
cos 1063 • Thus signaling an error is misleading. A second problem is that cosine of large
arguments is not the only case where evaluating. trigonometric functions can be inaccurate.
Consider cos : when : == y. Then cos : = sin(f - :) == i - z. In a. decimal calculator that
displays 10 digits, carries 13 internally, and stores 1r to 13 digits, cancellation will destroy
a.bout 7 of the 10 digits in:. Thus most of the digits in the result will be meaningless. And
yet certainly a calculator shouldn't display a.n error message when evaluating cosine near f.

There a.re at least two altema.tives to signaling an error when presented with cos(l0 63).

One is to assume that% is exact, and compute cos 1063 accordingly. This will require having
stored more than 63 digits of 1r. Another approach is to ma.lee trigonometric identities hold.
Thus even though cos 1063 might not have a.ny correct bits, it will still be true (to within a
few ulps) that sin2 1063 +cos2 1063 = 1, and that sin(2x 1063) = 2sin 1063 cos 1063, and so on.
The argument in favor of this approach is that in real calculations. the arguments to cosine
a.re likely to be even less accurate than the computer's approximation to "'. so the extra.

1

Lecture 14 - June 16, 1988 (notes revised July 6, 1988) 2

time and e:cpense of computing cosine e..u.ctly is rarely worth it. For example on a binary
computer, 1063 can't be represented e..uctly. Incidentally, you might wonder why anyone
would ever want to compute the cosine of large arguments. One example is computing the
wave front far from an antenna (that is, many wavelengths away from the antenna). This
might require computing the value of a trigonometric function or"large argument directly.
or indirectly thru approximations like J.,.(z) = [¼ (cos(z - ½mr - ¼,r-) + O(lzl-1)). In
either case, what is usually important is not the value of cos z, but rather how it relates to
cosy where lz - YI < lzl. If trigonometric identities like cos z - cosy = 2 sin r!v sin riv
are preserved, the calculation is much more likely to be reasonable. It is worth noting that
this approach does not say that you can compute cosine inaccurately as long as it preserves
some random identity. Rather, cos should be computed as accurately as possible, but the
bits which can't be determined from the argument should be chosen so as to preserve all
trigonometric identities that do not explicitly reference ~-

A method of doing argument reduction that preserves tr_igonometric identities is as
follows. This is the method used in the Intel 8087 and Motorola 68881. Let Il be the value
of ,r as represented in the machine, that is "machine pi". Compute r = zRE~I .g., where
REM is the IEEE standard remainder function. This is defined by the equation r = x - n ~.
where n is the integer nearest the exact value z/ If, and even in case of a tie. Let trig(x) be
one of the trigonometric functions sinz, cosz, tanz or cotx. Then simply compute trig(x)
as ±trig1(r) where trig1 is selected using the identities

sin(z - ½) = - cosz
cos(z - f) = sin x
tan(x - ½)= cotz
cot(x - J) = - tanz

We need to show why this preserves trigonometric identities. First we observe that

Theorem 1 If trig is one of the functions sin, cos, tan or cot, then tri!J(x(l + !)) =
(1 + k!)trig(x) for some modest constant k, when xis in the range lxl Sf, for any integer
n.

To prove this, use the Taylor approximation trig(x(1 + !)) = trig(x + :ct) ::: trig(x) +
utrig'(z). Thus showing trig(x(l+t)} = (l+kt}trig(x) is the same as showing lxtrig'(x)I S
kltrig(z)I- In the following table

xf'(x) f(z)
%COS% sinx
zsinx COS%

zsec2 z tanz
zcsc2 z cotz

it is easy to check that when lzl S ,f, each entry in the left column is always bounded by
a small constant times the corresponding entry in the right column. This completes the
proof.

Let trig be the true value and TRIG the computed value of a trigonometric function.
For an arbitrary argument x, using the range reduction method involving REM. we have

I

I
I
)

)

J
·1

~1
]

l
]

1
l

J
t,

I
(

J
~{

)

...
•• ~ I . · ...

Lecture 14 • June 16, 1988 (notes revised July 6, 1988) 3

since in the reduced range we will assume an algorithm for TRIG1 satisfying TRIG1(:r) =
(1 + £)trig1(z). Also

n (1r r n) r r . ~
trig1(% - m2) = trig1 (z n - m2>;- = (1 :!: £)t,rig1(:rn - ~2) = (1 :!: t'.)trtg(:r n>

using theorem 1, since 1r /Il = 1 ± t'., Thus

TRIG(z) = (1 :!: 2t:)trig(:r ~).

What this means is that identities like sin(2:r) = 2 sin :r cos z that remain true when :r is
replaced by az will still hold true after argument reduction (to within a. few ulps). using
a = r /Il, which differs from l by a fraction of an ulp.

The effect of computing trig(z(r /Il)) when trig(:r) is requested is to horizontally stretch
or shrink the graph of trig by a. factor Il/1r. This causes a phase shift in scientific or
engineering calculations at large radia.n arguments, but it is otherwise no more harmful
than, say

• changing the dielectric constant of air by 1r /Il.

• changing the wavelenth by a. factor Il/r.

• changing the distance from an antenna. systematically by a factor of ;r /Il.

In computation of complex exponentials ez+iv = ez(cosy + i sin y), the effect of II is a.
change of phase without any effect upon magnitudes (of electric fields and gradients, ...).
Consequently, the use of II instead of 1r might be judged harmless to a.II scientific and
engineering computations that do not explicitly involve the knowledge of more digits of"
than Il has.

The ma.in cost of this method is that computing the REM function requires doing
long division and takes about 1 step for each bit of the quotient, and so can be quite time
consuming when n is large. One other point that deserves mention has to do with the special
values of the trigonometric functions. Suppose that :r = Ij exactly. Then is cos x = O? And
if so, is it +0 or -0, which a.re distinct in the IEEE standard? The simplest way around
this is to store f to a few more bits of precision than the user has available, so that x = q.
can never happen. A relevant mathematical fact is that a. trigonometric function evaluated
at a rational number of radians is always irrational e.."<tept possibly when the argument is
01.

1.2 Exact Argument Reduction

Hopefully the last section convinced you that it is not necessary to compute trigonometric
functions to within a few ulps when the arguments are extremely large. However, there is
a reasonably efficient technique for doing this that was discovered independently by Bob
Corbett when he was a. student at Berkeley, and by Mary Payne a.t DEC. If you use the
naive method of argument reduction, computing cos 2" would require using a.t lea.st a.n ~
bit approximation of ,r when reducing 2" to range. Their method stores a.s ma.ny bits of ~
as a.re needed, but uses only the few that really matter.

1Trua (ollow■ Crom the Gelrand-Schneider theorem. See Tranacendental Number Theory by Alan Ba.ker
or Topia in Number Theory Vol 2 by Le•eque .

.• ..

Lecture 14 - June 16, 1988 (notes revised July 6, 1988)

Argument reduction requires finding an integer n so that z + nf = f !f, where 1/1 ~ ½­
To ~ompute trig(z), compute :rtrig1(/J) instead. Since all the trigonom~tric functions have
a period of 2,r or less, n only needs to be determined mod 4 in order to figure out which
trig1 to choose. The equation above is equivalent to ¾z + n = f, so we only need to know
the low order 2 bits of the integer part of ¾z. and the j, most significant bits of the fractional
part of fz, where pis the number of bits in the precision we are working in. Consider the
following diagram of the multiplication of ¼ (= .1010002 • • •) with :r .

. 101000
X xxxxOO

xxxxx
xxxx

XXX
xx

xxxxxx

xxvvvvvv vvv
00000000.
xxxxxxuu.uuu
xxxxxxuu.uuu
xxxxxxuu.uuu
xxxxxxuu.uuu
xxxxxxuu.uuu

To keep the picture simple, we assumed that the precision p was 4. Since we only are
interested in the low order 2 bits of the integer part, we only care about the bits labeled u.
These are generated from the bits marked v in ¾, which extend p + 2 bits to the left of the
binary point of z. In particular, when we carry out the multiplication, instead of using all
the bits of¾, we only need to use some of them. Of course, we must store many bits of ¾­
even though we only use a few of them in any particular argument reduction.

Suppose we have hardware that can multiply two p precision floating point numbers
exactly, that is, produce a product with 2p fraction bits. Then the details of exact argument
reduction go something like this. If :r = /2e with ½ ~ / < 1 and p is the precision, then
we skip the first e - 2 - p bits of l. that is replace l. with z = {l.2e-2-P}2-(e-l-p) ,r' ff' ;T' •

where {t} = t - ltJ represents the fractional part oft. Then we break z into p bit chunks
z = zo + z12-, + z22-2P + • · •· Next we compute zo = z • Zo, and :r1 = z • z1 • 2-P exactly
as 2p precision_ numbers. Finally, we would like to add zo and z 1. If we add them using 2p
precision arithmetic, the low order p bits of z 1 will be lost. So first replace z 0 = n + f with
z~ = n mod 4 + f and then compute y = rc, + z1. The integer part of y gives the integer
part ¾ z modulo 4, which is all that matters. And the fractional part of y has almost p
correct bits of the fractional part of ¾z.

The Vax™ does not have an 'instruction for exact multiplication. However, it does
have an EMOD instruction, that takes a floating point number with p bits of precision and
multiplies it by a floating point number with p+ k bits of precision to return a result whose
integer part is stored as a 32 bit integer, and whose fractional part is stored as an ordinary
p precision floating point number. The adjustment factor k is equal to the number of bits in
the exponent field. This instruction can be used in place of an exact multiply when carrying
out the argument reduction. .

One problem with this method is that the bits in the product immediately to the right
of the binary point might be zero, which would require additional multiplications of z by
more digits of¼ in order to get p normalized bits of significand. In IEEE double precision.
if you started out with an z that was near the largest representable number, there would be
about 211 bits of¼ in the top line of the diagram. If sufficiently many zeros kept appearing,
you might need to keep computing until the factional pa.rt of the diffference underflowed.
That would require another 211 bits of ¼ to be stored. It can be shown that there is a
limit to how many zeros can appear to the right of the binary point, and consequently why
slightly more than 211 bi ts need be stored.

_j

~-

~-,

1:

l
):
.
l
I
.I
·1

l
(

I
(

J
t

J

l
~t

J
(.

'

