
.r
r

·\ C~·
::~!' t:.:
·::·--~ t· . • _.

Computer System Support for Scientific and Engineering
Computation

Guest Lecture 15 by Tom Anderson • June 21, 1988 (notes revised August 26, 1988)

Copyright ©1988 by Lawrence Yang.
All rights reserved.

1 Introduction

The design philosophy of the Cydra-5 was to build a balanced system that was strong in
all applications, not just in number crunching. The machine had to be able to handle
real-world problems. Thus, it was important that the machine not only be able to handle
numerical problems well, but also be a fast, general-purpose computer.

2 General Overview

2.1 Architectural overview

The Cydra-5 can be divided into three parts:

Interactive Processors: The front end of the ma.chine provides support for general
purpose computing. It consists of Motorola 68020-based cpu boards, each with a
private cache. There are six boards that sit on a proprietary bus. A proprietary
bus was developed in order to provide special communications features to support
multi-processing.

There are also separate 1/0 processors. Up to two 1/0 processors can be supported,
each with its own VME bus. Each 1/0 processor can control three VME card cages.
Here a standard 1/0 interface was chosen because Cydrome didn't want to commit
resources in developing controllers for the many high-speed 1/0 devices available on
the market.

There is also a service processor that is used for diagnostic information gathering and
maintenance. A PC-based system console is used to communicate with the service
processor.

Numeric Processor : The numeric processor is a "directed dataflow processor". It is a
high-speed, ECL-based system that uses data.flow techniques to gain the maximum
parallel execution from standard FORTRAN code. At the heart of the numeric pro
cessor is the "context register matrix", a partial crossbar that partially connects all the
processor elements together through a common register file. The numeric processor
is the focus of this lecture, and much more detail will be presented later.

1

Guest Lecture 15 by Tom Anderson - June 21, 1988 (notes revised August 26, 1988) 2

System Memory: There are two main parts to the system memory. There is the main
memory, which can be ~ large as 512 mega.bytes, and the support memory, which has
a maximum size of 64 megabytes. •

The main memory is designed to hold large data structures, such as the large vec
tor and matrix structures common in numerical code. It is accessed in a pipelined
fashion, where accesses are overlapped to provide fast access to program data. It is
connected to the numeric processor across a 400 mega.bit/second bus. This memory is
designed to have a high throughput, but long latency, to support large, data-intensive
computations in the numeric processor.

The support memory is used to support more latency-dependent data, such as the
process tables for the operating system. This memory is optimized for latency, and
has a lower throughput than the main memory.

All the memory resides in the same memory space. However, throughput-critical data
will reside in the main memory, and latency-critical data will reside in the support
memory.

2.2 Numeric Processor Overview

As stated before, the numeric processor uses datafiow techniques to achieve parallelism in
programs. The numeric processor relies on the compiler to schedule this parallelism. The
numeric processor can start more than one operation per cycle. Up to seven operations can
be started in a VLIW-like fashion, where a single long instruction contains operations on
various functional units, and these operations are fired off' in parallel. The operations start,
execute, and complete in parallel. Compiler scheduling controls how results are written into
the register file and prevents conflicts during result writes. Some of the functional units are
pipelined. The "context register matrix" is used to channel data. between the functional
units. Conditional branches are handled in a special way: both ways of a branch sequence
a.re scheduled, and at runtime one or the other branch sequence is disabled, depending on
the control condition. There will be more discussion on the context register matrix a.nd the
conditional scheduling control later.

The ma.chine is built using air-cooled, 100K ECL technology. It is designed to operate
in a typical computer room environment; it requires no special air conditioning. It runs at
25 MHz, without any internal clock divisions to allow parts of the hardware to run at faster
speeds.

The Cydra-5's peak performance is 175 million operations per second (MOPS), 50 mil
lion floating-point operations per second (MFLOPS) with 32-bit data, and 25 MFLOPS
with 64-bit data. The machine conforms to the IEEE 754 binary floating-point standard
and all its recommendations. Most of the compatibility is provided by the hardware.

The machine has a four gigabyte virtual address space available for each process. The
numeric processor has a 32 kilobyte instruction cache, and no data cache. The reason no
data. cache was provided was because of the presence of the high-speed memory, and the
fa.ct that the compiler takes memory latency into account when scheduling code.

2.3 Main memory

The main memory can be as large as 512 megabytes, using 1 mega.bit DRAMs. It uses 8-
to 64-way interleaving. It has a 400 megabit per second sustained bandwidth.

I

I
I
]

I
.I
·1

J
)

l
,

I
)

(

'

I •

l
\

r-

/8""'\
I
f

Guest Lecture 15 by Tom Anderson - June 21, 1988 (notes revised August 26, 1988) 3

The memory is designed to be stride insensitive. In ordinary interlea.ving schemes, the
memory is vulnerable to significant performance d~gradation if the interleaving size happens
to equal the stride size of a. particular data. structure. This unfortunate coincidence results
in consecutive hits in the same memory bank, d~a.tically decreasing the performance of
the memory system.

The Cydra.-5 uses a. "transformed interlea.ving" scheme, using a. pseudo-random pattern
to scatter banks such that any regular pattern of accesses will not access the same ba.nk
several times in succession. This transformed interleaving scheme works well for real pro
grams; of course, contrived cases can be generated to access the memory system in such a
way as to defeat the interleaving scheme. The transformed interleaving on a. ma.chine can be
disabled; thus, the performance improvement of the transformed scheme ca.n be measured.
A drama.tic performance improvement was observed.

2.4 General purpose subsystem

The general purpose subsystem uses a 100 megabit/second system bus. From one to six
interactive processors can be connected to the bus. Each processor has a 16 kilobyte private
cache. System-wide cache coherency is a.lwa.ys maintained. Each processor has from eight
to 32 mega.bytes of support memory. One or two 1/0 processors can be on the bus, and
each can support up to three VME buses. I/0 operations can be sustained at a rate of
40 megabytes/second for each I/0 processor. Up to 60 concurrent I/0 operations can be
handled. The 1/0 system is memory mapped. Floating-point in the interactive processors is
done with the 68881. The service processor is used to monitor system operation. Diagnostics
ca.n be run through the service processor to debug problems with the system.

2.5 Operating system

The Cydra.-5 runs a Unix-like operating system called Cydrix. It is fully compliant with the
System V interface definition. The kernel is a. "symmetrically distributed kernel", meaning
tha.t the sa.me kernel runs on a.11 of the interactive processors. The multi-processing is syn
chronized such tha.t the processors access the process table coherently; this synchronization
is achieved by having a. process lock out other processes while it is accessing the process
table.

The Cydra.-5 offers transparent management of a. heterogeneous multiprocessing envi
ronment. The numeric processor is just another processor as fa.r is the operating system
is concerned, although it runs with different object code. The Cydra-5 is a. heterogeneous
environment because two different processor types exist in the system. Also, because the
numeric processor is considered to be just another processor, it can be time-shared and
managed just like the interactive processors. The time-sharing is flexible; however, the time
between process switches in the numeric processor ca.n and should be longer tha.n tha.t in
the interactive processor. Unlike the interactive processor, the numeric processor does not
need to offer the illusion of real-time to the user. Also, because the numeric processor has
so many registers, it is good to reduce having to spend the time saving the state of the
numeric processor on context switches.

The ma.chine uses a.n extent-based file system, which allows files to be laid in contiguous
blocks. Also, disk striping is supported to increase disk access times. I/0 is unbuffered and
asynchronous, allowing the 1/0 processing to run a.long in parallel with processor operations.

L .> I

Guest Lecture 15 by Tom Anderson - June 21, 1988 (notes revised August 26, 1988) 4

2.6 Compiler technology

TJ:ie Cydra-5 supports multiple language front-ends. Currently, only FORTRAN is available.
Other languages will be supported by the end of the year. A common, machine-independent
optimizer is used; the optimizer operates on an intermediate language format. Two difl'eren t
back-ends then operate on the intermediate code to g~nerate code for the numeric processor
or the interactive processor.

The key to Cydrome's success is its directed data.flow scheduling concept, and this
concept is implemented by the compiler. This scheduling allows parallel execution of over
lapped iterations. It overlaps parts of each iteration and executes those parts in parallel.
This scheme is better than vectorization because vectorization cannot handle recurrences
and other interdependencies between array or vector elements. The directed dataftow tech
niques also allows scalar code to run fast by allowing independent scalar instructions to
execute in parallel. The parallelization of scalar code is done to produce "eager" execu
tion, where operations are scheduled as early as possible. Because of the directed dataftow
scheduling, there is no need to keep branch statistics.

2. 'T Architecture philosophy

Cydrome has shown a commitment to standards. This commitment has resulted in a sav
ings in development time. By not having to develop ~ystem components that are available
off-the-shelf, Cydrome has been able to concentrate its resources on the core of the machine.
Standards that are followed include the ATT System V Unix operating system, TCP /IP,
NFS and DECNET networking architectures, the ANSI FORTRAN 77 programming lan
guage, the IEEE 754 standard for floating-point arithmetic, and the VME bus standard.

Cydrome has developed an architecture that provides support f'or a heterogeneous multi
processing environment. Multiprocessing is done at the process level. The numeric processor
is optimized for large, numerically-intensive applications, and the interactive processor is
designed for interactive, non-numerica.lly-intensive programs, such as terminal drivers and
screen editors. The system architecture also supports 1/0 processors. Because such a
variety of hardware is present in the system, Cydrome refers to it as a "heterogeneous"
environment.

2.8 "Performance that Counts"

The peak performance of the Cydra-5 is at about the same level as that of the miru•supers.
But Cydrome's goal is to have the performance hold up as other, non-numerical work
loads are added on to the system. Here it can be shown that the high performance of
the Cydra-5 is sustained, unlike in the other mini-super computers where the performance
starts degrading as non-numerical workloads are added.

2.9 Questions and comments

At what level does the multiprocessing occur'! The level of multi-processing is at the process
level. The compiler cannot break up one process across processors.

Comment on the consistency of results between the interactive and the numerical processors.
It is possible to get different results between the interactive processor and the numerical

I
A
1
I
]

I
I
J
1

~1
)

)

J
J
J
J

(

]
~t

_]
{

r
Guest Lecture 15 by Tom Anderson - June 21, 1988 (notes revised August 26, 1988) 5

processor, but no customers have complained so far. There is a compiler switch that can
force the 68881 to be used in air situations.

Comment on future generations and their impact on compiler scheduling. A faster clocked
version means that the memory latency appears longer, assu.m.iD:g that the memory speed
doesn't scale. Memory latency is determined at compile time, so code could be recompiled
on newer machines. Also, there is checking for dependencies on memory data, so nothing
disastrous would happen if the memory latency were to change.

Why couldn't the compiler do the memory trans/onnationf It was found to be easier to
debug the memory system in hardware, since it was easier to switch off' a bad memory
board in order to isolate a problem.

What is the latency of the floating-point units? The ALU and the multiplier take 4 cycles
for single precision operations and eight cycles for double precision operations. Both units
are fully pipelined. The divide and square root units take about 15 cycles for single precision
and about 30 cycles for double precision, and these units are not pipelined.

3 Detailed description of the Cydra-5

3.1 Parallelism

There are two main types of parallelism. There is coarse-grain parallelism, where the
parallelism is at the process level or higher. The interactive processors operate at this level.
The other type of parallelism is fine-grain para.llelism. Vector and array processors operate
at this level, but these types of processors can only handle a specific subset of the types of
problems that ma.chines need to operate on. A data.flow ma.chine is more general and can
offer fine-grain parallelism across general-purpose code.

3.2 Dataflow

The first step in generating code for a dataflow ma.chine is to generate a dataflow graph
of the source code. Such a graph shows how data from various operations flow to subse
quent operations. The graph will show interdependencies between code fragments; these
dependencies will show what parts of the code can or cannot be parallelized. Independent
fragments can then be scheduled to execute in parallel.

The Cydra-5 is a unique dataflow ma.chine in that the parallelism is generated at compile
time, unlike other data.flow ma.chines which have specialized hardware to schedule code at
run time. The Cydra-5 hard ware knows nothing a.bout data dependencit!!l; all dependencies
are resolved by compiler scheduling. Some hardware interlocking is provided, however, to
protect against a subset of programming errors, and to allow for the fa.ct that memory
access latencies are non-deterministic.

Technically, the Cydra-5 is not a "dataflow machine" per se, but a ma.chine that "sup
ports the dataftow concept" by providing simple, powerful hardware and relegating the
da.taflow scheduling to the compiler. Thus, Cydrome's concept of directed data.flow is a
combination of two powerful philosophies. It combines the comprehensive e."<ploita.tion of
fine-grained parallelism provided by the dataftow concepts with simple,. efficient hardware.
The result is a compiler directed data.flow computing machine with support from hardware

Guest Lecture 15 by Tom Anderson - June 21, 1988 (notes revised August 26, 1988) 6

features such as the context register matrix and conditional scheduling control (both dis
cussed later). The compiler is optimized for currently existing languages, although currently
only FORT RAN is available. • • •

3.3 Numeric processor datapaths

The numeric processor has seven functional units: a combination floating-point and integer
ALU, a combination floating-point and integer multiply/divide/square root unit, two mem
ory ports, a.nd three units for address calculation. The ALU provides arithmetic and logical
instructions for integer data, and add, subtract, compare and convert for floating-point
data. The multiplier provides multiplication and division for both integer and floating
point data. It also provides a modulus operation for integer data, a square root function
for floating-point data, and partial remainder primitive to aid in a software-implemented
remainder function for floating-point data. The two memory ports provide both read and
write access between the register file and the memory system. There are three address
units: one is a simple displacement adder for address calculation, the second is a multiplier
to a.id in array indexing operations, and the third is a bit-reversing unit to help in certain
types of applications, such as fast Fourier transform algorithms.

There is also an instruction unit that provides the basic branch and control operations,
as well as supervisor instructions.

At the heart of the numeric processor is the context register matrix. This matrix is a
partially connected cross bar, providing partially orthogonal access to the register file from
a.11 the functional units. There are seven banks of registers in the register file, each consisting
of 64 32-bit registers. There is one general purpose register bank (GPR), four banks on the
data side of the machine, and two banks on the address side. All seven register file banks
are visible to the programmer.

On the data side, a.ny unit can read operands out of any of the four data register file
banks, as well as the GPR bank. However, results must be written to the bank that is
dedicated to the particular unit generating that result. Thus, there are four register file
banks, one for each of the functional units. The GPR bank is common to all four units, and
results from any of the units can be written into the GPR. The register file can be viewed
as a one write and six read port register file, where there are two read ports each for the
multiplier and the ALU and one read port to each of the memory units. The GPR is a.
potential choke point; the compiler must schedule code such that units don't contend with
one other when writing results to the GPR.

The address side has a similar arrangement. The displacement adder, the multiplier,
and the bit-reverse units can read out of any of the two register banks dedicated to the
address side of the numeric processor, as well as from the GPR. The address multiplier and
the address bit reversal unit can only write in~o its dedicated register bank, or the GPR.
The result of the displacement adder goes directly into the memory units on the data side
of the processor.

All buses between the units are 32-bit buses; thus, double precision transfers require
two cycles to execute.

Although the GPR is a potential bottleneck point, writes to the GPR rarely occur
because the GPR usually holds special purpose constants that rarely change.

An interesting statistic to examine, considering how many registers the machine has, is
the vacancy rate of the registers; tbat is, how often is a particular register in the register
file empty. This metric is difficult to obtain. A more interesting measure would be how

}

;1
~

I

l
l
l
I
l
J

J

-f
Guest Lecture 15 by Tom Anderson .. June 21, 1988 (notes revised August 26, 1988) i

busy the functional units can be kept.
· Subroutine calls in the ~umeric processor are expensive in that the hardware doesn't

save much state automatically; the software must be sure that registers are saved if they
are to be modified. Because so many registers exist, context switching can be expensive;
thus, context switches in tJie numeric processor are made less frequent to avoid the heavy
overhead of saving the processor state.

3.4 Compiler scheduling

The scheduling of operations by the compiler is the key to making the machine perform
at its best. By recognize opportunities for parallelism, operations can be started at a rate
of more than one per cycle. The compiler scheduling is covered in detail in [1]. Some key
points will be discussed here.

Loop handling: Operations of different iterations are overlapped to maximize the uti
lization of the functional units. Instead of generating prologue and epilogue code to
handle the loop startup and dosing operations, there is an instruction control register
(ICR) that is used to disable operations that shouldn't occur during the first and last
passes through the loop body.

Conditional branch scheduling: When a conditional branch is encountered, the com
piler generates and schedules code for both directions of the branch. During execution,
the ICR is used to nullify instructions on the path that is not taken. Currently, the
compiler can only handle one bra.nch, but it will be possible to ha.ndle multi-way
branches in future releases.

Iteration counters: Iteration counters are used to increment register addresses to aid
register accessing during loop iterations.

3.5 Performance

An example was presented to demonstrated the power of the compiler scheduling. A code
fragment from a Viterbi decoder was used, compliments of the Jet Propulsion Lab in
Pasadena, California. This program is used in signal processing applications. It is not
meant to be a real benchmark, but just an example of the compiler at work.

In uni-op mode, where at most only one operation can start each cycle, a total of 154
cycles must be spent to get through the code fragment. Many dead cycles are wasted waiting
for data to arrive from memory. In multi-op mode, however, the cycle count drops to 23
cycles. During each cycle at least one functional unit is busy. In fact, the limiting unit is
the ALU; if the functions of the ALU were distributed across different functional units, it
may be possible to improve the cycle count even further.

In terms of overall performance, the Cydra.-5 can run the double precision Livermore
• loops at 4.5 MFLOPS; this number is the harmonic mean of the performance of the indi

vidual loops [2). The l00xl00 double precision Unpack benchmark can run at 14 ~!FLOPS.
To date 15 systems or system•equivalents have been shipped.

3.6 JEEE options and extensions

The Cydra-5 offers full ha.rdwaresupport for denormalized operands with no penalty. Arith
metic operations on a mixture of precision is not allowed, although conversions too and from

Guest Lecture 15 by Tom Anderson - June 21, 1988 (notes revised August 26, 1988) 8

formats a.re supported. There a.re no complicated arithmetic operations, such as transcen
dental functions. There is no instruction to return the fraction pa.rt of a fioa.ting-point num
ber. An instruction that truncates the integer-to-floating-point convert result was added to
support the FORTRAN definition. Since this operation with this rounding mode is used
frequently, this instruction was added to alleviate the need to se~ rounding modes when
ever this conversion was needed. Finally, a. "flush-to-zero" mode is provided which turns
denormalized results into zero.

3. 7 Floating-point algorithms

Addition: The addition algorithm is basically the standard, textbook algorithm. A right
shirt of the smaller operand is first performed to align the operands on the binary
point, then the numbers a.re added. A final shift of one may be needed to normalize
the result.

Subtract: The traditional subtraction algorithm requires a. (potentially) large shift after
the standard align-and-subtract operation to re-normalize the result, since cancellation
of many leading digits may result in many leading zeros in the result. The Cydra-5 has
logic that predicts the cancellation and pre-normalizes operands; thus, the resulting
difference will require at most a 1 bit shift to normalize. This cancellation prediction
saves time and space by eliminating two levels of shifters in the data.path, although
the leading shifter is now more complex because it must be able to shift both left and
right.

Compare: The compare operation is implemented as a subtract operation that generates
a. boolean result.

Multiply: The multiplier can generate a complete 64 x 64 result in two cycles. It uses
a. single shifter to fix up the result at the end; a full shifter is needed because the
multiplier can accept denormalized numbers as operands. The multiplier is made
more complicated by having to support different data. types:

Integer: In a.n integer multiply the lower 64 bits are kept for the result and the upper
64 bits a.re folded into the overflow detection logic.

Normalized floating-point: In a :floating-point multiply the upp~r 64 bits a.re to
--=-•-=-1••aa:· be returned, and the lower 64 bits a.re accumulated into the sticky bit.

Denormalized floating-point: Supporting operations on denormalized numbers re
quires the use of a. lea.ding zero counter at the input to locate where the binary
point should be in the product; this need complicates the data.pa.th by requiring
hardware a.t the front end to count the leading zeros and a large shifter a.t the
back end to normalize the result.

Divide: The division algorithm develops 12 quotient bits every three cycles. The basic
equations governing the divide algorithm a.re:

dividend . .
d. . = quotient + remainder ivisor

Let
q = approzimate quotient, r = true remainder

}

,• .,-

1\1

l
·1

I
I
]

]

~]

J
)

... uw

l
I
l
4

I
(

J
~

{

)
{

'

.:C
r

Guest Lecture 15 by Tom Anderson - June 21, 1988 (notes revised August 26, 1988)

then
q = dividend x d" ~

1v1aor
T = dividend - (1 x divisor)

The iterations are controlled by:

q(i) = r(i - 1) X d" ~
IV1.90T

r(i) = r(i - 1)- diviaor x q(i)

9

Truncated values of the remainder and the divisor reciprocal are used to produce
quotient bits; thus, the first few iterations are faster because they use a narrower
data.pa.th. The initial truncated divisor reciprocal is in a. lookup table.

Square root: The square root algorithm develops seven bits each three cycles; thus, it is
slower than the division algorithm. If we let S- be the approximate square root a.nd r
be the remainder, then the following equations describe the square root process:

2 x S(i) = R(i- 1) x S~O)

R(i) = R(i- 1)- (2 x X(i- 1) + S(i)) x S(i)

where
X(i- 1) = S(O) + S(l)+ ... + S(i- 1)

The truncated values of the remainder and the initial guess reciprocal are used to
produce square root bits, just as in the divide algorithm. The truncated initial square
root guess reciprocal is located in a lookup table.

3.8 Influence of architecture on implementation

The combination of parallelism and pipelining complicates the implementation of the hard
ware. Out-of-order completion affects exception handling. Some parallel operations may
have completed when a.n exception is detected; thus, there is a danger of other operations
overwriting inputs of the exceptional operation. For example, suppose operation A starts
at time 0, and operation B starts at time 1. Suppose the latency of operation A is longer, so
operation B completes a.t time 3, overwriting one of operation A's source operands. Then
operation A finishes and generates an exception. Operation A's inputs are lost, so the
instruction cannot be reissued!

The compiler must enforce protection of source registers during the entire latency of the
operation. Although this seems like an enormous task, this job is not as big a limitation on
the compiler as other problems, such as scheduling memory latencies.

When IEEE exceptions occur, the inputs to the exceptional instruction must be intact;
therefore, results of an exceptional operation a.re not written for fear of clobbering one of
the inputs. Constraining the compiler to never generate instructions that overwrite its own
input registers is too restrictive in this case.

When an exception is signaled, the ma.chine is stopped (the PC is frozen) and currently
executing operations are a.llowed to finish. Thus, several cycles may be spent waiting for
the ma.chine to wind down before the exception handler is called.

The large number of registers definitely impacted overall cycle time, since register access
time is large and the register file is in a. critical pa.th.

Guest Lecture 15 by Tom Anderson - June 21, 1988 (notes revised August 26, 1988) 10

3.9 Exception handling

All IEEE exceptions are supported: overllow, underflow, inexact, invalid operation, and
divide by zero. All IEEE exceptions have trap enables. Two integer exceptions a.re also
provided: overflow and divide by zero. A queue stores PC values dwing normal e.~ecution.
During exceptions, the queue contains a. record of exceptions that occurred while the pipeline
was flushing, in case subsequent operations also ca.use exceptions. I! subsequent operations
during the pipeline flush also complete exceptionally, the exception handler ca.n use the
information in the queue to backtrack and recreate all the exceptional instructions. A
hierarchy of flags is used to identify the source of exceptions. This exception handling scheme
gets more complicated when loop counters a.re considered, too. So fa.r no real exception
handlers have been written, so the impact of the complexity is not fully understood yet.

3.10 Implementation issues

Full support of denormalized operands is complex, a.nd it may have been desirable to avoid
this complexity. However, support of both integer and floating-point in the same unit
reduced the impact of thls complexity because the hardware to handle denormalized data
is already contained in the hardware to handle integer data..

The complexity of the context register matrix structure had a significant impact on the
design of the functional units. But since the matrix is the most important hardware feature
of the Cydra-5, care was spent in making sure the design was done properly.

Only a few hardware interlocks a.re provided to protect the user from programming
errors. Also, interlocks are provided for memory dependencies, since memory accesses
are non-deterministic; two consecutive accesses may contend on the same memory bank9
delaying the second access. Latencies such as these cannot be determined at compile time.

4 Mistakes and future issues

The value of hardware denormalized data support is still controversial.
The instruction count could be reduced further by limiting the number of possible com

parisons. For example, A< Bis the same as B > A. The compiler could reorder such a
comparison to use the other instruction.

A single precision integer to double precision floating-point convert operation, not pro
vided by the hard ware, turns out to be an important operation in F_'O RTRAN code because
often the loop index is needed in some computation in the body of the loop.

A better balance of operations between the different functional units should be con
sidered. Typical code shows that the ALU is usually the bottleneck. A future machine
should consider splitting up integer ALU oper~tions from floating-point ALU operations.
The exact distribution of functions across the functional units will need to be studied in
deta.il. Possible schemes include providing more than one complete integer ALU unit. A
set of fully orthogonal functional units will probably not be implemented, however.

5 References

(1) "Cydra-5 Directed Data.flow Architecture", Cydrome Inc.
(2) "The Correct Mean", Cydrome Performance Brief, Cydrome Inc.

]

]

]
I

]

]

1
r"I]

]

]

}

}

)

I
~

l
\, ~)
I

Computer System Support for Scientific ~d Engineering
Computation

Lecture 15 - June 21, 1988 (notes revised July 6, 1988)

Copyright © 1988 by W. Kahan a.nd Da.vid Goldberg.
All rights reserved.

1 Summary of Cydrome Architecture

Here is a. brief summa.ry of aspects of the Cydrome architecture relevant to floating point.
taken from the guest lecture of Tom Anderson.

Many Registers The numeric processor has ; register sets, each containing 6-l registers
for a total of 448 registers. The large number of registers helps support the parallel
operation of multiple processing elements. In ea.ch cycle as many as 7 different reg
isters ca.n be written simultaneously. However, the la.rge number of registers makes
conte.."<t switching expensive. The Cydrome architecture has interactive processors
independent of the numeric processor for processes with high context switching rates.

Conditional Execution Ea.ch instruction has conditional execution bits that control whedtP.r
the instruction is actually executed based on the loop iteration count or the evaluation
of a conditional expression. Thus a loop can fetch a. word from memory that won ·t
be used until a. later iteration. The final iteration through the loop the conditional
execution bit can inhibit the memory fetch (a.nd other op'erations}, thus a.voiding a
memory reference that will never be used. and which could have ca.used a. spurious
page fa.ult.

Pipelined Floating Point Operations The add and multiply units a.re pipelined. Like
most pipelined processors, this means that the floating point operations always take
the exact same number of cycles, independent of the operand ,;alues.

Software Scheduling Suppose the result of one Boa.ting point operation is used as the
input to another operation. The hardware does not stall waiting for the first operation
to complete. It is up to the compiler to schedule instructions so that a. floating point
operation isn't executing until its operands have been computed. Since the floating
point latencies are compiled into the code, future ma.chines implemented in different
technologies must maintain the same latencies (in terms of cycle counts) to allow
binary portability.

Compare done via Subtract Comparison is done by subtracting, and then putting out
a single bit based on the sign of the result. This can cause problem for compares
involving Na.N's, however.

1

•
. . :: ..

Lecture 15 - June 21, 1988 (notes revised July 6, 1988) 2

Gradual Underflow in Hardware Gradual underflow is implemented in hardware. with
no performance penalty.· Dealing with denormalized numbers makes floating point
hardware more complicated. However, on the Cydrome ma.chine the floating point
hardware was already doing double duty for integer arithmetic, so support for denor-
malized numbers didn't add much extra. •

Subtract Pre-Normalize When subtracting numbers, the traditional hardware must first
do a potentially long shift to align the numbers, then subtract, then another poten
tially long shift to normalize the result. The Cydrome hardware increases performance
by doing a. pre-normalize. That is, when it aligns the binary points. it also estimates
the a.mount of cancellation and shifts both operands to account for it. After the
subtract, the significand will have to be shifted by at most one bit.

Support for Trap Handlers When a floating point trap occurs, the trap handler needs
to be able to access the operands causing the trap. Since the Cydrome machine
can perform multiple floating point operations in parallel, it will complete any other .
floating point operations in progress (i.e. flush the pipeline) before executing the
trap handler. One of those pending operations might overwrite the arguments to
the operation that trapped. The Cydrome compiler is responsible for scheduling
operations so that this doesn't happen. Similarly, operations that trap do not produce
any output, since that might also overwrite operands.

Type Conversion There is an instruction for truncating a floating point number to con
vert it to a.n integer, since this is required by FORTRAN. However, one operation
which occurs frequently in programs is not supported by hardware, namely convert
from single integer to double precision floating point. This was probably a mistake.

.l
]
~

I
I
I
I
I
I
I

I
l
'·

I
j

(

'

