
l
t

r

Computer System Support for Scientific and Engineering
Computation

Lecture 16 - June 23, 1988 (notes revised July 11, 1988)

Copyright ©1988 by W. Kahan and David Goldberg.
All rights reserved.

1 Symbolic Math Systems

, On the occasion of the announcement of Stephen Wolfram's Mathematica system, we give
a brief overview of the field. Symbolic ma.thematics systems allow you to manipulate math
ematical expressions symbolically rather than numerically. Thus evaluating J:° e-z:2 dx nu
merically would give you an approximation such as .886, whereas a symbolic system would
compute the integral as "3'/-". Here are some of the common symbolic systems.

MACYSMA The first big symbolic system done at MIT, and written in lisp. A very la.rge
program, that has been worked on by many difl'erent people, and shows it.

REDUCE Originally written by Tony Hearn, a.nd written in FORTRAN, so once con
sidered more portable than MACSYMA. Also a very large system that has been
contin\ially extended.

Maple Done at Waterloo, and writen in C, although it has a lisp-like in~rface. Has a
. better overall design than MACSYMA or REDUCE.

MuMath Runs on IBM PC, and has mostly slow algorithms. However, it comes with a
lisp-like language that can be used to reprogram its algorithms, and it is decomposable
into small modules.

Mathcad This is not a true symbolic math system. It accepts symbolic expressions, but
is really just a front end to a numerical analysis system.

One convenient feature ofMACSYMA and Reduce is that they can directly generate FOR
TRAN code.

2 Floating Point Precisions

It is extremely rare for real-life problems. to require more than double precison. The few
cases that appear to require quadruple precision can usually be done in double precision
using a better a.lgo~thm. For example, we saw tha.t compensated summation is a way to
obtain almost the effect of quadruple precision when summing a large number of double

1

c6L

Lecture 16 - JuD.e 23, 1988 (D.otes revised July 11, 1988) 2

precision quantities. Another exa11lple is least squares. The na.ive algorithm might appear
to require quadruple precision, but there is a trick (to be explained later) that enables
the calculation to be done in ·double precision. An expla.nation for why double precision
is almost always enough, is that final • answers are rarely needed to more than 1 part in
a million, which ca.n be expressed in single precisio.n. The rule of thumb we have noted
ea.rlier says that to get a final answer accurate to single precision, it is enough to carry the
intermediate results in double precision.

2.1 Effect of Precision on Software

Besides the obvious fact that higher precision will alm0&t always result in higher accuracy,
precision enters into numerical calculations in more subtle ways. In algorithms that use
iteration, the two factors tha.t enter into stopping criteria are noise (rounding errors) and
precision. Thus it is important for such a program to know exactly what precision is
being used, and very helpful if double and single precision are genuinely different. For
example, a program that uses double precision in an iteration to produce a single precision
result might halt when a difference of two double precision numbers is O when computed to
single precision accuracy. If single a.nd double precision are identical (either in hardware or
because a compiler converted aJl floating point operations to double), such programs won't
work properly.

Another example where precision enters calculations is in finding the roots of a quadratic.
We saw that it is important that the difference B 2 - AC be computed in twice the precision
of the desired result. Programmers will typically assume that double precision has at least
twice the precision of single precision, and that computing B 2 - AC in double yields a final
result for the zeros accurate to single precision. But machines have been built where double
precision has less than twice the precision of single precision (this is explicitly forbidden in
the IEEE standard).

2.2 What IEEE says about precision

One of the goals of the IEEE floating point standard was to make debugging easier by
having diff'erent machines produce exactly the same bits. Imagine two machines. The first
is one like the Motorola. 68881 or Intel 8087, that always produces results to double extended
precision. The second is a machine like the ELXSI 6400, that produces results to the same
precision as the operands. A double precision operation on the ELXSI can be simulated
exactly on the 68881 if the 68881 rounds to double. The IEEE standard requires that such
a rounding mode be provided. It is not sufficient to first compute the result in extended
(that is compute as if to an infinite number of places a.nd then round to extended) and
then round that to double precision, because this double rounding may not produce exactly
the same bits as rounding immediately to double precision in the first place.1 Of course, it
might be necessa.ry to use assembly language to change the rounding mode.

So, the IEEE standard requires that when performing an operation on arguments of a
given precision, it must be possible to produce the result in that same precision, possibly by
changing a rounding mode. Conversely, the IEEE standard prohibits rounding the result
to a precision smaller than the precision of the operands. The reason is again to facilitate
comparisons between machines. If "narrow" rounding were allowed, then when two extended

1 Aa we saw ill an earlier lecture, double rounding will not change the answer whe11 rounding first to
doable and the11 to lillgle preciaon.

l
1
I

J
J

'

J
J

,~1
(

l

r

Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 3

operands were combined to form a. double precision result, there would be confusion as to
whether the operation was first computed to extended and then rounded, or whether the
op~tion was rounded just once to double. By prohibiting "narrow" rounding, you know
that the result must have been double rounded. Thus when comparing the results of two
ma.chines that conform to the IEEE standard, you know that they must both double round
and the two results should be bit for bit compatible. •

There a.re two objections to this argument. The first is that IEEE 854 does not specify
the number of bits for single, double and extended. And even IEEE 754 only specifies the
bits for single and double, but not for extended precision. So if two different ma.chines use
different sizes for single precision, then you can't do bit for bit comparison, so what would
be the point of controlling rounding? Of course, many ma.chines (in fa.ct most implementing
the IEEE standard) use IEEE 754 for single a.nd double, and use 80 bits for double extended.
The second objection has to do with transcendental functions. The IEEE standard doesn't
sa.y anything a.bout them. Since most real calcula.tions involve computing transcendentals,
bit for bit comparison is meaningless for them.

Why doesn't the IEEE standard define transcendental operations the way it defines ad
dition, multiplication and square roots? The reason is the table-maker's dilemma. Suppose
you are making a. table of natural logs to 4 places. Then In(.942) = -0.05975. Should this
be rounded to .0597 or .0598? If we compute In(.942) more carefully, we get -0.059750. And
then -0.0597500. And then -0.05975000. Since 1n is transcendental, this could go on arbi
trarily long. Thus it is not practical to specify transcendental functions to be computed as
if to infinite precision and then rounded. We could try to specify transcendental functions
algorithmically. But there does not appear to be a. single algorithm that works well a.cross
all hardware architectures. For some hardware CORDIC is the best choice. For others,
rational approximations a.re best. For still others, large tables are most appropriate. At
present no single algorithm works acceptably over the wide range of current hardwa.re; tha.t
may change.

2.3 Precision of Intermediate Results

One of the gray areas in most language specifications concerns the precision to be used in
evaluating anonymous intermedia.te expressions. Consider the FORTRAN expression D •
D + U[iJ •V[iJ, where Dis double precision, and the other variables a.re single. Early FOR
TRAN compilers would multiply the two single precision variables U[iJ and V [iJ to get a
double precision result, and add that to D with a double precision add. This was very useful
for computing inner products, since when the array is long, the long summation can cause
quite a bit of roundoff error if computed in single precision. Modem FORTRAN compilers
are much more likely to do the minimum amount of work required by the FORTRAN stan
dard, and compute U[iJ •V[iJ to single precision, since that is the type of both arguments.
They do provide however, a DPROD function so that D + DPROD(U[iJ • V[iJ) has the desired
effect. 2 This brings up the question of how to evaluate expressions. There are three basic
strategies: .

Strict Evaluation This is the method that gives a strict interpretation to the FORTRA.i.'l
standard. Ea.ch expression is computed to the maximum precision ofits two operands.
This works well on "orthogonal" machines like the VAX, IBM 370, 3 ELXSI 6400 and

2Beaides ,he DPROD duuering up ,he code. it a.190 requira doa,ble precision, which is qui~ expensive
on Cray c:1asa machines.

,Excep, {or the special cue o{ DPROD, which Ole 370 ca.n do iD hardware.

Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 4

NS 32081, which for every combination of an arithmetic operation and a. precision,
has a. corresponding instruction. It does not evaluate an expressions like S • D + tJ•V

. in the way most likely intended by the programmer.

Widest Available This is the method required by the original C language. Each expres
sion is computed in the machine's widest precision. This works well on the Motorola
68881, Intel 8087, and WE 32106, which always compute results to extended preci
sion. However, on machines for which computing in the highest precision is signifi
cantly more expensive than single precision, it is not only inefficient but often does
not result in significantly better accuracy.

Scan for Widest This scans a.n expression for the widest operand, and computes the
entire expression in that precision. There is a subtlety with expressions involving a
non-generic opera.tor such as SIIGLE. In the expression S + SIIGLE(D - E) where
D and E are double and S is single precision, the addition should be done in single
precision, even though the expression does contain a double.

Compilers should implement either "Widest A va.ilable" or "Scan for Widest". It is impor
tant that compilers document which approach they use, and useful if they offer a compiler
option that selects between the two approaches. 4

2.4 Hardware Precision Paradigms

There are two major categories of computers widely used for floating point. The DEC VAX,
IBM 360/370 and HP Precision architecture families offer single and double precision, with
a single precision of about 24 bits, a.nd double precision of about 53 significant bits. 5 The
Cray and CDC machines on the other hand, had initially only one precision in hardware
(single), which is roughly equivalent to double precision in the first category. For the most
pa.rt, they must do double precision in software, which is dramatically slower than single
precison. That is, the ratio of double precision execution time to single precision execution
time is small in the first category, and large in the second. Since FORTRAN requires that
the size of a float be the same size as an integer, it is hard for FORTRAN programs to make
use of a 32 bit floating point format on the second category of machines, even when there
is some hardware support for ha.If precision.

Highly portable software must run well on both classes of ma.chines. The usual solution
is to write portable routines in two versions, a single precision version and a double precision
one. On Cray class machines, the single precision routine is the one that will almost always
be wanted, since single precision is already 48 significant bits, and double precision is
dramatically slower. On the first category of ma.chines, it will be quite common to run the
double precision version. This classification of machines also effects the decision on how to
evaulate D • D + tJ(i]•V[i]. When double precision is expensive, accumulating in double
precision is probably a bad choice, whereas on the first class of ma.chines, accumulating in
double precision is usually prefered. This is an argument in favor of letting the compiler
decide in which precision to evaluate D • D + tJ[i]•V[i] rather than forcing it with DPROD.

A final observation about precision. Some numerical problems a.re more demanding of
floating-point hardware than others. The least demanding tend to be matrix problems and

• A reference for &tu. material ia F&mam'• paper Compiler Support /or Floaling-Point Computation.
5011 IBM machines, the exponent r&nge ia the ame for all precisiou, ao the smallest number th&t can

be represeAted ia &boat r 254 • Thia meau th&t in qaad precision,<' will uderSow, where< ia the roundoff'
error. The aame ia true of the DEC VAX D-forma& doable-precmou.. ba& G-format ii O.K.

.l

a
.~

t
l
·1

.l
]

J

. r.
r

.... _.
--··.

Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 5

partial differential equations solved by difference or finite element methods. These work
well even on ma.chines with poor floating point accuracy like the Cray, where the roundoff'
em;,r for multiplication is 8 times the roundoff' error for addition and .subtraction. Thus
users who primarily solve such problems will usually be more interested in floating point
speed than in fine points about precision.

3 Matrix Double Precision Accumulation

We have discussed how accumulating sums in double precision improves the accuracy of
inner products, and how compilers can help with this situation by generating double pre
cision multiplies for D • D + U[i]•V[i]. When the inner product computation is done aa
part of a matrix multiplication, the issue of page (and cache) misses ca.n be important. The
stra.ightforwa.rd method of multiplying two matrices is

/• Algorithm 1 •/
double T;

for i • 1 to H {

}

for j • 1 to I {
T • 0.0;

}

for t • 1 to R
T • T + A[i,kJ•BCk,j];

C[i,j] • T;

Accumulating the sums of products in double precision does not result in a.ny extra memory
traffic, because the array arguments A Ci • k] a.nd B [k. j] are fetched as single precision
quantities, and the result of the multiplication a.nd double precison add is stored into T,
which presumably is allocated to a register. In a picture, matrix multiplication looks like
this:

To get the (ij)th element of the product, you take the inner product of the ith row with
the jth column. In FORTRAN, arrays are stored in column order. That means that the
elements of the jth column will all be located in the same area of memory, but the ith row
will be scattered. If the array is large, this will result in cache misses or even page misses
because or the non-local memory references. Another way to organize the calculation or two
matrices is to rewrite the equation Ci;= E1c t1ur61r; aa c; = Ek ii1c61c; where the matrix A is
decomposed into columns A= (ii1 , •.• ,ii"), and similarly £or C. The sum isn't computed
all at once, but rather gradually as indicated in the following picture .

l.11

'"•• ...
.. • • ♦ :

Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 6

Each row of the picture represents a vector ii1cb1c; being added to the indicated column
of C. Thus the multiplication algorithm looks something like this

/• Algorithm 2.•/
for j • 1 to I {

for i • 1 to I
T[iJ • 0.0;

fork• 1 to N {
BICJ • B[k,jJ;
for i • 1 to R

T[i] • T[i] + A[i,ltJ•BKJ;
}
form• 1 to I

C[m,j] • T[m];
}

To compare the page faults generated by the two methods, imagine a page size of 4096 bytes
·and a 1024 by 1024 matrix of 4 byte single precision numbers. Thus each page will hold
1 column, and each matrix fits into 1024 pages. Also imagine that the working set is less
than 1024 pages (that is, less than 4 megabytes). In the inner loop of algorithm 1, all the
B[k,j] will fit into one page, but the A[i,kJ will touch each column of A, causing about
1024 page faults. To compute the entire product will cause about 1024(1024) 2 page faults.
In algorithm 2, the inner loop references a single_ column of A, touching one page. The loop
on t sweeps through A touching 1024 pages, and the loop on m touches a single column of
C. Thus ea.ch trip through the j loop touches about 1024 pages, for a total of 1024 2 page
faults. Roughly speaking, algorithm 1 genera.tea N 3 page faults, and algorithm 2 generates
N 2 faults.

Although algorithm 2 dramatically reduces page faults, it changes the cost of doing dou
ble precision accumulation. In algorithm 1, double precision sums were accumulated in the
variable T which could be assigned to a register. In algorithm 2, the double precision sums
are accumulated in an array T[i]. Reading and writing this double precision array ttqulres
twice the memory bandwidth of single precision accumulation. The reader might want to
ponder whether there is an algorithm that combines the low page fault cost of algorithm 2

I

7
J
]

I

J
;

J
~

J
J
'
J

. ·•
• I

..
.. -.... (:

Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 7

with the low double precision accumulation cost of algorithm 1. 6 For Gaussian elimination,
there is such an algorithm, and it is explained in Appendix A (Gaussian Elimination Vlith
Ez;tra-Precise Accumulation of Products) .

. . :.-.-. '.

•u \he mauix B can be cheapl7 uu•poeed from c:cllUIUl order to row order, theJl algorithm 1 no longer
ha.a & high page faalt C0A.

.. . . .

'212.

Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 8

Appendix A

GAUSSIAN ELIMINATION with EXTRA-PRECISE ACCUMULATION of PRODUCTS
- is it worth the c~t? -

W. Kahan
Lecture 16 - June 23, 1988 (notes revised July 11, 1988)

Issues:

1. How to do it?

(a.) Extended precision sums in inner loops. (Fast a.nd chea.p)
(b) Extended precision temporary vectors. (Slowed by memory)

2. Wha.t good is it?

(a.) More accuracy in "systematically ill-conditioned" cases, almost as good as if all
data. were stored with a. few extra bits; but otherwise the improvement is small.

(b) Error a.nd its bound grows less quickly with dimension, so improvement is most
apparent when dimension is huge.

3. Wha.t does it cost?

(a.) Ha.rdwa.re is more complicated, but not much slowed.
(b) Subexpression semantics ha.rder to compile.
(c) Method la. ma.y stumble over pa.ging problems; this can be largely circumvented

by trickery a.nd some use of 1 b.

4. Examples a.nd comparisons:

(a) On 8087-like architectures (INTEL 86/330, IBM PC FORTH)
(b) Using software floating-point (hp-85, APPLE ill)
(c) High-performance ma.chines (ELXSI 6400, ...)

5. Programs listed below:

LUPA: Triangular Fa.ctoriza.tion with extra-precise accumulation of inner prod
ucts (method la.), a.nd alternative column-oriented code using extra
precise vector to accumulate scalar x vector products (method lb).

LUXPB: Forward and back suatitution by two methods, like LUPA.
RBAX: Residual by two methods, like LUPA.
VNORM: Root-sum-squares norm with extended-range accumulation or squares

(method la), a.nd alternative code uing no extended range but three
times slower.

RESYS: Solve system of linea.r equations a.nd refine solution iteratively, using
LUPA, LUXPB, RBAX a.nd VNORM.

HUP A: A Caster version of L UPA, a.nd
HUXPB: a Caster version ofLUXPB, to be used together in situations where page

faults seem to preclude extra-precise accumulation or products.

l
·1 .•

f

I
.I

)

l
)
(

)

I
(

J
t

~1
(

.r

Lecture 16 - June 23, 1988 (notes revised July 11, 1988)

LUPA:
Given a. square matrix A, we s4k!k triangular factors to satisfy

where

LU= PA,

L = unit lower triangular matrix,
U = upper triangular matrix, and
P = permutation matrix represented by indices Ip(...]
thus: (Pz)(i] = z(Jp(i]),

inverse(P) = transpose(P),
(inverse(P)y)[i] = y[j] where Ip[j] = i.

If i > j then
A(Ip(i],;] = L[i,j] • U[;,J1 + Sum{k < j}(L(i, k] • U(k,j))

else
A[Jp[i],i]= 1 • U(i,j) + Sum{k < i}(L(i,k]• U[k,j]).

Subroutine LUPA.(A., LU, Id, IP, R):
Integer values Id, B; Integer variable IP[R+] ;
Real variables A[Id,I+], LU[Id,H+] : ... they may coincide.

Integer i, j, le, imax;
Logical UnSav; ... to save t restore Underflov flag.
Real emu, dmax, rndf, undr, U [R+] ;
Tempreal tsum, tpmu, tsmax, T[R+] ; ... more precise than Real
Equivalence (O,T) Sava storage by packing U inside T
Common /L1BVSP / T ; . . . Shares vorkspace vi th other programs .

. . . Glossary:
A[Id,N+] is a square matrix dimensioned A[Id, at lea.st I]
LU[Id,N+] vill hold LU[i,j] • L[i,j] for i>j •

• U[i,j] othervise.
(The program allovs LU to overvri ta A .)

IP[H+] vill hold permuted indices 1, 2, 3, ... , R thus:
(Px) [i] • x [IP [i]] .

j ia a column index that vill run 1, 2, 3, ...• I.
U[H+] vill hold temporarily column j of U.
T[R+] vill hold temporarily (column j of L)•U[j,j] .
c:max holds the max. magnitude in column j of l.
dma.x holds the max. aubcliagonal magnitude in column j of Pl
:rndf • 1. 000 ... 0001 - 1 , measure■ roundoff among Reals.
undr • tiniest positive number. at or beyond underflov.
i is a rov index that vill run 1, 2, 3, ...• I.
taum • A[IP[i],j] - Sum{k}(L(i,k]•U[k,j]) .
tama.x • max. ltsuml in column j ; if tamu./(Sj) > c:max ,

U has groan eo big that roundoff may be excaaaive, so
columns 1 and j of A should be avapped. (Very rare.)

tpma.x • mu. aubdiagonal I taum I in column j :for pi voting.

1

9

it.I _________ _
. ·.•

Lecture 16- June 23, 1988 (notes revised July ll, 1988)

imax • rov index vhere· tpmu: occurs.

.UnSav :• UndrflovFlag(· .false.) ; ... to aave I: resat U-flag.
Gradual lJDderflov during factorization is ignorable.

rndf :• 1.0 ; mdf :• nextdter(rnd.f, 2.0) - rndf ; •
or else try rndf :• 4.0; rndf :• rndf/3.0;

mdf :• abs((rndf - 6.0/4.0)•3.0 - 1.0/4.0) ;
undr :• 0.0; undr :• neztdtar(undr, 1.0) ;

or else try undr :• underflov threshold for the Reals.

Wtialize IP:
For i • 1 to I do IP[i] :• i

Outer loop, traversed once per column (j)
For j • 1 to R;

cmax :• 0.0 ; tamu :• 0.0
... Compute column j of 0
For i • 1 to j-1;

taum : • A [IP [i] , j] ; cmax : • max{ cmax, abs (taum) }
For k •1 to i-1 do taa :• tsum - LO[i,k]•U[k] ;·
U[i] :• tsum; tamax :• max{ tsmax, aba(taum)};
nert i;

Compute potential pivots
dmax :• 0.0 ; tpma.x :• 0.0 ; imaz :• j ;
For i • j to I;

taum : • A [IP [i] , j] ; dmax : • max{ dmax, abs C tam,.) }
for k • 1 to j-1 do taum :• tam - LO[i,k]•O[t] ;
T[i] :• taum; tsum :• abs(tsum)
if tsum > tpmax then { imu : • i ; tpmu : • tsum }
Dart i;

cmax :• 111&%{ cm&%, dmax}; tsma.z :• max{ tamax, tpmax};
If imax • j than {

if tpmax • 0.0 then {

}

T[jJ :• max{undr, rndf•dmax}
go to DivByPiv}

else { . . . exchange rova j and • illu .
for k • 1 to j-1 ; dma.z :• LO[imax,t] ;

LU[imu,t] :• LO[j ,t] ; LU[j ,tJ :• d&ax
nert k;

k :• IP[ima.xl ; IP[ima.xl :• IP[j] ; IP[j] :• k
}

If tsmaz/(S•j) > cmax then {
Display {"Warning: Extraordinary grovth of

intermediate results in LtJPA may lose
too 1111ch accuracy. To avoid this loss,

. - ~. ;: ... •. -~ .•
... :·--~:-' :: . ;•,.-.: ,:

•. ••.• .. ·-: ..
.... . -:·

10. l

:i
~-

)

l
I:
l

]

J
£

)
(

J
(

)
(

1
(

r-'\ l
C

.. :-. --~--x-:--t 7
~ ; .. •.

. r.
r

• : ".. .,

Lecture 16 • June 23, 1988 (notes revised July 11, 1988)

recompute after exchanging colwzms 1
and 11 ,j};.

tam :• 0.0/0.0 ; signals Invalid 0parat~on.
}

DivByPiv: ts'Wll :• T[imaxJ ; T[imaxJ :•. T[j] ; U[j] :• tsum ;
for t • 1 to j do LU[k,j] :• U[k] • ; pivot.
for k • j+1 to I do LU[k,j] :• T[k]/tsum; ... • L[k,j].
next j :

UnSav :• UnclrflovFlag(UnSav); ... Restore Underflov flag.
return;
end LUPA .

........ Alternative Column-Oriented Code

Subroutine LUPA(A, LU, Id, IP, R):
Integer values Id, I; Integer variable IP[H+J ;
Real variables A[Id,I+], LU[Id,B+] ; ... they may coincide.

Integer i, j, k, imax;
Logical UnSav ; . . . to save & restore Underflov flag.
Real cm.ax, dmax, amax, rndf, undr, z;
Tempraal t, tpma.x, T[H+] ; ... more precise than Real
Common /L1BWSP/ T; ... Shares vorkspaca vith other programs .

. . . Glossary:
A[Id,H+] is a square matrix dimensioned A[Id, at least I]
LU[Id,H+] vill hold LU[i,j] • L[i,j] for i>j ,

• U[i,j] otherwise.
C The program allovs LU to overvri ta A .)

IP[H+] vill hold permuted indices 1, 2, 3, ... , I thus:
(Px) [i] • x [IP [i]] .

j is a column index that vill run 1, 2, 3, ... ,I.
T[H+] vill hold temporarily column j of U, and then it

rill hold temporarily (column j of L)•U[j,j] .
emu: holds. the max. magnitude in colWDD j of A .
dmax holds the max. aubdiagonal magnitude in column j of PA
rndt • 1.000 ... 0001 - 1 , measures roundoff among Reals.
undr • tiniest positive number• at or beyond underflov.
i is a rov index that vill run ·1, 2, 3, ...• I.
emu• max. IT[i]I in column j ; if amax/(8j) > cmax,

U has grovn so big that roundoff may be excessive, so
columns 1 and j of A should be avappad. (Very rare.)

tpmax • max. aubdiagonal IT[i] I in column j for pivoting.
ilDax • rov index vhere tpma.x occurs.

UnSav :• UnclrflovFlag(.false.) ; ... to save a reset U-flag.
Gradual Underflov during factorization is ignorable .

11

I c.77

-: ..

Lecture 16 - Juae 23, 1988 (aotes revised July 11, 1988) 12

.. • ..
ndf :• 1.0; mdf :• nextafter(rndf, 2.0) - rndf

or else try mdf :• 4.0; rndf :• rndf/3.0;
mdf :• abs((mdf - 6.0/4.0)•3.0 - 1.0/4.0)

undr :• o.o ; undr :• nextafter(unclr, 1.0) ;
or else try undr :• underflov thres~ld for the Reals.

Im.tialize IP:
For i • 1 to I do IP[i] :• i ;

Outer loop, traversed once per column (j)
For j • 1 to I;

tpmu :•emu:• dma.x :• smax :• o.o;
. . . Initialize column T .
For i • 1 to I;

T[i] :• z :• A[IP[i], j] ; z :• aba(z) ;
cmax :• mu{ c:max, z }
if i >• j then dmax :• max{ dmax, z } ;
next i;

For le• 1 to j-1; ... subtract U[k,j]•(col.k of L).
LU[k,j] :• z :• T[k] ; ... • U[k,j] .
smax :• max{ amax, abs(z)}
for 1 • k+1 to 5 do T[i] :• T[i] - LU[i,k]•z
nert le ;

... Locate pivot t; it maximizes IT[i]I .
imax :• j ;
For i • j to I ;

t :• aba(T[i])
if t > tpmax then { 1max :• i tpmax :• t }
next 1;

If 1ma.x • j than {

}

if tpmax • 0.0 then {
T[jJ :• max{undr, rndf*dmax}
go to DivByPiv}

else { . . . exchange rova j and imax .
for le• 1 to j-1; dmax :• LU[imax,k]

LU[imax,le] :• LU[j ,k] ; LU[j ,kl :• dmax
nan le;
le:• IP[imax] ; IP[imax] :• IP[jJ ; IP[jJ :•le;

}

If max{ am.ax, tpmax }/(8•j) > cmax then {

}

Display {"Warning: Extraordinary groll'th of intermediate results
in LUP A may lose too much accuracy. To avoid this loss,
recompute after exchanging columns 1 and "• j};

t :• 0.0/0.0; ... signals Invalid Operation.

DivByPiv: t :• T[imax]; T[imax] :• T[j] ;

. ·.: -·~ ·:·.: ~ -. . . . - . . . •
, •• • •·:: •• :: •• ·.i •• •. • •• ··: .. ·- =.•.:,

l
(

)
(

l
(

I
t

1
(

1
f

: .• ~----~- --~-?:-1
·.:-::;.:::• :~ .

' \.

Lecture 16- June 23, 1988 (notes revised July 11, 1988)

LU[j ,jJ :• t ; ... •·pivot U[j ,j] .
for k • j+1 to H ~o LO[k,j] :• T[k]/t; ... • L[lc,j] .

nert j ;
UnSav :• UndrflovFlag(UnSav); ... Restore Underflov flag.
return;
end LUPA.

13

The two LUP A codes should give identical results, including roundoff', but at different speeds
depending upon the dimension N and details of the machine's memory management. On
a machine that accumulates products in a fast-access register, the first code should be the
faster while N is so small that all data. fits in a few pages and cache-blocks; otherwise the
second code should be the faster, the more so as N increases. (Cf. HUPA below.)

LUXPB:
Thia program solves LUX= PB for X given matrices

L = an unit lower triangular N x N matrix and
U = an upper triangular N x N matrix stored in LU thus:

if i > j then LU(i,11 = L[i,j] else LU(i,j] = U[i,j].
B = an N x M matrix, and
P = an N x N permutation matrix represented by indices Jp(i]

thus: (P:r:)(i] = :r:[Jp[i]].
X = an N x M matrix that will be calculated by solving in tum
LC= PB,C[i,j] + Sum{k < i}(L(i,k]• C[k,j]) = B[Jp{i),J1
U X = C,Sum{k ~ i}(U(i,k) • X[k,j]) = C[i,j).

The solution X may overwrite B but not LU.

Subroutine LUXPB(LU, Id, IP, I, B, I, II) :
Integer·values Id, I, M; Integer variable IP(H+J
Real variables LU[Id, H+], B[Id, M+], I[Id, K+] ;

Integer i, j, k
Real C[H+J ;
Tempreal tsum ; more precise than Reals .
Common /L1BWSP/ C;
Logical UnSav ; ... Gradual Underflov matters only in X .
Unsav :• UndrflovFlag(.false.) ;

For j • 1 to M ; ... solve for column j
for i • 1 to I;

taum :• B[IP[iJ,j]
for k • 1 to i-1 do taum :• tsum - LU[i,t]•C[kJ
C[iJ :• tsum :
next i;

for i • R to 1 step -1
tsum :• C[i] ;
for k • i+1 to I do taum :• tsum - LU[i,k]•C[k]
UnSav :• UndrflovFlag(UnSav); Expose Underflov.
X[i,j] :• C[i] :• taum/LU[i,i] ;

Lecture 16 - June 23, 1988 (notes revised July 11, 1988)

UnSav :• UzidrflovFlag(UDSav)
next i;

Hide Underflov.

next j ;
UnSav :• Undrflovnag(UDSav) Reveal I 'a Underflovs.
return;
end LUXPB.

........ Altemative Column-Oriented Code

Subroutine LtJXPB(LU, Id, IP, R, B, I, M):
Integer values Id, I, M; Integer variable IP[I+]
Real variables LU[Id, l+J, B[Id, H+], I[Id, M+J ;

Integer i, j, t;
Real z;
Tempreal C[N+] : ... more precise than Reals.
Common /L1BWSP/ C; ... shared vorkapace.
Logical UDSav ; . . . Gradual Underflov matters only in
Unaav :• UndrflovFlag(.false.) ;

For j • 1 to M; ... solve for column j
for i • 1 to I do C[i] :• B[IP[i],j]
for k • 1 to I;

z :• C[k] ; C[k] :• z ;

I .

for i • t+1 to I do C[iJ :• C[iJ - LU[i,k]•z;
next t;

fork• I to 1 step -1;
UDSav :• UndrflovFlag(UDSav)
I[k,j] :• z :• C[k]/LU[k,k] ;

Expose Underflov.
•4

UnSav :• UndrflovFlag(UnSav); Bide Underflow.
for i • 1 to k-1 do C[i] :• C[i] - LU[i,tJ•z;

nert k ; •6
next j ;
UDSav :• Und.rflovFlag(UnSav) ... Reveal X 'a Underflon.
return;
end LUXPB.

*Notes: The foregoing two codes should produce identical results including the
effects of roundoff'. However, the second code can be modified slightly to give
marginally more accurate results at no significant extra cost provided multipli
cation of Real by Tempreal costs at most negligibly more than Real by Real.
First merge declarations ... •1 and ... •2 to read

Tempreal z, C[l+J; ... more precise than Reals 1• t 2•

Next simplify statement ... •3 to read

: : . ·:: .: ...

14 I

J
~

'l

I
-,

_-l

l
]

]

~:-i
J
l
.J

l
_J

I
I
:

l
r",'

_J
(

• • •-: I

r
,-
1 Lecture 16- June 23, 1988 (notes revised July 11, 1988)

z :• C[k];

Finally, but only if references to U ndrflowFlag() cost rather more than a handfull
of memory references, replace ... • 4 by

C[k] :• z :• C[k]/LU[k,k]; • . .. 4$

and move the adjacent statements to bracket a new statement inserted after ...
*5 thus:

next k; ... •S

UnSav :• UndrflowFlag(UnSav) £%pose Underflow.
for 1 • 1 to I do X[i,j] :• C[iJ;
UnSav :• UndrflovFlag(UnSav) ; ... Bide Underflow.
next j ; . . . etc .

(Cf. HUXPB below.)

RBAX:

This program calculates a residual R = B - AX given matrices
B = an N x M matrix,
A = an N x N matrix, and
X = an N x M matrix.

R ma.y overwrite B but not A nor X.

Subroutine RBAX(A, Id, I, X, M, B, R.) :
Integer values Id, R, M;
R.aal variables A, X, B, a;

Integer i, j, k
Temprea.l taum; more precise than R.eals.

For j • 1 to M : • . . compute column j .
for i • 1 to R; ... rov i.

tsum :• B[i,j] ;
for k • 1 to R do taum :•·taum - A[i,t:l•X[k,j]
R[i,j] :• tsum
next i

next j ;
return;
end RBAX .

........ Altemative Column-Oriented Code

Subroutine RBAI(A, Id, I, 1, M, B, R):

15

Lecture 16 - June 23, 1988 (aotes revised July 11, 1988)

Integer values Id,•• M ·;
Real variables A, X, B,-R

Integer i, j, k;
Real z:
Tempreal T[R+] ; ... more precise than Reals .
Common /L1BWSP / T ; . . . shared vorkspace.

For j • 1 to M ; ... compute column j .
for i • 1 to I do T[i] :• B[i,j]
for k • 1 to I ; z :• -I[k,j] ;

for i • 1 to I do T[i] :• T[i] + A[i,k]•z
next k;

for 1 • 1 to I do R[1,j] :• T[i] ;
next j ;

return ;
end BBAX.

VNORM:
For any N x M matrix B,

VNORM(B,Id,N,M) = II B II= SQRT(trace(BTB))
= SQRT(Sum{l S j S M, 1 S i S n}(B[i,j])2

where Bis dimensioned B[Id,M+].

Real Function VIORM(B, Id, I, M):
Integer values Id, I, M
Real variable B[Id, M+] ;
Tempreal t;
t :• 0.0;
tor j•1 to M do for i•1 to I do t :• t + B[i,jl••2
return VNORM :• SQRT(t)
end VHDRH.

......... Alternatively,

16

ifTempreal is unavailable then the following code avoids over/underfiow at the cost of some
speed and accuracy. •

Real Function VIORM(B, Id, I, M) :
Integer values Id, I, M
Real variable B[Id, H+] ;
Real a, d, z
Logical UnSav; ... to save t restore Underflov flag.

UnSav :• UndrflovFlag(.falsa.)
d :•a:• 0.0;

1.
I

l

]
f,

rl
{

]

]
'
J

. : r. ·,

\ _.:.::·.:~•:• '·-

• · :_::~.f) \

Lecture 16 - June 23, 1988 (notes revised July 11, 1988)

for j • 1 to M; for i • 1 to I;
z :• abs(B[i,j]) r
if z > d then{" • :• ••Cd/z)••2 + 1.0; d :• s ·} •

elae if z > 0.0 than a:• a+ (z/d)••2
next i ; next j ;

UDSav :• UndrflovFlag(UDSav) ... Ignore Unclerflon.
return VHORM :• d•SQRT(s) ;
end VIORM.

RESYS;

17

This program uses iterative refinement to solve AX = B and returns RESY S =II B-AX II,
where

A = an N x N matrix dimensioned A[I d, N +],
B = an N x M matrix dimensioned B(Id,M+], and
X = an N x M matrix dimensioned X[I d, M +).

Real Function RESYS(.l, Id, I, B, M, I):
Integer values Id, R, M;
!teal A[Id, R+], B[Id, K+], I[Id, M+]

Integer i, j, k, L, IP[I+]
Real Rold, Jlnev, WS[Id•(l+K+1)+ J
Common /L2BVSP/ WS shared vork-space.
Equivalence (IP,WS) ; ... pacts IP iuide VS.

Call LUP1(1, VS[Id+1], Id, IP, I) : ... LU• Pl.
Call LtJXPB(VS[Id+1], Id, IP, I, B, I, M) ; ... LUX• PB
Rold:• 0.0; L :• 1+Id•(l+1) ; Go to Residual;

Loop: Rold : • Rnev ;
Call LUXPB(VS[Id+1], Id, IP, I, WS[L], WS[L], M)

LUZ• PR, and Z overvritea R in VS.
For j • 1 to M; ... do X :• X + Z.

k :• (H+j)•Id;
for i • 1 to R do X[i,j] :• 1[1,j] + WS[k+i]
next j ;

Residual: Call RBAX(A, ID, I, X, M, B, WS[L]) ;
ll • B - il in VS.

Rnev :• VH0RM(WS[L]. Id, •• M) : ... • II a 11 .
if (Rold • 0.0 .or. Rold > Rnav) than go to Loop

return RESYS :• Rnev;
end BESYS.

Note: To make this code run faster on a paged machine when N is huge, repla.ce
LUP A and LUXPB respectively with HUPA and HUPXB respectively.

• ♦ ;_-··: • • :·- : :. : •

• • ~.-~~ :: ·: • '!.·_ :

Lecture 16 - Juae 23, 1988 (aotes revised July 11, 1988) 18

BUPA .
Given an N x N matrix A, this program does the same as LU PA exc4:Pt faster when N is
very large. It calculates factors

where

LU= PA,

L = UDit lower triangular matrix,
U = upper triangular matrix, and
P = permutation matrix represented by indices Ip(...]

thus: (Pz)(i) = z[Jp[i]).

If i > j then
A[Jp{i],j) = L[i,j) • U[j,j) + Sum{k < j}(L(i,k) • U[k,j])

else
A[Ip(i),j) = 1 • U(i,j) + Sum{k < i}(L[i, k) • U[k,JD.

But, to diminish the performance degradation caused by page faults and other artifacts of
memory management, HU PA packs L thus:

L[i, j) = HU[N + 1 - i + j, N + 1 - i] for i > j.

Subroutine BUPA(A, HU, Id, IP, 11):
Integer values Id, I; Integer variable IP[I+] :
Real variables A[Id,I+], HU[Id,I+] ; ... they llUSt IOT overlap.

Integer i, j, k, imax, L;
Logical UnSav; ... to save I restore Underflow flag.
Real cmax, dmax, rndf, undr, U[N+] ;
Tempreal tsum, tpma.x, tsmax, T[N+J ; ... more precise than Real
Equivalence (U,T) Save storage by packing U inside T
Common /L1BWSP / T ; . . . Shares vorkspaca vi th other programs.

... Glossary:
A[Id,N+] is a square matrix dimensioned ![Id, at least I]
HU[Id,N+] vill hold HU(i,j] • L[H+1-j, 1-j] for i > j ,

• U[i,j] otheniae.
(The program expects BU and A BOT to overlap.)

IP(Jl+J vill hold permuted indices 1, 2, 3, ... , I thus:
(Px) [i] • x [IP [i]] .

j is a column index that vill run 1, 2, 3, ... ,I.
U[N+] vill hold temporarily column j of U.
T[l+J vill hold temporarily (column j of L)•U[j,j] .
emu holds the max. mapi tude in column j of A •
dmax holds the max. aubdiagonal magnitude in column j of PA

l
···.··1
,•

;_ ~,
1
I

I

)

)

l
J
(

J
(

J
' J
(

~J
'

I
. r.
?r
. ,.-

,~-

t

'~{::c::.· :' .. ,

'; {;i{i~ ~~~
' _.·

Lectu.re 16 - June 23, 1988 (notes .revised July 11, 1988)

.. '
mdf • 1.000 ... 0001 -·1 , measures roundoff among Reals.
unclr • tiniest positi~e number, at or beyond.underflov.
i is a rov index that vill run 1, 2, 3, ... ,I.
ta\Ull • A[IP[i] ,j] - Sum{k}(L[i,kJ•U[k,j]) .
tamax • max. ltauml in column j ; i'! tamax/C8j) > emu ,

U has grom so big that roundoff may be excessive, so
columns 1 and j of A should be avappad. (Very rare.)

tpmax • max. subdiago:nal ltsuml in column j tor pivoting.
imax • rov index vhera tpma.x occurs.

UnSav :• Unc:lrflovFlag(.false.) ; ... to save t reset U-flag.
Gradual Underflov during factorization is ignorable.

rnd:f :• 1.0; mdf :• nextaftar(rndf, 2.0) - rndf ;
or else try rndf :• 4.0 : mdf :• mdf/3.0 ;

rndf :• abs((rndf - 6.0/4.0)•3.0 - 1.0/4.0)
undr :• 0.0; U11dr :• nextaftar(unclr, 1.0) ;

or else try undr :• underflov threshold for the Rea.ls.

Initialize IP:
For i • 1 to R do IP[i] :• i

Outer loop, traversed once per column (j)
For j • 1 to H;

cm.ax:• o.o; tsma.x :• 0.0
. . . Compute c:olUIIID j of U :
For i • 1 to j-1;

tsum :• J.[IP[i], j] ; c:max :• max{ cmax, abs(tsum) }
L :• 11+1-i;
For k •1 to i-1 do taum :• taum - BU[L+k,L]•U[kJ
HU[i,jJ :• U[i] :• tsum;
tam.ax:• max{ tsmax, aba(tsum)};
next i;

Compute potential pivots
dmax :• o.o; tpmax :• o.o; imax :• j ;
For i • j to H;

tsum :• A[IP[i], j] ; dma.x :• max{ dmax, abs(tsum)};
L :• H+1-i;
tor k • 1 to j-1 do taum :• taum. - BU[L+k,L]•U[k] ;
T[i] :• taum; taum. :• aba(taum)
it taum > tpmax then { 1max : • i ; tpmax : • taum }
next i;

c:max : • mu{ cmax, dmax } ; tamax : • max{ tsmax, tpmax } ;
It imax • j then {

if tpma.x • 0.0 then {
T[j] :• max{undr, rndf•dmax}
go to DivByPiv}

19

Lecture 16 - Jutie 23, 1988 (notes revised July 11, 1988)

}

else { exchange rovs j and ima.x.
L :• X+1-1max·; i :• 1+1-j ;
for k • 1 to j-1 ; dmax :• BtJ[L+k.Ll

BU[L+k,L] :• BU[i+k.i] ; BU[i+k,i] :• dmax;
next k;

k :• IP[imax] ; IP[imax] :• IP[j] ; IP[j] :• k ;
}
If tamax/(S•j) > cm.ax then {

20

Display { 11Wandng: Extraordinary grovth of intermediate results
in lltJPA may lose too much accuracy. To avoid this loss,
recompute after exchanging colwzma 1 and "• j};

tsum :• 0.O/O.O; ... signal• Invalid Operation.
}

DivByPiv: tsum :• T[imaxl ; T[ima.x] :• T[j] ;
BU[j ,j] :• U[j] :• taum ; ... • pivot U[j ,j] .
for k • 1 to 1-j do BU[j+k,k] :• TCl+1-k]/tsum;
nert j ; ... • L[l+1-k.j] .

UnSav :• UndrflovFlag(UnSav); ... Restore Undarflov flag.
return;
end BUPA.

HUXPB:
This program solves LUX = PB for X given ma.trices

L = a.n unit lower triangular N x N matrix and
U = an upper triangular N x N matrix stored in HU thus:

if i > j then HU(i,j] = L(N + 1 - j, i - j)
else HU(i,j] = U[i,j].

B = an N x M matrix, and
P = an N x N permutation matrix represented by indices Ip{i]

thus: {Pz)(i] = z(Ip[i]].
X = an N x M matrix that will be calculated by solving in tum

LC= PB, C(i,j) + Sum{k < i}{L[i,k]• C[k,j]) = B(Ip{i],j]
U X = C, Sum{k ~ i}(U[i,k) • X[k,j]) = C(i,11-

The solution X may overwrite B but not HU.

Subroutine BUXPB(BU, Id, IP, H, B, X, .K):
Integer values Id,•• K; Integer variable IP[I+]
Real variables BU[Id, I+], B[Id, M+]. I[Id, M+] ;

Integer 1, j, k, L;
Real z, C[N+] ;
Tempreal tsum, T[K+] ; ... more precise than Reals •1
Equivalence (C,T) ; ... Save storage by packing C iuide T.
Common /L1BWSP / T ; . . . shared vorkapace.
Logical UnSav ; ... Gradual Underflov matters only in X .

;,1

~ . I

l
I
I

r I

I
)

~1
I

I
1
r

I
(

1
l

)
l

)
~'1

\
- ... • -- -

. ..

Lecture 16 ... June 23, 1988 (notes revised July 11, 1988)

Unaav :• UndrflovFlag(.false.) :

. For j • 1 to II ; ... solve for col\1111Jl j
for 1 • 1 to I;

tsum :• B[IP[i],j] : L :• 1+1-1.i
for k • 1 to i-1 do tsum :• taum - BO[L+k,L]•C[k] ;
C[i] :• tsum ; •2
next i;

for k • I to 1 step -1 do T[k] :• C[kJ ; •3
for k •Ito 1 step -1

UnSav :• Undrflovnag(UnSav); Expose Underflov.
I[k,j] :• z :• T[kJ/BU[k,tJ ; • •4
UDSav :• Undrflovnag(UDSav) ; Bide Underflov.
for i • 1 to k-1 do T[iJ :• T[iJ - BU[i,kJ•z ;
next lt ; •6

next j :
lJDSav :• Und:flovnag(UnSav); ... Reveal 1 '• Underflow.
return;
end IIOXPB .

*Notes: The foregoing code can be modified slightly to give marginally more
accurate results at no significant extra cost provided multiplica.tion of Real by
Tempreal is only slightly slower than Real by Real. First merge declaration ...
•1 with its two neighbors thus:

Tem.preal z, taum, T[I+]; ... more precise than Reals 1•

Next replace two references to C(...] by T(...] in statement ... *2 and its predeces
sor; and delete statement ... *3. Finally, but only if references to UndrfiowFlag()
cost rather more than a. ha.ndfull of memory references, replace ... • 4 by

T[k] :• z :• T[k]/HU[k,k] ; ... 4lll

and move the adjacent statements to bracket a. new statement inserted after ...
•5 thus:

k;

UnSav :• UndrflovFlag(UnSav) ; ~ .. Expose Underflov.
for i • 1 to I do l[i,j] :• T[i];
UnSav :• Undrflovnag(UnSav) ; ... Bide Underflov.
next j ; ... etc.

. • •.• .. · -··· .
. ·.··. ~-.:: =·~

Zi"
21

• Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 22

Comparison of HU ... with LU... : .
Programs, like RESYS , that use LUPA and LUXPB can instead use HUPA and HUXPB
respectively to get the same results but at cWrerent speeds. At first sight, two pairs or
programs appear to be under consideration; actually there are three pairs:

LU ... accumulating scalar products extra. precisely (method la).
LU ... altemative versions using column-oriented code (lb).
HU ... with L[i,j) = HU(N + 1- i + j,N + 1- i).

The HU ... codes should be never much slower than the first LU ... codes, and always
significantly faster than the second LU ... codes, even on vectorized and pipelined parallel
machines, unless compiled with an allegedly optimizing compiler that fails to recognize and
optimize subscript references orthe form HU[L + k,L] when Lis fixed and k varies in an
inner loop. Here we assume that arrays are stored by columns as prescribed for Fortmn.

The extra-precise accumulation of scalar products is a practice in decline on the largest and
fastest computers. Pa.rt of the decline is attributable to the omission, from the instruction
sets of newer machines, or an instruction that evaluates a product to wider precision than
the factors; that omission may be motivated by the belief that page faults and similar
a.rtifacts of memory management will drive numerical analysts to use column-oriented codes
exclusively rather than sacrifice speed to achieve a little more accuracy. The HU ... codes
sacrifice neither speed nor accuracy, so perhaps the issues should be reconsidered.

Transpositions and Permutations:
There are two ways to keep track of the pivotal exchanges of rows during Gaussian Elimi
nation. One way uses an array ip{.) of n indices ip{l], ip{2], ... , ip{n) to represent the n by n
permutation matrix P directly thus:

row ip(i) of A is row i of PA.

Hence, {ip{l),ip(2], ... ,ip(n]} ls a permutation of the indices {1,2, ... ,n}. The second way
represents P as a product of n - 1 transpositions thus:

P = (n - 1,k[n - l])(n - 2,k[n - 2])(...)(3,k[3])(2,k[2]}(1,k[l])

where ea.ch (i, k(i]) is a transposition (exchange) of the rows in positions i and k[i); moreover
i S k[i]. These indices k[.] are called "imax" in programs LUPA and HUPA , where they
are encountered and applied in order k[l],k[2],k[3), ... ,k[n - 1) to produce the array ip(.)
thus:

for i = 1 to n do ip[i] := i; ... initializa.tion
for i = 1 to n - 1 do awap(ip[i), ip{k[i])); ... build ip(.]

Given this array ip{.], can we reverse the process to recover the array k(.)? Yes. But
first the permutation iq(.] inverse to ip[.] must be calcuJa.ted thus:

for i = 1 ton do iq[ip{i)) := i; ... inversion.

Now row iq[i) of PA is row i of A. Next we gradually transform ip[.] and iq[.] back to
identity permutations while keeping them inverse to each other ask(.] is recovered thus:

1

I
I
I
I
J

l
)

1

.r
r

.···· .• •••.

Lecture 16- June 23, 1988 (notes revised July 11, 1988)

for i = 1 to n - 1 do begin
k[i] := ip(i]; ... reversion
swap(;p(i], ip(iq[i])); ... so now ip{i) = i
swap(i,z[i], i,z[k[,]); ... so now iq(i] = i
end;

One application of the reversion is to reveal the sign of

det(A) = det(PA)/det(P) = det(U)/det(P), where
det(P) = (-l)(number of instances when i[,1>il.

23

Another application is to the encoding of P within L to dispense with the bother of providing
for the array IP[.] when the factors L and U are saved for subsequent re-use. The encode
function E(:) maps the reals: with I: IS 1 to IE(:) 12: 2:

if:= 0 then E(:):= Copysign(2,:) else E(:) := Scalb(z,K)

where K is an integer barely large enough that Scalb(l.0,K) overflows to infinity. K = 128
for Single, or 1024 for Double precision in the proposed IEEE standard 754. The decode
function D(:r:) inverse to E(:r:) is

if :r: is infinite then D(:):= Copysign(l,:)
else if I :r: = 21 then D(:) := Copysign(0,:r:)
else D(z):= Scalb(z,-K); ... and ignore Underllow.

Then to encode IP[.] within L we revert IP[.] to k[.] and then replace L[k(j],j] by E(L(k[j],j)
whenever k(j) > ;. To recover k[.) later, we scan {L(i,j),j < i S n} to find where
I L[k[j],j) I> 1, thereby determining k[j] > j; otherwise k(j] = j.
The success of the reversion process above is tantamount to a

Theorem: Every permutation of n positions ca.n be expressed uniquely as a product of
n-1 transpositions (n- l,k[n-l])(n-2,k[n-2])(...)(2,k[2])(1,k[l]) in which each
k[i] ~ i.

The theorem's validity can be confirmed by running the following program:

Program Proof(uptoN):
procedure Hest(m):
if m>O then for j • m ton do begin

k[mJ :• j litest(m-1)
end

else begin
for i • 1 ton do ip[i] :• i;
for i • 1 to n-1 do svap(ip[i], ip[k[i]]) ;
for i • 1 ton do iq[ip[iJJ :• i;
for i • 1 to n-1 do begin

if ip[i]•k[iJ then begin
avap(ip[il, ip[iq[iJ]);
avap(iq[iJ, iq[k[i]])
end

Zf1

....
:-·:_::._-- ..

Lecture 16 • JWJe 23, ·1988 (notes revised July 11, 1988)

else begin

end:

write{ "Test fails at n •"; n
II rith i a fl; i
" and k[.] • 11

; k[.]
II ip[.] a '*; ip[.]
II iq[.] a U; iq };

atop
end

write{" n • 11
; n: 11 tested succ:esafully."}

end end Beat;
for n • 1 to uptol do lest(n) ; vrite{ "End of teat.}
end Proof.

Inverting the Hilbert matrix:

24

Floating-point matrix inversion programs are customarily tested on an n x n Hilbert matrix
H whose elements are H,,; = 1/(i+ j+ p-1) for 1 S i,j Sn and a.ny integer p ~ 0. Because
H becomes so ill-conditioned as n or p becomes big, its inverse W = H-1 becomes difficult
to compute accurately in the face of roundoff'. None the less, a way exists to compute W
exactly and easily; it uses a little-known formula W = V H V where Vis a diagonal matrix
of integers V; = (-l)i((n + j + p-1)!)/((n- j)!(j- l)!(j + p-1)!) obtained from a simple
recurrence in which only integers appear:

Vi:= -n; fork= 1 top do Vi:= (V1/k)(n + k);
for j = 1 ton -1 do V;+1 := (((V;/(j + p))(j- n))/j)(n+ j- p).

Then W,,; := ¼V;/(i + j + p- 1). (S. Schechter, MTAC, 1959)

Since the elements of H are reciprocals of integers, they cannot be represented exactly in
floating-point but must be rounded off'. These initial rounding errors may do more damage
to a-1 than the inversion program under test. To avoid them, we actually use

A:= mH, where m := LCM(p+ l,p+ 2,p+ 3, ... ,p+ 2n - 1),

which has integer elements all representable exactly in floating-point provided n and pare
not too big. Then the inversion program is tested by using it to solve AX= ml numerically
for X. Here I is the n x n identity matrix. Since ideally X should match W, the error
introduced by the program under test is indicated by displaying a rough measure of the
relative error in X:

r= ~~I X,J-W..; I/ I W..; I-

This statistic makes no allowance for the ill-condition of H nor for the precision of the
arithmetic in which X was calculated. The ill-condition of H ca.n be gauged from

c = m.,xE I H,jW,J f. . . ,
which exceeds 1 to an extent that indicates how severe is cancellation when HW = I is
evaluated. The precision is indicated by

I
I
I
I
I

]

l
]

l

r
Lecture 16 - Ju11e 23, 1988 (11otes revised July 11, 1988) 25

u = 1.000 ... 001 - 1.000 ... 000 = 0.000 ... 001
= One unit in the last place-carried in numbers near 1.

Then one figure of merit for the program under test is

q = r/(uc); •

the smaller is q, the better the program. Normally r < 1 and q < n; but when r > 1 the
matrices A and H are so nearly singular that the program cannot be relied upon to get
even one significant digit correct in X, and then the value of q becomes irrelevant. Another
figure of merit is the largest value of n for which r < l; the larger is this n, the better.

The error r, and therefore q, depend upon rounding errors that occur during the calculation
of X, but rounding errors are not entirely dependable; they behave sometimes almost as if
they were random. Therefore prudence demands that roundoff be sampled more than once
before conclusions be drawn about a program's vulnerability to roundoff. For instance,
most matrix inversion programs, and certainly those using LU PA and HU PA above, will
generate different rounding errors if the column ordering of the matrix being inverted is
changed. To be more specific, let S be then x n permutation matrix that reverses order;
that is,

(
0 0 1) S = 0 1 0
1 0 0

when n = 3.

Then the inverse of SH Sis SWS, but the computed solution Z of (SAS)Z = ml usually
diff'en from SX S because of difl'erences in the way roundoff occurs. Calculating r and q

from Z instead of X gives a second opinion about the effect of roundoff upon the program
under test.

To calculate m = LCM(p + 1, p+ 2,p+ 3, ... ,p+ 2n - 1), do thus:

GCD(z,y): while y ¢ 0 do {z := y; y := z rem z; z := z};
return GCD := I z I end GCD.

LCM(z, y): if z = 0 then retum LCM := 0
else return LCM:= (I y I /GCD(z,y))• Ix I end LCM.

m := p + l; for k = p + 2 to p + 2 • n - 1 do m := LCM (m, k);
yields-m.

For example, when p = 1, we find ...
n = 8 n = 9 n = 10 or 11 n = 12
m = 360360 m = 12252240 m = 232792560 m= 5354228880

Z9o

