-

'

' Computer System Support for Scientific and Engineering
Computation
Lecture 16 - June 23, 1988 (notes revised July 11, 1988)

Copyright ©1988 by W. Kahan and David Goldberg.
All rights reserved.

1 Symbolic Math Systems

On the occasion of the announcement of Stephen Wolfram’s Mathematica system, we give
a brief overview of the field. Symbolic mathematics systems allow you to manipulate math-
ematical expressions symbolically rather than numerically. Thus evaluating [3° e~*’dz nu-
merically would give you an approximation such as .886, whereas a symbolic system would
compute the integral as “lg”. Here are some of the common symbolic systems.

MACYSMA The first big symbolic system done at MIT, and written in lisp. A very large
program, that has been worked on by many different people, and shows it.

REDUCE Originally written by Tony Hearn, and written in FORTRAN, so once con-
sidered more portable than MACSYMA. Also a very large system that has been
continually extended.

Maple Done at Waterloo, and writen in C, although it has a lisp-like interface. Has a
. better overall design than MACSYMA or REDUCE.

MuMath Runs on IBM PC, and has mostly slow algorithms. However, it comes with a
lisp-like language that can be used to reprogram its algorithms, and it is decomposable
into small modules,

Mathcad This is not a true symbolic math system. It accepts symbolic expressions, but
is really just a front end to a numerical analysis system.

One convenient feature of MACSYMA and Reduce is that they can directly generate FOR-
TRAN code.

2 Floating Point Precisions

It is extremely rare for real-life problems.to require more than double precison. The few
cases that appear to require quadruple precision can usually be done in double precision
using a better algorithm. For example, we saw that compensated summation is a way to
obtain almost the effect of quadruple precision when summing a large number of double

a6t

67

Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 2

precision quantities. Another example is least squares. The naive algorithm might appear
to require quadruple precision, but there is a trick (to be explained later) that enables
the calculation to be done in ‘double precision. An explanation for why double precision
is almost always enough, is that final answers are rarely needed to more than 1 part in
a million, which can be expressed in single precision. The rule of thumb we have noted
earlier says that to get a final answer accurate to single precision, it is enough to carry the
intermediate results in double precision.

2.1 Effect of Precision on Software

Besides the obvious fact that higher precision will almost always result in higher accuracy,
precision enters into numerical calculations in more subtle ways. In algorithms that use
iteration, the two factors that enter into stopping criteria are noise (rounding errors) and
precision. Thus it is important for such a program to know exactly what precision is
being used, and very helpful if double and single precision are genuinely different. For
example, a program that uses double precision in an iteration to produce a single precision
result might halt when a difference of two double precision numbers is 0 when computed to
single precision accuracy. If single and double precision are identical (either in hardware or
because a compiler converted all floating point operations to double), such programs won't
work properly.

Another example where precision enters calculations is in finding the roots of a quadratic.
We saw that it is important that the difference B2 — AC be computed in twice the precision
of the desired result. Programmers will typically assume that double precision has at least
twice the precision of single precision, and that computing B2 — AC in double yields a final
result for the zeros accurate to single precision. But machines have been built where double
precision has less than twice the precision of single precision (this is explicitly forbidden in
the IEEE standard).

2.2 What IEEE says about precision

One of the goals of the IEEE floating point standard was to make debugging easier by
having different machines produce exactly the same bits. Imagine two machines. The first
is one like the Motorola 68881 or Intel 8087, that always produces results to double extended
precision. The second is a machine like the ELXSI 6400, that produces results to the same
precision as the operands. A double precision operation on the ELXSI can be simulated
exactly on the 68881 if the 68881 rounds to double. The IEEE standard requires that such
a rounding mode be provided. It is not sufficient to first compute the result in extended
(that is compute as if to an infinite number of places and then round to extended) and
then round that to double precision, because this double rounding may not produce exactly
the same bits as rounding immediately to double precision in the first place.! Of course, it
might be necessary to use assembly language to change the rounding mode.

So, the IEEE standard requires that when performing an operation on arguments of a
given precision, it must be possible to produce the result in that same precision, possibly by
changing a rounding mode. Conversely, the IEEE standard prohibits rounding the result
to a precision smaller than the precision of the operands. The reason is again to facilitate
comparisons between machines. If “narrow” rounding were allowed, then when two extended

1As we saw in an earlier lecture, double rounding will not change the answer when rounding first to
doable and then to single precision.

———

Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 3

operands were combined to form a double precision result, there would be confusion as to
whether the operation was first computed to extended and then rounded, or whether the
operation was rounded just once to double. By prohibiting “narrow” rounding, you know
that the result must have been double rounded. Thus when comparing the results of two
machines that conform to the IEEE standard, you know that they maust both double round
and the two results should be bit for bit compatible.

There are two objections to this argument. The first is that IEEE 854 does not specify
the number of bits for single, double and extended. And even IEEE 754 only specifies the
bits for single and double, but not for extended precision. So if two different machines use
different sizes for single precision, then you can’t do bit for bit comparison, so what would
be the point of controlling rounding? Of course, many machines (in fact most implementing
the IEEE standard) use IEEE 754 for single and double, and use 80 bits for double extended.
The second objection has to do with transcendental functions. The IEEE standard doesn’t
say anything about them. Since most real calculations involve computing transcendentals,
bit for bit comparison is meaningless for them.

Why doesn’t the IEEE standard define transcendental operations the way it defines ad-
dition, multiplication and square roots? The reason is the table-maker’s dilemma. Suppose
you are making a table of natural logs to 4 places. Then In(.942) = —0.05975. Should this
be rounded to .0597 or .0598? If we compute In(.942) more carefully, we get -0.059750. And
then -0.0597500. And then -0.05975000. Since ln is transcendental, this could go on arbi-
trarily long. Thus it is not practical to specify transcendental functions to be computed as
if to infinite precision and then rounded. We could try to specify transcendental functions
algorithmically. But there does not appear to be a single algorithm that works well across
all hardware architectures. For some hardware CORDIC is the best choice. For others,
rational approximations are best. For still others, large tables are most appropriate. At
present no single algorithm works acceptably over the wide range of current hardware; that
may change.

2.3 Precision of l'.ntermediaﬁe Results

One of the gray areas in most language specifications concerns the precision to be used in
evaluating anonymous intermediate expressions. Consider the FORTRAN expression D =
D + U[i)*V([i], where D is double precision, and the other variables are single. Early FOR-
TRAN compilers would multiply the two single precision variables U[i] and V[i] to get a
double precision result, and add that to D with a double precision add. This was very useful
for computing inner products, since when the array is long, the long summation can cause
quite a bit of roundoff error if computed in single precision. Modern FORTRAN compilers
are much more likely to do the minimum amount of work required by the FORTRAN stan-
dard, and compute U[i]*V[i] to single precision, since that is the type of both arguments.
They do provide however, a DPROD function so that D + DPROD(U[1]),V[i]) has the desired

effect.? This brings up the question of how to evaluate expressions. There are three basic
strategies:

Strict Evaluation This is the method that gives a strict interpretation to the FORTRAN
standard. Each expression is computed to the maximum precision of its two operands.
This works well on "orthogonal“ machines like the VAX, IBM 370,23 ELXSI 6400 and
?Besides the DPROD cluttering up the code, it also requires double precision, which is quite expensive
on Cray class machines.
SExcept for the special case of DPROD, which the 370 can do in hardware.

r4 3

[£%)

Lecture 16 - Juae 23, 1988 (notes revised July 11, 1988) 4

NS 32081, which for every combination of an arithmetic operation and a precision,
has a corresponding instruction. It does not evaluate an expressions likeS = D + UsV
in the way most likely intended by the programmer.

Widest Available This is the method required by the original C language. Each expres-
sion is computed in the machine’s widest precision. This works well on the Motorola
68881, Intel 8087, and WE 32106, which always compute results to extended preci-
sion. However, on machines for which computing in the highest precision is signifi-
cantly more expensive than single precision, it is not only inefficient but often does
not result in significantly better accuracy.

Scan for Widest This scans an expression for the widest operand, and computes the
entire expression in that precision. There is a subtlety with expressions involving a
non-generic operator such as SINGLE. In the expression S + SINGLE(D - E) where
D and E are double and S is single precision, the addition should be done in single
precision, even though the expression does contain a double.

Compilers should implement either “Widest Available” or “Scan for Widest”. It is impor-

tant that compilers document which approach they use, and useful if they offer a compiler
option that selects between the two approaches.4

2.4 Hardware Precision Paradigms

There are two major categories of computers widely used for floating point. The DEC VAX,
IBM 360/370 and HP Precision architecture families offer single and double precision, with
a single precision of about 24 bits, and double precision of about 53 significant bits.> The
Cray and CDC machines on the other hand, had initially only one precision in hardware
(single), which is roughly equivalent to double precision in the first category. For the most
part, they must do double precision in software, which is dramatically slower than single
precison. That is, the ratio of double precision execution time to single precision execution
time is small in the first category, and large in the second. Since FORTRAN requires that
the size of a float be the same size as an integer, it is hard for FORTRAN programs to make
use of a 32 bit floating point format on the second category of machines, even when there
is some hardware support for half precision.

Highly portable software must run well on both classes of machines. The usual solution
is to write portable routines in two versions, a single precision version and a double precision
one. On Cray class machines, the single precision routine is the one that will almost always
be wanted, since single precision is already 48 significant bits, and double precision is
dramatically slower. On the first category of machines, it will be quite common to run the
double precision version. This classification of machines also effects the decision on how to
evaulateD = D + U[i]*V[i]. When double precision is expensive, accumulating in double
precision is probably a bad choice, whereas on the first class of machines, accumulating in
double precision is usually prefered. This is an argument in favor of letting the compiler
decide in which precision to evaluateD = D + U[i]*V[i] rather than forcing it with DPROD.

A final observation about precision. Some numerical problems are more demanding of
floating-point hardware than others. The least demanding tend to be matrix problems and

‘A reference for this material is Farnam’s paper Compiler Support for Floating-Point Compulation.

30n IBM machines, the exponent range is the same for all precisions, so the smallest number that can
be represented is about 272%%, This means that in quad precision, ¢* will anderflow, whete ¢ is the roundoff
error. The same is true of the DEC VAX D-format double-precision, but G-format is O.K.

\

-~

Ahen v

0

Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 5

partial differential equations solved by difference or finite element methods. These work
well even on machines with poor floating point accuracy like the Cray, where the roundoff
error for multiplication is 8 times the roundoff error for addition and subtraction. Thus
users who primarily solve such problems will usually be more interested in floating point
speed than in fine points about precision.

3 Matrix Double Precision Accumulation

We have discussed how accumulating sums in double precision improves the accuracy of
inner products, and how compilers can help with this situation by generating double pre-
cision multiplies for D = D + U[i]#V[i]l. When the inner product computation is done as
part of a matrix multiplication, the issue of page (and cache) misses can be important. The
straightforward method of multiplying two matrices is

/% Algorithm 1 »/
double T;

for i =1 to N {
for j = 1 to N {
T=0.0;
for k=1 to N
T=T+ A[isk]‘B{kaj];
c[itjl = T;

}

Accumulating the sums of products in double precision does not result in any extra memory
traffic, because the array arguments A[i,x] and B[k,j] are fetched as single precision
quantities, and the result of the multiplication and double precison add is stored into T,
which presumably is allocated to a register. In a picture, matrix multiplication looks like
this:

To get the (i,j)th element of the product, you take the inner product of the ith row with
the jth column. In FORTRAN, arrays are stored in column order. That means that the
elements of the jth column will all be located in the same area of memory, but the ith row
will be scattered. If the array is large, this will result in cache misses or even page misses
because of the non-local memory references. Another way to organize the calculation of two
matrices is to rewrite the equation ¢;; = 3°,; aixdyj a8 &5 =), Tibr;j where the matrix A is
decomposed into columns A = (&y,...,3n), and similarly for C. The sum isn’t computed
all at once, but rather gradually as indicated in the following picture.

270

(AR

Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 6
o
x -
X (=] =
X =
=]

Each row of the picture represents a vector @xbi; being added to the indicated column
of C. Thus the multiplication algorithm looks something like this

/* Algorithm 2 »/
for j =1 to N {
fori= 1 to N
T(i] = 0.0;
fork=1to N {
BKJ = B[k,j];
for i =1 to N
TCi] = T[] + A[(i,X)*BKJ;
y
forms 1 to N
Clm,j] = Tm];
}

‘To compare the page faults generated by the two methods, imagine a page size of 4096 bytes

and a 1024 by 1024 matrix of 4 byte single precision numbers. Thus each page will hold
1 column, and each matrix fits into 1024 pages. Also imagine that the working set is less
than 1024 pages (that is, less than 4 megabytes). In the inner loop of algorithm 1, all the
B[k, j] will fit into one page, but the A[i,k] will touch each column of A, causing about
1024 page faults. To compute the entire product will cause about 1024(1024)2 page faults.
In algorithm 2, the inner loop references a single column of A, touching one page. The loop
on k sweeps through A touching 1024 pages, and the loop on = touches a single column of
C. Thus each trip through the j loop touches about 1024 pages, for a total of 10242 page
faults. Roughly speaking, algorithm 1 generates N3 page faults, and algorithm 2 generates
N2 faults.

Although algorithm 2 dramatically reduces page faults, it changes the cost of doing dou-
ble precision accumulation. In algorithm 1, double precision sums were accumulated in the
variable T which could be assigned to a register. In algorithm 2, the double precision sums
are accumulated in an array T[i]. Reading and writing this double precision array requires
twice the memory bandwidth of single precision accumulation. The reader might waat to
ponder whether there is an algorithm that combines the low page fault cost of algorithm 2

-

. ele,

170

4kl
Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 7

- with the low double precision accimulation cost of algorithm 1.8 For Gaussian elimination,
‘ there is such an algorithm, and it is explained in Appendix A (Gaussian Elimination with
Eztra-Precise Accumulation of Products).

-

S SIf the matrix B can be cheaply transposed from column order to row order, then algorithm 1 no longer
T has a high page fault cost.

713

Lecture 16 - June 23, 1988 (notes revised July 11, 1988)

~ Appendix A

'l_L.‘.\l.;___ 2
- is it worth the cost 7 —-

W. Kahan
Lecture 16 - June 23, 1988 (notes revised July 11, 1988)

Issues:

1. How to do it?

(a) Extended precision sums in inner loops. (Fast and cheap)
(b) Extended precision temporary vectors. (Slowed by memory)

2. What good is it?
(a) More accuracy in “systematically ill-conditioned” cases, almost as good as if all
data were stored with a few extra bits; but otherwise the improvement is small.

(b) Error and its bound grows less quickly with dimension, so improvement is most
apparent when dimension is huge.

3. What does it cost?
(a) Hardware is more complicated, but not much slowed.

(b) Subexpression semantics harder to compile.

(c) Method 1a may stumble over paging problems; this can be largely circumvented
by trickery and some use of 1b.

4. Examples and comparisons:

(a) On 8087-like architectures (INTEL 86/330, IBM PC FORTH)
(b) Using software floating-point (hp-85, APPLE III)
(c¢) High-performance machines (ELXSI 6400, ...)

5. Programs listed below:

LUPA: Triangular Factorization with extra-precise accumulation of inner prod-
ucts (method la), and alternative column-oriented code using extra-
precise vector to accumulate scalar X vector products (method 1b).

LUXPB: Forward and back sustitution by two methods, like LUPA.

RBAX: Residual by two methods, like LUPA.

VNORM: Root-sum-squares norm with extended-range accumulation of squares
(method la), and alternative code using no extended range but three
times slower.

RESYS: Solve system of linear equations and refine solution iteratively, using
LUPA, LUXPB, RBAX and VNORM.

HUPA: A faster version of LUPA, and

HUXPB: a faster version of LUXPB, to be used together in situations where page
faults seem to preclude extra-precise accumulation of products.

"1

R

Lecture 16 - June 23, 1988 (notes revised July 11, 1988)

LUPA: -

Given a square matrix A, we séek triangular factors to satisfy
LU = PA,

where

L = unit lower triangular matrix,
U = upper triangular matrix, and
P = permutation matrix represented by indices Ip[...]
thus: (Pz)[i] = z[Ip{i]],
inverse(P) = transpose(P),
(inverse(P)y)(i] = y[j] where Ip{j] = i.
If i > j then
AlTpli), 1= Lli, 31+ Ui, 1] + Sum{k < 7}(LE, K+ Ulk, 5])

A{Ipli), 5] = 1 Ui, 5] + Sum{k < i}(L[i, k] U, 5]).

Subroutine LUPA(A, LU, Id, IP, N):
Integer values Id, N ; Integer variable IP[N+] ;
Real variables A[Id,N+], LU(Id,N+] ; ... they may coincide.

else

Integer 1, j, k, imax ;

Logical UnSav ; ... to save & restore Underflow flag.

Real cmax, dmax, rndf, undr, U[N+] ;

Tempreal tsum, tpmax, tsmax, T[N+] ; ... more pracise than Real
Equivalence (U,T) ; ... Save storage by packing U inside T .
Common /L1BWSP/ T ; ... Shares workspace with other programs.

...Glossary:
.o A[Id,N+] is a square matrix dimensioned A[Id, at least N]
. LU[Id,N+] will hold LU[i,j] = L[i,j] for i>j ,
. = U[i,j] otherwise .
(The program allows LU to overwrite A .)
IP[N+] will hold permuted indices 1, 2, 3, ..., N thus:
cen (Px) (1] = x[IP[i]] .
j 4is a column index that will run 1, 2, 3, ..., ¥ .
cee UCN+] will hold temporarily column j of U .

T(N+] will hold temporarily (columm j of L)»U(j,j] .
ces cmax holds the max. magnitude in column j of A .
e dmax holds the max. subdiagonal magnitude in column j of PA
rndf = 1.000...0001 - 1 , measures roundoff among Reals.
ces undr = tiniest positive number , at or beyond undarflow.
i is a row index that will run 1, 2, 3, ..., N .
tsun = A[IP[i],§] - Sum{k}(L(i,x]I*+U(k,j]) .
tsmax = max. [tsum| in colummn j ; if tsmax/(8j) > cmax ,
cee U has grown so big that roundoff may be excessive, so
ces coluzns 1 and j of A should be swapped. (Very rare.)
tpmax = max. subdiagonal |tsum| in column j for pivoting.

774

4

Lecture 16 - June 23, 1988 (notes revised July 11, 1988)

imax = row index where tpmax occurs.

.UnSav := UndrflowFlag(' .false.) ; ... to save & reset U-flag.
ces Gradual Underflovw during factorization is ignorable.

rndf := 1.0 ; rndf := nextafter(rmdf, 2.0) ~ rndf ;

or else try zrndf := 4.0 ; zrndf := rnd2/3.0 ;

rndf := abs((rndf - §.0/4.0)+3.0 - 1.0/4.0) ;
undr := 0.0 ; undr := nextafter(undr, 1.0) ;

or else try undr := underflow threshold for the Reals .

Initialize 1IP :
For i= 1 to Ndo IP[i] := 4

.o

‘e Cuter loop, traversed once per column (j) :
For §j=1 toN;
cmax := 0.0 ; tsmax := 0,
... Compute column j of U
For i =1 to j-1;
tsum := A[IP[i], j] ; cmax := pax{ cmax, abs(tsum) } ;
For k =i to i-1 do tsum := tsum - LU[i,k]*»U(k] ;

U[i] := tsum ; tsmax := max{ tsmax, abs(tsum) } ;
next i ;

3
?

e O

... Compute potential pivots :
dmax := 0.0 ; tpmax := 0.0 ; dimax := j ;
For i = j to N ;
tsum := A[IP[(i], j] ; dmax := max{ dmax, abs(tsum) } ;
for k=1 to j-1 do tsum := tsum - LU[i,x]=U[X] ;
T[i] := tsum ; tsum := abs(tsum) ;
if tsum > tpmax then { imax := i ; tpmax := tsum } ;
next i ;
cmax := max{ cmax, dmax } ; tsmax := max{ tsmax, tpmax } ;
If dimax = § then {
if <tpmax = 0.0 then {
T{j) := max{undr, rndf*dmax} ;
go to DivByPiv }
}
else { ... exchange rows j and imax .
for ks 1 to j-1 ; dmax :
LU(izax,k] := LU(J,X] ; LU(j,k] := dmax
next k ;
k := IP(imax] ; IP(imax] := IP[§] ; 1IP[(j] := X ;

}
If tsmax/(8%j) > cmax then {
Display {"Warning: Extraordinary growth of
intermediate results in LUPA may lose
too much accuracy. To avoid this loss,

10.

-
o

N p—

Lecture 16 - June 23, 1988 (notes revised July 11, 1988)

Tecompute after exchanging columns 1
and u’ j } :)
tsum := 0.0/0.0 ; ... signals Invalid Operationm.

}

DivByPiv: <tsum := T(imax] ; Tlimax] := T(j] ; U[j] := tsum ;
for k= 1to j do LU[x,j] := ULK]; ... pivot.
for k= j+1 to N do LU(k,j] := T[k]/tsum ; ... = L[k,jl.
next J

UnSav := UndrflowFlag(UmSav) ; ... Restore Underflow flag.
return ;
end LUPA .

Subroutine LUPA(A, LU, Id, IP, N):

Integer values Id, N ; Integer variable IP[N+] ;
Real variables A[Id,N+], LU[Id,N+] ; ... they may coincide.

Integer i, j, k, imax ;

Logical UnSav ; ... to save & restore Underflow flag.

Real cmax, dmax, smax, rndf, undr, 2z ;

Tempreal t, tpmax, T[N+] ; ... more precise than Real
Common /LiBWSP/ T ; ... Shares workspace with other programs.

...Glossary:

ERC Y

A[Id,N+] is a square matrix dimensioned A[Id, at least N]
LU[Id,N+] will hold LU[i,j] = L[i,j] for i>j ,
= U[i,j] otherwise .
(The program allows LU to overwrite A .)
IP[N+] will hold permuted indices 1, 2, 3, ..., N thus:
(Px) [i] = x[IP[i]] .
j is a column index that will run 1, 2, 3, ..., N .
T[N+] will hold temporarily column j of U , and then it
will hold temporarily (column j of L)*U(§,j] .
cmax holds the max. magnitude in column j of A .
dmax holds the max. subdiagonal magnitude in column j of PA
rndf = 1.000...0001 - 1 , measures roundoff among Reals.
undr = tiniest positive number , at or beyond underflow.
i is a row index that will run 1, 2, 3, ..., § .
smax = max. |T(i]J| 4in column j ; if smax/(8)) > cmax ,
U has grown so big that roundoff may be excessive, so
columns 1 and j of A should be swapped. (Very rare.)
tpmax = max. subdiagonal |T[ill 4in column j for pivoting.
imax = row index where tpmax occurs.

UnSav := UndrflowFlag(.false.) ; ... to save & reset U-flag.
Gradual Underflow during factorization is ignorablae.

11

4R

. T

Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 12

rndf := 1.0 ; rndf := nextafter(rndf, 2.0) - rndf ;

or else try rndf := 4.0 ; rndf := rnd?/3.0 ;

rndf := abs((zndf - 5.0/4.0)*3.0 - 1.0/4.0) ;
undr := 0.0 ; undr := nextafter{undr, 1.0) ;

cee or else try undr := underflow threshold for the Reals .

Initialize 1IP :
For i=1 to Ndo IP[i] =1 ;
Outer loop, traversed once per columm (j) :
For j=1toN;
tpmax := cmax := dmax := gmax := 0.0 ;
... Initialize column T .
For i=1tHN;
T[i] := z :=» A[IP[i], §] ; =z := abs(2) ;
cmax :e max{ cmax, z } ;
if i>= j then dmax := max{ dmax, z } ;
next i ;

For k=1 to j=1 ; ... subtract U(k,jl=(col.k of L).
LU(k,j] := z := T[X] ; ... = ULKk,j] .
smax := max{ smax, abs(z) } ;
for i = k+1 to N do T[i] := T[i] - LU[i,x]*z ;
next k ;
... Locate pivot ¢ ; it maximizes |T[i]l] .
imax := j§ ;
For i = j to N ;
t := abs(T[i]) ;
if t > tpmax then { imax := i ; tpmax :=t } ;
next i ;
If imax = j then {
if <tpmax = 0.0 then {
T(j] := max{undr, rndf+dmax} ;
go to DivByPiv }
}
olse { ... exchange rows j and imax .
for k=1 to j=1 ; dmax := LU[imax,Xk] ;
LU(imax,k] := LU(j,k] ; LU(j,k] := dmax ;
next k ; ‘
k := IP(imax] ; IP[imax] := IP[j] ; IP(j] :=k ;
}
If max{ smax, tpmax }/(8¢j) > cmax then {
Display {"Warning: Extraordinary growth of intermediate results
in LUPA may lose too much accuracy. To avoid this loss,
recompute after exchanging columns 1 and “, j } ;

t := 0.0/0.0 ; ... signals Invalid Operation.
}

DivByPiv: ¢t := T[imax] ; T[imax] := T[j] ;

Wi

uaﬁ—ﬁ

[N PN

|
i

Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 13

Lulj,j] =t ; ... = pivot U[j,3j] .
for k= j*1 to N do LU(k,j] := T[X)/t ; ... = LCk,j] .
. mext J ; : .
UnSav := UndrflowFlag(UnSav) ; ... Restore Underflow flag.
return ;
end LUPA .

The two LUPA codes should give identical results, including roundoff, but at different speeds
depending upon the dimension N and details of the machine’s memory management. On
a machine that accumulates products in a fast-access register, the first code should be the
faster while N is so small that all data fits in a few pages and cache-blocks; otherwise the
second code should be the faster, the more so as IV increases. (Cf. HUPA below.)

LUXPB:

This program solves LUX = PB for X given matrices
L = an unit lower triangular N x N matrix and
U = an upper triangular N X N matrix stored in LU thus:
if i > j then LUTi, j} = Lli, 7] else LU[4,3] = U[i, j].
B = an N x M matrix, and
P = an N x N permutation matrix represented by indices Ip{i]
thus: (Pz)[i] = z{Ip{i]).
X = an N x M matrix that will be calculated by solving in turn
LC = PB,Cli, j] + Sum{k < s}(L[i, k] * C[k, j]) = B[Ip]i],J]
UX = C,Sum{k 2 i}(Ufi, k] + X[k, 5]) = C[i, 7).
The solution X may overwrite B but not LU.

Subroutine LUXPB(LU, Id, IP, N, B, X, M):
Integer values Id, N, M ; Integer variable IP[N+] ;
Real variables LU[Id, N+], B[Id, M+], X[Id, M+] ;

Integer i, j, k ;

Real C[N+] ;

Tempreal tsum ; ... more precise than Reals .

Common /L1BWSP/ C ;

Logical UnSav ; ... Gradual Underflow matters only in X .
Unsav := UndrflowFlag(.false.) ;

For j= 1 toM; ... solve for column j

for i=1toN ; :
tsum := B[IP[i]l,]] ;
for k=1 to i-1 do tsum := tsum - LU{i,x]=C[k] ;
Cfi] := tsum ;
next i ;

for i = N to 1 step -1 ;
tsunm := C[i] ;
for k= i+1 to N do <tsum := tsum - LU[i,kI=C[Xx] ;
UnSav := UndrflowFlag(UnSav) ; ... Expose Underflow.
X[i,j] := C[i] := tsum/LU(i,i] ;

(4}

Z7q

Lecture 16 - June 23, 1988 (notes revised July 11, 1988)

UnSav := UndrflowFlag(UnSav) ; ... Hide Underflow.
next i ; . :
next j ;) .
UnSav := UndrflowFlag(UnSav) ; ... Reveal X ’s Underflows.
return ;
end LUXPB .

eeeeesee Alternative Column-Oriented Code

Subroutine i.UXPB(iU, 14, IP, K, B, X, M):
Integer values Id, N, M ; Integer variable IP(KN+] ;
Real variables LU[Id, N+], B[Id, M+], X[Id, M+] ;

Integer i, j, k;

Real =z ; ee. ¥l
Tempreal C[N+] ; ... more precise than Reals . ce. %2
Common /LiBWSP/ C ; ... shared workspace.

Logical UnSav ; ... Gradual Underflow matters only in X .
Unsav := UndrflowFlag(.false.) ;

For j=1 toM; ... solve for column j :
for i=1to N do C[i] := B[IP[i],j] ;
for k=1to N ;

z :=C[x] ; c[k] := 2z ; ves #3
for i s k+¢1 to N do C[i] := C[1i] - LU[i,x]=*=z ;
next Xk ;

for k= N to 1 step -1 ;
UnSav := UndrflowFlag(UnSav) ; ... Expose Underflow.
X[k,j] := z := C[x1/LUCk,k] ; cee %4
UnSav := UndrflowFlag(UnSav) ; ... Hide Underflow.
for i =1 to k-1 do C[i] := C[i] - LU[i,k]l*z ;

next k ; .
next j ;
UnSav := UndrflowFlag(UnSav) ; ... Reveal X ’s Underflows.
return ;
end LUXPB .

*Notes: The foregoing two codes should produce identical results including the
effects of roundoff. However, the second code can be modified slightly to give
marginally more accurate results at no significant extra cost provided multipli-

cation of Real by Tempreal costs at most negligibly more than Real by Real.
First merge declarations ... *1 and ... *2 to read

Tempreal z, C[N+]; ... more precise than Reals. ... 1% & 2«

Next simplify statement ... *3 to read

14

)

'
b
-

Lecture 16 - June 23, 1988 (notes revised July 11, 1988)

z := C[x];) ce. 3%

. Finally, but only if references to UndrflowFlag() cost rather more than a handfull
of memory references, replace ... *4 by

clx] := z := C[xJ/LUCk.X]; : T e, 4%

and move the adjacent statements to bracket a new statement inserted after ...
*5 thus:
next k; ees #8

UnSav := UndrflowFlag(UnSav) ; ... Expose Underflow.
for i = 1 to N do X[i,j] := Cc[i];

UnSav := UndrflowFlag(UnmSav) ; ... Hide Underflow.
next j; ... etc.

(Cf. HUXPB below.)

RBAX:

This program calculates a residual R = B — AX given matrices
B = an N X M matrix,
A = an N x N matrix, and
X = an N X M matrix.

R may overwrite B but not A nor X.

Subroutine RBAX(A, Id, N, X, M, B, R):
Integer values Id, N, ¥ ;
Real variables A, X, B, R ;

Integer i, j, k ;
Tempreal tsum ; ... more precise than Reals .

. For j= 1 toM; ... compute column j .
' for is1toN; ... row i ,
tsum := B[i,j] ;
for k=1 toN do tsum := tsum - A[i,k]*X[k,j] ;
R[i,3] := tsum ;
next i ;
next j ;
return ;
end RBAX .

. ssssesss Alternative Column-Oriented Code
o Subroutine RBAX(A, Id, ¥, X, M, B, R):

15

424

- 2FL

Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 16

Integer values Id, N, M ;
Real variables A, X, B,.R ;

Integer i, j, k ;

Real =z ; .
Tempreal T[N+] ; ... more precise than Reals .
Common /L1BWSP/ T ; ... shared workspace.

For j=1 toM; ... compute column j .
for 1= 1toN do T[] := B[i,j] ;
for k= 1to§N; z:=-X[k,j] ;
for i=1toN do T[i] := T[i] + A[i,XI*z ;
next k ;
for i =1 toN do R[i,j] := T[i] ;
next j ;
return ;
end RBAX .

VNORM:
For any N x M matrix B,

VNORM(B,Id,N,M) = || B ||= SQRT(trace(BTB))
SQRT(Sum{1 < j < M,1 <i < n}(B[3,5])?

where B is dimensioned B(Id, M +].

Real Function VNORM(B, Id, N, M):
Integer values Id, N, M ;
Real variable B[Id, M+] ;
Tempreal ¢t ;
t := 0.0 ;
for j=1 to M do for isi to Ndo t := t + B[i,jlss2 ;
return VNORM := SQRT(t) ;
end VNORM .

......... Alternatively,

if Tempreal is unavailable then the following code avoids over/underflow at the cost of some
speed and accuracy.

Real Function VNORM(B, Id, N, M):
Integer values Id, N, M
Real variable B([Id, M+]
Real s, d, =z ;

Logical UnSav ; ... to save & restore Underflow flag.

UnSav := UndrflowFlag(.false.) ;
d := 35 :=0.0 ;

V-"‘ - u"

-

-~

Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 17

for j=1toM; for i=1t N;
z := abs(B[i,51) ;»
if z>d then { s := s*(d/z)**2+ 1.0 ; 4d
else if =z > 0.0 then s := s + (z/d)es2
next i ; next j ;
UnSav := Undrﬂov?lag(UnSav) 3 eee Ignoro Underflows.
return VNORM := d*SQRT(s) ;
end VNORM .

om
=
.
’

RESYS:
This program uses iterative refinement to solve AX = B and returns RESY'S =|| B- AX ||,
where

A = an N x N matrix dimensioned A[Id, N+),
B = an N x M matrix dimensioned B(Id, M+], and
X = an N x M matrix dimensioned X[Id,M+].

Real Function RESYS(A, Id, K, B, M, X):
Integer values Id, N, M ;
Real A[Id, N+], B[Id, M+¢], X[Id, M+] ;

Integor i, j, k, L, IP[N+] ;

Real Rold, Rnew, WS[Ids(N+M+1)+] ;

Common /L2BWSP/ WS ; ... shared work-space.
Equivalence (IP,WS) ; ... packs IP dinside WS .

Call LUPA(A, WS[Id+1], Id, IP, K) ; ... LU= PA .
Call LUXPB(WS[Id+i], Id, IP, N, B, X, M) ; ... LUX = PB .
Rold := 0.0 ; L := 1+4Id+(N+1) ; Go to Residual ;

Loop: Rold := Rnew ;
Call LUXPB(Ws[Id+1], I4, IP, N, ws([L], wsS[L], M) ;
«e. LUZ=PR , and Z overurites R in WS .
For j=1toM; ... do X :=X+2.
k := (N+¢j)»Id ;
for i = 1 to N do X[i,j] := X[i,j] + WwS[k+i] ;
next j ;
Residual: Call RBAX(A, ID, N, X, M, B, wWs[L]) ;
R=B~-AX 4n WS .
Rnew := VNORM(WS[L), Id, X, M) ; ... = |l R II .
if (Rold = 0.0 .or. Rold > Rnew) then go to Loop ;
return RESYS := Rnew ;
end RESYS .

Note: To make this code run faster on a paged machine when N is huge, replace
LUPA and LUXPB respectively with HUPA and HUPXB respectively.

4.2

Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 18

HUPA

Given an N x N matrix A, this program does the same as LUPA except faster when N is
very large. It calculates factors

LU = PA,

where
L = unit lower triangular matrix,
U = upper triangular matrix, and
P = permutation matrix represented by indices Ip[...]
thus: (Pz)[i] = z[Ip{i]].

Ifi > j then
“ A[Ip(i), 5)= L[3,]+ Ulj, j] + Sum{k < j}(L[i,k]* U[k,])
AlIpi), 7] = 1% U[i, 5] + Sum{k < i}(L[i,]+ Uk, 5]).

But, to diminish the performance degradation caused by page faults and other artifacts of
memory management, HUUPA packs L thus:

Lli,jl= BUN +1—i+j,N+1—i]fori> j.

Subroutine HUPA(A, HU, Id, IP, N):
Integer values Id, N ; Integer variable IP[N+] ;
Real variables A[Id,N+], HU[Id,N+] ; ... they must NOT overlap.

Integer i, j, k, imax, L ;

Logical UnSav ; ... to save & restore Underflow flag.

Real cmax, dmax, rndf, undr, U[N+] ;

Tempreal tsum, tpmax, tsmax, T[N+] ; ... more precise than Real
Equivalence (U,T) ; ... Save storage by packing U inside T .
Common /L1BWSP/ T ; ... Shares workspace with other programs.

«..Glossary:
A[Id,N+] is a square matrix dimensioned A[Id, at least N]
HUCId,N+] will hold HU(i,j] = L[N+1-j, i-j] for i >3,
= U[i,j] otherwise .
(The program expects HU and A HNOT to overlap.)
IP[N+] will hold permuted indices 1, 2, 3, ..., X thus:
(Px)[1] = x[IP[i]] .
j is a coluzm index that will run 1, 2, 3, ..., ¥ .
U[N+] will bold temporarily column j of U .
T(N+] will hold temporarily (column j of L)sU[j,j] .
cmax holds the max. magnitude in column j of A .
dmax holds the max. subdiagonal magnitude in columm j of PA

X R

[)

Lecture 16 - June 23, 1988 (notes revised July 11, 1988)

tndf = 1.000...0001 - 1 , measures roundoff among Reals.
undr = tiniest positive number , at or beyond underflow.
cos i is a row index that will yun 1, 2, 3, ..., N .

tsum = A[IP[i],j] - Sum{x}(L[i,x]*U(k,j]) .

... tsmax = max. [tsum| in column j ; if tsmax/(8j) > cmax ,
U has grown so big that roundoff may be déxcessive, so
.ee columns 1 and j of A should be swapped. (Very rare.)
tpmax = max. subdiagonal |[tsum| in column j for pivoting.
imax = row index where tpmax occurs.

UnSav := UndrflowFlag(.false.) ; ... to save & reset U-flag.
oes Gradual Underflow during factorization is ignorable.

rndf := 1.0 ; rndf := nextafter(rndf, 2.0) - rndf ;

or else try rndf := 4.0 ; zrndf :s rndf/3.0 ;

rndf := abs((rndf - 5.0/4.0)#3.0 - 1.0/4.0) ;
undr := 0.0 ; vundr := nextafter(undr, 1.0) ;

.o or else try undr := underflow threshold for the Reals .

ces Initialize 1IP :
For i =1 to Ndo IP[i] :=si ;

cee Outer loop, traversed once per column (j) :
For j=1toN;

cmax := 0.0 ; tsmax := 0.0 ;

+.. Compute column j of U :

For i =1t j-1;
tsum := A[IP[i], j] ; cmax := max{ cmax, abs(tsum) } ;
L := N+1-4 ;
For k=1 to i-1 do tsum := tsum - RU[L+k,L]sU[X] ;
HU[4,j] := U[i] := tsum ;
tsmax := max{ tsmax, abs(tsum) } ;
next i ;

... Compute potential pivots :
dmax := 0.0 ; tpmax := 0.0 ; imax := j ;
For i = jto N ;
tsum := A[IP[i], j] ; dmax := max{ dmax, abs(tsum) } ;
L := N+i1-i ; '
for k=1 to j-1 do tsum := tsum - HU[L+k,L]1*U(X] ;
TC[4] := tsum ; <tsum := abs(tsum) ;
if tsum > tpmax then { imax := i ; <tpmax := tsum } ;
next i ;
cmax := max{ cmax, dmax } ; tsmax := max{ tsmax, tpmax } ;
If imax = j then {
if <tpmax = 0.0 <then {
T{j] :® max{undr, rndfsdmax} ;
go to DivByPiv }

19

Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 20 |

} !
olse { ... exchange rows j and imax . :
L := N+l-imax-; i := N+1-j ;
for k=1 to j-1 ; dmax := HU[L+k,L] ;
HU(L+k,L] := BU[i+k,i] ; HU[i+k,i] := dmax ;
next k ; ' :
k := IP[imax] ; IP[imax] := IP[j] ; IP[j] := k ;
}
If tsmax/(8*j) > cmax then {
Display {"Warning: Extraordinary growth of intermediate results
in HUPA may lose too much accuracy. To avoid this loss,
recompute after exchanging columns 1 and ", j } ;

tsum := 0.0/0.0 ; ... signals Invalid Operation.
}

DivByPiv: tsum := T[imax] ; T[imax] := T[(j] ;
HU(j,3] := U[j] := tsum ; ... = pivot U[j,j] .
for k= 1 to N-j do HU[j+k,X] := T[N+1-X]/tsum ;

next j ; «oo = LIN+1-k,3] .
UnSav := UndrflowFlag(UnSav) ; ... Restore Underflow flag.
return ;
end HUPA .
HUXPB:

This program solves LUX = PB for X given matrices

L = an unit lower triangular N x N matrix and

U = an upper triangular N x N matrix stored in HU thus: ~
ifi > j then HU[§,5]= L[N +1 - j,i—j]

else HU[4, j] = U[s, j).

B = an N X M matrix, and

P = an N x N permutation matrix represented by indices Jp{i]
thus: (Pz)[i] = z[Ip{i]).

X = an N x M matrix that will be calculated by solving in turn
LC = PB, C[i, j) + Sum{k < i}(L[i, k] = C[k, 5]) = B[Ip{i], 5]
UX =C, Sum{k 2 i}(U[i, k] » X[k, j]) = C[3, 5).

The solution X may overwrite B but not HU.

Subroutine HUXPB(HU, Id, IP, N, B, X, M):

Integer values 1Id, N, M ; Integer variable IP([N+] ;
Real variables HU[Id, N+], B([Id, M+], X[Id, M+] ;

Integer i, j, k, L ;
Real 2z, C[N+] ; t
Tempreal tsum, T[N+] ; ... more precise than Reals. ... *1

Equivalence (C,T) ; ... Save storage by packing C inside T .
Common /LiBWSP/ T ; ... shared workspace.

Logical UnSav ; ... Gradual Underflow matters oaly in X .

AL

RE

Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 21

i Unsav := UndrflowFlag(.false.) ;

A .
.For j =1 toM; ... solve for column j :
for i=1 ¢t K ;
tsum := B{IP[i],j] ; L := N+1-i;
for k= 1 to i-1 do tsum := tsum - HU[L+k,L]*C[x] ;
C[i] := tsum ; cee ¥2
next i ;
for k= X to 1 step -1 do T[x] := C[x] ; ces *3
for k= N to 1 step -1 ;
UnSav := UndrflowFlag(UnSav) ; ... Expose Underflow.
X[k,3] := z := T(x]/8H0Ck,X] ; ' cee ®4
UnSav :s UndrflowFlag(UnSav) ; ... Hide Underflow.
for i= 1 to k-1 do T[i) := T[i] - HU(i,X]I*z ;
, next k ; ‘ ... *5
i next j ;
(UnSav := UndrflouFlag(UnSav) ; ... Reveal X ’s Underflows.
return ;
! ond HUXPB .
i
*Notes: The foregoing code can be modified slightly to give marginally more
accurate results at no significant extra cost provided multiplication of Real by
Tempreal is only slightly slower than Real by Real. First merge declaration ...
) *1 with its two neighbors thus:
- Tempreal z, tsum, T[N+]; ... more precise than Reals. ... 1=

, Next replace two references to C|...] by TY...] in statement ... *2 and its predeces-
; sor; and delete statement ... *3. Finally, but only if references to UndrflowFlag()
i cost rather more than a handfull of memory references, replace ... *4 by

Tlx] := z := T{k)/HU(k,X] ; ce. 4
and move the adjacent statements to bracket a new statement inserted after ...
*5 thus:
k; ces *§

UnSav := UndrflowFlag(UnSav) ; ... Expose Underflow.
for i = 1 to N do X[i,j] := T[i];

UnSav := UndrflowFlag(UnSav) ; ... Hide Underflow.
next j ; ... etc.

R Q)

- Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 22

Comparison of HU... with LU... :

Programs, like RESYS , that use LUPA and LUXPB can instead use HUPA and HUXPB
respectively to get the same results but at different speeds. At first sight, two pairs of
programs appear to be under consideration; actually there are three pairs:

LU... accumulating scalar products extra precisely (method 'la).
LU... alternative versions using column-oriented code (1b).
HU... with L{i,j]= BUN+1~i+ jN+1~1i].

The HU... codes should be never much slower than the first LU... codes, and always
significantly faster than the second LU... codes, even on vectorized and pipelined parallel
machines, unless compiled with an allegedly optimizing compiler that fails to recognize and
optimize subscript references of the form HU[L + k, L] when L is fixed and & varies in an
inner loop. Here we assume that arrays are stored by columns as prescribed for Fortran.

The extra-precise accumulation of scalar products is a practice in decline on the largest and
fastest computers. Part of the decline is attributable to the omission, from the instruction
sets of newer machines, of an instruction that evaluates a product to wider precision than
the factors; that omission may be motivated by the belief that page faults and similar
artifacts of memory management will drive numerical analysts to use column-oriented codes
exclusively rather than sacrifice speed to achieve a little more accuracy. The HU... codes
sacrifice neither speed nor accuracy, so perhaps the issues should be reconsidered.

Transpositions and Permutations:

There are two ways to keep track of the pivotal exchanges of rows during Gaussian Elimi-
nation. One way uses an array ip{.] of n indices ip{1), ip2], ..., ip{n] to represent the n by n
permutation matrix P directly thus:

row ip(i] of A is row i of PA.

Hence, {ip{1],ip{2], ..., ip[n]} is a permutation of the indices {1,2,...,n}. The second way
represents P as a product of n — 1 transpositions thus:

P = (n~ 1,k[n = 1))(n - 2,k{n — 2])(...)(3, K[3])(2, k{2])(L, (1)

where each (1, k[¢]) is a transposition (exchange) of the rows in positions ¢ and k[{}; moreover
i < k[i]. These indices k[.] are called “imax” in programs LUPA and HUPA , where they
are encountered and applied in order (1}, k[2], (3], ..., ¥[n — 1] to produce the array ip.]
thus:

for i = 1 to n do ip{i] := ; ... initialization
for i = 1 to n — 1 do swap(ip{i], ip{k[i]]); ... build ip(.]

Given this array ip{.], can we reverse the process to recover the array k[.]? Yes. But
first the permutation ig[.] inverse to ip[.] must be calculated thus:

for i = 1 to n do ig[ip{i]] := {; ... inversion.

Now row ig[i] of PA is row i of A. Next we gradually transform ip{.] and ig[.] back to
identity permutations while keeping them inverse to each other as k[.] is recovered thus:

o1

-)

vy

Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 23

fori=1ton —1 do begin
k{i] := ip{i]; ... reversion
swap(ip(i], ip{ig[i]]); ... so now ip{i] = ¢
swzp(iq[ﬂ, ig[k[i])); ... so now igli] = i
end ;

One application of the reversion is to reveal the sign of

det(A) = det(PA)/det(P) = det(U)/det(P), where
det(P) = (—1)(number of instances when k{i>9),

Another application is to the encoding of P within L to dispense with the bother of providing
for the array IP[.] when the factors L and U are saved for subsequent re-use. The encode
function E(z) maps the reals z with | 2z |[< 1 to | E(z) |> 2:

if z = 0 then E(z):= Copysign(2,z) else E(z) := Scali(z, K)

where K is an integer barely large enough that Scalb(1.0, K) overflows to infinity. K = 128
for Single, or 1024 for Double precision in the proposed IEEE standard 754. The decode
function D(z) inverse to E(z) is

if z is infinite then D(z):= Copysign(1,z)
else if | z = 2| then D(z) := Copysign(0,z)
else D(z):= Scalb(z,-K); ... and ignore Underflow .

Then to encode I P[.] within L we revert IP[.] to k[.] and then replace L{k[7], j]by E(L[k[j), 7))
whenever k[j] > j. To recover k[.] later, we scan {L[i,j],j < i < n} to find where
| L[k{5), i]|> 1, thereby determining k[j] > j; otherwise k[j] = j.

The success of the reversion process above is tantamount to a

Theorem: Every permutation of n positions can be expressed uniquely as a product of
n — 1 transpositions (n — 1, k{n — 1])(n — 2, k[n — 2])(...)(2, ¥[2])(1, £[1]) in which each
k[i] 2 i.

The theorem’s validity can be confirmed by running the following program:

Program Proof(uptoN):
procedure Nest(m):
if »>0 then for j = m to n do begin
k[m] := j ; Nest(m-1)
end
else begin
for i =1 ton do ip[i] := 4§ ;
for i = 1 to n-1 do swap(ip[il, ip(x[il]) ;
for i = 1 ton do iqlipfi]] := i ;
for i = 1 to n~1 do begin
it ip[i]=k[i] then begin
swap(ip(i], ip(iq[ill);
svap(iq(i), iq(x[il])
end

ot

A
Lecture 16 - June 23,1988 (notes revised July 11, 1988)

else begin
write{ "Test fails at n ="; n
L1} 'ith i - “
“and k[.] ="; k[]
L]) 1P[] = . ip[]
L} 1q[] - u iq }.
stop
end
end;
write{ " n = "; n ; " tested successfully." }
end end Nest ;

for n = 1 to uptoN do Nest(a) ; write{ "End of test.}
end Proof.

Inverting the Hilbert matrix:

24

Floating-point matrix inversion programs are customarily tested on an n x n Hilbert matrix
H whose elements are H; ; = 1/(i+j+p—1)for1 < i, j < n and any integer p > 0. Because
H becomes so ill-conditioned as n or p becomes big, its inverse W = H ~! becomes difficult
to compute accurately in the face of roundoff. None the less, a way exists to compute W
exactly and easily; it uses a little-known formula W = V H V where V is a diagonal matrix

of integers V; = (=1)¥((n+j + p— 1))/((n = 7)}(F = 1)i(j + p~ 1)!) obtained from a simple

recurrence in which only integers appear:

W1 := —n; for k=1 to p do V} := (V1 /k)(n + k);
for j =1ton—1do Vi := ((Vi/(G +0)(F - »))/i)(n+ 35— p)

Then W;; := V;V;/(s+ j + p— 1). (S. Schechter, MTAC, 1959)

Since the elements of H are reciprocals of integers, they cannot be represented exactly in
floating-point but must be rounded off. These initial rounding errors may do more damage

to H=1 than the inversion program under test. To avoid them, we actually use

A :=mH, where m ;== LCM(p+1,p+2,p+3,...,p+ 2n - 1),

which has integer elements all representable exactly in floating-point provided n and p are
not too big. Then the inversion program is tested by using it to solve AX = mI numerically
for X. Here I is the n X n identity matrix. Since ideally X should match W, the error
introduced by the program under test is indicated by displaying a rough measure of the

relative error in X:
r=max| X;; - e.;l/lW.-.,-l.

This statistic makes no allowance for the ill-condition of H nor for the precision of the

arithmetic in which X was calculated. The ill-condition of H can be gauged from

c=max) | Hi;Wi;|.
3

which exceeds 1 to an extent that indicates how severe is cancellation when W = [is

evaluated. The precision is indicated by

“

Lecture 16 - June 23, 1988 (notes revised July 11, 1988) 25

% = 1.000...001 - 1.000...060 = 0.000...001
= One unit in the last place-carried in numbers near 1.

Then one figure of merit for the program under test is
q=r/(uc); -

the smaller is ¢, the better the program. Normally r < 1 and ¢ < n; but when r > 1 the
matrices A and H are so nearly singular that the program cannot be relied upon to get
even one significant digit correct in X, and then the value of g becomes irrelevant. Another
figure of merit is the largest value of n for which r < 1; the larger is this n, the better.

The error r, and therefore ¢, depend upon rounding errors that occur during the calculation
of X, but rounding errors are not entirely dependable; they behave sometimes almost as if
they were random. Therefore prudence demands that roundoff be sampled more than once
before conclusions be drawn about a program’s vulnerability to roundoff. For instance,
most matrix inversion programs, and certainly those using LUPA and HUPA above, will
generate different rounding errors if the column ordering of the matrix being inverted is

changed. To be more specific, let S be the n X n permutation matrix that reverses order;
that is, :

S=() when n = 3.

Then the inverse of SHS is SWS, but the computed solution Z of (§AS)Z = mI usually
differs from SXS because of differences in the way roundoff occurs. Calculating r and ¢

from Z instead of X gives a second opinion about the effect of roundoff upon the program
under test.

-0 0o
[— 2 i -]
o O =

To calculate m = LCM(p+ 1,p+2,p+3,...,p+ 2n — 1), do thus:

GCD(z,y): while y # 0 do {z:= y;y:= z rem z;2 := z};
return GCD := | z | end GCD.

LCM(z,y): if z = 0 then return LCM := 0
else return LCM := (| y | /GCD(z,y))* | z | end LCM.

m:=p+lifork=p+2top+2«n—1dom:=LCM(m,k);
yields m.

For example, when p =1, we find ...
n=28 n=9 n=10o0r 1l n=12
m = 360360 m = 12252240 m = 232792560 m = 5354228880

Va4

