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1 Twenty-Five Years with Mathematical Software

This is 2 summary of the lecture By Cleve Moler, currently of Ardent Computers, about
writing portable software for solving linear algebra problems.

1.1 Machine Epsilon

Machine epsilon (hereafter referred to as aps) is defined to be the separation between 1 and
the next floating point number, and is often approximated as the smallest floating point
number £ so that 1 4+ £ > 1. The earliest program that Moler presented, a linear equation
solver from 1963, required the user to specify eps as an input parameter. That program
also used assembly language routines IL0G2, DOT, SDOT, and DAD, as well as using fixed size
arrays. The programs in Computer Solution of Linear Algebraic Systems by Forsythe and
Moler (1967) buried eps in the code, setting it equal to 0-0, which the user had to replace
with the correct value for his machine. Moler gave an anecdote concerning a program that
went into an infinite loop on the Ardent machine. The reason was it used a routine from
Bell Labs called rimach, which requires the porter to find the parameters for his machine in
the comments, and then “uncomment” that piece of code. The code had come from being
run on a Pyramid machine, and it miraculously had run correctly even though the constants
in the code were for neither the Pyramid nor the Ardent computers! The translation of
Computer Solution of Linear Algebraic Systems into Hungarian replaced 0-0 with 1.0E-8.

The volume on linear algebra of Handbook for Automatic Computation by Wilkinson and
Reinsch appeared in 1971.! The routines in this book not only required giving eps as an
argument to procedures, but also a variable tol which was used to guard against underflow.
The reason an underflow check was needed, can be seen as follows. Suppose you wanted
to scale a vector (a, b,c) to have norm 1. You would compute the norm s = v/aZ + b2 + ¢2
and replace the vector with (a/s, b/s, ¢/s). But suppose that the vector is 10-19(1,2,1). In
IEEE single precision, the underflow threshold is 1.2 X 10-38, If underflows are flushed to
zero, then the computed value of the norm s will be 2 x 10-1° and the normalized vector
will be (i-, 1, i-), which doesn’t have norm 1. This situation can be avoided by explicitly
checking for underflow using the paramater tol.

!Wilkinson's earlier book has been referred to as the Bible, this volume as the New Testament.
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The book Computer Methods for Mathematical Computations by Forsythe, Malcolm and
Moler (1977) gives the following machine independent code for computing eps

EPS = 1.
10 EPS = 0.5sEPS
EPSP1 = EPS + 1
IF (EPSP1 .GT. 1.) GO TO 10

This code appears to compute EPS = } ulp(1) on IEEE machines and IBM 370 and
EPS = } ulp(1) on VAX machines. Beyond that, it may not work correctly for machines
with a high precision accumulator, because it might compute EPSP1 in a high precision
accumulator, and compare this high precision number with 1, rather than rounding EPSP1 to
the precision used to store floating point numbers in memory. Or even worse, an optimizing
compiler might change the test EPSP1 .GT. 1. to EPS .GT. 0, which would compute the
smallest positive representable number rather then eps. A routine that uses this algorithm
for eps is the zero finding program ZEROIN. It requires the user to provide an argument TOL
for the amount of error that can be tolerated in the answer. If TOL is zero, than the result
is computed to within eps.

One of the tricks in ZEROIN concerns finding the midpoint between B and C. The naive

formula (B + C)/2.0 may not work on a non-binary machine. For example in two digit
decimal, if B = 9.7 and C = 9.8 then B + C is 19.5 and will be rounded to either 19 or
20, thus (B + C)/2.0 will be either 9.5 or 10, neither of which is between 9.7 and 9.8. The
routine ZEROIN uses the formula B + (C-B)/2.0 instead.?

Not all the routines in Computer Methods for Mathematical Computations compute EPS
directly. For example, the singular value decompostion program SVD adds ABS(SMALL)
to ANORM, where SMALL is a small quantity computed in the algorithm. When the sum
equals ANORN, the iteration stops. As with eps, this calculation can be ruined by optimizing
compilers, and a truly careful routine would be

COMMON FTEST

TEST = ABS(SMALL) + ANORM
CALL FOO(TEST)

IF (FTEST .EQ. ANORM)

SUBROUTINE FOO
COMMON FTEST
FTEST = TEST

In 1974, EISPACK appeared, which was basically the translation of Wilkinson and
Riesch into FORTRAN. The only unportability in EISPACK concerned eps. It was defined
by MACHEP = ?, so that the programs wouldn't compile unless ? was replaced with a value.
The variable tol was eliminated by scaling the vector (a, b, c) before taking its norm.

In EISPACK III (1983), code for computing eps was provided, namely

A = 4,0D0/3.0D0
10 B = A - 1.0D0
C=B+B+8B

2This trick is due to Householder and dates from around 1953.
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EPS = DABS(C-1.0D0)
IF (EPS .EQ. 0.0D)) GO TO 10

The GO TD 10 is inserted in order to foil optimizing compilers. The reason why this program
works, is that 4.0D0/3.0D0 can only be represented exactly on ternary machines, or in other
words can’t be represented exactly on any known machine, and so will be rounded. This is
the only rounding error that occurs in this program, and so C will be slightly different from
1. The subtraction B = A - 1.0DO guarantees that the last bit of B will be zero, and thus
the last bit of C is zero. To illustrate, consider p = 5 and base # = 10. Then

A = 1.3333
B= .33330
C= ,99990

EPS = ,00010

The only roundoff error occured when computing A, and .0001 is the distance between 1.0
and the next representable number 1.0001. However, EISPACK III doesn’t really use eps
directly. Rather it tests for a negligible elements directly as we illustrated above for the
routine SVD in Computer Methods for Mathematical Computations.

1.2 Iterative Refinement

We earlier studied how to use iterative refinement to improve the accuracy of solutions to
linear systems. When doing iterative refinement, it is essential to compute the residual b—AZ
in a higher precision than the main calculation. The earliest linear equation solver from
1963 used the assembly coded routines DOT and DAD to compute in double precision. The
book Computer Solution of Linear Algebraic Systems has its algorithms written in ALGOL,
and points out that accumulating sums in double precision can’t be written in ALGOL 60.
It refers to the routine innerprod, giving a reference for it. However, the FORTRAN
version of the algorithm used the fact that FORTRAN compilers could recognize D = D +
X+Y and compute the product in double precision. The PL/I version used the statement
MULTIPLY(A(I,J), X(J), 12) to accumulate, using the fact that the default precision
was 6.

But neither Computer Methods for Mathematical Computations (1976) nor LINPACK
(1979) use iterative refinement. Some of the reasons are

o Its hard to write iterative refinement portably in FORTRAN, because when the work-
ing precision is double precision (as it usually is when doing scientific computing on
all contemporary machines except CRAY and CDC), there is no portable way to
efficiently code the extended precision operations.

e The extra accuracy you get using iterative refinement is not usually worth it, because
the input data is usually not precise. In fact, the input matrix is often the output of
another program.

e One of the uses of iterative refinement is to give a bound on the accuracy of the

solution, but this information can be easily obtained by estimating the condition
number of the matrix.

277
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1.3 Efficiency _
The 1967 book Computer Solution of Linear Algebraic Systems has the. ALGOL comment

comment Inner loop. Only column subscript varies. Use
machine code if necessary for efficiéncy.

Ideally, portable software shouldn’t require writing in machine code, but rather should be
written in such a way that compilers can optimize the code. In the first version of EISPACK,

the inner loop of TRED1, the routine for reducing a lower triangular matrix to a tridiagonal
one, looks like this

DO 180 K = 1, J

180 G =G + A(J,K) = A(I,K)
JP1 = J + 1
IF (L .LT. JP1) GO TO 220
DO 200 K = JP1, L

200 G =G + A(K,J) = A(I,K)

It contains an IF statement so it can’t be vectorized on Cray class machines. In EISPACK
III, the loop was rewritten as

D0 240 J =1, L
F =D
G=EJ) +AQJ,3) = F
JP1=J + 1
IF (L .LT. JP1) GO TO 220
DO 200 K = JP1, L
G+ G+ A(K,J) = D(K)
‘E(K) = E(K) + A(K,J) = F
200 CONTINUE
220 EQJ) =G
240 CONTINUE

The code has been changed so that the inner loop does not have an IF statement.

The LINPACK codes address efficiency by using the BLAS, the Basic Linear Algebra
Subprograms designed by Lawson, Hanson, Kincaid and Krogh (1978). Almost all the inner
loops of LINPACK occur inside a BLAS routine, and LINPACK only uses column oriented
BLAS. A typical BLAS routine is SAXPY, which performs the operation § = ¥ + aZ.
The BLAS are written in FORTRAN but can be replaced by assembly language coded
versions for machines with compilers that can’t optimize them. Another advantage of
using the BLAS is that for those who are familiar with it, codes which use it are easier to
understand.3 Unfortunately, the BLAS tend to get in the way of very high quality compilers
and can actually reduce efficiency.

In order to improve portability, LINPACK contains no machine dependent constants,

no I/O, no character manipulation, no COMMON or EQUIVALENCE statements, and no
mixed-mode arithmetic.

3And in fact, familiarity with BLAS is so widespread, that a company was named after SAXPY.

I
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1.4 Comments on EISPACK

EISPACK and LINPACK cost over a million dollars to develop, and are very high quality
codes. As mentioned above, EISPACK is now available as EISPACK III, which has im-
proved in portability (no longer have to modify the code to insert your own MACHEP) and
in performance (inner loops are column oriented and vectorizable). However, even in codes
which are so highly developed, problems can be discovered. For example Guenter Ziegler
and Andrew Odlyzko used the routine RS in EISPACK to compute the eigenvalues of the
following real symmetric matrix :

/-1 1 1 -1 -1 1 1 =1 -1)
1 1 -1-1 1 1 -1 -1 1
1 -1-1 1 1-1-1 1 1

-1 -1 1 1-1-1 1 1 -1

-1 1 1-1-1 1 1-1 -1
1 1-1-1 1 1-1-1 1
1 -1 -1 1 1-1-1 1 -1
-1 -1 1 1 -1-1 1-=1 1

\-111—1-1 1 -1 1 1)

EISPACK reported that 5 eigenvalues were on the order of roundoff error using double
precision D format on the VAX. The correct answer is that 4 eigenvalues are 0. EISPACK
got the wrong answer due to an underflow bug.

1.5 Pythagorean Sums

The expression v/aZ + b2 occurs quite frequently. It represents the length of a vector and
the norm of a2 complex number among other things. The obvious formula has two potential
shortcomings. The first is that it requires a square root function to be available. The second
is that it can underflow or overflow. In IEEE single precision, the maximum representable
number is about 1.7 x 103, so if a or b is much bigger than 1.3 x 1019, the computation
of va? +b? will overflow, even though the final answer is well within range. The paper
Replacing Square Roots by Pythagorean Sums by Moler and Morrison gives an iterative
algorithm that avoids these problems. If a > b, it starts by setting p = a and ¢ = b. Ateach
step, p? + ¢% = a? + b3, but g gets smaller and hence p gets bigger. When g is negligible,

then p will be an extremely good approximation to v/a? + 2. The rule for computing p and
gis

q.\2
r = (=
(p)
s = Tr
T 447
T
P - p+2p(m)—p+2ps

- o(z7) =
LA V)

Since r < 1, clearly s < 1, s0 at each iteration ¢ is at most }th the value of the previous
iteration (in fact, it decreases even more rapidly). And p?+¢? becomes p?(1+2s)% +(sq)? =
P?(4s+43)+p2+(s2-1)g2+¢> = (s+1){dsp?+(s—1)q?}+p*+¢%. Since (s—1)(g/p)? = —4s,

So¢(
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the quantity in braces is 0, so p? + ¢® is preserved. The algorithm obviously doesn’t involve
square roots, and since p starts with the value max(a, b) and grows at each step, it will not
underflow nor overflow. The main problem with this algorithm is that it is too slow. It
requires 2 divisions per iteration, but hardware implementations of square root take about
the same amount of time as a single division step. A more practical algorithm would be
|a}/T + (6/a)?, where a = max(a,b).

One interesting facet of this algorithm is that it is noticeably more accurate on machines
supporting gradual underflow. If 4 is the smallest positive representable floating point
number, and @ = 4u, b = 3u, then s = .1233 so ¢ =~ .37y underflows. If underflows
are flushed to zero, then the algorithm stops after 1 iteration, giving an answer of p +
23p ~ 4.986u, compared with the correct answer of 5. A machine with gradual underflow
would give a much more accurate result. A related situation occurs with the alternate
formula |a|\/T + (8/a)?. This is does not benefit from gradual underflow, but it can have
an error as large as 1+ 38/4 ulps on machines that use base 8. A more accurate formula is
a+b/ ((a/b) + \/WY), and this modified formula does benefit from gradual underflow
when a and b are small.

1.6 Comments on IEEE 754
What is the impact of IEEE 754 on writers of portable software?

e The most common languages for portable software, FORTRAN and C, don’t have
any language facilities that allow you to exploit the IEEE standard, particularly in
the area of exception handling. The development of libraries such as Apple’s SANE
package may help in the future, although SANE on a Macintosh is quite slow.

¢ Portable software must work on VAX, Cray and IBM/370 as well as IEEE machines,
so portable software can’t assume that IEEE facilities will be available.

e The ANSI C and FORTRAN 8x efforts are more important to portable software than
the IEEE standard.

A demo of MATLAB indicates how well this particular portable software deals with the
IEEE standard. It correctly computes u = 0/0 as Nan and max(5, u) = Nan, but incorrectly
sets max(u,5) = 5. The impact of IEEE on mini-supercomputer companies like Ardent is

o Gradual underflow is too slow for vector processors.4 Both the Weitek chips and all
their imitators require extra cycles for processing denormalized numbers, but vector
processors require predictable computation times.3

e The [EEE standard contains many fine points that are too much trouble to implement.

An example of such a fine point is that when square root is implemented in software,
that software must correctly set the inexact bit.

‘Gradual underflow was the most controversial part of the standard, and probably accounted for the
length of time it took to get adopted. A foreign visitor to the U.S. was advised that the sights not to be
missed were Las Vegas, the Grand Canyon, and the [EEE standards committee meeting.

SKahan suggests that the IEEE standard didn’t address vector processors, because CRAY appeared to
bave a lock on the market, and wasn't interested in changing its arithmetic to conform to the IEEE standard.
Hough: earlier drafts did address pipelined implementations via warning mode; at the instigation of some
Apple people that was taken out to simplify the standard, subsequently complicating everybody’s life to
such an extent that Hough regrets supporting that simplication.

5.
-
- -
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16. ALGOL 60 PROGRAM

Computer programs that use Gaussian elimination or one of its variants
have been written in many programming languages and used on maay
computers. Several of these programs have also used some form of iterative
improvement. Together with William McKeeman we have developed the
set of four ALGOL 60 procedures now to be given as program (16.1). Earlier
versions of this program are found in Forsythe (1960) and McKeeman (1962).
See Baumann er a/. (1964) and Naur ez al. (1963) for an introduction to and a
definition of the ALGoL 60 language. Several pages of explanation follow our
program.

(16.1) ALcoL 60 program for solving linear systems

begin
comment Linear system package, ALGOL 60 version;
integer array ps(1:100]; comment Global pivot index array. We
assume 2 < 100;
procedure DECOMPOSE(n, A, LU);
value n; integer n;
real array A, LU; comment A, LU[1:n, 1:n];
~ comment Uses global integer array ps;
comment Computes triangular matrices L and U and per-
mutation matrix P so that LU = PA. Stores L — I
and U in LU. Array ps contains permuted row
indices;
comment DECOMPOSE(n, A, A) overwrites A with LU;
begin
real array scales(1:n];
integer /, j, k, pivotindex;
real normrow, pivot, size, biggest, mult;
comment Initialize ps, LU and scales;
for i := 1 step 1 until n do
begin
pslil i=i;
normrow ;= Q;
for j:m 1 step | until # do
begin
LULiJ) = Ali,j);
if normrow < abs(LU[i, j]) then normrow := abs(LUTi, j]);
end;
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if normrow 3£ O then scales{i] := l/normrow
else begin scales{i} := 0; SINGULAR(0) end;
end;
comment Gaussian elimination with partial pivoting;
fork :== 1 step | until n — I do
begin
biggest := 0;
for i :x= k step | until n do
begin
size == abs(LU[ps{i), kD x scales{ps{ill;
if biggest < size then
begin biggest := size; pivotindex := i end;
end;
if biggest = O then
begin SINGULAR(1); go to endkloop end;
if pivotindex # k then

j := psik); pslk] := psipivotindex]; pslpivotindex] := j
end;
pivot := LU[ps{k), ];
for i := k + 1 step 1 until n do

begin
LU[ps{i), k] := mult := LUJpsli], k}/pivot;
if mult = 0 theg

J+=k <+ 1 step 1 until n do
LUps(il, j] := LU[psli), j) — mult x LU[ps{kl, j1;
comment Inner loop. Only column subscript varies. Use
machine code if necessary for efficiency;
end; -
endkloop:
end;
if LU[psin}, n] = O then SINGULAR(1);
end DECOMPOSE;

procedure SOLVE(n, LU, b, x);

value n; integer n;

real array LU, b, x; comment LUl :n, 1:n), b, x{1:n];

comment Uses global integer array ps;

comment Solves Ax = b using LU from DECOMPOSE;
begin

integer i, /;

real dot;

[ B R R P T
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for i := 1 step 1 until n do
begin
dot :=0;
for j :== 1 step | until i — 1 do
dot := dot + LUps{i), j1 X x{j];
i) := bps(i]) — dot;
end;
for i := n step — 1 until 1 do
begin
dot :=0;
forj := i<+ 1 step 1 until 7 do
dot :== dot 4 LU[psfi], j] X x{j1;
xi] := (xfi] — dot)/LU[pslil, i);
ead;
commeat As in DECOMPOSE, the inner loops involve only the
column subscript of LU and may be machine coded
for efficiency;
end SOLVE;

procedure JMPROVE(n, 4, LU, b, x, digits);
value n; integer n;
real array A, LU, b, x; comment A, LU[I:n, 1:n), b, x{1:n]; /‘\
real digits;
comment A is the original matrix, LU is from DECOMPOSE, b
is the right-hand side, x is solution from SOLVE. i
Improm x to machine accuracy and sets digits to the
of digits of x which do not change;
comment Machme-depen ent quantities indicalcd by 0-0;

real array r, dx{1:n];
integer iter, itmax, i;
real 1, normx, normdx, eps: " f
real procedure /og(x); value x; real x;
log := .4342944819 x In(x); ¢
real procedure accumdotprod(n, A, i, x, extraterm); ’
value n, i, extraterm, integer n, i; real extraterm;
real array A, x; (
comment This procedure should evaluate the inner product of
the i-th row of the array A4 with the vector v then

1] X dBouble-precision resultand
all the additions must be done in double precision.
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The body of the procedure cannot be written in
Arcor 60

comment The body ol accumdotprod could be written as
follows in terms of the code procedure innerprod on
P- 206 of Martin, Peters, and Wilkinson (1966): -
begin
real dl, d2

:= 0-0; comment Machine-dependent round-off level;
itmax := 0-0; comment Use approximately 2 x log (1/eps);
normX . = U,
for i := 1 step 1 until n do
if normx < abs(x{i]) then normx := abs(x{i];
if normx = 0 then .
begin digits := —log(eps); go to converged end;
for iter := 1 step | until itmax do
begin
for i :== 1 step 1 until n do
rli] := —accumdotprod(n, A, i, x, —b[i]);
SOLVE(n, LU, r, dx),;
normdx := 0;
for i := 1 step | until n do
begin
t = xi];
(i) := x{i] + dx{i];
if normdx < abs(x{i] — 1) then normdx := abs(x{i] — 1);
end;
if iter = 1 then
digits := —log(if normdx 5= 0 then normdx[normx

else eps).
if normdx < eps X normx then go to converged;
end iter;
comment lteration did not converge:
SINGULAR(2);
converged:
end IMPROVE:
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procedure SINGULAR(why);
value why; integer why;
comment Prints error messages for DECOMPOSE and
IMPROVE;
comment outstring means write;
begin
if why = 0 then
outstring(* Matrix with zero row in DECOMPOSE.');
if why == | then
outstring(‘Singular matrix in DECOMPOSE. SOLVE will
divide by zero.");
if why = 2 then
outstring('No convergence in IMPROVE. Matrix is nearly
singular.");
end SINGULAR;
end Linear system package, ALGOL 60 version

Notes on the ALGoL program: DECOMPOSE (n, A, LU) uses elimina-
tion to find n-by-n triangular matrices L and U so that LU = PA, where PA
is the matrix 4 with its rows interchanged. The interchange information is
stored in the global array ps, and the matrices L — [ and U are stored in LU.

SOLVE (n, LU, b, x) uses the LU factorization from DECOMPOSE
to find an approximate solution to a single system of equations, Ax = b.

IMPROVE (n, A, LU, b, x, digits) requires a copy of the original matrix
A, its LU decomposition, a right-hand side &, and the approximate solution
x computed by SOLVE. It carries out the iterative improvement process

. until, if possible, x is accurate to machine precision. It also provides an esti-

mate digits of the accuracy of the first approximation. The value of digits
is, roughly, the number of decimal digits of x which are not changed by the
iteration. This is a measure of the condition of 4.

SINGULAR (why) is used by the other procedures to indicate the
occurrence of an error condition.

In practice, these procedures are used by another procedure or executive
program written to handle a specific class of problems. As an example, we
have included in Sec. 18 a procedure which inverts a matrix.

DECOAMPOSE uses elimination, basically in the form described in
Sec. 9. Temporarily ignoring scaling and pivoting, we can express the central
calculation, the elimination. by

(16.2) for j := k + 1 step 1 uatil #n do

a,y:=a,; — (a,2/01,) % Gy,




17. FORTRAN, KITERJESZTETT ALGOL
ES PL/1 PROGRAMOK

Az ¢el6z6 fejezetben leirt eljdrdsok legtobb résziete kozvetleniil lefordithaté
mds algoritmikus szdmitégépnyelvre. Ezt tessziik most a FORTRAN egy elfogadott
standardizitisival, egy kiterjesztett ALGOL konkrét realizilisival és a PL/1 egy
elSzetes specifikdciéjival kapcsolatban. Mindegyik program illusztriija maguknak
az eljirisoknak bizonyos részeit, valamint a felhaszndit nyelveket és szimitdgépeket.
(Javasoljuk az Olvasénak, hogy tdjékozddjon azokrdl a nyelvekrSl és szamitégépek-
rél, amelyekkel nem ismerds.)

Ugy gondoljuk, hogy az 4ltalunk hasznélt FORTRAN nyelv megfelel az American
Standard Association (1964) 4ltal leirt, legtdbbszér ASA FORTRAN-nak nevezett
nyelvnek. Amennyire ez lehetséges, magdban foglalja birom FORTRAN dialektus:
az IBM 7090/94-re készitett FORTRAN [V, a CDC 1604-re készitett FORTRAN 63,
és az IBM System/360-ra készftett Basic Programming Support FORTRAN k&zds
vondsait (l4sd International Business Machines (1965a), Control Data Corp. (1963),
és International Business Machines (1965b)). Elkeriiltiik az olyan vondsokat, mint
a tipusdeklariciék, reldcids kifejezések, cimkés kozds tdrolds és véltoztathaté tomb-
dimenzidk, amelyek hasznosak lehetnének, de egydirtal kiilonbdz8 formdjiak is,
és egy vagy t5bb rendszerben nem is 1€teznek. Néhiny kisebb Gsszeegyeztethetetlen-
ség elGfordul: a JAVIT-ban a kettSs pontossig deklarici6jinak a form4ja, a FEL-
BON és JAVIT-ban az ABS, AMAX1 & ALOGI1O fggvénynevek, valamint az out-
put egységszir a KIIR-ban. E pontokon esetleges véltoztatdsokat eszkozlve, 2 szub-
rutinok mids FORTRAN rendszerekre is 4tvihetSk.

(17.1) FORTRAN program linedris egyenletrendszerck megoldasira

SUBROUTINE FELBON (NN, A, UL)

DIMENSION A (30, 30), UL(30, 30), SKALAK (30), IPS(30)
COMMON IPS

N=NN

MEGADIJUK IPS, UL ES SKALAK KEZDETI ERTEKET
DO5I=1,N
IPS (1)=I
SORNOR =0.0
DO 2J=I,N
UL N=A(1J)
IF (SORNOR-ABS (UL (I, ) 1, 2,2
1 SORNOR =ABS (UL (1, J))
2 CONTINUE
IF (SORNOR) 3, 4, 3
3 SKALAK (I)=1.0/SORNOR
4

o)e!

GOTOS

CALL KIIR (1)

SKALAK (1)=0.0
5 CONTINUE

3 Lioecsris algebrui prodidmak 5

3
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GAUSS FELE KIKUSZOBOLES RESZLEGES FOELEM- },
KIVALASZTASSAL . ‘
NMI=N-1 . ,

DO 17 K=1,NMI
NAGY =00 I
DO 11 I=K,N
IP=IPS (I)
MERET=ABS (UL (IP, K)) « SKALAK (IP)
IF (MERET-NAGY) 11, 11, 10 l
10 NAGY=MERET
IDXFOE=I
11  CONTINUE
IF (NAGY) 13,12, 13 I
12 - CALL KIIR (2)
GOTO 17
13 IF (IDXFOE-K) 14, 15, 14
14 J=IPS (K) ]
IPS (K)=1IPS (IDXFOE)
IPS AIDXFOE)=J
15 KP=IPS(K)
FOELEM=UL (KP, K) l
KP1=K+1
DO 16 I=KPl, N ;
IP=IPS ()
EM=—-UL (IP, K)/FOELEM ]
UL (IP, K)=-EM
DO 16 J=KP1,N S
UL (IP, ))=UL (IP, J)+EM e 3)
BELSG CIKLUS. HASZNALJUNK GEPI KODOT ]
HA A COMPILER NEM AD HATEKONY PROG- 3
RAMOT. -»

16  CONTINUE

17 CONTINUE |
KP=IPS (N) 3
IP (UL (KP, N)) 19, 18, 19 :

18 CALL KIIR (2) 1

19 RETURN
END

0nn

-

SUBROUTINE MEGOLD (NN, UL, B, X) A
DIMENSION UL (30, 30), B (30), X (30), IPS (30)
COMMON IPS ' F
N=NN
NPI=N+1 t

IP=IPS (1)
X (1)=B (iP)

66
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DO21=2N
IP=IPS (1)
Ml=I-1
SUM=0.0
DO 1J=],IMI
1 SUM=SUM+UL (IP, D)+ X (J)
2 X(D=BIP)-SUM

IP=IPS (N)
X MN)=X (N)/UL (IP, N)
DO 41VISSZ=2, N
1=NP1-1VISSZ
1 VEGIGFUT AZ (N—1), ..., 1 ERTEKEKEN
IP=1IPS (1)
PI=l41
SUM=0.0
DO 3J=IPI,N
3 SUM=SUM+UL (IP, J)* X (J)
4 X (D=(X (H-SUM)/UL (IR, )
RETURN
END

0o

a0

SUBROUTINE JAVIT (NN, A, UL, B, X, JEGYEK)
DIMBNsxog )?((338), 30), UL (30,30), B (30), X (30), R (30),
HASZNALJA AZ ABS ( ), AMAXI ( ), ALOGIO( )
FUGGVENYEKET

DOUBLE PRECISION SUM

N=NN
EPS=1.0E—8 6/

ITMAX=16
s « « EPS ES ITMAX A GEPTOL FUGGENEK. e« ¢

XNORM=0.0
DO 11=1N
1  XNORM=AMAXI] (XNORM, ABS (X (1))
IF (XNORM) 3,2,3
2  JEGYEK=-ALOGIO (EPS)
GO TO 10

3 DO 9 ITER=1, ITMAX
DO I=I,N
SUM=0.0
DO 4J=I,N
4 SUM=SUM+A (I, ))e X ()
SUM=B ()-SUM
5  R()=SUM

&7
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« « « LENYEGES HOGY A (I, J) ¢ X (J) KETTOS PON-
" TOSSAGU EREDMENYT ADJON ES A FENTI
+ ES — KETTOS PONTOSSAGU LEGYEN. ¢ » «
CALL MEGOLD (N, UL, R, DX)
DXNORM=0.0 '
DO 61=1,N
T=X(J)
X (=X ()+DX (1)
DXNORM=AMAXI (DXNORM, ABS (X (I)=T))
6  CONTINUE
IF (ITER—1)8,7,8
7 JEGYEK = —-ALOG10 (AMAXI (DXNORM/
8
9

000

[XNORM, EPS))
IF (DXNORM-EPS « XNORM) 10, 10, 9
. CONTINUE
Cc AZ ITERACIO NEM KONVERGALT
CALL KIIR (3)
10 RETURN
END

SUBROUTINE KIIR (IMIERT)
11 FORMAT (S4HOMATRIXFELBONTASBAN ZERUS SOR.)
12 FORMAT (54HOSZINGULARIS MATRIX A FELBON-
TASBAN. A MEGOLD ZERUSSAL OSZT. )
13 FORMAT (54HOJAVIT NEM KONVERGAL. A MATRIX
I3 KOZEL SZINGULARIS. )

C NKI=STANDARD OUTPUT EGYSEG

GO TO (1, 2, 3), IMIERT

1 WRITE (NKI, 11)
GO'TO 10

2 WRITE (NKI, 12)
GO TO 10

3 WRITE (NKI, 13)

10 RETURN

END

Figyeljiik meg, hogy az ALGOL programbeli LU-t a FORTRAN programokban
UL-¢! fejeztitk ki.

ElSfordulhat, hogy egyetlen ALGOL utasitist — kiilondsen indexeket, valamint
logikai vagy Boole-kifejezéseket tartalmazét — csak t6bb FORTRAN utasitissal
tudunk kifejezni. Viszont a forditéprogram bizonyos értelemben kdrpétothat ezért,
-hatékonyabb gépi kod elééllitdsival. Esetiinkben ez kiilondsen igy van. A FORTRAN-
ban a FELBON-beli bels3 ciklus

i(172) DO 16J = KPI,N
: 16 UL (IP, J) = UL (IP, J)+EM « UL (KP, )
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76  FORTRAN, EXTENDED ALGOL, AND PL/I PROGRAMS sec.

IMPROVE: PROCEDURE (K Ay LUs B8, X, DIGITS) 3
OECLARE At®,®) /® URIGINAL MATRIX o/ ,
LU(®,8) FLOAT /o DFCOMPOSITION OF & o/ ,
8(e) /@ RIGHT HAND SIDE s/ ,
X(®) /® APPROX(MATE SOLUTION TO BE IMPROVED ¢/ ,
OIGITS /e WILL BE SET TO ACCURACY OF INPUT X o/ 3

OECLARE (R,OX) (M), (NURMX, NGRMDX, T3 FLOAT,
(le Jo ITER) FIXED BINARY,

ITRAX INTTIAL (12) /¢ USE 2%LOGLO(1/EPS) APPROXINATELY e/

DECLARE OPSUM FLOAT (120

40 IT 1S SSSENTIAL YMAT PRECISION GF DPSUM AND ARGUMENT OF MULTIPLY
USED BELOW 8E TWICE DEFAULT PRECISION. OEFAULT PRECISION CF 6
ASSUNED MERE. ®/ 3

NORRX = O 3
001 =1TON ¢
NORMX ® MAXINORMX,ABSIX(I}1) ¢
END 3
IF KORMX w O THEN
00: OIGITS = -LOGLO(EPS): GO TO CONVERGED: END 3

00 ITER = § TO LTNAX 3
00t = ) TONZ
OPSUM =« 0 ;
00J=1TON
OPSUN = OPSUM * NMULTIPLY(ALL.J3. XtJ)y 12} 3
ENO 3
OPSUM = B(1] - OPSUM
RII) = OPSUM :
END 3
CALL SOLVE(N.LU.R,0X)
NOQRMOX = O ¢
00 [ » 1 TO M
T = Xx1) 3
XU§) = XCI) » OXCI) 3
NORKDX = MAX(NNRMOX,A8SIX{I)-TI} 3
EnD 3
IF ITER a 1 THEN DI{GITS = —LOGIO(MNAX(NORMOX/NORNX,EPSIY 3
IF NORMOX <= EPSSNURMX THEN GO YO CUNVERGED :
END 3
CALL SINGULARL'CON') 3
CONVERGED:
END [MPROVE

€PS INITIAL (1.E=6) /¢ MACMINE DEPENDENT ROUNDOFF LEVEL ¢/,

Vpy -

SINGULAR: PROCEDURE (unY) ¢
OECLARE WHY CMARACTERI(I) 3
IF WMY=*ROW* THEN PUT SKIP(2) LIST

(* ZERO ROW [N DECOMPOSE®) ¢
IF WHYs¢Plve THEN PUT SKIP(2) LIST

(*SINGULAR MATKIX IN OECOMPOSE. SOLVE MILL OIVIDE OY 2ERO.'s 3
IF WHYa*CON® THEN PUT SKIPL2) LIST

('ND CONVERGENCE IN [MPROVE. MATRIX 1S NEARLY SINGULAR.®*) ;
END SINGULAR 3

PTGy
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sec. 2.1 . FLOATING-POINT NUMBERS 1

and L < e < U. If for every nonzero x in F, d, % 0, then the floating-point
pumber system F is said to be normalized. The integer e is called the exponcent,
and the number /= (d,/8 + ... + d/B) is called the fraction. Usually the
integer B'-fis stored using a common integer representation scheme such as
signed magnitude, one's complement, or two's complement.

Actual computer implementations of floating-point representations may
differ in detail from the ideal ones discussed here, but the differences are minor
and can almost always be ignored when dealing with fundamental problems
of roundoff errors.

The following table gives some examples of floating point systems. The
quantity 8'~* is an estimate of the relative accuracy of the arithmetic. We
do not give the precise value of machine epsilon because it depends upon
complicated details, such as the form of rounding.

If the number of digits, ¢, is not an integer, it means that § = 2* and k -¢
bits are available for binary representation of the fraction.

Computer B ] L 74 pi=
Univac 1108 2 2 -128 127 1.49 x 10-8
Honeywell 6000 2 7 -128 127 1.49 x 10-¢
PDP-11 2 A4 -128 127 1.19 % 10~7
Control Data 6600 2 48 -976 1,070  7.11 x 10~33
Cray-1 2 48 -16,384 8,191 7.1 x 1013
iac-1v 2 43 -16,384 16,383 7.11 x 10-1s
Setun (Russian) 3 18 ? ? 7.74 x 10~?
Burroughs B5500 8 13 -51 e 1.46 x 1011
Hewlett Packard HP4S 10 10 -98 100 1.00 x 10~?
Texas Instruments SR-Sx 10 12 -98 100 1.00 x 10-1t
1BM 360 and 370 16 6 —64 63 9.54 x 107
IBM 360 and 370 - 16 14 -64 63 222 x 10-16
Telefunken TR440 16 9§ -127 127 584 x 10-1t
Maniac Il 65536 24 -7 7 125 x10°?

.

Some computers use more than one floating-point number system. For
example, the IBM 360 uses the two base-16 systems listed above. These two
different systems are called short precision and long precision.

The set F is nota continuum, or even an infinite set. It has exactly
2(8 — 1)f"~Y(U — L + 1) + 1 numbers in it. These are not equally spaced
throughout their range but only between successive powers of . Figure 2.1
shows the 33-point set F for the small jllustrative system § = 2,t=3,L =
-1, U=2. .

Because F is a finite set, there is no possibility of representing the con-
tinuum of real numbers in any detail. Indeed. real numbers in absolute value
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14 FLOATING-POINT COMPUTATION CHAP. 2

value) of e. That is, a program can discover the available precision for the
machine it is executing on at execution time. The method we use for comput-
ing an approximation which differs from € by at most a factor of 2 is illus-
trated by the following segment of a Fortran program: .

- — - ‘~ v‘-v ﬁ’ — ‘“‘

EPS = 1.
10 EPS = 0.SeEPS
EPSP1 = EPS + 1.
IF (EPSP1 .GT. 1.) GO TO 10

ﬁn—A.--,‘

—

o, ., gl ... et




EE D |

——oma

-

P2-5.

P2-7.

PROBLEMS 25

(Kahan) (a) How are the numbers {, , and ¢ represented internally in
your computer. Use an appropriate notation, i.e., binary, octal, hexadeci-
mal, etc. How are these numbers represented in the floating-point number
systems of other computers such as the IBM 360, CDC 6600, Univac 1108,
Honeywell 6000, PDP-11, Burroughs 6500, etc.?

(b) Consider the following Fortran program:

H=1/2
X=23.-H
Y=3/5.-H
E = X+X+X)—-H
F=X+Y+Y+Y+Y)—-H
Q=FE
WRITE (6,10) Q
STOP

10 FORMAT(IH, G20.10) '
END

The variable Q can take on several different values depending on the
floating-point arithmetic hardware used by the computer. Try to figure out
the value of Q for computers you are familiar with. Run the program on as
many computers as you can to check your results. Explain your results.

Consider the following two Fortran programs:

EPS=1.
10 EPS = EPS/2.
WRITE (6,20) EPS
20 FORMAT.(1H, G20.10)
EPSP1 = EPS +1
IF (EPSP1 .GT. 1) GO TO 10
STOP
- END

EPS = ],
10 EPS = EPS/2.
WRITE (6,20) EPS
20 FORMAT (1H, G20.10)
1F (EPS .GT. 0.) GO TO 10
sToP
END

Run the programs on your system, and explain the results.

What output is produced when the following Fortran program is run on
various computers with which you are familiar? Try to predict the output
before actually running the program; then run it to confirm your answer.

38
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164 SOLUTION OF NONLINEAR EQUATIONS . CHAP, 7

REAL FUNCTION ZEROIN(AX.BX.F.TOL) .
REAL AX.BX.F.TOL

A ZERO OF THE FUNCTION F(X) IS COMPUTED IN THE INTERVAL AX.BX .

£
-
3

>

X LEFT ENDPOINT OF INITIAL INTERVAL
RIGHT ENDPOINT OF INITIAL INTERVAL
FUNCTION SUSPROGRAM WHICH EVALUATES F(X) FOR ANY X IN
THE INTERVAL AX.BX

L.  DESIRED LENGTH OF THE INTERVAL OF UNCERTAINTY OF THE
FINAL RESULT ( .GE. 0.0)

"R

:

ZEROIN ABCISSA APPROXIMATING A ZERO OF F IN THE INTERVAL AX.BX

NnNONNANNNNNNNANANNNNDN
3

IT IS ASSUMED THAT F(AX) AND F(BX) HAVE OPPOSITE SIGNS

C WITHOUT A CHECK. ZEROIN RETURNS A ZERO X IN THE GIVEN INTERVAL
C AX.BX TO WITHIN A TOLERANCE 4°MACHEPS®ABS(X) + TOL, WHERE MACHEPS
C IS THE RELATIVE MACHINE PRECISION.

c THIS FUNCTION SUBPROGRAM (S A SLIGHTLY MODIFIED TRANSLATION OF
€ THE ALGOL & PROCEDURE ZERO GIVEN IN RICHARD BRENT. ALGORITHMS FOR
€ MINIMIZATION WITHOUT DERIVATIVES, PRENTICE - HALL, INC. (197).
REAL A.B.C.D.E.EPS.FA.FB.FC.TOLI.XM.P.Q.RS
COMPUTE EPS, THE RELATIVE MACHINE PRECISION
EPS « 10
10 EPS = EPS/20
TOLI = 10 + EPS
IF (TOLI .GT. 1.0) GO TO 10
C
C INITIALIZATION
C

onn 0o

A = AX
8 = BX
FA = F(A)
FB « F(B)

1
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ssc 7.2 L SUBROUTINE ZEROIN

C
C BEGIN STEP
c

0C=A
FC = FA
D=8-A
E=D
30 IF (ABS(FC) .GE. ABS(F8)) GO TO 4
A=l
8=C
C=A
FA = F8
FB = FC
FC = FA

[
C CONVERGENCE TEST,
c

40 TOLI = 20°EPS°ABS(B) + 05°TOL
XM = S%C - 8) .
IF (ABS(XM) .LE. TOL1) GO TO %0
IF (FB .EQ. 0.0) GO TO %0

C
C IS BISECTION NECESSARY
c

IF (ABS(E) .LT. TOLI) GO TO 10
IF (ABS(FA) .LE. ASS(FB)) GO TO ™

C
C IS QUADRATIC INTERPOLATION POSSIBLE
c
IF (A .NE. ©) GO TO %0
C
C LINEAR INTERPOLATION
c

S = FB/FA

P = 20°XM°S
Q=10-8
GO TO &

C

C INVERSE QUADRATIC INTERPOLATION

[

S0 Q = FA/FC

R = FB/FC
S = FB/FA
P = S°(20°XM*Q*(Q - R) - (B - AY(R - 1.0)
Q = (Q- LO*R - LO(S - LO)
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SOLUTION OF NONLINEAR EQUATIONS

c .
C ADJUST SIGNS
C

60 IF (P .GT.00)Q » -Q
P = ABS(P)
C
C IS INTERPOLATION ACCEPTABLE
C

IF (2.0°P) .GE. (3.0°XM*Q - ABS(TOLI*Q)) GO TO 2
IF (P .GE. ABS(0.5°E*Q)) GO TO %

E=D

D= P/Q

GO TO ®

C
C BISECTION
<

0D = XM
E=D
C

C COMPLETE STEP
C

W0A=8
FA = FB
IF (ABS(D) .GT. TOL)) B = B + D
IF (ABS(D) .LE. TOLI) B = B + SIGN(TOLI. XM*
F8 = FB)
IF {FB°(FC/ABSIFCY) .GT. 0.0) GO TO 20
GO TO

o
C DONE
C
9% ZEROIN = 8
RETURN
ENO

——

M
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SEC. 5.5
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[
C

nNnn

nnn nNnnn

SUBROUTINE QUANCE

LOCATE NEXT INTERVAL.

72 IF (NIM _EQ. 2%NIM/2)) GO TO 75
NIM = NIM/2
LEV = LEV.|
GoToMN
7S NIM » NIM + |
IF (LEV .LE. 0) GO TO 80

ASSEMBLE ELEMENTS REQUIRED FOR THE NEXT INTERVAL.

QPREV = QRIGHT(LEV)
X0 = X(16)
FOo = F(16)
DOMMI=18
F(2°l) = FSAVE(L.LEV)
X(2°1) = XSAVE(L.LEV)
78 CONTINUE
GO TO »

*%¢ STAGE 8 °*°** FINALIZE AND RETURN
80 RESULT = RESULT + CORII
.
MAKE SURE ERREST NOT LESS THAN ROUNDOFF LEVEL.

IF (ERREST .EQ. 0.0) RETURN
82 TEMP = ABS(RESULT) + ERREST
IF (TEMP .NE. ABS(RESULT)) RETURN
ERREST = 2.0°ERREST
GO TO 82
END

32
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SEC. 9.5 ’

DO 500 1t =y, N
l-MNil-ll
Leggg
G = wp ’

IF (1 .€Q. N) GO TO 430
(o

DO u p
20 U - g9

40 F(G -EQ. 00) GO TO 4715
IF (1 .€Q. MN) GO TO 40
Cc

0040 N
S =00

DO oK a ¢
S5+ UIK.D) * Uik )

c e DOUBLE DIVISION Avo)

DS POSSIBLE UNDERFLOW —
c F-(S/U(l.l))/c

DO K = |,

UKD) = UKDy + F o UK.
450 CONTINUE

40 DONJ LM
Ui =y /G

GO TO «%0

47 D048 L™
420 U - 0.0

90 Ui e Ui + 10
00 CONTINyE

S DMGONALIZATION OF THE BIDIAGONAL FORM
<o FOR KaN STEP T UNTIL 1 DO = o
S10 DO 700 KK o ILN
Kl » N. kK
K=Ki4
iITS=p
weene TEST FOR SPLITTING,

FOR LK STEP . UNTIL 1 DO - . o
20 00k LL =

Ll = K.t
L=t +,
IF (ABSIRVI(LY) + ANORM .€Q.

sessermey
oease

nnA

(2]

ANORM) GO 1O 30
CONTINUE

ANORM) GO TO 368
e RVINY) 1S ALWAYS 2gR0. SO THERE 15 NO EXIT
C THROUGH THg BOTTOM oF THE LOoOP JReon—
IF (ABS(W(LI)) + ANORM .EQ.
s
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4. ALGOL Programs

procedure tredl(n, tol) trans: (a) result:(d, ¢, e2);
I value 5, {ol; integer n; real tol; array a,d,.c, e2; .
comment This procedure reduces the given lower triangle of a symmetric matrix,

begin

end tred 1;

4, stored in the array a[l:n, 1:5), to tridiagonal form using House-
holder’s reduction. The diagonal of the result is stored in the array
d[1:1] and the sub-diagonal in the last 5 — 1 stores of the array ¢[1:#)
(with the additional element e[1]=0). e2[f] is set to equal ¢[s]f2.
The strictly lower triangle of the array a, together with the array ¢,
is used to store sufficient information for the details of the trans-
formation to be recoverable in the procedure &rbakl. The upper
triangle of the array a is left unaltered;
integers, 7, &, I;
real /8, h;
for i:=1 step 1 until n do
dfs) := afi, 5];
for i:=n step —1 until { do
beginl:=s—1; h:=0;
for k:= 1 step 1 until I do
h:= h+as, k] xals, k];
comment if k is too small for orthogonality to be guaranteed,
the transformation is skipped:
if 5 < tol then
begin ¢[s] := e2[s] :=0; go to skip
end;
e2[s):=h; f:=afi,i—1]);
e[f]:=g:=if 20 then —sgrt(h) else sgrt(h);
h:=h—fxg; afi,i—1):=f—g: [:=0;
for j:=1 step 1 until l do
begin g:=0;
comment form element of 4 x1u;
for k:= 1 step 1 until § do
g:=g+aff, k] xals, &);
for k:=7+1 step { until [ do
g:=g+alk,j]xa[i, k];
comment form element of p;
g:=cfj]:=glh; [:=/[+gxali,j]
endy;
comment form K;
h:=fl(h+h);
comment form reduced 4;
for j:==1 step 1 until l do
begin f:=ai,j}; g:=c[j):=clj]—ix}:
for k:=1 step 1 until f do
aff, k] := a[f, k] —f x e[k] —g xa[i, &]
end j;
skip: h:=d[i]; d[f):=a[i,i); ali,i}:=h
end /




o

procedure igl] (n, macheps) lrans: (d, ) exil: (fail);
value 5, macheps; integer n; real macheps; arrayd, ¢; label fail;
comment This procedure finds the eigenvalues of a tridiagonal matrix, T, given
with its diagonal elements in the array d[1:n] and its subdiagonal
elements in the last 5 —1 stores of the array ¢[1:5], using QL trans-
formations. The eigenvalues are overwritten on the diagonal elements
in the array 4 in ascending order. The procedure will fail if any one
eigenvalue takes more than 30 iterations; ’
begin integeri,j,l,m;
real b,¢,1,8,h,p.7.5;
for i:=2 step 1 until n do ¢[s —1] := ¢[§];
en)i=bi=f:=0;
for I:=1 step 1 until n do
begin j:= 0; k:= macheps x (ads (d[I]) + abs(c[1])};
ifo<hthend:=k;
comment look for small sub-diagonal element;
for m :=] step 1 until n do
if abs(c[m]) S b then go to conil;
contl; if m =1 then go to root;
nextit: If § =30 then go to fail;
fi=7+1;
comment form shift;
g:=4d(); p:= (@I +1] —g)/(2Xe[l]); r:=sqri(pt2+1);
df]:=c[f}/(ifp<Othenp—relseptr); h:=g—d[];
for i:==141{ step 1 until n do d[¢] : =4[] —h;
Fi=1+h

comment QL transformation;
p:=d[m]; c:=1,; s:=0;
for i :=m —1 step —1 until / do
beging:=cxe[s]; h:=cxp;
if abs(p) = abds(e[1]) then
beginc:=¢[s|/p. r:=sqri(ct2 +1);
e[i+1]:=sxpXr; s:=cfr; c:=1]r
end
else
begin c:= pfe[s]; r:= sqri(c}2 +1);
efi+1]):=sxe[f] xr; s:=1[r; c:=c|r
end;
pim=cxd[i] —sxg:
dli +1):=h+sX(exg+sxd[s])
end s;
o] := sxp; dll) := cxp;
if abs(e[l)) > b then go to nextit;

root: p:=d[l]+/:
comment order eigenvalue;
fori:=x ] step —1{ until 2 do
if p <d[i —1] then d[{] := d[i —1] else go to com2; -
$:m=2 1]

cont2: d[i}:=p

end!

end LiI;
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7.1-201

SUBROUTINE- TRED1(NM,N,A,D,E,E2)

INTEGER 1,J,K,L,N,I1I ,NM,JP1
REAL A(NM, N) D(N) E(N) EZ(N)
REAL F,G,H SCAL

REAL SQRT ABS SIGN

DO 100 I = 1, N
D(I) = A(I,I)
RRRARNRARRER FOR I.N STEP -1 UNTIL 1 DO eae RARARARAARR
DO 300 II = 1, N
I=N+1-1II
L=1I1-1
Heo0.0
SCALE = 0.0
IF (L .LT. 1) GO TO 130
"';;';;;"SCALE Eou (ALGOL TOL THEN NOT NEEDED) Renamanass
=1
SCALE = SCALE + ABS(A(I,K))

IF (SCALE .NE. 0.0) GO TO 140
E(I) = 0,0

E2(I) = 0.0

GO TO 290

DO 150 K =1, L
A(I,X) = A(I,K) / SCALE
He=H+ A(I,X) * A(I,K)
CONTINUE

E2(1) = SCALE * SCALE * H

F = A(I,L)

G = -SIGN(SQRT(H) F)

E(I) = SCAL

a - H - F .
A(I,L) = F - G

IF (L .EQ. 1) GO TO 270

F=0,0

DO 240 J = 1, L
- 0.0
Q..Q‘.Eﬁt. PORM ELEMENT OF AQU RAARRARRAR
DO 180 K = 1, J
G =G+ A(J,K) * A(I,K)

JPl =J + 1
IF (L .LT. JP1) GO TO 220

DO 200 X = JP1, L
G =G+ A(K,J) * A(I,K)
sasaananan FORM ELEMENT OF P #neanacean

E(J) =G/ H
F =« F e« E(J)* AL
CONTINUE
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260
C

270

280
C

290

HeF/ (H+H)
saasansass FORM REDUCED A **%nanssaa

DO 260 J =1, L

DO 260 K =1, J
NséJ.X) *= A(J,K) - F*E(KX) -G * A(I,K)

CONTI
DO 280 K= 1, L

A(I,K) = SCALE * A(I,X)

H = D(I)
D(I) = A(CI,D)
A(I,I) = H

c 300 CONTINUE

RETURN

END

. 7.1-202

. E'...
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7.1-184

SUBROUTINE TQL1(N,D,E,IERR)

INTEGER 1,J,L,M,N,II,L1,MML,IERR
REAL D(N),E(N)

REAL B,C,F,G,H,P,R,S,MACHEP

REAL SQRT.ABS SIGN

hannananat MACHEP IS A MACHINE DEPENDENT PARANETER SPECIFYING
THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC.

BARRRRRRRA

MACHEP = ?

IERR = 0
IF (N .EQ. 1) GO TO 1001

DO 100 I =2, N
E(I-1) = E(I)

Fe=0.0
Be=20.0
E(N) = 0.0

DO 390 L=1, N
MACHBP * (ABS(D(L)) + ABS(E(L)))
IF (B .LT. H) B =
assseasana L0OK FOR SMALL SUB-DIAGONAL ELEMENT ##asxasanaa
DO 110 M= L, N
IF (ABS(E(M)) .LE. B) GO TO 120
akasananes E(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
THROUGH THE BOTTOM OF THE LOOP *#aaassxas
CONTINUE

IF (M .EQ. L) GO TO 210

IF (J .EQ. 30) GO TO 1000
l.ti.:ti.: %ORH SHIFT RANABARRAR

L1 =L +1

G = D(L)

P = (D(L1) - G) / (2.0 » E(L))

R = SQRT(P*P+1.0)

g(L)G- E(%))/ (P + SIGN(R,P))

DO 140 I = L1, N
D(I) = D(I) - H

aaaﬁn:tfa: gL TRANSFORMATION ftarasansn
P = D(M)
C=1.0

S =0.0
MML = M - L
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7.1-185

RAKRAAARAR FOR r.“-l s‘rap .1 UNTIL L m ce RRAARARARR
DO 200 &I = 1, MML ’ -
I =

) .LT. ABS(E(I))) GO TO 150

goummanzo
ry -.. .;E' [ ]
8v0uncg£Enn

-~
M

SwOunmxn
—~ e & 00
*

(
CONTINUE

E(L) =S =P
D(L)y =C * P
IF (ABS(E(L)) .GT. B) GO TO 130
Ps=D(L) + F
ARRRAREARR ORDER EIGENVALUES RARRRARRRA
IF (L .EQ. 1) GO TO 250
ARARARRAARR FOR I.L STEP -1 UNTIL 2 Do e ARRARRABAAR
DO 230 IT = 2, L
IasLe+2-.131
IF (P .GE. D(I-1)) GO TO 270
D(I) = D(I-1)
CONTINUE

I =1
D(I) = P
CONTINUE

GO TO 1001

##anaansan SET ERROR -- NO CONVERGENCE TO AN
EIGENVALUE AFTER 30 ITERATIONS A#wessanae
IERR = L

RETURN
END

+

L ]
(C*G+s *p(1)

329




g

~ 9

epslon.f rri May 1 17:23:28 1987 1

e Xe e e e e Ko Ko K K e Ne e Ne N2 e e Re Ne Mo Ne N BN e N o N e

10

DOUBLE PRECISION FUNCTION EPSLON (X)
DOUBLE PRECISION X

ESTIMATE UNIT ROUNDOFF IN QUANTITIES OF SI2E X.
DOUBLE PRECISION A,B,C,EPS

THIS PROGRAM SHOULD FUNCTION PROPERLY ON ALL SYSTEMS
SATISFYING THE FOLLOWING TWO ASSUMPTIONS,
1. THE BASE USED IN REPRESENTING FLOATING POINT
NUMBERS IS NOT A POWER OF THREE.
2. THE QUANTITY A 1IN STATEMENT 10 IS REPRESENTED TO
THE ACCURACY USED IN FLOATING POINT VARIABLES
THAT ARE STORED IN MEMORY.
THE STATEMENT NUMBER 10 AND THE GO TO 10 ARE INTENDED TO
FORCE OPTIMIZING COMPILERS TO GENERATE CODE SATISFYING
ASSUMPTION 2.
UNDER THESE ASSUMPTIONS, IT SHOULD BE TRUE THAT,
A IS NOT EXACTLY EQUAL TO FOUR-THIRDS,
B HAS A ZERO FOR ITS LAST BIT OR DIGIT,
C IS NOT EXACTLY EQUAL TO ONE,
EPS MEASURES THE SEPARATION OF 1.0 FROM
THE NEXT LARGER FLOATING POINT NUMBER.
THE DEVELOPERS OF EISPACK WOULD APPRECIATE BEING INFORMED
ABOUT ANY SYSTEMS WHERE THESE ASSUMPTIONS DO NOT HOLD.

THIS VERSION DATED 4/6/83.

A = 4.000/3.0D0
B=2a-1.0D0

C=B+B+B .

EPS = DABS (C-1.0D0)

IF (EPS .EQ. 0.0D0) GO TO 10
EPSLON = EPS*DABS (X)

RETURN

END

[213
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SUBROUTINE TRED1 (NM,N,A,D,E,E2)

INTEGER I,J,K,L,N, II,NM,JP1 N
DOUBLE PRECISION A(NM,N),D(N),E(N),E2(N) i
‘DOUBLE PRECISION F,G,H,SCALE 1

THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TRED1,

NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON.
HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971). 1

THIS SUBROUTINE REDUCES A REAL SYMMETRIC MATRIX
TO A SYMMETRIC TRIDIAGONAL MATRIX USING
ORTHOGONAL SIMILARITY TRANSFORMATIONS.

ON INPUT

NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL W
ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
DIMENSION STATEMENT,

N IS THE ORDER OF THE MATRIX.

A CONTAINS THE REAL SYMMETRIC INPUT MATRIX. ONLY THE
LOWER TRIANGLE OF THE MATRIX NEED BE SUPPLIED.

ON OUTPUT
A CONTAINS INFORMATION ABOUT THE ORTHOGONAL TRANS- .
FORMATIONS USED IN THE REDUCTION IN ITS STRICT LOWER r}
TRIANGLE. THE FULL UPPER TRIANGLE OF A IS UNALTERED.
D CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL MATRIX.

E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL N
MATRIX IN ITS LAST N-1 POSITIONS. E(1l) IS SET TO 2ERO. . '

E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF E. h
E2 MAY COINCIDE WITH E IF THE SQUARES ARE NOT NEEDED.

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, )
MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY }

THIS VERSION DATED APRIL 1983. "

000000000 NNA0NNNN0NNNN0N0NNNNONON00N0NO0N00O00O00O0O

. DO 100 I = 1, N ~
D(I) = A(N,I)
A(N,I) = A(I,I)
100 CONTINUE :
c weeceecees FOR ImN STEP =1 UNTIL 1 DO == ..vevecen.
DO 300 II = 1, N
I=N+1-1II
L=1I<-1
H = 0.0D0
SCALE = 0.0D0
IF (L .LT. 1) GO TO 130
C ... ves.. SCALE ROW (ALGOL TOL THEN NOT NEEDED)
DO 120 K = 1, L
120 SCALE = SCALE + DABS (D (K))

IF (SCALE .NE. 0.0D0) GO TO 140

DO 1253 =1, L
D(J) = A(L,J)
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125

130

140

150

170

200

220
240

245

250

260
280

285

290

A(L,J) = A(I, )
A(I,J) = 0.0D0
CONTINUE

E(I) = 0.0D0
E2(I) = 0.0D0
GO TO 300

DO 150 K= 1, L
D(K) = D(K) / SCALE
H=H+ D(K) * D(K)
CONTINUE

E2(I) = SCALE * SCALE * H

F = D(L)

G = -DSIGN (DSQRT(H),F)

E(I) = SCALE * G

HeH-F*G

D(L) = F - G

IF (L .EQ. 1) GO TO 285
ceseceascs FORM A*U ..........

DO 170 I = 1, L

E(J) = 0.0D0

DO 240 J = 1, L
F = D(J)
G=E(J) + A(J,J) *F
JPl = J + 1
IF (L .LT. JPl) GO TO 220

DO 200 K = JP1, L
G =G + A(K,J) * D(K)
E(K) = E(K) + A(K,J) * F
CONTINUE

E(J) =G
CONTINUE
..... ceese FORMP ..........
F = 0.0D0

DO 245 J =1, L
E(J) = E(J) / H
F=F+ E(J) * D)
CONTINUE

H=F / (H+ H)
...... eess FORM Q ..........
DO 250 J = 1, L
E(J) = E(J) - H * D(J)
cecacenenn FORM REDUCED A .......
DO 280 0 =1, L
F = D(J)
G = E(J)

DO 260 K= J, L
A(K,J) = A(K,J) - F * E(K)

CONTINUE

DO 290 3 =1, L
F = D)
D(J) = A(L,J)
A(L,J) = A(I,O)
A(I,J) = F * SCALE
CONTINUE

- G * D(K)
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300 CONTINUE

RETURN
END
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SUBROUTINE TQL1 (N,D,E, IERR)

INTEGER I,J,L,M,N,II,L1,L2,MML, IERR
DOUBLE PRECISION D(N),E(N)
DOUBLE PRECISION C,C2,C3,DL1,EL1,F,G,H,P,R,S,S2,TST1, TSTZ PYTHAG

THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TQL1,
NUM. MATH. 11, 293-306(1968) BY BOWDLER, MARTIN, REINSCH, AND
WILKINSON.

HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 227-240(1971).

THIS SUBROUTINE FINDS THE EIGENVALUES OF A SYMMETRIC
TRIDIAGONAL MATRIX BY THE QL METHOD.

ON INPUT
N IS THE ORDER OF THE MATRIX.
D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX.

E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX
IN ITS LAST N-1 POSITIONS. E(1) IS ARBITRARY.

.

ON OUTPUT

D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN
ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT AND
ORDERED FOR INDICES 1,2,...IERR-1, BUT MAY NOT BE
THE SMALLEST EIGENVALUES.

E HAS BEEN DESTROYED.

IERR IS SET TO
ZERO FOR NORMAL RETURN,
J . IF THE J-TH EIGENVALUE HAS NOT BEEN
DETERMINED AFTER 30 ITERATIONS.

CALLS PYTHAG FOR DSQRT(A*A + B*B) .

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY

THIS VERSION DATED APRIL 1983.

IERR = 0
IF (N ,EQ. 1) GO TO 1001

DO 100 I = 2, N
E(I-1) = E(I)

F=0.0D0
TST1 = 0.0DO
E(N) = 0.0D0

DO 290 L = 1, N
J=20
H = DABS (D(L)) + DABS(E(L))
IF (TST1 .LT. H) TST1 = H
eesessesss. LOOK FOR SMALL SUB-DIAGONAL ELEMENT ........ .-
DO 110 M= 1, N
TST2 = TST1 + DABS(E(M))
IF (TST2 .EQ. TST1) GO TO 120
sescsecsses E(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
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o THROUGH THE BOTTOM OF THE LOOP .....cccso-
110 CONTINUE .

120 IF (M .EQ. L) GO TO -210

130 ° IF (J .EQ. 30) GO TO 1000
JesJ+1

c tecececnce FORM SHIFT ..cecevess .

Ll=L+1

12 = L1 +1

G = D(L) .

P = (D(L1) - G) / (2.0D0 * E(L))

R = PYTHAG(P,1.0D0)

D(L) = E(L) / (P + DSIGN(R,P))

D(L1l) = E(L) * (P + DSIGN(R,P))

DL1 = D(L1)

He G - D(L)

IF (L2 .GT. N) GO TO 145

c
DO 140 I = 12, N
140  D(I) = D(I) - H
c
145 FeF+H
Cc cevessesss QL TRANSFORMATION ........ .o
P = D(M)
C = 1.0D0
c2=C¢C
EL1l = E(L1)
S = 0.0D0
MML = M - L
C terennnn. FOR I=M-1 STEP =1 UNTIL L DO == ..........
DO 200 II = 1, MML
c3 = c2
c2=c¢C
S2 =8
I=M-1I2
G =C * E(I)
H=C*P

R = PYTHAG(P,E(I))

E(I+l) = S * R

§ = E(I) / R

C=P /R

P=C*D(I) -S*G

D(I+l) = H+ S * (C* G+ S * D(I))
200 CONTINUE

P =-S5 * S2 *C3 *EL1L * E(L) /DLl
E(L) =S * P
D(L) =C * P
TST2 = TST1 + DABS(E(L))
IF (TST2 .GT. TST1l) GO TO 130
210 P =D(L) + F

c eeseesssee ORDER EIGENVALUES ....c0cec..
IF (L .EQ. 1) GO TO 250
C ... «ees FOR I=L STEP -1 UNTIL 2 DO ~-

es e e o

DO 230 II = 2, L
I=L+2~-1I
IF (P .GE. D(I-1)) GO TO 270
D(I) = D(I-1)
230 CONTINUE

250 I=1
270 D(I) = P
290 CONTINUE

GO TO 1001
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c weesesssss SET ERROR =— NO CONVERGENCE TO AN
c EIGENVALUE AFTER 30 ITERATIONS «ocvvvease

N 1000 IERR = L :
! 7 1001 RETURN
END

PN
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SUBROUTINE TQLRAT (N,D,E2,IERR)

INTEGER I,J,L,M,N,II,L1l,MML, IERR

DOUBLE PRECISION D(N),E2(N)

‘DOUBLE PRECISION B,C,F,G,H,P,R,S,T,EPSLON, PYTHAG
character*20 string

THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TQLRAT,
ALGORITHM 464, COMM. ACM 16, 689(1973) BY REINSCH.

THIS SUBROUTINE FINDS THE EIGENVALUES OF A SYMMETRIC
TRIDIAGONAL MATRIX BY THE RATIONAL QL METHOD.

ON INPUT
N IS THE ORDER OF THE MATRIX.
D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX.

E2 CONTAINS THE SQUARES OF THE SUBDIAGONAL ELEMENTS OF THE
INPUT MATRIX IN ITS LAST N-l1l POSITIONS. E2(1) IS ARBITRARY.

ON OUTPUT

D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN
ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT AND
ORDERED FOR INDICES 1,2,...IERR-1, BUT MAY NOT BE
THE SMALLEST EXGENVALUES.

E2 HAS BEEN DESTROYED.

IERR IS SET TO
ZERO FOR NORMAL RETURN,
J IF THE J-TH EIGENVALUE HAS NOT BEEN
DETERMINED AFTER 30 ITERATIONS.

CALLS PYTHAG FOR DSQRT(A*A + B*B)

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY

THIS VERSION DATED APRIL 1983.

IERR = 0
IF (N .EQ. 1) GO TO 1001

DO 100 I = 2, N
E2(I-1) = E2(I)

F = 0.0D0
T = 0,0D0
E2(N) = 0.0D0

DO 2% L =1, N
J=0
H = DABS(D(L)) + DSQRT(E2(L))
IF (T .GT. H) GO TO 105
T=H
B = EPSLON(T)
C=B*B
cessessess LOOK FOR SMALL SQUARED SUB-DIAGONAL ELEMENT ..........
DO 110 M = L, N
IF (E2(M) .LE. C) GO TO 120
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C o cieen ee.ss. E2(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
o o4 THROUGH THE BOTTOM OF THE LOOP ..... cesese
: ‘ (o4

120 IF (M .EQ. L) GO TO 210

130 IF (J .EQ. 30) GO TO 1000
J=J+1

o eesccesees FORM SHIFT ......c...

Ll =L +1

S = DSQRT(E2(L))

G = D(L) |

P = (D(L1) - G) / (2.0D0 * S)

R = PYTHAG(P,1.0D0)

D(L) = S / (P + DSIGN(R,P))

=G ~-D(L)

c
DO 140 I = L1, N
140 D(I) = D(I) - H

c
FeF+H
c eesessessses RATIONAL QL TRANSFORMATION ..........
G = D(M)
IF (G .EQ. 0.0D0) G =B
H=G
S = 0.0D0
MML « M - L
c eeesecesess FOR I=M-] STEP -1 UNTIL L DO == .........n
DO 200 II = 1, MML
I=M-~-1II
P=G*H

R =P + B2(I)
E2(I+l1) = S * R
: S = E2(I) / R
- D(I+1l) = H + S * (H + D(I))
G = D(I) - E2(X) / G
IF (G .EQ. 0.0D0) G = B
H=G*P /R
200 CONTINUE
c
E2(L) = S * G
D(L) = H
C eeennne «+. GUARD AGAINST UNDERFLOW IN CONVERGENCE TEST .....c....
IF (4 .EQ. 0.0D0) GO TO 210
. IF (DABS(E2(L)) .LE. DABS(C/H)) GO TO 210
o E2(L) = H * E2(L)
. IF (E2(L) .NE. 0.0D0) GO TO 130
C 210 P=D(L) +F

c ecsesessses ORDER EIGENVALUES ......cc..
IF (L .EQ. 1) GO TO 250 ’
C eecesesces FOR I=L STEP =1 UNTIL 2 DO == ...cvcecee

DO 230 II = 2, L
I=L+2~-1II
{ IF (P .GE. D(I-1l)) GO TO 270
D(I) = D(I-1)
230 CONTINUE

L 250 I=1
270 D(I) = P
290 CONTINUE

GO TO 1001
ceesssesses SET ERROR == NO CONVERGENCE TO AN
EIGENVALUE AFTER 30 ITERATIONS ..........

(e Ne]

1000 IERR = L
1001 RETURN
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UNDERFLOW IN EISPACK

79>

by Eric Grosse, Bell lLabs,- Murray Hill, NJ
and Cleve Moler, Dana Computer, Sunnyvale, CA

We recently came across an interesting case where EISPACK fails

to give the correct eigenvalues for what appears to be an easy

The difficulties can be traced to floating point underflow.
They are most insidious in double precision arithmetic on the VAX [*]
where the "D" floating point format has an unfortunately small exponent
However, a scaled version of the example can fail on any machine,
including ones which fully conform to the IEEE floating point standard.
We recommend a simple change to the EISPACK top level routine “RS"

which should protect most users from the problem.

matrix.

range.

The example is due to Guenter Ziegler of the University of Augsburg
in ¥West Gemmany and Andrew Odlyzko of AT&T Bell Laboratories. They
were investigating a question raised by Amir Dembo of Brown University
regarding the distribution of rank in real symmetric Hankel

matrices whose elements are +1 and -1.

(A Hankel matrix is constant

along each anti-diagonal, but that’s irrelevant for what concerns us
Oone of their matrices is 9-by-9:

here.)

-1
1
1
-1
-1
1
1
-1
-1

11
1 -1
-1 -1
-1 1
1 1
1-1
-1 -1
-1 1
11

-1
-1
1
1
-1
-1
1
1
-1

-1 1
11
1-1

-1 -1

-1 1
11
1 -1

-1 -1

-1 1

It is not obvious, but

b §
-1
-1

1

1
-1
-1

1
-1

-1 -1
-1 1
b . §
1 -1
-1 -1
-1 1
1-
-1 1
11

this matrix happens to have four eigenvalues
equal to zero, and hence its rank is five. From the many possible
ways to compute the rank of such matrices, Zeigler and Odlyzko

chose to use the EISPACK routine RS (for Real Symmetric) and count
the number of negligible computed eigenvalues. For this example,
running on a VAX in D format double precision, EISPACK incorrectly
claimed there were five eigenvalues on the order of roundoff error.
The same program, running on almost any other computer, would produce
the correct answer, which is only four negligible eigenvalues.

The problem turns out to be a catastrophic underflow in the EISPACK

routine TQLRAT.

the squares of off-diagonal elements.

This is a square-root-free variant of the QR algorithm for
finding eigenvalues of a symmetric tridiagonal matrix. It operates on

On the VAX, the square of

double precision roundoff error is roughly 10~(-34) and the underflow
There is not enough room between those two

limit is only 10~(-38).
numbers for TQLRAT to operate properly.

on other computers, similar

difficulties will occur if the example is scaled by a factor on the
order of the square root of the underflow limit. For IEEE machines,
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the scale factor would have to be about 10~(-150), so such examples are
much less likely in practice, but TQLRAT might not properly handle

any which do turn up.
The easiest solution is to :gplace
CALL TQLRAT (N, ALPHA,BETA, IERR)
in EISPACK routine RS by
CALL TQL1(N,ALPHA,BETA, IERR).

Since TQL1 does not work with the squares of the tridiagonal elements,
it is much less prone to underflow trouble. No change is needed in

the case when eigenvectors are being computed, since RS then calls TQL2
rather than TQLRAT.

An alternate solution, an improved version of TQLRAT, is available from
the authors. But its range of applicability is still limited to a smaller
portion of the floating point exponent range than TQL1l and TQL2.

Ironically, advances in floating point hardware make the need for
square-root~-free algorithms less pressing. On one recent chip,
the builtin square root is even slightly faster than division!

{*] VAX is a trademark of Digital Equipment Corporation.




1929

LINPACK

Users’ Guide

J. J. Dongarra

Argonne National Laboratory

J. R. Bunch

University of California, San Diego

C. B. Moler

University of New Mexico

G. W. Stewart

University of Maryland

S14ITL

Philadelphia/1979



346

I.4

and formats Fortran programs to clarify their structure. It also generates variants of
programs. The "master versions" of all ‘the LINPACK subroutines are those which use complex
arithmetic; versions which use single precision, double precision, and douple precision
complex agithmetic have been produced automatically by TAMPR. A user may thus convert from
one type of arithmetic to another by simply changing the declarations- in his program and
changing the first letter of the LINPACK subroutines being used.

Anyone reading the Fortran source code for LINPACK subroutines should find the loops and
logical structures clearly delineated by the indentation generated by TAMPR.

The BLAS are the Basic Linear Algebra Subprograms designed by Lawson, Hanson, Kincaid
and Krogh (1978). They contribute to the speed as well as to the modularity and clarity of
the LINPACK subroutines: LINPACK s distributed with versions of the BLAS written in
standard Fortran which are intended to provide reasonably efficient execution in most
operating environments. However, a particular computing installation may substitute
machine language versions of the BLAS and thereby perhaps improve efficiency.

LINPACK is designed to be completely machine independent. There are no machine depen-
dent constants, no input/output statements, no character manipulation, no COMMON or
EQUIVALENCE statements, and no mixed-mode arithmetic. A1l the subroutines {except those
whose names begin with Z )} use the portable subset of Fortran defined by the PFORT veri-
fier of Ryder (1974).

There is no need fbr machine dependent constants because there is very little need to
check for “small" numbers. For example, candidates for pivots in Baussian elimination are
checked against an exact zero rather than against some small quantity. The test for singu-
larity 1s made instead by estimating the condition of the matrix; this is not only machine
independent, but also far more rel{able. The convergence of the iteration fn the singular
value decomposition is tested in a machine independent manner by statements of the form

TEST1 = something not small
TEST2 = TEST1 + something possibly small
IF (TEST1 .EQ. TEST2) ...

The absence of mixed-mode arithmetic implfes that the single precision subroutines do
not use any double precision arithmetic and hence that the double precision subroutines do
not require any kind of extended precisfon. It also implies th;t LINPACK does not include

a subroutine for iterative improvement; however, an example in Chapter 1 indicates how such

‘
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a subroutine could be added by anyone with eisy access to mixed-mode arithmetic. (Some of
the BLAS involve mixed-mode arifhnetic. but they are not used by LINPACK.)

Floating point underfliows énd overflows may occur in some of the LINPACK subroutines.
Any underflows which occur are harmless. We hope that the operating system sets underflowed
quantities to zero and continues operation without preducing-any error messages. With some
operating systems, it may be necessary to insert control cards or call special system sub-
routines to achieve this type of underflow handling.

Overflows, 1f they occur, are much more serious. They must be regarded as error situa-
tions resulting from improper use of the subroutines or from unusual scaling. Many precau-
tions against overfliow have been taken in LINPACK, but it is impossible to absolutely
prevent overflow without seriously degrading performance on reasonably scaled problems. It
is expected that overflows will cause the operating system to terminate the computation and
that the user will have to correct the program or rescale the probiem before continuing.

Fortran stores matrices by columns and so programs in which the inner loop goes up or
down a column, such as

D020J =1, N
D0O10I=1,N
A(1,J) = ...
10  CONTINUE
20 CONTINUE

generate sequential access to memory. Programs in which the inner loop goes across a row
cause non-sequential access. Sequential access is preferable on operating systems which
employ virtual memory or other forms of paging. LINPACK is consequentially “column
oriented". Almost all the inner loops occur within the BLAS. and, although the BLAS allow a
matrix to be accessed by rows, this provision is never used by LINPACK. The column orienta-
tion requires revision of some conventional algorithms, but results in significant improve-
ment in performance on operating systems with paging and cache memory.

All square matrices which are parameters.of LINPACK subroutines are specified in the
calling sequences by three arguments, for example

CALL SGEFA(A,LDA,N,...)

Here A 1{s the name of a two-dimensional Fortran array, LDA is the leading dimension of
that array, and N is the order of the matrix stored in the array or in a portion of the
array. The two parameters LDA and N have different meanings and need not have the same

value. The amount of storage reserved for the array A is determined by a declaration in
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C
C MAIN ITERATION LOOP FOR THE SINGULAR VALUES.
c
MM =M
ITER = 0
360 -CONTINUE
c
C QUIT IF ALL THE SINGULAR VALUES HAVE BEEN FOUND.
C ’ .
Cc . .EXIT
IF (M .EQ. 0) GO 10 620
C
c IF TOO MANY ITERATIONS HAVE BEEN PERFORMED, SET
C FLAG AND RETURN.
c
IF (ITER .LT. MAXIT) GO TO 370
INFO = M
c eveoe EXIT
GO TO 620
370 CONTINUE
C
c THIS SECTION OF THE PROGRAM INSPECTS FOR
C NEGLIGIBLE ELEMENTS IN THE S AND E ARRAYS. ON
C COMPLETION THE VARIABLES KASE AND L ARE SET AS FOLLOWS.
C
c KASE = 1 IF S(M) AND E(L-1) ARE NEGLIGIBLE AND L.LT.M
c KASE = 2 IF S(L) IS NEGLIGIBLE AND L.LT.M
c KASE = 3 IF E(L-1) IS NEGLIGIBLE, L.LT.M, AND
C S(L), ..., S(M) ARE NOT NEGLIGIBLE (QR STEP).
c KASE = 4 IF E(M-1) IS NEGLIGIBLE (CONVERGENCE).
c
DO 390 LL = 1, M
L=M-LL
- C . .EXIT
IF (L .EQ. 0) GO TO 400
TEST = ABS(S(L)) + ABS(S(L+1))
ZTEST = TEST + ABS(E(L))
IF (ZTEST .NE. TEST) GO TO 380
E(L) = 0.0E0
c ... EXIT
GO TO 400
380 CONTINUE

390 CONTINUE
400 CONTINUE
IF (L .NE. M - 1) GO TO 410
KASE = 4
GO TO 480
410 CONTINUE
LPl =L +1
MPl =M+ 1
DO 430 LLS = LP1, MPl
LS = M - LIS + LP1

c «..EXIT
IF (Ls .EQ. L) GO TO 440
TEST = 0.0EO

IF (LS .NE. M) TEST = TEST + ABS(E(LS))
IF (LS .NE. L + 1) TEST = TEST + ABS(E(LS-1))
ZTEST = TEST + ABS(S(LS))
IF (ZTEST .NE. TEST) GO TO 420
S(LS) = 0.0EO

c Ll EXIT
GO TO 440

420 CONTINUE
430 CONTINUE
440 CONTINUE

IF (LS .NE. L) GO TO 450

KASE = 3
GO TO 470
450 CONTINUE

IF (LS .NE. M) GO TO 460
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Replacing Square Roots by Pythagor.ean Sums

An algorithm is presented for computing a “Pythagorean sum™s @ b = yal + b? directly from a and b without computing
their squares or taking a square root. No destructive floating point overflows or underflows are possible. The algorithm can be
extended 10 compute the Euclidean norm of a vector. The resulting subroutine is short, portable, robust, and accurate, but not
as efficient as some other possibilities. The algorithm is particularly attractive for computers where space and reliability are

more important than speed.

1. Introduction

It is generally accepted that “square root”™ is a fundamental
operation in scientific computing. However, we suspect that
square root is actually used most frequently as part of an
even more fundamental operation which we call Pythagorean
addition:

a® b=V + B

The algebraic properties of Pythagorean addition are very
similar to those of ordinary addition of positive numbers.
Pythagorean addition is also the basis for many different
computations:

Polar conversion:
rex®y

Complex modulus:

lz| = real(z) @ imagl(z);
Euclidean vector norm:

o]l =0, ®v,® Do,

Givens rotations:

(590)-0)

wherer m x @ p,c = x/r. s = y/r.

The conventional Fortran construction

R = SQRT(Xse2+Ywe2)

may produce damaging underflows and overflows even
though the data and the result are well within the range of
the machine’s floating point number system. Similar con-
structions in other programming languages may cause the
same difficulties.

The remedies currently employed in robust mathematical
software lead to code which is clever, but unnatural, lengthy,
possibly slow, and sometimes not portable. This is even true
of the recently published approaches to the calculation of the
Euclidean vector norm by Blue (1] and by the Basic Linear
Algebra Subprograms group, Lawson et al. {2].

In this paper we present an algorithm pythag(a,b) which
computes ¢ ® b directly from a and b, without squaring
them and without taking any square roots. The result is
robust, portable, short, and, we think, elegant. It is also
potentially faster than a square root. We recommend that the
algorithm be considered for implementation in macbine
language or microcode on future systems.

One of our first uses of pythag and the resulting Euclidean
norm involved a graphics minicomputer which has a sophisti-
cated Fortran-based operating system, but only about 32K
bytes of memory available to the user. We implemented

© Copyright 1983 by Internaticnal Busincss Machines Corporation. Copying in printed form for private use is permitted without payment of
royaity provided that (1) each reproduction is done without alteration and (2) the Journal reference and 1BM copyright notice are included on
the first page. The title and abstract, but no otber portions, of this paper may be copicd or distributed royaity free without (urther permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtsined from the

Editor.
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MATLAB [3]. an interactive matrix calculator based on
LINPACK and EISPACK. In this setting, the space occu-
pied by both source and object code was crucial. MATLAB
does matrix computations in complex arithmetic, so pythag is
particularly useful. We are able to produce robust, portable
software that uses the full range of the Aoating point
exponent.

2. Algorithm pythag
The algorithm for computing pythag(ab) = a @ bis

real function pythag(a,b)
real a,b,p.q.r,s
p:= max(]a|,|b])
q:= min(|a},|b])
while (q is numerically significant)
do
r:= (@/p)
s:mr/(4+r)
P:= p+2esep
q:im= 3%q
od
pythag :== p
The two variables p and g are initialized so that .
pPg=a®band0sg=<p.

The main part of the algorithm is an iteration that leaves
p @ q invariant while increasing p and decreasing q. Thus
when ¢ becomes negligible, p holds the desired result. We
show in Section 4 that the algorithm is cubically convergent
and that it will never require more than three iterations on
any computer with 20 or fewer significant digits. It is thus
potentially faster than the classical quadratically convergent
iteration for square root.

There are no square roots involved and, despite the title of
this paper, the algorithm cannot be used to compute a square
root. If either argument is zero, the result is the absolute
value of the other argument.

Typical behavior of the algorithm is illustrated by

° pythag(4.3). The values of p and g after each iteration are

iteration P ) q
0 4.000000000000 3.000000000000
1 4986301369863 0.369863013698
2 4.999999974188 0.000508052633
3 5.000000000000 0.000000000001

The most important feature of the algorithm is its robust-
ness. There will be no overflows unless the final result
overflows. In fact, no intermcdiate results larger thana @ b

CLEVE MOLER AND DONALD MORRISON

are involved. There may be underflows if | 4] is much smaller
than | a|, but as long as such underflows are quietly set 1o
zero, no harm will result in most cases.

There can be some deterioration in accuracy if both | a]and

=|b| are very near u, the smallest positive floating point

number. As an extreme example, suppose @ = 4x and b
= 3u. Then the iterates shown above should simply be scaled
by u. But the value of g after the first iteration would be less
than u and so would be set to zero. The process would
terminate early with the corresponding value of p, which is
an inaccurate, but not totally incorrect, resuit.

3. Euclidean vector norm

A primary motivation for our development of pythag is its
use in computing the Euclidean norm or 2-norm of & vector.
The conventional approach, which simply takes the square
root of the sum of the squares of the components, disregards
the possibility of underflow and overflow, thereby effectively
halving the floating point exponent range. The approaches of
Blue [1] and Lawson et al. [2] provide for the possibility of
accumulating three sums, one of small numbers whose
squares underflow, onc of large numbers whose squares
overflow, and one of “ordinary-sized™ numbers. Eaviron-
mental inquiries or machine- and accuracy-dependent con-
stants are needed to separate the three classes.

With pythag available, computation of the 2-norm is
asy:

real function norm2(x)

real vector x

reals

sT=0

fori:= 1 to (number of elements in x)
s ;o= pythag(sx(i))

norm2 ;= X

This algorithm has all the characteristics that might be
desired of it, except one. It is robust—there are no destruc-
tive underflows and no overflows unless the result must
overflow. It is accurate—the round-off error corresponds to
a few units in the last digit of each component of the vector.

_ Itis portable—there are no machine-dependent constants or

environmental inquiries. It is short—both the source code
and the object code require very little memory. It accesses
cach element of the vector only once, which is of some
importance in virtual memory and other modern operating
systems.

The only passible drawback is its speed. For a vector of
length a, it requires n calls to pythag. Even if pythag were
implemented efficiently, this is roughly the same as n square
roots. The approaches of [1] and [2] require only # multipli-
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cations for the most {requent case where the squares of the
vector clements do not underflow or overflow. However, in
most of the applications we are aware of, speed is not a major
consideration. In matrix calculations, for example, the
Euclidean norm is usually required only in an outer foop. The
time-determining calculations do not involve pythag. Thus,
in our opinion, all the advantages outweigh this one disad-
vantage.

4. Convergence analysis
When the iteration in pythag is terminated and the final
value of p accepted as the result, the relative error is

e=(pDqg-p)/(p@q)
=-(VTHr=1)/VT+r,

where r = (g/p)’. (We assume throughout this section that
initially p and q are pasitive.)

The values of e and 7 are closely related, and the values of
their reciprocals are even more closely related. In fact,

1 Visr

1
—m-il4 .
[4 r r

Since 1 < Y1 + 7 <1 + r/2,it follows that

2 1 2 3
—+l<=-<=-+-.
r e r 2

Thus 1/e exceeds 2/r by at least 1 and at most 1.5.

To see how 2/r and hence the relative error varies during
the iteration, we introduce the variable

U -
r

The values of u taken in successive iterations are given by
u e u(u + 3.

If the initial value of u is outside the interval =4 < v < -2,
then u increases with each iteration. Hence 4 — o, r — 0,
and p — a @ b. The fact that u is more than cubed each
iteration implies the cubic convergence of the algorithm.
Since initially we have 0 < g =< p. it follows that

0<r=<landd su,

and u increases rapidly {rom the very beginning. If the initial
value of g/ p happens to be an integer, then u takes on integer
values.

The most slowly convergent case has initial values p = ¢
and r = ], The iterated values of u are

iteration 0 1 2 3 4
u 4 196 7761796 >4e10® >10%
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It follows that after three iterations

e<talcosen™
2 u

If the arithmetic were done exactly, after three iterations
the value of p would agree with the true value of p © g t0 20
decimal digits. If there were further itcrations, each one
would at least triple the number of correct digits. Initial
values with ¢ < p produce even more rapid convergence.

With quadratically convergent iterations such as the clas-
sical square root algorithm, it is often desirable to use special
starting procedures to produce good initial approximations.
Qur choice of initial values with ¢ =< p can be regarded as
such a starting procedure since the algorithm will converge
even without this condition. However, since the convergence
is o rapid, it scems unlikely that any more elaborate starting
mechanism would offer any advantage.

5. Round-off error and stopping criterion

In addition to being robust with respect to underflow and
overflow, the performance of pythag in the presence of
round-off error is quite satisfactory. It is possible to show
that after each iteration the computed value of the variable p
is the same as the value that would be obtained with exact
computation on slightly perturbed starting values. The rapid
convergence guarantees that there is no chance for excessive
accumulation of rounding errors.

The main question is when 10 terminate the iteration. If we
Stop 100 soon, the result is inaccurate. If we do not stop soon
enough, we do more work than is necessary. There are several
possible types.of stopping criteria.

1. Take a fixed number of iterations.

The appropriate number depends upon the desired accura-
cy: two iterations for 6 or fewer significant digits, three
iterations for 20 or fewer significant digits, four iterations for
60 or fewer significant digits. There is thus a very slight
machine and precision dependence. Moreover, fewer itera-
tions are necessary for pythag(a.b) with b much smaller than
a.

2. Iterate until there is no change.

This can be implemented in 2 machine-independent man-
ner with something like

ps:=p
pi=p+2esep
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if p = ps then exit

This is probably the most foolproof criterion, but it always
uses onc extra iteration, just to confirm that the final
iteration was not necessary. ’

3. Predict that there will be no change.

The idea is to do a simple calculation early in the step that
will indicate whether or not the remainder of the step is
necessary. If we use f(x) + p to mean that the computed
value of f(x) equals y, then the condition we wish to predict
is

p+2spap.

When 7 is small, then s = £/(4 + r) is less than and almost
equal to 7/4. Consequently, a sufficient and almost equiva-
lent condition is

p+rp/2ap.
1t might seem that this is equivalent to

24742

However, this is not quite truc. Let A be the base of the
floating point arithmetic. For any floating point aumber p in
the range | << p < B, the set of floating point numbers 4 for
which

p+dep
is the same as the set of d for which

l+dal.

In other words, the conditionsp + dp « pand | + d & 1 are
precisely equivalent only when p is a power of 8.

We have chosen to stop when

44rad

There are three reasons for this choice. The quantity 4 + ris
available early in the step and is needed in computing s. The
condition is almost equivalent to predicting no change in p.
The variables p and ¢ have already been somewhat contami-
nated by round-off error from previous steps.

The satisfactory error properties of pythag are inherited
by norm2. It is possible to show that the computed value of
norm2(x) is the exact Euclidean norm of some vector whose
individual elements are within the round-off error of the
corresponding elements of x.

CLEVE MOLER AND DONALD MORRISON

6. Some related algorithms

It is possible 1o compute vai = b by replacing the
statement

ri=(q/p)’
.-;:'in pythag with
rim —(a/p)
The convergence analysis in Section 4 still applies, except
that 7 and u take on segative values. In particular, when a

= b, the initial value of u is —4 and this value does not
change. The iteration becomes simply

pi= P’Jv
q:= —q/3.

The variable p approaches zero as it should, but the conver-
gence is only linear. If @ # b, the convergence is eventually
cubic, but many iterations may be required to enter the cubic
regime.

The iteration within pythag effectively computes p V1 + 7.
The related cubically convergent algorithm for square root
is

function sqrt(z)
real Z,p.r.s
pi=1
riem2-]

while (r is numerically significant)

do
siwmr/(4+r)
- = im p+2esep
rim r-(s/(l-i-z-s))z
od
sqrti=p

Although this algorithm will converge for any positive z, it is
most effective for values of z near 1. The algorithm can be
derived from the approximation

e +_’:4+ Jr'
44

which is accurate to second order for small values of r. The
classical quadratically convergent iteration for square root
can be derived from the approximation

Jl+r=l+§.

which is accurate only to first order. The cubically conver-
gent algorithm requires fewer iterations, but more operations
per iteration. Consequently, its relative efficiency depends
upon the details of the implementation.
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The Euclidean norm of a vector can also be computed by a
generalization of pythag(a.b) to allow a vector argument
with any aumber of components in piace of (c.b). a vector
argument with only two components:

vector-pythag(x)
real vector x.q
real porsit
p:= (any nonzero component of x, preferably the largest)
q := (x with p deleted)
while (q is numerically significant)
do
r ;= (dot product of q/p with itself)
S:m rf(4+1)
P i= p+2esep
q:i=seq
od
vector-pythag := p

The convergence analysis of Section 4 applies to this
algorithm, but the initial value of ¥ may be less than 4. The
convergence is cubic, but the accuracy attained after a fixed
number of iterations will generally be less than that of the
scalar algorithm. Moreover, it does not seem possible to
obtain a practical implementation which retains the simplic-
ity of pythag and norm2.
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