
r.
·r

Computer System Support for S~ientific and Engineering
Computation

Lecture 18 - June 30, 1988 (notes revised July 27, 1988)

Copyright @1988 by W. Kahan and David Goldberg.
All rights reserved.

1 Twenty-Five Years with Mathematical Software

This is a summary of the lecture by Cleve Moler, currently of Ardent Computers, about
writing portable software for solving linear algebra problems.

1.1 Machine Epsilon

Machine epsilon (hereafter referred to as aps) is defined to be the separation between 1 and
the next floating point number, and is often approximated as the smallest floating point
number £ so that 1 + £ > 1. The earliest program that Moler presented, a linear equation
solver from 1963, required the user to specify eps as an input parameter. That program
also used assembly language routines ILOG2, DOT, SDOT, and DAD, a.swell as using fixed size
arrays. The programs in Computer Solution of Linear Algebraic Systems by Forsythe and
Moler {1967) buried eps in the code, setting it equal to o-o, which the user ha.d to replace
with the correct value for his machine. Moler gave an anecdote concerning a program that
went into an infinite loop on the Ardent machine. The reason was it used a routine from
Bell Labs called r1mach, which requires the porter to find the para.meters for his machine in
the comments, and then "uncomment" that piece of code. The code had come from being
run on a Pyramid machine, and it miraculously had run correctly even though the constants
in the code were for neither the Pyramid nor the Ardent computers! The translation of
Computer Solution of Linear Algebraic Systems into Hungarian replaced o-o with 1. 0E-8.

The volume on linear algebra of Handbook for Automatic Computation by Wilkinson and
Reinsch appeared in 1971.1 The routines in this book not only required giving eps a.s an
argument to procedures, but also a variable tol which was used to guard against underflow.
The reason an underflow check was needed, can be seen as follows. Suppose you wanted
to scale a vector (a,b,c) to have norm 1. You would compute the norm a= .Jo.1 + b2 + cl
and replace the vector with (a/ s, b/ s, c/ s). But suppose that the vector is 10-19(1, 2, 1). In
IEEE single precision, the underflow threshold is 1.2 x 10-38• If underflows are flushed to
zero, then the computed value of the norm a will be 2 x 10-19 and the normalized vector
will be (½, 1, ½), which doesn't have norm 1. This situation can be avoided by e."<:plicitly
checking for underflow using the paramater tol.

1Wi1Jcinaon's earlier book has been re£ened to u the Bible. this volume as the New Tes~ment.

1

zqr

.... - .

Lecture 18 - June 30, 1988 (notes revised July 2i, 1988) 2

The book Computer Methods for Mathematical Computations by Forsythe, Malcolm and
Moler (1977) gives the followi~g machine independent code for computing eps

EPS • 1.
10 EPS • O.S•EPS

EPSP1 • EPS + 1
IF (EPSP1 .GT. 1.) GO TO 10

This code appears to compute EPS = ½ ulp(l) on IEEE machines and IBM 370 and
EPS = ¼ ulp(1) on VAX machines. Beyond that, it may not work correctly for machines
with a high precision accumulator, because it might compute EPSP1 in a high precision
accumulator, and compare this high precision number with 1, rather than rounding EPSPl to
the precision used to store floating point numbers in memory. Or even worse, an optimizing
compiler might change the test EPSP1 .GT. 1. to EPS .GT. O, which would compute the
smallest positive representable number rather then eps. A routine that uses this algorithm
for eps is the zero finding program ZEROIH. It requires the user to provide an argument TOL
for the amount of error that can be tolerated in the answer. If TOL is zero, than the result
is computed to within eps.

One of the tricks in ZEROIH concerns finding the midpoint between Band C. The naive
formula CB + C)/2.O may not work on a non-binary machine. For example in two digit
decimal, if B • 9. 7 and C • 9. 8 then B + C is 19.5 and will be rounded to either 19 or
20, thus (B + C) /2. O will be either 9.5 or 10, neither of which is between 9. 7 and 9.8. The
routine ZEROIH uses the formula B + (C-B)/2.0 instead. 2

Not all the routines in Computer Methods for Mathematical Computations compute EPS
directly. For example, the singular value decompostion program SVD adds A.BS (SMALL)
to AHORM, where SMALL is a small quantity computed in the algorithm. When the sum
equals AXORM, the iteration stops. A1J with eps, this calculation can be ruined by optimizing
compilers, and a truly careful routine would be

COMKOR FIEST
TFST • ABS(SKALL) + AHORM
CALL FOO(TFST)
IF (FIEST .EQ. ANORK)

SUBROUTINE FOO
COMMON FIEST
FTEST • TEST

In 1974, EISPACK appeared, which was basically the translation of Wilkinson and
Riesch into FORTRAN. The only unportability in EISPACK concerned eps. It was defined
by KACHEP • ? , so that the programs wouldn't compile unless ? was replaced with a value.
The variable tol was eliminated by scaling the vector (a, b, c) before taking its norm.

In EISPACK III (1983), code for computing eps was provided, namely

A• 4.0D0/3.0DO
10 B • A - 1.0D0

C • B + B + B
2This trick is due to Householder and dates Crom around 1953.

I

l
]

l
l
J
]

~1
;J
'}

(

l
}

{

l
(

]
\

l ~t
'

r.
r

Lecture 18 - June 30, 1988 (notes revised July 27, 1988) 3

EPS • DABS(C-1.0DO)
IF (EPS .EQ. O.OD).) GO 'IO 10

The GO TD 10 is inserted in order to foil optimizing compilers. The reason why this program
works, is that 4. OD0/3. ODO can only be represented ~tly on ternary machines, or in other
words can't be represented exactly on any known machine, and so will be rounded. This is
the only rounding enor that occurs in this program, and so C will be slightly different from
1. The subtraction B • A - 1. ODO guarantees that the last bit of B will be zero, and thus
the last bit of C is zero. To illustrate, consider p = 5 and base /3 = 10. Then

A • 1.3333
B • .33330
C • .99990

EPS • .00010

The only roundoff error occured when computing A, and .0001 is the distance between 1.0
and the next representable number 1.0001. However, EISPACK m doesn't really use eps
directly. Rather it tests for a negligible elements directly as we illustrated above for the
routine SVD in Computer Method3 for Mathematical Computations.

1.2 Iterative Refinement

We earlier studied how to use iterative refinement to improve the accuracy of solutions to
linear systems. When doing iterative refinement, it is essential to compute the residual b-Ax
in a higher precision than the main calculation. The earliest linear equation solver from
1963 used the assembly coded routines DOT and DAD to compute in double precision. The
book Computer Solution of Linear Algebraic Systems has its algorithms written in ALGOL,
and points out that accumulating sums in double precision can't be written in ALGOL 60.
It refers to the routine innerprod, giving a reference for it. However, the FORTRAN
version of the algorithm used the fact that FORTRAN compilers could recognize D = D +
X•Y and compute the product in double precision. The PL/I version used the statement
MULTIPLY(A(I ,J), X(J), 12) to a.ccumula.te, using the fa.ct that the default precision
was 6.

But neither Computer Methods for Mathematical Computations (1976) nor UNPACK
(1979} use iterative refinement. Some of the reasons are

• Its hard to write iterative refinement portably in FORTRAN, because when the work­
ing precision is double precision (as it usually is when doing scientific computing on
all contemporary machines except CRAY and CDC}, there is no portable way to
efficiently code the extended precision operations.

• The extra accuracy you get using iterative refinement is not usually worth it, because
the input data is usually not precise. In fact, the input matrix is often the output of
another program.

• One of the uses of iterative refinement is to give a bound on the accuracy of the
solution, but this information can be easily obtained by estimating the condition
number of the matrix.

:\\\
::{:}~

Lecture 18- June 30, 1988 (notes revised July 27, 1988) 4

1.3 Efficiency

The 1967 book Computer Solution of Linear Algebraic SystemJJ has the.ALGOL comment

comment Inner loop. Only column subscript varies. Use
machine code if necessary for efficiency.

Ideally, portable software shouldn't require writing in machine code, but rather should be
written in such a way that compilers can optimize the code. In the first version ofEISPACK,
the inner loop of TRED1, the routine for reducing a lower triangular matrix to a tridiagonal
one, looks like this

DO 180 K • 1, J
180 G • G + l(J,K) • A(I,K)

JPl • J + 1
IF (L .LT. JP1) GO TO 220
DO 200 K • JPl, L

200 G • G + A(K,J) * l(I,K)

It contains an IF statement so it can't be vectorized on Cray class machines. In EISPACK
III, the loop was rewritten as

DO 240 J • 1, L
F • D(J)
G • E(J) + A(J,J) * F
JPl • J + 1
IF (L .LT. JP1) GO TO 220
DO 200 K • JP1, L

G + G + l(K,J) * D(K)
·ECK)• E(K) + l(K,J) * F

200 COHTIRUE
220 E(J) • G
240 CONTINUE

The code has been changed so that the inner loop does not have an IF statement.
The LINPACK codes address efficiency by using the BLAS, the Basic Linear Algebra

Subprograms designed by Lawson, Hanson, Kincaid and Krogh (1978). Almost all the inner
loops of LINPACK occur inside a BLAS routine, and LINPACK only uses column oriented
BLAS. A typical BLAS routine is SAXPY, which performs the operation y = y + az.
The BLAS are written in FORTRAN but can be replaced by assembly language coded
versions for machines with compilers that can't optimize them. Another advantage of
using the BLAS is that for those who are familiar with it, codes which use it are easier to
understand.3 Unfortunately, the BLAS tend to get in the way of very high quality compilers
and can actually reduce efficiency.

In order to improve portability, LINPACK contains no machine dependent constants,
no I/0, no character manipulation, no COMMON or EQUIVALENCE statements, and no
mixed-mode arithmetic.

3 And in fact, familiarity with BLAS ia ao widespread, tb&t a company wu D&med after SAXPY.

I
I
I
I
]

1
~1

]

)
(

1
(

·)
(

I
{

J
(

I ~j
. :.·.·: --~ '

r
··:r

Lecture 18 - June 30, 1988 (notes revised July 27, 1988) 5

1.4 Comments on EISPACK

EISPACK and LINP ACK cc:ist over a. million dollars to develop, and are very high quality
codes. As mentioned above, EISPACK is now available as EISPACK ill, which has im­
proved in portability (no longer have to modify th~ code to insert your own MACHEP) and
in performance (inner loops are column oriented a.nd vectorizable). However, even in codes
which are so highly developed, problems can be discovered. For example Guenter Ziegler
and Andrew Odlyzko used the routine RS in EISP ACK to compute the eigenvalues of the
following real symmetric matrix :

-1 1 1 -1 -1 1 1 -1 -1
1 1 -1 -1 1 1 -1 -1 1
1 -1 -1 1 1 -1 -1 1 1

-1 -1 1 1 -1 -1 1 1 -1
-1 1 1 -1 -1 1 1 -1 -1

1 1 -1 -1 1 1 -1 -1 1
1 -1 -1 1 1 -1 -1 1 -1

-1 -1 1 1 -1 -1 1 -1 1
-1 1 1 -1 -1 1 -1 1 1

EISP ACK reported that 5 eigenvalues were on the order of roundoff' error using double
precision D format on the VAX. The correct answer is that 4 eigenvalues a.re 0. EISPACK
got the wrong answer due to an underflow bug.

1.5 Pythagorean Sums

The expression Ja,2 + b2 occurs quite frequently. It represents the length of a vector and
the norm of a. complex number among other things. The obvious formula. has two poten tia.l
shortcomings. The first is that it requires a square root function to be available. The second
is that it can underflow or overflow. In IEEE single precision, the maximum representable
number is a.bout 1.7 x 1038, so if a, orb is much bigger than 1.3 x 1019, the computation
of J a2 + 62 will overflow, even though the final answer is well within range. The pa.per
Replacing Square Roots by Pythagorean Sums by Moler a.nd Morrison gives an itera.ti ve
algorithm that avoids these problems. If a ~ b, it starts by setting p = a, and q = b. At ea.ch
step, pl+ q2 = a2 + 62, but q gets smaller a.nd hence p gets bigger. When q is negligible,
then p will be an extremely good approximation to ✓a2 + b2• The rule for computing p and
q is

r = (!)2
p

T
8 = 4+r

p - p + 2p (4 : r) = p + 2p.,

q - ,(-r) =qa
4+r

Since r < 1, clearly , < t, so a.t each iteration q is a.t most ½th the value of the previous
iteration (in fact, it decreases even more rapidly). And p2 +q2 becomes y(l+2s)2 +(sq)2 =
p2(4s+4s2)+p2+(s2 -l)q2 +q2 = (.s+1){4sp2+(.s-l)q2}+p2+q2• Since(.s-l)(q/p)2 = -4s,

30"2

Lecture 18 - Juae 30, 1988 (aotes revised July 27, 1988) 6

the quantity in braces is 0, so p2 + q2 is preserved. The algorithm obviously doesn't involve
square roots, and since p starts with the value max(a,6) and grows at ea.ch step, it will not
underflow nor overflow. The main problem with this algorithm is that it is too slow. It
requires 2 divisions per iteration, but hardware implementations or square root take about
the same amount or time as a single division step. A more practical algorithm would be
faf✓l + (6/a)2, where a= max(a,b).

One interesting facet of this algorithm is that it is noticeably more accurate on machines
supporting gradual underflow. If µ is the smallest positive representable floating point
number, and a = 4µ, b = 3µ, then s =:: .1233 so q =:: .37µ underflows. If underflows
are flushed to zero, then the algorithm stops after 1 iteration, giving an answer of p +
2sp =:: 4.986µ, compared with the correct answer of 5µ.. A machine with gradual underflow
would give a much more accurate result. A related situation occurs with the alternate
formula laf y'l + (b/a)2. This is does not benefit from gradual underflow, but it can have
an error as large as 1 + 3/1/4 ulps on machines that use base /3. A more accurate formula is
a+b/ ((a/b) + y'l + (a/6}2), and this modified formula does benefit from gradual underflow
when a and b are small.

1.6 Comments on IEEE 754

What is the impact of IEEE 754 on writers of portable software?

• The most common languages for portable software, FORTRAN and C, don't have
any language facilities that allow you to exploit the IEEE standard, particularly in
the area of exception handling. The development of libraries such as Apple's SANE
package may help in the future, although SANE on a Macintosh is quite slow.

• Portable software must work on VAX, Cray a.nd mM/370 as well as IEEE machines,
so portable software can't assume that IEEE facilities will be available.

• The ANSI C and FORTRAN Sx efforts are more important to portable software than
the IEEE standard.

A demo of MATLAB indicates how well this particular portable software deals with the
IEEE standard. It correctly computes u = 0/0 as Nan and max(5, u) = Nan, but incorrectly
sets max(u, 5) = 5. The impact of IEEE on mini-supercomputer companies like Ardent is

• Gradual underflow is too slow for vector processors. 4 Both the Weitek chips a.nd all
their imitators require extra cycles for processing denormalized numbers, but vector
processors require predictable computation times. 5

• The IEEE standard contains many fine points that a.re too much trouble to implement.
An example of such a fine point is that when square root is implemented in software,
that software must correctly set the inexact bit.

'Gradu&l undedow wu the moat controversial pan o(t.he standard, and probably acc:ount.ed Cor the
length of t.ime it took to get adopted. A foreign visitor to the U.S. waa advised that. the sights not to be
miaed were Lu Vega.a, the Grand Canyon. and the IEEE sc.&nduds committee meeting.

5Kahan suggest.a that the IEEE standard didn't address vector processors, because CRAY appeared to
have a lock on the market, and wun't interested in cbuging ita arithmetic to conform to the IEEE standard.
Hough: earlier drafts did address pipelined implementations via warning mode; at the instigation of some
Apple people that was taken out to simplify the standard, sub1equently complicaung everybody's life to
1ach u extent that Hough regrets supporting that simplicatioa.

I

I
I.
)

~,
J

)
(

I
}
{

I
(

l
' J

~(

.)

t
.• ..

.
l

l

'

,·

I
l

-;__S- YeAAJ
WrfH

JI/A 7HB/I/IIT/~,f(,_, >IJF7u?f/t,E •

--Cleve, /11,/w,
rJrAo,f Co"1tvf.-,,,
Jv>,,, 1t3 1'168

J . . a
~O~AA:~r-~!~~~~~!l:~

1
---:a· -- :- ·r :- , r r r r . . . • , ___ , 1 • , I

~:t:;I r ~-~-;:--- rr r·~R'r"R;N--s.-:;.:.;1::-M'.;ffr : r :-::--·7 -~
-~ !SOBROIJtiut-soc•.,t"(r{fJ;°A,B, Ith~, f iMl:_·«,x, IT~ 1
r : ; : : : ; ~ , , , r ,
.,,,,,·-·-...
\,

. I

C

~-
•• • ~~ •• 4 4 ~

£F'S.AND ITI1AX A?.E-PAR~S IN TH£ ITERATION
;; :, ., ~; ., Ii i i "i "i :a i ;. ·! ·c ·• ·• ·•

CALLS f'A? su:a~OUT HES l Luu.?, :i)Ji, S:i>u7 AtlD Dri:i> -
: I I I ,, I .I I ·a I • I I.I

i I:

']

]

]

11111111~1: .11111.1 :: 0.1 I I f "." 1 :1·:11 I .. I .I .1 ... 1 .. 1 :~.I))IIIIIIIIGIIOIIOlll:1
111•11,1, ■ aaaNa ■o•••aanaaaasaaaaa•a•••••••o•••Q••••a••••v•••••a•••••••n~a•a•••a•t

1111111111111111 11111111111111111111 ·1111111"111111111111111111111111111111111]

22222222222 .2222z22222z22_22z22222222222222222222z22222222222222222222122222222.

ll33UUl333J3UUU .333 33333 .333J3 .3U33 .JU .333333 .33333 .3333333JU3333333. ;

44444(.4 :44444444 .44444 .44 .44 .44 .44 _444·;44444 .4 .4 .44-.44,.44 .44444444444444'44~1

55 5 5 5 55 55 = • · 55 5 . 55 5 . 55 . 55 5 55 . 5 55 5 5 . 5 55 55 5 . 55 . 55 5 55 5 . 5 55 5 5 . 55 55 55 55 55 5 5 5 5 5 5 5 5 5 ~ ~ ~ ! • .

• ,,,,,,,,,,,, ,,,,1,11,1s11111,,,,,,,a,,,,,,,,,,,1,,,,,,,a,1111111111&&6IIIIS&&,J

717 77 7 7 77 7 7 7 7; 77777711111111111~ 111111;;~-;111111:11111111111111111111111111111 • :

11111111111111111 [11 [11 [~ a: a a~~ 1 L 11 LL 11 [11 ~ 1 a~ [11 •. ·11 : ~ 1 ~ 11 _ ~ 111111111 1 11111 a a 1 1 ·')

999999s'.1999l9999999999999999999999999919S9919!9999999_9!999999!999999999999999 v
lll•ll!.!:O:"QONa•ar••~~~•aDaffaa ■aD•» ■■ ~ ■ -•aeo•4•oe•WMRDMSWD••■aaaM■■O ■■ Nft~Q-"WffNN•(

J
(

·1
(

., j
(

J
(

)
(

r-"\ 1
i .,

• ·:.·}·.'

,.· ..

COMPUTER SOLUTION OF

LINEAR ALGEBRAIC SYSTEMS

GEORGE E. FORSYTHE
Profeuor of Compllter Sdfflu

Stanford UniHrsity

CLEVE B. MOLER
Asnnant Profeuor of Mathemlllia
Unioenity of MicJutan

PRENTICE-HALL. INC.

E N G L E W O O D C L I F F S , N. J.

JDS

...... ··: ••

. _ .. - .

16. ALGOL 60 PROGRAM

Computer programs that use Gaussian elimination or one of its variants
have been written in many programming languages and used on many
computers. Several of these programs have also used some form of iterative
improvement. Together with)Villiam McKeeman we have developed the
set of four ALGOL 60 procedures now to be given as program (16.1). Earlier
versions of this program are found in Forsythe (1960) and McKceman (1962).
See Baumann ti al. (1964) and Naur et al. (1963) for an introduction to and a
definition of the ALGOL 60 language. Several pages of explanation follow our
program.

(16.1) ALGOL 60 program for solving linear systems

begin
comment Linear system package, ALGOL 60 version;
integer array ps(l: 100); comment Global pivot index array. We

assume n S: 100;
procedure DECOMPOSE(n, A, LU);

nlue n; integer n;
real array A, LU; comment A, LU[l :n, 1 :n];
comment Uses global integer array ps;
comment Computes triangular matrices L and U and per·

mutation matrix P so that LU = PA. Stores L - I
and U in LU. Array ps contains permuted row
indices;

comment DECOMPOSE(n, A, A) overwrites A with LU;
begin

real array scalts[l :n];
integer i, j, k, piuotindtx:
real normrow,pioot, si:t, biggtst, mult;
comment Initialize ps, LU and scales:
for i := I step J until n do

begin
p.r[i] ::a ;,•
normrow :=-= O;
for/:- I step 1 until n do
l,eain

LU[i,j] :== A(i,j];
if 11ornrro,~ < abs(LU(i,j]) then nonnrow :=- abs(LU[i,J]);

end;

S8

I !
J

/"8"\.

l

I
]

]

~--.! r.: : .. , .···r ,-
r·

(

(.

• I • . \

(

. 1 ..

:··.-.·:, .: (.
•. ·:·:: (

(•

SEC. 16 ALOOL 60 PROORAM 59

if normrow ::/,: 0 then scala{i] :== I/normrow
else begin scale.s(i] := O; SJNGUUR(O) end;

encl;
comment Gaussian elimination with partial pivoting;
fork :-= l step l 1111til n - 1 clo
begin

biggat :-= O;
!or i :- k step 1 1111til n do
be&in

size :-= ab.s(LUfp.s(i), kD x .rcal,sfps[iD;
if biggt.rt < .rize then

begiD biggut :a: .riz~,· plootindtx :== i end;
end;
i! biggat za O tbea

begin SINGULAR(I); 10 to tndlcloop end;
i! piootindex ¢ k thea

begin
j := p.s(k]; p.s(k] :== ps{piootinda]; ps(pioatindex] := j

end;
picot :== LU(p.s(k], k];
for i :== k + 1 step 1 antil n do
begin

LU(ps[i), k) :== mult := LUl'p.s(i), k]/pivot:
IC ult
or J : = k + 1 step 1 antfl n do

LU(p.s(i],J1 :::a LCl(ps[i],j] - mu/t x LU[ps[k],j];
comment Inner loop. Only column subscript varies. Use

machine code if necessary for efficiency;
end;

endkloop:
end;
Ir LU(p.s(n], n] == 0 then SINGULA.R(l);

end DECOMPOSE,·

procedure SOLYE(n, LU, b, .r);
ftlue n; integer n;
real array LU, b, .x; comment LU{l :n, 1 :n), b, .x[l :n];
comment Uses global integer array ps;
comment Solves Ax - b using LU from DECOMPOSE,·

heefa
latqer i,J;
ml dot;

60 ALGOL 60 PROCillAM

for; := 1 step 1 until n do
begin

dot :== O;
for j :== 1 step 1 antil ; - 1 do

dot :=-dot+ LU{ps(i],j] X .xfJ1;
.x[i] := b(ps[iD- dot,·

end;
for i := n step - 1 1111til 1 do
be&iD

dot :-= O;
for j :cz I + l step 1 1111111 n do

dot :m dot + LUCps[iJ,j] X .xfJ1;
.x[i] :== (.x[i) - dot)/LU(ps(i], i];

end;

SEC. 16

comment As in DECOMPOSE, the inner loops involve only the
column subscript of LU and may be machine coded
for efficiency;

end SOLYE:

procedure IMP RO YE(n, A, LU, b, x, digits);
ftlue n; integer n;

• real array A, LU, b, z; comment A, LV[l :n, 1 :n], b, x[l :n];
real digits;
comment A is the original matrix, LV is from DECOMPOSE, b

is the right-hand side, x is solution from SOLYE.
Improves x to machine accuracy and sets digits to the

real array r, d.x[l :n];
intqer ittr, itmax, i;

• its of x which do not chan e •

real t, normx, normdx, tps.·
real procedure /og(x); nlue x; real x;

log:= .4342944819 X /n(x);
real procedure accumdotprod(n, A, ·i, x, extrattrm),·

ftlue n, i, utrattrm; hateaer n, i; real ~xtratam,·
real arny A, z;
comment This procedure should evaluate the inner product of

the ••

I
·1

I
·1

I
·1

~1
I
I
{

l

(

l

SEC. 16 ALCOL 60 PROGRAM 61

y of the procedure c:innot be written

comment he bo y o accumdotprod could be written as
follows in terms of the code procedure innerprod on
p. 206 of M~rtin, Peters, and Wilkinson (1966): •

end;
begin

comment (code);
accumdotprod :== 0-0; comment 0-0 indicates code result;

tps := 0-0; comment Machine-dependent round-off level;
itmax := 0-0; comment Use approximately 2 x log (1/eps);
nor
for ; : == I step 1 until n do

lfnormx < abs(x{iD then normx := abs(x[i]);
if normx = 0 then .

begin digits := -log(eps); go to converged end;
for iter := 1 step 1 until itmax do
begin

for i : ::s 1 step I until n do
r[i] := -accumdotprod(n, A, i, x, -b[iD;

SOLYE(n, LU, r, dx);
normdx := O;
for i := 1 step I until n do
begin

t := x[i];
.x{i] := x{i] + dx[i];
if normdx < abs(x[i] - t) then normd:c := abs(x[i] - t);

end;
if iter = l then

digits :== -log(iC nornid.t.,:. 0 then normd:r/11orm."C
else eps);

if normdx ~ eps x norm."C then go to com·erged;
end iter:
comment Iteration did not com·crgc:
SING ULA R(2);
com·ergtd:

end IMPROVE:

: ·-~·· :-. : -

62 AL00L 60 PROGRAM.

procedure SJNGULAR(why):
nlue why: Integer why:

SEC. 16

comment Prints error messages for DECOMPOSE and
IMPROYE;

comment outstring means write;
be&fa

if why az O thea
outstringf Matrix with zero row in DECOMPOSE.j;

if why- I tbm
outstring(•Singular matrix in DECOMPOSE. SOLYE will

divide by zero.j;
Ir v.•hy c: 2 then

outstringf No convergt!nce in IMP ROYE. Matrix i.r nearly
.1ingular. j:

end SINGULAR,·
end Unear system package, ALGOL 60 version

Nott!s on the ALOOL program: DECOMPOSE (n, '4,LU) uses elimina­
tion to find n-by-n triangular matrices L and U so that LU = PA, where PA
is the matrix A. with its rows interchanged. The interchange information is
stored in the global array ps, and the matrices L - I and U are stored in LU.

SOLYE (n, LU, b, x) uses the LU factorization from DECOMPOSE
to find an approximate solution to a single system of equations, b = b.

IMPROYE(n, A.,LU, b, x, digits) requires a copy of the original matrix
.A., its LU decomposition, a right-hand side b, and the approximate solution
x computed by SOLYE. It carries out the iterative improvement process

. until, if possible, xis accurate to machine precision. It also provides an esti­
mate digits or the accuracy or the first approximation. The value of digits
is, roughly, the number of decimal digits of .T which are not changed by the
iteration. This is a measure of the condition of A..

SJNGULA.R (why) is used by the other procedures to indicate the
occurrence or an error condition.

In practice. these procedures are used by another procedure or executive
program written to handle a specific class of problems. As an example, we
have included in Sec. 18 a procedure which inverts a matrix.

DECOMPOSE uses elimination, basic::illy in the form described in
Sec. 9. Temporarily ignoring scaling and pivoting. we c:in express the central
calcuhition. the elimination. by

(16.2) for j ::a k + I step I antil n do

a,., :== a,.1 - (a,..Jau) :•: a •. ,.

::.- .~·- ~ • • • . . .

.... •.• ·: • •• 4·.·.· ••• •

·:.:·.
• ··.-~ t • • _.· • •• • .. , ~.-;:. _ .

..• .

j

J
~

l
·1

]

1

t
r

17. FORTRAN, KITERJESZTETT ALGOL
ES PL/1 PROGRA~OK

Az elozc5 fcjezetben leirt cljarasok legtobb r6mcte kozvetlcniil lcfordithat6
mas algoritmikus szamit6gepnyelvrc. Ezt tes.mik most a FORTRAN egy clfogadott
stanc:fardinU8s4val, egy kiterjesztctt ALGOL Jcookret realizalasaval cs a PL/1 cgy
elozetcs specifikaci6javal kapcsolatban. Mindcgyilc program illu.sztra.Jja maguknak
az eljarasoknak bizonyos reszeit, valamint a ff!fbaszn8Jt nyelveket es sz.arnitogepeket.
(Javasoljuk az Olvas6nak,0 hogy tajekoz6djon azokrol a nyelvekr516s szamit6gepek­
r61, amelyekkcl ncm ismcr&.)

Ugy gondoljuk, hogy az altalunk hasm'1t FORTRAN nyelv megfelcl az American
Standard A.uociation (1964) '1tal lclrt, legtobbszor ASA FORTRAN-nak nevczctt
nyelvnek. Amennyire cz lehetscges, mapban foglalja harom FORTRAN dialcktus:
az IBM 7090/94-rc keszitctt FORTRAN IV, a CDC 1604-rc kcszitett FORTRAN 63,
cs az IBM System/360-ra kcsz:ftett Basic Programming Support FORTRAN kozos
vonisait (lasd International Business Machines (1965a), Control Data Corp. {1963),
cs International Business Machines (196Sb)). Elkeriiltillc az olyan vonasokat, mint
a tlpusdcklaraci6k, rcl4ci6s kifcjezesek, cfmkes kozos tarolas es valtoztathat6 tomb­
dimcnzi6k, amelyek hasmosak lchetnenck, de egyuttal killonboz6 formajuak is,
cs cgy vagy tobb rendszcrben ncm ~ lctc:znck. Ncbany kisebb osszeegyeztethctctlcn­
seg elofordul: a JAV1T-ban a kctt6s pontossag deklarac:i6janak a formaja, a FEL­
BON es JAVlT-ban az ABS, AMAXl a ALOGI0 fiiggvcnynevck, valamintaz out­
put egysegszar a KIIR-ban. :E pootokon csetleges valtoztatasokat eszkozolvc, a szub­
rutinok mas FORTRAN rendszerckre is atvihctok.

(17.1)

C

FORTRAN program linearis egyenletrendszcrck mcgolda.sara

SUBROUTINE FELBON (NN, A, UL)
DIMENSION A(30, 30), UL(JO, 30), SK.ALJ\K.(30), IPS(30)
COMMONIPS
N=NN

C MEGADJUK IPS, UL ES SKALAK KEZDETI ERTEKET
DOS 1=1, N

IPS (1)=1
SORNOR=0.0
DO 2J=l,N

UL (I, J)=A (I, J)
IF (SORNOR-ABS (UL (I, J))) l, 2, 2

1 SORN OR =ABS (UL (I, J))
2 CONTINUE

IF (SORNOR) 3, 4, 3
3 SKALAK (1)= l.0/SORNOR

GOTOS
4 CALL KUR (1)

SKALAK (l) :::z0.0
5 CONTINUE

S 1Jac,ril alsct,ni problauk 6S

l.\'2..

66

: .. ·

C
C
C

C
C
C

C

OAUSS FaLE KIKOSZOBOW R6ZLEGES. FOELEM•
KIV ALAsZT ASSAL
NMl=N-1
DO 17 K= l,NMI

NAOY=O.O
DO 11 l=K,N

IP=IPS (I)
M~RET=ABS (UL (IP, K))• SKALAK (JP)
IF (~RET-NAGY) II, 11, 10

10

11

12

NAGY=M~RET •
IDXFOE=I

CONTINUE
IF (NAGY) 13, 12., 13

CALLKIIR(2)
GOTO 17

13 IF (IDXFOE-K) 14, IS, 14
14 J=IPS(K)

JPS {K)= JPS (IDXFOE)
JPS (IDXFOE)=J

IS KP==IPS(K)
F6ELEM=UL(KP,K)
KPl=K+l
DO 16 laaK.Pl, N

IP=IPS (I)
EM= - UL (IP, K)/FOELEM
UL(IP,K)=-EM
DO 16 J =KPI, N

J
UL (IP, J)=UL (IP, J)+EM• UL CX,, J)

BELS6 CIKLUS. HASZNALJUNK GUI K6DOT
HA A COMPILER NEM AD HAttKONY PROG­
RAMOT.

16 CONTINUE
17 CONTINUE

KP=IPS(N)
IP (UL (KP, N)) 19, 18, 19

18 CALL KIIR (2)
19 RETURN

END

SUBROtrrINE MEGOLD (NN, UL, B, X)
DIMENSION UL (30, 30), B (30), X (30), IPS (30)
COMMON IPS •
N=NN
NPl=N+l

IP=IPS (I)
X (l)=B (IP)

j

.,
I

I
I
I

·1

.I
i

')

~J
]

)
(

J
(

I
t

J
(

~
1

~1
.: :/-:--~ ;:,;~~?Jl

,
l

: r:
.:r

r

C

DO 2 1=2., N
IP=IPS {I)
IMl=l-1
SUM=0.0
DO 1 J=l, IMI

I SUM=SUM+UL OP, J)•X (J)
2 X (I)=B IP)-SUM

JP=IPS(N)
X (N)=X (N)/UL (IP, N)
DO 4 IVISSZ=2., N
I-= NPI -IVJSSZ

C I WGIGFUT AZ {N-1), ... , 1 ERTacElCEN
IP=IPS (J)
IPl=I+ 1
SUM=0.0
DO lJ=IPI, N

3 SUM=SUM+UL (IP, J)•X (J)
4 X (l)=(X (1)-SUM)/UL (IP, I)

RETURN
END

SUBROtmNE IA vtr (NN, A, UL. B, X, JEGYEK)
DIMENSION A (30, 30), UL (30, 30), B {30), X (30), R (30),

DX(30)
C HASZNALJA AZ ABS (), AMAXl (), ALOGI0 {)
C FOGG~KET

DOUBLE PRECISION SUM
C N=NN ~

EPS=l.OE-8 .,
ITMAX=16

C • • • EPS ES ITMAX A GEPTOL FOGGENEK. • • •
C

C

XNORM=0.0
DO 11=1,N

1 XNORM =AMAXI (XNORM, ABS (X (I)))
IF (XNORM) 3, 2. 3

2 JEGYEK= -ALOGI0 (EPS)
GOTO 10

3 DO 9 llER=I, ITMAX
DO 1=1, N

SUM=0.0
DO 4J=I, N

4 SUM=SUM+A (l, J)•X (J)
SUM= B ())-SUM

5 R (l)=SUM

31.S

67

·-· ... _.

C • • • ·L~NYEGES HOGY A (I, J) • X (J) KETIOS PON-
C • TOSSAGU EREDMENY'T ADJON 6 A FENTI
C + 6 - KE'ITOS PONTOSSAGO LEGYEN. • • •

CALL MEGOLD (N, UL,.~ DX)
DXNORM=0.0
DO 61=1,N

T=X(I)
X (l)=X (l)+DX (I)
DXNORM =AMAXI (DXNORM, ABS (X (1)-T))

6 CONTINUE
IF (IT.ER.-1)8, 7,8

7 JEGYEK=-ALOGI0(AMAXI (DXNORM/
/XNORM, EPS))

8 IF (DXNORM-EPS • XNORM) 10, 10, 9
9 CONTINUE

C AZ ITERACI6 NEM K.ONVERGALT
CALLKIIR (3)

10 RETURN
END

SUBROUTINE KIIR (IMIER.1)
11 FORMAT (54HOMATRIXFELBONTASBAN ZEROS SOR.)
12 FORMAT (54HOSZINGULARIS MATRIX A FELBON-

TASBAN. A MEGOLD ZERUSSAL oszr.)
13 FORMAT (54HOJAVIT NEM K.ONVERGAL. A MATRIX

KOZEL SZINGULAR.IS.)
NKl=3

C NIC.I=STANDARD OUTPtrrEGYS~G
00 TO (1, 2. 3), IMmR.T

1 WRITE (NKI, 11)
GO·TO 10

2 WRITE (NKI, 12)
GOTO 10

3 WRITE (NKI, 13)
IO RETURN

END

Figyeljiik meg, hogy az ALGOL programbeli LU-ta FORTRAN programokban
ULcl fejeztilk ki.

E16fordulhat, hogy cgyetlen ALGOL utasitast - killonosen indexeket, valamint
logilcai vagy Boole-kifejezeseket tartalmaz6t - c:sak tobb FORTRAN utasitassal
tudunk kifejezni. Viszont a fordft6program bizonyos crtelemben karp6tolhat eurt,

• hatckooyabb gcpi kod e164llftasaval. E.setilDkben ez ldilon&eu fgy van. A FORTRAN­
ban a FELBON-beli bels6 cildus

;(17.2) DO 16 J = KPI, N

16 UL(IP,J) == UL(IP,J)+EM•UL(KP,J)

68

.. .. ·.·. ...

!

1
~

)

I
I
I

l

·1
]

i

]

,~]

J
]

I

J
'·
I

~
l

I 1
1 I ~.l

... - ---~~-
: : ... · .,_::.. :-·

76 R>R~N. EXTENDED ALOOL, AND PL/I PROORAMS SEC.. 17

IN,-OVE: PltOCEOUlE IN, A, LUe I, X, DIGITSI ;
DECLARE &t•,•I I• ORIGINAL "'TRIX •I,

LUC•e•I FLnAT I• DFCONPOSITION OF A •I,
tl• I I• RIGHT HANO SIDE •I ,
11•1 I• &PPROIINATE SOLUTION JO IE IMPROVED •I,
DIGITS I• WILL IE SET TO ACCUAACY OF INPUT I •I:

DECLARE ca.011 CNI, INURNI, NOlNDI, Tl FLOAT,
ll, Je ITEAI FIXED IINARY,
fPS INITIAL lleE•61 I• MCHINE DEPENOENT ROUNDOFF LEVEL •I,
ITNAI INITIAL 1121 I• USE Z-LOGlOll/EPSI .VPROIINATELY •I

DECLARE OPSUN FLOAT llZI
I• IT IS fSSENTl&L •M&T PRECISION OF DPSUM IND &AGUICENT OF NUL.TIPLY

USED IELDW IE TWICE DEFAULT l'AECISION. DEFAULT PAECISION CF 6
ASSURED HERE. •I;

NOR"X • 0;
DO I • l TO N :

NOANX • NAICN0lNX,AISlllll11
END;
IF KOAMI • 0 THEN

DO; DIGITS• -LOGlOCEPSI: GO TO CDNYERCEO: END

DO ITE•. l TO ITNAI a
DO I • l TO N ;

OPSUM • 0 ;
00 J • 1 TO N ;

DPSUM • OPSUN • NULTIPLYC&ll,JI, ICJI, 121
END ;
DPSUN • 1111 - DPSUN
A 111 • DPSUN :

END;
CALL SOLYECN,lU,R,011
NOANDI • 0 :
DO I • 1 TO N ;

T•IIII:
1111 • 1111 • D1111:
NORNUX • N&ICNnlNDl,&BSCXCII-TII

ENO ;
IF ITEl • 1 THa. DIGITS• -LOGlOIN&llNORMOl/NOR"l•EPSII
IF NOR~Ol <• EPS•NUlMI THEN GO TO CONVERGED:

ENO;
CALL SINGULAAl•CnN•I
CONVERGED:
END INPAnve:

SINGULARS NOCEDIJRE CWHYI ; ~
DECLARE NHY CHAA&CTfRCJI ;
IF Wtff••Row• THEN PUT SKIPCZI L ST

l'ZERO •ow IN DECO"POSE'I:
IF WHY•'PIY• THEN PUT SKIPCZI LIST

c•SINGUl.AR "ATMII IN DECO-POSE. SOLVE WILL DIVIDE IY zeaa.•,
IF WHY••CON• THEN ,UT S~IPC21 LIST

C•NO CONYERGfNCl IN l"PROYE. "ATAll IS NE&lll.Y SINGULAA.•I ;
IND SINGULAR I

j.
i
i
I·
j•

I
!"

t;
I. r
(i
r,
t:

~
t=
I

~
l~
j·

t

~
f.

.. l
.,

\

COMPUTER METHODS FOR

MATHEMATICAL COMPUTATIONS

GEORGE E. FORSYTHE

MICHAEL A. MALCOLM

Jhpartment of Computer Sclmu
UniHrnty of Wataloo

CLEVE B. MOLER

lhpartment of Mathematicz and Statisticz
Uni,enlty of New Mexico

PRENTICE-HALL. INC.

ENOLEWOOD CLIFFS, N. J. 07632

.I
]
~

I
I
I

·1
I

·1
.

]
']

~]

]
.
]

(

.1
1
(

J
{

J
l

J
l

.~,,
·c

~

...........

SEC. 2.1 FLOA11N0-POINT NUMBERS 11

and L ~ t ~ U. JC for every nonzero x in F, d1 ¢ 0, then the floating-point
number system Fis said to be normalized. The integer~ is called the ~xpon~nt,
and the number/= (d,/ P + ... + d,//1') is called the fraction. Usually the
integer P'•/is stored using a common integer representation scheme such as
signed magnitude, one's complement, or two's complement.

Actual computer implementations of ftoating-point representations may
differ in detail from the ideal ones discussed here, but the differences are minor
and can almost always be ignored when dealing with fundamental problems
or roundoff' errors.

The following table gives some examples or floating point systems. The
quantity p• -, is an estimate of the relative accuracy. or the arithmetic. We
do not give the precise value of machine epsilon because it d~pends upon
complicated details, such as the form or rounding.

If the number of digits, t, is not an integer, it means that p = 2• and k • t
bits are available for binary representation of the fraction.

Computer , I L u ,,-,

Univac JJOS 2 27 -128 127 1.49 X 10-1

HoncyweJ16000 2 27 -128 127 J.49 X 10-1

PDP-11 2 24 -128 127 1.19 x 10-'
Control Data 6600 2 48 -916 J.070 7.JJ X JO-IS
Cray-I 2 48 -16,384 8,191 7.lJ X JO-IS
IJJiac-lV 2 48 -16,384 16,383 7.11 X JO-IS
Setun (Russian) 3 18 ? ? 7.74 X 10-'
Burroughs BSSOO 8 13 -SI 77 1.46 X 10-11

Hewlett Packard HP4S JO 10 -98 100 1.00 X 10-f
Teus Instruments SR-Sx 10 12 -98 100 1.00 X 10-11
IBM 360 and 370 16 6 -64 63 9.54 X 10-'
IBM 360 and 370 16 14 -64 63 2.22 X 10-1'
TcJe(unkcn TR440 16 9¼ -127 127 5.84 X 10-11
Maniac II 65536 lff -7 7 1.25 X 10-,

Some computers use more than one floating-point number system. For
example, the IBM 360 uses the two base-16 systems listed above. These two
different systems arc called short precision and long precision.

The set Fis not a continuum, or even an infinite set. It has exactly
2(/J - l)JJ1

-
1(U - L + 1) + 1 numbers in iL These are not equally spaced

throughout their rang_c but only between successive powers of p. Figure 2.1
shows the 33-point set F r or the small illustrative system /J = 2, t = 3, L =
-1, U= 2.

Because Fis a finite set, there is no possibility of representing the con­
tinuum of real numbers in any det:iil. Indeed. real numbers in absolute value

-·· +

. ;·-.. :: .. _ ... :~·.::-:-. .-. , ..

14 FLOATINO•POlNT COMPUTATION CHAP. 2

value) of e. That is, a program can discover the available precision for the
machine it is executing on at ex~ci,tion time. The method we use for comput­
ing an approximation which differs from £ by at most a r actor of 2 is illus­
trated by the following segment of a Fortran program:

EPS -1.
10 EPS - O.S•EPS

EPSPI - EPS + I.
IF (EPSPl .OT. I.) 00 TO 10

j

;]

I

I
' ')

]
!

·1

~1
(

I
{

l
(

J
(

J
(

J
(

J
(

1
l

~-1
-•. ::~/r·~,

I
r
I
I
r
I

i

I
i

PROBLEMS 25

P2-5. (Kahan) (a) How arc the numbers¼, J, and¾ represented internally in
your computer. Use an appropriate notation, i.e., binai:y, octal, hexadeci­
mal, etc. How are these numbers represented in the floating-point number
systems or other computers such as the mM 360, CDC 6600, Univac 1108,
Honeywell 6000, PDP-11, Burroughs 6500, etc.?
(b) Consider the following Fortran program:

H - 1./2.
X-2./3.-H
Y-3J5. -H
E - (X+X+X) - H
F - (Y+Y+Y+Y+Y) - H
Q -FIE,
WRITE (6,10) Q
STOP

10 FOR.MAT(IH, 020.JO)
END

The variable Q can take on seYeral different values depending on the
floating-point arithmetic hardware used by the computer. Try to figure out
the value or Q for computers you arc familiar with. Run the program on as
many computers as you can to check your results. Explain your results.

Pl-6. Consider the following two Fortran programs:

EPS -1.
10 EPS - EPS/2.

WR.ITE (6,20) EPS
20 FORMA T.(JH. 020.10)

EPSPl - EPS + 1
IF (EPSPl .OT. 1.) 00 TO 10
STOP

• END

EPS - 1.
JO EPS - EPS/2.

WR.ITE (6,20) EPS
20 FORMAT (1H, 020.10)

lF (EPS .OT. 0.) 00 TO 10
STOP
END

Run the programs on your system, and explain the results.

P2-7. What output is produced when the following Fortran program is run on
various computers with which you are famili:ar? Try to predict the output
before act1mlly running the program; then run it to confirm your answer.

. -: . . :

164 SOLUTlON Of NONUNIWl EQUATIONS

REAL FUNCTION ZEROIN(AX.BX.F.TOLJ
REAL AX.BX.F.TOL

CHAP. 7

C
C
C

A ZERO OF THE FUNCTION F(X) IS COMPUTED IN THE INTERVAL AX.BX .

C INPUT-
C
C AX
C IX
c·,
C
C TOL
C
C
C

LEFT ENDPOINT OF INmAL INTERVAL
RIGHT ENDPOINT OF INn'IAL INTERVAL

FUNCTION SUlftROORAM WHICH EVALUATES F(X) FOR ANY X IN
THE INTERVAL AX.IX

DESIRED LENGTH OF THE INTERVAL OF UNCERTAINTY OF THE
FINAL RESULT (.GE. 0.0)

C OUTPUT ..
C
C ZEROIN ABCISSA APPROXIMATING A ZEllO OF F IN THE INTERVAL AX.BX
C
C
C
C
C
C
C
C
C
C
C

n' IS ASSUMED THAT F(AX) AND F(BX) HAVE OPPOSITE SIGNS
WITHOUT A CHECK. ZEROIN RETURNS A ZERO X IN THE OIVEN INTERVAL
AX.BX TO WITHIN A TOLERANCE ••MACHEPS•ABS(X) + TOL. WHERE MACHEPS
IS THE RELATIVE MACHINE PRECISION.

THIS FUNCTION SUBPROORAM IS A SLIGHTLY MODIFIED TRANSLATION OF
TH~ ALOOL 60 PROCEDURE ZERO GIVEN IN RICHARD BRENT. ALCiORITHMS FOR
MINIMIZATION WITHOUT DERIVATIVES. PRENTICE• HALL. INC. (1973).

REAL A.B.C.D.E.EPS.FA.FB.FC. TOLi .XM.P .Q.R.S
C
C COMPUTE EPS. THE RELATIVE MACHINE PRECISION
C

EPS • 1.0
10 EPS • EPS/2.0

TOLi • 1.0 + EPS
IF (TOLi .OT. 1.0) GO TO 10

C
C INITIALIZATION
C

A• AX
8 • BX
FA • F(A)
FB • F(B)

!
., . . •

I

I
-1

l
]

·1
]

~I
r-:1

]

J
t

J
(

J
(

1
(

t

l
I

~.1
I
l

.. --··
_ _.. : . : . l

~
SEC7.2 SUBROU'l1NE ZEROIN 165

C
C BEGIN STEP
C

lO C • A
i FC • FA

J
D•B•A
E•D

JO IF (AIS(FQ .GE. AIS(fl)) GO TO 40

t A•I

I l•C
C • A
FA• Fl

Fl•FC ✓ FC • FA i CONVERGENCE TESt

40 TOLi • U-EPS•AIS(ll + O.S-TOL
XM • .$-(C • ll
IF (ABS(XM) .LE. TOLi) GO TO 90
IF (Fl .EQ. 0.0) GO TO 90

C
C IS IISECTION NECESSARY
C

If (ABS(E) .LT. TOLi) GO TO 70
IF (ABS(FA) .LE. ABS(F8)) GO TO 70

-'
C
C IS QUADRATIC INTERPOLATION POSSIBLE
C

IF (A .NE. C) GO TO 50
C
C LINEAR INTERPOLATION
C

S • FB/FA
P • 2.0-XM•S
Q • 1.0 • S
GO lO 60

~ C
C INVERSE QUADRATIC INTERPOLATION
C

SO Q • FA/FC
R • FB/FC
S • FB/FA
P • s•cz.o•xM•O-tO • R) • (8 • A)9(R • 1.0))
Q • CQ • I.0)•(R • I.0)•(S • I.Ol

~

• tfj ~~
~ :_.: ::._:.::.~:~ ·::

~ ...
..

• ::.:~ ~ .. :· •

slZ.

166 JOLtmOH OF HONLDfEAR. EQUAnONS

C
C ADJUST SIGNS
C

C

60 IF (P .GT. 0.0) Q • -0
P • ABS(P)

C IS INTERPOLATION ACCEPTABLE
C

C

IF (fl.0-P) .Ol. (l.0-XM•Q • ABS(TOLI-On, CiO TO 70
IF (P .OE. AIS(O.J•E-Q)) CiO TO 70
E•D
D • P/0
CiO TO m

C IISECTION
C

10 0 • XM
E • D

C
C COMPLETE STEP
C

C

ICJA•B
FA• FB
IF (ABS(D) .OT. TOLi) 8 • B + D
IF (ABS(D» .LE. TOLi) 8 • B + SICN(TOLI. XM'
FB • F(B»
IF ((fll•(FC/ABS(FC))) .GT. 0.0) CiO TO 20
CiO TO)0

C DONE
C

90 ZEROIN • B
RETURN
ENO

J

; I

·1
]

l

]

J

J
.J

'

.. :· ...

~ I r . __ .,..

r-

SEC. 5.5

C
C LOCATE NEXT INTERVAL
C

C

72 IF (NIM .EQ. 2•(NIM/2)) 00 TO 15
NIM• NIM/2
LEV • LEV-I
00 TO 72

75 NIM • NIM + I
IF (LEV .LE. 0) 00 ,TO IO

C ASSEMBLE ELEMENTS REQUIRED FOR THE NEXT INTERVAL
C

OPREV • ORIGHT(LEV)
XO • X(l6l
FO • F(l6)
DO 71 I • I. I

ft2•1) • FSA VE(I.LEV)
X(2•1) • XSA VE(I.LEYl

71 CONTINUE
00 TO lO

C
C ... STAGE I ••• FINALIZE AND RETURN
C

IO RESULT • RESULT + CORII
C •
C MAKE SURE ERREST NOT LESS THAN ROUNDOFF LEVEL.

C IF [ERREST .EQ. 0.0) RETURN <
12 TEMP • ABS(RESUl Tl + ER REST ~

IF (TEMP .NE. ABS(RESULT)) RETURN
ER.REST • 2.0-ERREST
GO TO 12
END

05

. ,•

.; ...

SEC. 9.S

..

C

C

C

DO~ II• I. MN
I • MN + I • II
L • I + I
(i • W(I)
IF Cl .EQ. N) 00 TO 430

D0420J • L N
420 UCI.J) • 0.0

4l0 IF (Ci .EQ. 0.0, CiO TO 47S
IF (I .EQ. MN) 00 TO 460

C

C

DO 430 J • L N
S • 0.0

DO..OK•LM
440 S • S + U(K.I) • U(K.J)

C --- DOUBLE DIVISION AVOIDS POSSIBLE UNDERFLOW --
F • cs , uu.m I c;

C
DO 430 K • I. M

U(KJ) • UCK.J) + F • U(K.O
4,0 CONTINUE

C
460 DO 410 J • I. M
410 UU.I) • U(J.I) / Ci

C
00 TO 490

C
47~ 00 480 J • I. M
.UO U(J.I) • 0.0

C
¥JO UCl.ll • U(I.I) + 1.0
~ CONTINUE

C -- OIAOONALIZATION OF THE BIOIAOONAL FORM·••--·
C --·-· FOR K•N STEP •I UNTIL I 00 - --··

~10 00 100 "" • I. N
Kt • N • KK
K •~I+ I
ITS• 0

C' - TEST FOR SPLITTING.
C FOR L•K STEP •I UNTIL I DO -

,ro 00 ,lO LL • I. K
LI • ~ • LL
L•Ll+I ~
IF (ABS(RVl(LH + ANORM .EO. ANORMl CiO TO S6$

C' R\'l(ll IS ALWAYS ZERO. SO THERE IS NO EXIT
C THROUGH THE BOTTOM OF THE LOOP ···-•-••

IF CABS(W(LI)) + ANORM .EO. ANORMt GO TO ~
,» CO~TINUE

.•· ...-·

l

I
\
l
1
J

]

}
C

J
f

'r,
r
r

'

.·:......, ·.·.: •• l
".r---"\ •

Handbook for
Autom.atic Computation

Edited by
F. L. Bauer • A. S. Householder • F. W. J. Olvcr

H. Rutishauser t · K. Samclson • E. Stiefel

Volume II

J.H.Wilkinson • C. Reinsch

Linear Algebra

Chief editor

F. L. Bauer

I
Springcr-V crlag New York Heidelberg Berlin 1971

32s

4. ALGOL Programs

procedure lredl (n, tol) tra,is: (a) re.s11ll: (d, e, e2);
value n, tol; integer n; real tol; array a, d,.e, e2; .
comment TI1is procedure reduces the given lower trfangle of a symmetric matrix,

A, stored in tl1e army a[1 : "• 1 : n], to tridiagonal form using House­
holdef s reduction. TI1e di3gonal of the result is stored in tl1e a.my
d(1 : ,.] :ind the sub-diagonal in the fast "-1 stores of the array e[1 : "]
(Wlth the addltlOnal element 'L1J=O). ac,1 is set to equal e(s] t2.
n1e strictly lo\Ver triangle of tl1e array 11, together with the array e,
is used to store sufficient information for the details of the trans­
formation to be recoverable in the procedure lrbak 1. The upper
triangle of the array a is left unaltered;

begin integer i, f. k, l;
real/. g, h;

end trr,11;

.._ .. ·.-.. .·-:-.

for i:z:s 1 step 1 until n do
d(s1 :== a[i, •1;
for i:= n step -1 until 1 do
beginl:==i-t; h:=O:

fork:= 1 step 1 until l do
la:= h+a[i, k] xa[i, k];
comment if h is too small for orthogonality to be guaranteed,

the transformation is skipped;
if h:;; tol then
begin e[s] := e2(i1 := O; go to skip
end;
e2(s] := /1; /:= a[i, i-1];
,[,] :=g::a if /~O then -sqn(/s) else sqn(h);
h:==h-/xg; a(i,i-1]:=/-g: /:=O:
for f := 1 step 1 until l do
begin g:= o;

comment form element of A x11;
for k: = 1 step 1 until i do
g := g + a[j, k] xa[i, k];
for k : = f + 1 step 1 until l do
g := g + a[k, 11 xa[i, k];
comment form element of p;
g := e(fl :== gfl,; I:=/+ g xa[i, 11

end i:
comment form K:
/1 :=//(/,+I•);
comment form reduced A;
for f :=-1 step t until l do
begin/:- a(i, 11: g :- e[,1 :=i e(,1 -/, x/;

for I: : =- t step I until i do
a[i, k] ::a aU, k]-/xe[k]-gxa[i, kj

end j;
skip: /1 := d[,J; J[•1 :== a[i, i]: a[i, i] := /1
end i

.l

;J
'~

·I

I
I
I

]

l
J
J

. I

l
J

~· . .I
. . --.- -.. ~

. : . :·-:• -:: .· -.

I
·C
·r

procedure tqll (,c, macheps) trans: (d. e) ezil: Uail):
value n, macliep.s; integer n; real macliep.s; array d, e; label /au;
comment This procedure finds the eigenvalues of a tridfagonal matri:<, T, given

with its diagonal elements in the amiy tl(1 : n] and its subdi:igonal
elements in the last n-1 stores of the array e(t :n], using QL trans­
formations. The eigenvalues are overwritten on the diagonal elements
in the array tl in ascending order. The procedure will fail if any one
eigenvalue takes more than 30 iterations: •

begin integer i, f, l, m:

end tqll;

real b, ,, /, g, Ii, p, ,, s:
for i:-=2 step 1 until" do c(i-1] :== ,[,]:
,[n] :== 6 :=z / := o:
for I : c: 1 step t until n do
begin f :== O; Ii:== ,nacAepsx(abs(d(l]) +abs(c[l]));

If b<h then b :== Ii;
comment look for small sub-diagonal element:
for m :-= l step 1 until n do
If abs(e[m]) =ab then go to contl:

conll: If m == l then go to ,oot:
nestil: If i szjO then go to /ail;

f:==i+t:

,oo,:

comment form shift:
g :::s d(l]: p :== (d[l + 1] -g)/(2 xe[l]): r := sqn(pt2 + 1):
d[l] :== e(Z]/(if p < O then p-r else p + r); h: = g-d[l];
for i:= Z +1 step 1 until" do d(s1 :== d(s] -h;
/:==/+h;
comment Q L transformation;
p != tl[,n]: c: :== 1: s :== O;
for i:= 111-1 step -1 until l do
beging:=cxe(,]: Ii:= ,xp;

if abs (P) ~ abs (e(r1) then
beginc:== etiJ/p: r:= sqrl(ct2+1J;

e[i +1] := sx; xr: s := c/r; c := 1/r
end
else
begin,:==t,/e[s]: r:= sqrl(ct2+1);

e(i+1]:=sxe(11xr; s:=1/r; c:==c/r
end;
p :-= c:xtl(s1-s xg;
tl[i +1] :== h+sx(cxg +sxcl(,j)

end i;
e[l]: = s x;: cl(l] :== c: ~;:
If abs (e(Z]) > 6 then go to ne:dit:

p :- tl[l]+/:
comment order eigenvalue;
for i: =- l step -1 until 2 do
if p < tl[i -1) ttien d(1j : :::a d(i -1] else go to co11l2; •
i: :c:l 1:

COIi~! d[i]: = p
end l

;_: . .•

=~~:·.-

ill.
\ • .• : •:·:-: :_ •.• -.. : . • • •.•
:::'_;.~·:. :~:. - • =.-. -~.

j

• Lecture Notes in
Computer Science

/ 1) If-).
I

Edited by G. Goos, Karlsruhe and J. Harbnanis. Ithaca

6

PROPERTY OF:
CLEVE MOLER
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF NEW MEXICO

B. T. Smith • J. M. Boyle • 8. S. Garbow
Y. lkebe • V. C. Klema • C. B. Moler

Matrix Eigensystem Routines -
EISPACK Guide

Springer· Verlag
Berlin· Heidelberg· New York 1974

l
l
1
-).

]
(

]

~J
]

J
'

.l
(

l
t
I
1

~.1
. 1

\ r;
=r
:r

j

• t

f

.... ,.

C

C

7.1·201

SUBROUTINE·TRED1(NM,N,A,D,E,E2)

INTEGER I,J,X,L,N,II,NM,JPl
REAL A(NM,N),D(N),E(N),E2(N)
REAL F,G,H,SCALE
REAL SQRT,ABS,SIGN

DO 100 I• 1, N
100 D(I) • A(I,I)

C •••••••••• FOR I•N STEP -1 UNTIL l DO -- ••••••••••
DO 300 II• 1, N

I•N+l-II
L • I - 1
H • 0.0
SCALE• 0.0
IF (L .LT. 1) GO TO 130

C ********** SCALE ROW (ALGOL TOL THEN NOT NEEDED)**********
DO 120 J:. • 1, L

120 SCALE• SCALE+ ABS(A(I,I))
C

C

C

C

IF (SCALE .NE. 0.0) GO TO 140
130 E(I) • 0.0

E2(I) • 0.0
GO TO 290

140

150

DO 150 I• 1, L
A(I,K) • A(I,I) / SCALE
H • H + A(I,l) * A(I,I)

CONTINUE

EZ(I) •SCALE* SCALE• H
F • A(l,L)
G • ·SIGN(SQRT(H),F)
E(I) •SCALE* G
H • H • F * G
A(I ,L) • F - G
IF (L .EQ. 1) GO TO 270
F • 0.0

DO 240 J !' 1, L
G • 0.0

C •••••••••• FORM ELEMENT OF A*U **********
DO 180 X • 1, J

180 G • G + A(J,I) * A(I,K)
C

JPl • J • 1
IF (L .LT. JPl) GO TO 220

C
DO 200 X • JPl, L

200 G • G + A(X,J) * A(I,X)
C ********** FORM ELEMENT OF P **********

220 E(J) • G / H
F • F • E(J) * A(I,J)

240 CONTINUE

345

.. :;.· .

c.
C

C

260
C

270
280

C
290

7.1-202

ff• F /(ff• ff)
•••••••••• FORM REDUCED A**********

DO 260 J • 1, L
F • A(I,J)
G • E(J) ·ff* F
E(J) • G

DO 260 I• 1, J
A(J,I) • A(J,I) - F * E(I) - G * A(I,I) CONTINUE

DO 280 I• 1, L
A(I,I) •SCALE* A(I,I)

ff • D(I)
D(I) • A(I,I)
A(I • I) • ff

300 CONTINUE
C

RETURN
END

346

• • . . -. ~ :: : ·. ·:·· ··.·.
: :-:\:::::•: .-.-:-.--::-: ·.·.· ···.-: .. -: _,. ::·.· ... ,_; >>

I

]

]

]

J
]

01
;

J
J

(_

1
t
l
1

l ~]

f •

~-... L:

. ·.:. •;-::.:~: ~. : =~. ·: :·.··
•• .- .. :-~ -:_:_: ~:~

C

C

7.1-184

SUBROUTINE TQL~(N,D,E,IERR)

INTEGER 1,J,L,M,N,II,Ll,MML,IERR
REAL D(N),E(N)
REAL B,C,F,G,H,P,R,S,MACHEP
REAL SQRT,ABS,SIGN

C •••••••••• MACHEP IS A MACHINE DEPENDENT PARAMETER SPECIFYING
C THE RELATIVE PRECISION OF FLOATING POINT ARITIOfETIC.
C
C ••••••••••

C

C

C

C

NACHEP • 1

IElUl • 0
IF (N .EQ. 1) GO TO 1001

DO 100 I• 2, N
100 E(I-1) • E(I)

F • 0.0
B • 0.0
E(N) • 0.0

DO 290 L • 1, N
J • 0
H • MACHEP * (ABS(D(L)) + ABS(E(L)))
IF (B .LT. H) B • H

C •••••••••• LOOK FOR SMALL SUB-DIAGONAL ELEMENT**********
DO 110 M • L, N

IF (ABS(E(M)) .LE. B) GO TO 120
C ********** E(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
C THROUGH THE BOTTOM OF THE LOOP**********

C
110 CONTINUE

120 IF (M .EQ. L) GO TO 210
130 IF (J .EQ. 30) GO TO 1000

J • J + 1
C ********** FORM SHIFT••••••••••

C

C

C

Ll • L + 1
G • D(L)
P • (D(Ll) - G) / (2.0 * E(L))
R • SQRT(P*P•l.0)
D(L) • E(L) / (P • SIGN(R,P))
H • G - D(L)

DO 140 I • Ll, N
140 D(I) • D(l) - H

F • F • H
•••••••••• QL TRANSFORMATION••••••••••

P • D(M)
C • 1.0
s. o.o
MML • M - L

328

... •.• ...

. ' ..

(I

t
~
r

I
l
t

t
t

t
~
i
I

t •.
i
i

C

1S0

160

200
C

210
C

7.1-18S

•••••••••• FOR f•M-1 STEP ·1 UNTIL L DO
DO 200 II• 1, JOCL

I • M - II
G • C * E(I)
H • C * P
IF (ABS(P) .LT. ABS(E(I))) ·co TO 1S0
C • E(I) / P
R • SQRT(C*C+l.O)
E(I+l) • S • P * R
S • C I R
C • 1.0 I R
GO TO 160
C • P / E(I)
R • SQRT(C*C+l.O)
E(I+l) • S * E(I) * R
S • 1.0 / R
C • C * S
P • C * D(I) • S * G
D(I+l) • H + S • (C • G + S • D(I))

CONTINUE

E(L) • S • P
D(L) • C • P
IF (ABS(E(L)) .GT. B) GO TO 130
P • D(L) + F

•••••••••• ORDER EIGENVALUES••••••••••
IF (L .EQ: 1) GO TO 2S0

••••••••••

C •••••••••• FOR I•L STEP -1 UNTIL 2 DO ••••••••••

C

C

230

DO 230 II• 2, L
I•L•2·II
IF (P .GE. D(I-1)) GO TO 270
D(I) • D(I-1)

CONTINUE

250 I• 1
270 D(I) • P
290 CONTINUE

GO TO 1001
C •••••••••• SET ERROR -- NO CONVERGENCE TO AN
C EIGENVALUE AFTER 30 ITERATIONS********** 1000 IERR • L
1001 RETURN

END

329

••·.

I
]

~.

I
I

l
]

]

I
f

J
(

J
(

!
1
1 ~l

.r
·r

j eps1on.~ r:1 May 117:23:28 1987

DOUBLE PRECISION FUNCTION EPSLON (X)
DOUBLE PRECISION X

C

l

C ESTIMATE UNIT ROUNDOFF IN QUANTITIES OF SIZE X.
C

DOUBLE PRECISION A,B,C,EPS
C
C THIS PROGRAM SHOULD FUNCTION PROPERLY ON ALL SYSTEMS
C SATISFYING THE FOLLOWING TWO ASSUMPTIONS,
C 1. THE BASE USED IN REPRESENTING FLOATING POINT
C NUMBERS IS NOT A POWER OF THREE.
C 2. THE QUANTITY A IN STATEMENT 10 IS REPRESENTED TO
C THE ACCURACY USED IN FLOATING POINT VARIABLES
C THAT ARE STORED IN MEMORY.
C THE STATEMENT NUMBER 10 AND THE GO TO 10 ARE INTENDED TO
C FORCE OPTIMIZING COMPILERS TO GENERATE CODE SATISFYING
C ASSUMPTION 2.
C UNDER THESE ASSUMPTIONS, IT SHOULD BE TROE THAT,
C A IS NOT EXACTLY EQUAL TO FOUR"".THIIU>S,
C B HAS A ZERO FOR ITS LAST BIT OR DIGIT,
C C IS NOT EXACTLY EQUAL TO ONE,
C EPS HEASOR.ES THE SEPARATION OF 1.0 FROM
C THE NEXT LARGER FLOATING POINT NUMBER.
C THE DEVELOPERS OF EISPACK WOULD APPRECIATE BEING INFORMED
C ABOUT ANY SYSTEMS WHERE THESE ASSUMPTIONS DO NOT HOLD.
C
C THIS VERSION DATED 4/6/83.
C

A• 4.0D0/3.0DO
10 B • A - l.ODO

C • B + B + B
EPS • DABS(C-1.0D0)

~ IF (EPS .EQ. 0.000) GO TO 10
EPSLON • EPS*DABS(X)
RE'l'URN.
END

· .. ·: .•.•.

.. ·:•··

. ·

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C

C

C

100

120

rri May 117:23:47 1987

SUBROUTINE TRED1(NM,N,A,D~E,E2)

INTEGER I,J,K,L,N,II,NM,JPl
DOUBLE PRECISION A(NM,N),D(N),E(N),E2(N)
.DOUBLE PRECISION F, G, H, SCALE

1

THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TREDl,
NtJM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON.
HANDBOOK FOR AOTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226 (1971).

THIS SOBROOTINE REDUCES A REAL S?MMETRIC MATRIX
'rO A SYMMETRIC TRIDIAGONAL MATRIX USING
ORTHOGONAL SIMILARITY TRANSFORMATIONS.

ON INPUT

NM MOST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
DIMENSION STATEMENT.

N IS THE ON>ER OF THE MATRIX.

A CONTAINS THE REAL Snoa:TRIC INPUT MATRIX. ONLY THE
LONER TRIANGLE OF THE MATRIX NEED BE SUPPLIED.

ON OU'l'POT

A CONTAINS INFORMATION ABOOT THE ORTHOGONAL TRANS­
FORMATIONS USED IN THE REDtJC'l'ION IN ITS STRICT LOWER
TRIANGLE. THE FULL UPPER TRIANGLE OF A IS UNALTERED.

D CONTAINS THE DIAGONAL ELEMENTS OF THE TIUDIAGONAL MATRIX.

E CONTAINS THE StJBDIAGONAL ELEMENTS OF THE TRIDIAGONAL
MATP.IX IN ITS LAST N-1 POSITIONS. E(l) IS SET TO ZERO.

E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF E.
E2 MAY COINCIDE WITHE IF THE SQUARES ARE NOT NEEDED.

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY

THIS VERSION DATED APRIL 1983.

DO 100 I• 1, N
D(I) • A(N,I)
A(N,I) • A(I,I)

CONTINUE
.......... FOR I•N STEP -1 UNTIL l DO
DO 300 II• l, N

I• N + 1 - II
L • I - 1
H • 0.000
SCALE• 0.0D0
IF (L .LT. 1) GO TO 130

.......... SCALE ROW (ALGOL TOL THEN NOT NEEDED)
DO 120 K • 1, L
SCALE• SCALE+ DABS(D(K))

IF (SCALE .NE. 0.000) GO TO 140

DO 125 J • 1, L
D(J) • A(L,J)

·:.· ·~
. -- :~ ~··

l
~
~

1
-1

I
l

]

:;_-/\-~'i
... •.

~

tz:edl..~ . rri Kay 1 17:23:47 1987

125
C

130

C
140

150
C

C

170
C

C

200
C

220
240

C

C

245
C

A(L,J) • A(I,J)
A(I,J) • 0.0D0

CONTINUE

E(I) • O.ODO
E2(I) • 0.0D0
GO TO 300

DO 150 K • 1, L
D(K) • D(K) / SCALE
H • H + D(K) * D(K)

CONTINUE

E2(I) •SCALE* SCALE* H
F • D (L)
G • -DSIGN(DSQRT(H),F)
E(I) •SCALE* G
H • H - F * G
D(L) • F - G
IF (L .EQ. 1) GO TO 285

•••••••••• FO~ A*U
DO 170 J • 1, L
E(J) • 0.0D0

DO 240 J • 1, L
F • D(J)
G • E(J) + A(J,J) * F
JPl • J + 1
IF (L .LT. JPl) GO TO 220

DO 200 K • JPl, L
G • G + A(K,J) * D(K)
E(K) • E(K) + A(K,J) * F

CONTINUE

E(J) • G
CONTINUE

. FORM P
F • O.ODO

DO 245 J • 1, L
E(J) • E(J) / H
F • F + E(J) * D(J)

CONTINUE

H • F / (H + H)
C • • • • • • • • • • FORM Q ••••••••••

250
C

C

DO 250 J • 1, L
E(J) • E(J) - H * D(J)

.......... FORM REDUCED A
DO 280 J • 1, L

F • D (J)
G • E(J)

DO 260 K • J, L

2

260
C

A(K,J) • A(K,J) - F * E(K) - G * D(K)

280
C

285

290

CONTINUE

DO 290 J • 1, L
F • D(J)
D (J) • A(L, J)
A(L,J) • A(I,J)
A(I,J) • F * SCALE

CONTINUE

. :····· . . . : ~ . .. ~- . •
• ·:: ..

·:·
• ·:·. ~- • .. ·:::

tredl..~ r~~ Kay 117:23:47 1987

C

C
300 CONTINUE

RETURN
END

3 . I

~
~

1
l
]

J
-i
]

]

~]

J
J

I

J
(

•. :-~·)/-?{.~.: ·,
·.·. : : -·:··

: r.
~ r­
r

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

• C
C
C
C
C
C
C
C
C

C

C

C

C

C

·: ..

100

r:~ Kay 117:23:46 1987

SUBROUTINE TQLl (N,D, E, I·ERR)

INTEGER I,J,L,M,N,II,Ll,L2,HML,IERR
DOUBLE PRECISION D(N),E(N)

1

DOUBLE PRECISION C,C2,C3,DL1,EL1,F,G,H,P,R,S,S2,TST1,TST2,PYTHAG

THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TQLl,
NUM. MATH. 11, 293-306(1968) BY BOWDLER, MARTIN, REINSCH, AND
WILKINSON.
HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 227-240(1971).

THIS SUBROUTINE FINDS THE EIGENVALUES OF A SYMMETRIC
TRIDIAGONAL MATRIX BY THE QL METHOD.

ON INPUT

N IS THE ORDER OF THE MATRIX.

D CON'l'AINS THE DIAGONAL ELEMl!!NTS OF THE INPtJT MATRIX.

E CON'l'AINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX
IN ITS LAST N-1 POSITIONS. E(l) IS ARBITRARY.

ON OUTPUT

D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN
ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT AND
ORDERED FOR INDICES 1,2, ... IERR-l, BUT MAY NOT BE
THE SMALLEST EIGENVALUES.

E HAS BEEN DESTROYED.

IERR IS SET TO
ZERO FOR NORMAL RETURN,
J IF THE J-TH EIGENVALUE HAS NOT BEEN

DETERMINED AFTER 30 ITERATIONS.

CALLS PYTHAG FOR DSQRT(A*A + B*B) .

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY

THIS VERSION DATED APRIL 1983.

~-------------------~---
IERR • 0
IF (N .EQ. 1) GO TO

DO 100 I• 2, N
E(I-1) • E(I)

F • 0.0D0
TSTl • 0.0D0
E(N) • 0.0D0

DO 290 L • 1, N
J - 0

1001

H • DABS(D(L)) + DABS(E(L))
IF (TSTl .LT. H) TSTl • H

.......... LOOK FOR SMALL SUB-DIAGONAL ELEMENT
DO 110 M • L, N

TST2 • TSTl + DABS(E(M))
IF (TST2 .EQ. TSTl) GO TO 120

.......... E(N) IS ALWAYS ZERO, SO THERE IS NO EXIT

..·······::, .. :._-,, .•

tq11.~ rr~ Kay 117:23:46 1987 2

C THROUGH THE BO~TOM OF THE LOOP
110 CONTINUE

C
120 IF (M .EQ. L) GO T0·210
130 IF (J .EQ. 30) GO TO 1000

J - J + 1
C •••••••••• FO~ SHIFT

Ll • L + 1
L2 • Ll + 1
G • D(L)
P • (D(Ll) - G) / (2.0D0 * E(L))
R • PYTHAG(P,1.0D0)
D(L) • E(L) / (P + DSIGN(R,P))
D(Ll) • E(L) * (P + DSIGN(R,P))
DLl • D (Ll)
H • G - D(L)
IF (L2 .GT. N) GO TO 145

C
DO 140 I• L2, N

140 D(I) • D(I) - H
C

145
C

C

200
C

210
C

C

C

C

230

2S0
270
290

F • F + H
.......... QL TRANSFORMATION

P • D (M)
C • 1.0D0
C2 • C
ELl • E(Ll)
S • 0.0D0
MML•M-L

.......... FOR I•M-1 STEP -1 UNTIL L DO --
DO 200 II• 1, MML

C3 • C2
C2 • C
S2 • S
I• M - II
G • C * E(I)
H • C * P
R • PYTHAG(P,E(I))
E(I+l) • S * R
S • E(I) / R
C • P / R
P • C * D(I) - S * G
D(I+l) • H + S * (C * G + S * D(I))

CONTINUE

P • -S * S2 * C3 * ELl * E(L) / DLl
E(L) • S * P
D(L) • C * P
TST2 • TSTl + DABS(E(L))
IF (TST2 .GT. TSTl) GO TO 130
P • D(L) + F

.......... ORDER EIGENVALUES
IF (L .EQ. 1) GO TO 250

.......... FOR I•L STEP -1 UNTIL 2 DO
DO 230 II• 2, L

I • L + 2 - II
IF (P .GE. D(I-1)) GO TO 270
D(I) • D(I-1)

CONTINUE

I • 1
DCI) • P

CONTINUE

GO TO 1001

I
:l
~

I
I
I
l
I
J
]

.. r
r
r

~- ...
r ()

·- ..
·:·~: :. ~ .•

tq11.~ r:i Nay 117:23:46 1987 .3

C
C

1000 IERR • L
lOQl RETURN

END

SET ERROR--· NO CONVERGENCE TO AN
EIGENVALUE AFTER 30 ITERATIONS

tq1rat.~ Non ""1ll 27 13:39:15 1988

C
SUBROUTINE TQLRAT(N,D,E2,~ERR)

INTEGER I,J,L,M,N,II,Ll,HML,IERR
DOUBLE PRECISION D(N),E2(N)

1

.DOUBLE PRECISION B,C,F,G,H,P,R,S,T,EPSLON,PYTHAG
character*20 string

C
C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TQLRAT,
C ALGORITHM 464, COMM. ACM 16, 689(1973) BY UINSCH.
C
C THIS SUBROUTINE FINDS THE EIGENVALUES OF A SYMMETRIC
C TRIDIAGONAL MATRIX BY THE RATIONAL QL METHOD.
C
C ON INPUT
C
C N IS THE ORDER OF THE MATRIX.
C
C D CONTAINS THE DIAGONAL ELEMEN'?S OF THE INPUT MATRIX.
C
C E2 CONTAINS THE SQUARES OF THE SUBDIAGONAL ELEMENTS OF THE
C INPU'l' MATRIX IN ITS LAST N-1 POSITIONS. E2(1) IS ARBITRARY.
C
C ON OUTPUT
C
C D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN
C ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT ANO
C ORDEUD FOR INDICES 1,2, ... IERR-1, BUT MAY NOT BE
C THE SMALLEST EIGENVALUES.
C
C E2 HAS BEEN DESTROYED.
C
C IERR IS SET TO
C ZERO FOR NONO.L RETtmN,
C J IF THE J-TH EIGENVALUE HAS NOT BEEN
C DETERMINED AFTER 30 ITERATIONS.
C
C CALLS PYTHAG FOR DSQRT(A*A + B*B) .
C
C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C THIS VERSION DATED APRIL 1983.
C

C --C
IERR • 0
IF (N .EQ. 1) GO TO 1001

C

C

C

DO 100 I• 2, N
100 E2(I-1) • E2(I)

F • 0.0D0
T • 0.0D0
E2(N) • 0.0D0

DO 290 L • 1, N
J - 0
H • DABS(D(L)) + DSQRT(E2(L))
IF (T .GT. ff) GO TO 105
T • ff
B • EPSLON(T)
C • 8 * B

C •••••••••• LOOK FOR SMALL SQUARED SOB-DIAGONAL ELEMENT
105 DO 110 M • L, N

IF (E2(M) .LE. C) GO TO 120

1

l
"]

J
J
].

J

• r • • • ·~• •.--:•
. 1

~r
;r

r

~.
. f.

tqirat.~ lf0ll JUD 27 13:39:15 1988 2

C
C

110
C

120
130

C

C

.......... E2(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
THROUGH THE BOTTOM OF THE LOOP ••••••••••

CONTINUE

IF (M .EQ. L) GO TO 210
IF (J .EQ. 30) GO TO 1000
J - J + 1

.......... FORM SHIFT
Ll • L + l
S • DSQRT(E2(L))
G • D(L) .
P • (D(Ll) - G) / (2.0D0 * S)
R • PYTHAG(P,1.0D0)
D(L) • S / (P + DSIGN(R,P))
ff • G - D (L)

140
C

DO 140 I• Ll, N
D(I) • D(I) - ff

C
F • F + ff

•••••••••• RATIONAL QL TRANSFORMATION
G • D(M)
IF (G .EQ. 0.0D0) G • B
R•G
S • 0.0D0
MML • M - L

C FOR I•K-1 STEP -1 UNTIL L DO --
DO 200 II• 1, MML

I• M - II
P • G * H
R • P + E2(I)
E2(I+l) • S * R
S • E2(I) / R
D(I+l) • H + S * (ff+ D(I))
G • D(I) - E2(I) / G
IF (G .EQ. 0.0D0) G • B
H • G * P / R

200
C

CONTINUE

E2(L) • S * G
D(L) • ff

C GUARD AGAINST UNDERFLOW IN CONVERGENCE TEST
IF (H .EQ. 0.0D0) GO TO 210
IF (DABS(E2(L)) .LE. DABS(C/H)) GO TO 210
E2(L) •ff* E2(L)
IF (E2(L) .NE. 0.0D0) GO TO 130

210 P • D(L) + F
C ORDER EIGENVALUES

IF (L .EQ. 1) GO TO 250
C FOR I•L STEP -1 UNTIL 2 DO --

C

C

C
C

DO 230 II• 2, L
I• L + 2 - II
IF (P .GE. D(I-1)) GO TO 210
D(I) • D(I-1)

230 CONTINUE

250 I• 1
210 D (I) • P
290 CONTINUE

GO TO 1001

1000 IERR • L
1001 RETURN

SET ERROR -- NO CONVERGENCE TO AN
EIGENVALUE AFTER 30 ITERATIONS

.. _._ .. ;..::·•

:u

V

~
" i'

\.

-- ---- -- -
•• rrrrc~c~~~~~~~r~~~~D~O·O-~-~-~ ,._. \ _\ ..-.\ --\ __ .;.,_,::_ ~-~_:_._\:_-~l __ -'-_\ __ '----'\...-_,,__._#', _:..,;,;,,,;_ _ _ _,_..._ J - J

••• -. r-c -c-c-c 91.-c~-- c·c-r----,-_-,r---..r--r-... , _' ·---~ ..--... ----- •• " ~(~'- : ::: :. .: - ,:y ~ \;~ - -L -- "-- --~ ;_L - ._,,. """. -~, , -\LJI- -J .. _,, :. • "' J
• -r -••• -c r ~-c ~ c c·-·r·r-=r--•r-r·--::-'"'"'.-~ ee·"-- ----· \ .

• ,..(_, -, -'- ... \._ ... -~ .. '-:" '=:_ ... _ - --'----'L--L-~L.--..:--~~·c.··.J1 -...J _..,~ ~ • .:::)

•••
~ -r -c-r -. -c-r·-'"' C ·c C c·,r- ,r- -~--,--~.-- ~ ~ -.....- ___ _, • llf"'\ -

._(-\. A.-'---'"-'--~ _\r.' .'-.:_·· .,_ ·_ -- • .. L "-,:,,_,2.._~-~ ,.:_., ... C ·-'~-'---~-~ _.,,) . .~ -- ... ,·c --'• -r -.. -r,- --~ A: C ~ ~ ,- ---" ___ .. a-.·,,,.. ",'.'l\ •• A-~ -,. - • •, ... J _c ... __ -'-- , .-'- --'--' -~ ~ . '--· .c .'L_ -'----~ .,.,; • ~..; .,, J . __ :;_ .> e_D
• • • -r re· ·c 'C!'"r --c _,,C -c C -..-c -,--,,.--, --,--r .. ~ ·-:-, • e c· ~ ,~-- • o-' .,(_\. __ ,.. - ~ -· - - ::. - ~ :._--, ·'- '-- '-,. - '---'·'-.;; • .._-~ ' - - - _ _,,; __ . ··''. _;

••
6' (-- r- r -r-r r-r -~•F· ~-c ~ c---,~ • .;-- :~ ,- -~ ~. ---~ ----.- ... 0

-~'- ~ -., ..:.,. _-:_\. ~\. .:\ ~ -~~t:•_r..,._l~---'- __ ., -~-'1._P.,_,~_--.'- ._-:·_•~- ----~- -•~~- ~.:.)~ _·.;

• • • L -c ·c -c,, c-c--c· e:--c cc e::; t; ~- ~-~ ~/-@:v .. ti-v J--~.O-J

,.-

/
i/

,.
- ~ =

• • ;,;_4r .r .r :!(--r ~c ~c ~r-:.,:C::· :r: ;f;;::- _r.-_.-:r-.Tr • ,--.. .r,r-cG·- ·'°) .,r-,.:: ---~~ • /IF\
,:.,~~ .. ~\ ~-\ .J,, ~ ... -,\..- ~'- •• --- ~ , ~· 4, __._ --- . - ~ -,; ... ,_ "f;,_.1 ~ ·~- ./"" " ·_ ,I ~

•••• C t'(-· ~-l 7L ... , _- :(:(-c ~--:c:. ... -.,...._. :Af(-: -r. ?".- -~.,-- ~:-~ - -:- ~ r:::; :i• e·-o- .. --,~":) 11/f"\" J
• - - , , \.. . - - -- -. - ' ~ ' ~. -- - - _, • \. - • • • - • • • - - - • • - ~ • ___ _j ""

•• (- L ·c · 1 •·f. -(-c··.-c-: 1 -, ~ •c">·-r- -,- -f - ,- • r~. ,.- ,~ • • ~- ~ \ e·~ :-J _ -- .. L --~ - _ _ _ :: '-&- ~- . --< '-- ·'l.~ ""-~-- _. _ .. • -. ~1 -~J- , _,.,, -J

••• r --c • c- -. -,c· c- ·-r:-r: r:-.. ,.. ".iii~C: c :,_ .. ,. --, ----~~- -~: -~1 • -" - } . -.-. • e> 1
-. - - - \._ . - -~ ~__; 'It'~ -1l _, I('._ - - • .._ . ? ' • • • - I -~ ~...,, - - -

•• (... L C -c ·c_ r-.. --~ t-:111. r.· c·c -c ·,r- -..-- _,,,,_,_ ... ,-,---..-0 e O _,,-. - • 1""\
7 _ _(__ - - • - .\...:'..",.~ .-,.,-,-~--- -·°" - -L --~ --~·-'.a.' •-~ s -~ ~-~, • -~

•••
-'.< .,.< -~c_-- _-(-:-c··c C ~-c;,.·c-c·r - --------~--~,,.~~-•--o~~~--1-=.to J
- .. -- - - - -- ~~~- -1'.___ '-~-"-------"----..,,. ' _,.,,1_

•• (...,._(·c -c ·c· -c ·c ~-c C r ·c ·,,~-- . ..-- ,".,_,-.. __ I'""'•- e en --- ~er)
. --~ _._ -• .:c - ; --· .J'IIIC:_ --· ·]·'--" _,.___ -L.._. __ .._ ---· :..,-_ •-~' ~..____.,:._~,,_-·.".Ji ·.._;

•• -- ' -•c··c_ L-- - -c ~ -c-c·-·c-c-c c··r··. -- -----· ,-.- r- ,- --.. ~ .--- ~ - a .r"'t, I ~L.> ,_ · - -.L,. •. ~- -. ·.: -- _:. - L-:L_.· _ _,.-'--"'r~-'"' '"':,;_., • _, --, J1

i
I

f

')
i

. (

: \

I i-\ <. ~
l .. : , (-.

·>:·\te·

9/29/87

UNDERFLOW IN EISPACK

by Eric Grosse, Bell Labs,-Murray Hill, NJ
and Cleve Moler, Dana Computer, Sunnyvale, CA

We recently came across an interesting case where EISPACK fails
to give the correct eigenvalues for what appears to _be an easy
matrix. The difficulties can be traced to floating point underflow.
They are most insidious in double precision arithmetic on the VAX[*]
where the •D" floating point foanat has an unfortunately small exponent
range. However, a scaled version ~f the example can fail on any machine,
including ones which fully confoxm to the IEEE floating point standard.
We recommend a simple change to the EISPAClt top level routine •RS"
which should protect most users from the problem.

The example !s due to Guenter Ziegler of the University of Augsburg
in West Ge=-any and Andrew Ocllyzko of AT,'l' Bell Laboratories. They
were investigating a question raised by Amir Dembo of Brown University
regarding the distribution of rank in real symmetric Hankel
matrices whose elements are +1 and -1. (A Hankel matrix is constant
along each anti-diagonal, but that's irrelevant for what concerns us
here.) One of their matrices is 9-by-9:

-1 1 l -1 -1 1 1 -1 -1
1 1 -1 -1 1 1 -1 -1 1
1 -1 -1 l 1 -1 -1 1 1

-1 -1 1 1 -1 -1 1 1 -1
-1 1 l -1 -1 1 1 -1 -1

1 1 -1 -1 1 1 -1 -1 1
1 -1 -1 1 1 -1 -1 1 -1

-1 -1 1 1 -1 -1 1 -1 1
-1 l 1 -1 -1 1 -1 l l

It is not obvious, but this matrix happens to have four eigenvalues
equal to zero, and hence its rank is five. From the many possible
ways to compute the rank of such matrices, Zeigler and Odlyzko
chose to use the EISPACK routine RS (for Real Symmetric) and count
the number of negligible computed eigenvalues. For this example,
running on a VAX in D foxmat double precision, EISPACK incorrectly
claimed there were five eigenvalues on the order of roundoff error.
The same program, running on almost any other computer, would produce
the correct answer, which is only four negligible eigenvalues.

The problem turns out to be a catastrophic underflow in the EISPACK
routine TQLRAT. This is a square-root-free variant of the QR algorithm for
finding eigenvalues of a symnetric tridiagonal matrix. It operates on
the squares of off-diagonal elements. On the VAX, the square of
double precision roundoff error is roughly 10•(-34) and the underflow
limit is only l0•(-38). There is not ~nough room between those two
numbers for 'l'QLRAT to operate properly. On other computers, similar
difficulties will occur if the example ia scaled by a factor on the
order of the square root of the underflow limit. For IEEE machines,

.. -.... -·· ..
. . ·: .-::.-:-:

the acale factor would have to be about lOA(-150), so such examples are
much less likely in practice, but TQLRAT might not properly handle
any which do turn up.

The easiest solution is to replace

CALL TQLRAT(N,ALPHA,BETA,IERR)

in EISPACK routine RS by

CALL TQLl(N,ALPHA,BETA,IERR).

Since TQLl does not work with the squares of the tridiagonal elements,
it is much less prone to underflow trouble. No change is needed in
the case when eigenvectors are being computed, since RS then calls TQL2
rather than TQLRAT.

An alternate solution, an improved version of TQLRAT, is available from
the authors. But its range of applicability is still limited to a smaller
portion of the floating point exponent range than TQLl and TQL2.

Ironically, advances in floating point hardware make the need for
square-root-free algorithms less pressing. On one recent chip,
the builtin square root is even slightly faster than division!

[*] VAX is a trademark of Digital Equipment Corporation.

I

I
)

.I

I
J

.J

l
(

I
(

l
t

t
l ~1

i

I .•
•

.... :· - .

. .·' .•• :-: • ·.• - ..•

LINPACK

Users' Guide

J. J. Dongarra C. B. Moler
Argonne National Laboratory University of New Mexico

J. R. Bunch G. W. Stewart
University of California, San Diego University of Maryland

•
S.La.JTl

Philadelphia/1979

• • •• - • .-._. ••• ■

I.4

and formats Fortran.programs to clarify their structure. It also generates variants of

programs. The "master versions" of all ·th~ LINPACK subroutines are those which use complex

arittnetic; versions which use single precision. double precision, and dou~le precision

complex arittlnetic have been produced automatically by TAHPR. A user may thus convert from

one type of arithmetic to another by simply changing the aeclarations· in his program and

changing the first letter of the LINPACK subroutines being used.

Anyone reading the Fortran source code for LINPACK subroutines should find the loops and

logical structures clearly delineated by the indentation generated by TAMPR.

The BLAS are the Basic Linear Algebra Subprograms designed by Lawson, Hanson, Kincaid

and Krogh (1978). They contribute to the speed as well as to the modularity and clarity of

the LINPACK subroutines. LlNPACK is distributed with versions of the BLAS written in

standard Fortran which are intended to provide reasonably efficient execution in most

operating environments. However, a particular computing installation may substitute

machine language versions of the BLAS and thereby perhaps improve efficiency.

LINPACK is designed to be completely machine independent. There are no machine depen­

dent constants, no input/output statements, no character manipulation, no COfflON or

EQUIVALENCE statements, and no mixed-mode ar1tlwnetic. All the subroutines (except those

whose names begin with Z) use the portable subset of Fortran defined by the PFORT veri­

fier of ~der (1974).

There is no need for machine dependent constants because there is very little need to

check for •small" numbers. For example, candidates for pivots in Gaussian elimination are

checked against an exact zero rather than against some small quantity. The test for singu­

larity is made instead by est1mat1ng the cond1t1on of the matrix; this is not only machine

independent, but also far more reliable. The convergence of the iteration in the singular

value decomposition 1s tested in a machine independent manner by statements of the fonn

TEST! • something not small

TEST2 • TESTl + something possibly small

IF (TESTl .EQ. TEST2) ...

The absence of mixed-mode arithmetic implies that the single precision subroutines do

not use any double precision arithmetic and hence that the double precision subroutines do

not require any kind of extended prec1s1on. It also implies that LINPACK does not include

a subroutine for iterative improvement; however, an example fn Chapter 1 indicates how such

.1

]
I"'\ :

'.1

l
1

l

~]
t

]

]

1
}

t

(

1
t

r-"\"i

r

! ..__

1.5

a subroutine could be added by anyone with easy access to mixed-mode arithmetic. (Some of

the BLAS involve mixed-mode aritllnetic, but they are not used by LINPACK.)

Floating point underflows and overflows may occur in some of the LINPACK subroutines.

Any underflows which occur are harmless. We hope that the operating system sets underflowed

quantities to zero and continues operation without producing·any error messages. With some

operating systems, it may be necessary to 1nsert control cards or call special system sub­

routines to achieve this type of underflow handling.

Overflows, 1f they occur, are much 1110re serious. They must be regarded as error situa­

tions resulting from improper use of the subroutines or fro~ unusual scaling. Many precau­

tions against overflow have been taken 1n LINPACK, but it fs impossible to absolutely

prevent overflow without seriously degrading performance on reasonably scaled problems. It

is expected that overflows will cause the operating system to terminate the computation and

that the user will have to correct the program or rescale the problem before continuing.

Fortran stores matrices by col111111s and so programs in which the inner loop goes up or

down a column, such as

DO 20 J • 1, N
DO 10 I• 1, N

A(I,J) •
10 CONTINUE
20 CONTINUE

generate sequential access to memory. Programs in which the inner loop goes across a row

cause non-sequential access. Sequential access 1s preferable on operating systems which

employ virtual memory or other fonns ~f paging. LINPACK is consequentially "column

oriented". Almost all the inner loops occur within the BLAS.and, although the BLAS allow a

matrix to be accessed by rows, this provision is never used by LINPACK. The column orienta­

tion requires revision of some conventional algorithms, but results in significant improve­

ment in performance on operating systems with paging and cache memory.

All square matrices which are parameters of LINPACK subroutines are specified 1n the

calling sequences by three arguments, for example

CALL SGEFA(A,LDA,N, ...)

Here A is the name of a two-dimensional Fortran array, LOA is the leading dimension of

that array, and N is the order of the matrix stored in the array or in a portion of the

array. The two parameters LOA and N have d;fferent meanings and need not have the same

value. The amount of storage reserved for the array A is detennined by a declaration in

SSVOC (continued) C.126

C
C MAIN ITEP.ATION LOOP FOR ~E SINGL'LAR VALUES.
C

MM• M
ITER • 0

360-CONTINUE
C
C QUIT IF ALL THE SIHGULAR VALUES HAVE BEE?~ FOtnm.
C
C ... EXIT

C
C
C
C

C

370
C
C
C
C
C
C
C
C
C
C
C

C

C

C

C

380
390
400

410

420
430
440

450

IF (M .EQ. 0) GO TO 620

IF TOO MANY ITERATIONS HAVE BEEN PERFOP.HED, SET
FLAG AND RETURN.

IF (ITER .LT. MAXIT) GO TO 370
INFO• M

...... EXIT
GO TO 620

CONTINUE

THIS SECTION OF THE PROGRAM INSPECTS FOR
NEGLIGIBLE ELEMENTS IN THE S AJ.~D E ARRAYS. ON
COMPLETION THE VARIABLES KASE AND LARE SET AS FOLLOWS.

KASE• 1
KASE• 2
KASE• 3

KASE• 4

IF S(M) AND E(L-1) ARE NEGLIGIBLE AND L.LT.M
IF S(L) IS NEGLIGIBLE AND L.LT.M
IF E(L-1) IS NEGLIGIBLE, L.LT.M, AND
S(L), ... , S(M) ARE NOT NEGLIGIBLE (QR STEP).
IF E(M-1) IS NEGLIGIBLE (CONVERGENCE).

DO 390 LL• l, M
L • M - LL

... EXIT
IF (L .EQ. 0) GO TO 400
TEST• ABS(S(L)) + ABS(S(L+l))
ZTEST •TEST+ ABS(E(L))
IF (ZTEST .NE. TEST) GO TO 380

E(L) • O.OEO
...... EXIT

GO TO 400
CONTINUE

CONTINUE
CONTINUE
IF (L .NE. M - l) GO TO 410

KASE • 4
GO TO 480
CONTINUE

LPl • L + 1
MPl • M + 1
DO 430 LLS • LPl, MPl

LS • M - LLS + LPl
... EXIT

IF (LS .EQ. L) GO TO 440
TEST• O.OEO
IF (LS .HE. M) TEST• TEST+ ABS(E(LS))
IF (LS .NE. L + 1) TEST• TEST+ ABS(E(LS-1))
ZTEST •TEST+ ABS(S(LS))
IF (ZTEST .NE. TEST) GO TO 420

S(LS) • O.OEO
...... EXIT

GO TO 440
CONTINUE

COl~TIHUE
CONTINu"'E
IF (LS .~'E. L) GO TO 450

KASE• 3
GO TO 470
CONTINUE
IF -~~-.NE; M) GO TO 460

i
]

ri

I
I
I
]

I
J
I

~1
]

) .

l
l
t
t

~I
. l

~
i ;

r
r

f
l
.~

Cleve Moler
Donald Morrison

Replacing Square Roots by Pythagorean Sums

An al,oritltm u pratnttd for computinr a "Pytlulgon011 .rum .. a E9 b - .Ja2 + Ir dirtttly from a and b wirlaour compuli.nr
tltar squans or talcin1 a squart root. No dutrvctivt floating poilll owrflows or undtrflows an pouiblt. TM algorithm can~
uttndtd to computt tht Euclidtan norm of a wctor. TM ratdting subroutiM u short. portable, robust. tllld tll:t:W'tllt, hat not
os tj/idtnt os somt otlrtr pouibilitiu. Tlat algoritltm u paniculor/y atrractiw for computers wlrtn sp«e and nliability an
man lmportalll than lpttd.

1. Introduction
It is generally accepted that .. square root" is a fundamental
operation in scientific computing. However, we suspect that
square root is actually used most frequently u pan of an
even more fundamental operation wbicb we call Pythagorean
addition:

a EB b - .Jr + 112.

The algebraic propcnics or Pythagorean addition arc very
similar to those of ordinary addition or positive numbers.
PythagOt'Can addition is also the basis for many diff crent
computations:

Polar convcnion:

Complex modulus:

lzl - rtal(z) e imag(z);

Euclidean vector norm:

Givens rotations:

where r - x E9 y, c - x/r, ~ - y/r.

The conventional Fortran construction

R - SQRT(X••2+Y••2)

may produce: damaging underflows and overflows even
though the data and the result arc well within the range of
the machine"s Boating point number system. Similar con•
suuctions in other programming languages may cause the
same difficulties.

The remedies currently employed in robust mathematical
software lead to code which is clever, but unaatural. lc:ngthy,
possibly slow, and sometimes not portable. This is c:vcn true

of the recently published approaches to the calculation of the
Euclidean vector norm by Blue (J] and by the Basic Linear
Algebra Subprograms group, Lawson et al. (2).

In this paper we present an algorithm pyrnag(aJ,) which
computes a @ I, directly from a and b, without squaring
them and without taking any square roots. The result is
robust. portable. short. and, we think. elegant. It is also
potentially faster than~ square root. We recommend that the
algorithm be considered for implementation in machine
language or microcode on future systems.

One of our &nt usa or pythag and the resulting Euclidean
norm invomd a papbics minicomputer which bas a sophisti•
catcd Fortran-based operating system. but only about l2K
bytes of memory available to the user. We implemented

o Coprript 1983 by ln1ematicmal Busincu Machiacs Corporation. Copying in printed form (or private use is pcnniucd witbout paymc:Dl of
royalty prvwided ahat (I) cacb n:pn,duction ii doac without alteration and (2) the Jollffflll rcfcrcncc and IBM copyrisht notice arc mdudcd on
the fi~t pasc- Tbc title and abstract. but no otbcr portions. of this paper may be c:opic:d or distributed royally f rec witboat funhcr pc:rmissioa by
compulcr•bucd and other information-service systems. Pcnnissioa to ,~pub/isl, aay otbcr portioa o(tbis paper must be obtained from &be
Editor. 577

IIM J, aES. Dl!YELOP. • YOL Z7 • NO, 6 • NOYEM■ER lflJ CLEVE MOLEll AND DQ,-,AL,D MOIUUSO,-,

578

MATLAB [JJ, an interactive matrix calcu~tor based on
UNPACK and EISPACK. In this setting. the space occu­
pied by both source and object code was crucial. MATLAB
doc:s matrix computations in complex arithmeti~ so pythag is
panicialarly useful. We arc able to produce robust. portable
software that uses the full range of the ftoating point
cxponcnL

2. Algorithm pythag
The algorithm for computing pytlrag(a.b) - a EB b is

real function pytbag(a,b)
real a.b,p.q.r .s
p :- max(I a I, I b I)
q :- min(I a I. I b I)
while (q is numerically significant)
do

r :- (q/p)z
s :- r/(4+r)
p ·:- p+2•s•p
q:-••q

od
pythag :- p

The two variables p and q arc initial~ so that .

p @ q - a E9 I, and O S q ~ p.

The main pan or the algorithm is an iteration that leaves
p EB q invariant while increasing p and decreasing q. Thus
when q becomes negligible, p bolds the desired resulL We
sbow in Section 4 that the algorithm is cubically convergent
and that it will never require more than three iterations on
any computer with 20 or (ewer significant digits. It is thus
potentially faster than the classical quadratically convergent
iteration for square root.

There arc no square roots involved and. despite the title of
this paper, the algorithm cannot be used to compute a square
root. If either argument is zero, the result is the absolute
value of the other argument.

Typical behavior or the algorithm is illustrated by
• pythag(4.J). The values of p and q after each iteration arc

iteration p q

0 4'.000000000000 3.000000000000

-1.986301369863 0.369863013698

2· 4'.999999974 l 88 0.OOOS080S2633

J .S.000000000000 0.00000000000 I

Tbc most important f caturc or the algorithm is its robust­
ness. There will be no overflows unless the 6nal result
overflows. In fact. no intermediate results larger than a 9 b

CUVI! NOLD AND D0 .. ALD MOlllllSON

arc involved. There m:iy be underflows if I b I is much smaller
than I a I. but as long as such underftows arc quietly set to
zero, no harm will result in most ClSCS.

There can be some deterioration in accuracy if both I af and
:·:lbl arc very n=ir "" the smallest positive floating point

number. As an extreme c:umplc. suppose a - 4,i and b
- 31&- Then the iterates shown above should simply be scaled
by p. But the value of q after the first iteration would be less
than " and so would be set to zero. Tbc process would
terminate early with the corresponding value of p. wbic:h is
an inaccurate. but not totally incorrect. raulL

3. Eucfldean vector norm
A primary motivation for our development of pythag is its
use in computing the Euclidean norm or 2-aorm of a vccior.
The conventional approa~ which simply cakes the square
root or the sum of the squares of the components. disregards
the possibility of underflow and overflow. thereby ctr ectively
halving the Boating point exponent range. The approaches or
Blue [1] and Lawson ct al. (2) provide for the possibility of
accumulating three sums. one or small numbers whose
squares W1derilow, one of large numbers whose squares
overflow. and one or "ordinary-sized" numbers. Environ­
mental inquiries or machine- and accuracy-dependent con­
stants arc needed to separate the three classes.

With pytbag available. computation of the 2-nonn is
easy:

n:al function norm2(x)
real vcc:tor x
reals
s:- 0
for i :- I to (number of elements in x)

s :- pytbag(s.x(i))
norm2 :- x

This algorithm has all the characteristics that might be
desired of it. except one. It is robust-there are no destruc­
tive underflows and no overflows unless the result must
overflow. It is accurate-the round-off' error corresponds to
a few units in the last digit or each component of the vector.

. It is portable-there arc no machine-dependent constants or
environmental inquiries. It is shon-both the source code
and the object code require very litdc memory. It accesses
each element of the YCCtor only once. which is or some
importance in rinual memory and other modern operating
systems.

Tbc only possible drawback is its speed. for a vector or
length n. it requires n calls to pythag. Even if pythag were
implemented efficiently. this is roughly the same as n square
roots. The approaches of (I] and (2) require only n muhipli•

IIM L RES. oevn.o,. • YOL 27 • NO. t • NOYE.\/IIER lfU

I

I
I
1
I
J
1

]

]

]

J

r--

cations ror the most frequent case where the squares or the
vector clements do not underflow or overflow. However, in
most or the applications we arc aware or. speed is not a major
consideration. In matrix calculations. ror ex.ample. the
Euclidean norm is usually required only in an ouicr loop. The
time-determining calculations do not involve pythag. Thus.
in our opinion. all the advantages outweigh this one disad•
vantage.

4. Convergence analysis
When the iteration in pythag is terminated and the final
value or p accepted u the result. the relative Cff'Or is

e - (p E9 q - p)/(p e q)

- c.Jr+r-1>1.Jr+r.
where r - (q/ p) 2

• (We assume throughout this section that
initially p and q arc positive.)

The values ore and , are closely related. and the values of
their reciprocals arc even more closely related. In fact.

1 1 .Jr+;
---+ 1 +-.
e r r

Since 1 < .Jr+; < 1 + r /2. it fallows that

2 l 2 3
-+ 1 <-<-+-.
r e r 2

Thus l / e exceeds 2/ r by at least 1 and at most l.S.

To sec bow 2/r and hence the relative error varies during
the itcr.ltion. we introduce the variable

4
u--.

r

The values of II taken in successive iterations arc given by

u :- u(u + 3)2
•

If the initial value of II is outside the interval -4 :$ u S -2.
then u increases with each iteration. Hence 11 - co, r - O.
and p - a EB b. The fact that u is more than cubed each
iteration implies the cubic convergence of the algorithm.
Since initially we have O < q S p. it follows that

0 < r S I and 4 S u,

and II increases rapidly Cram the very beginning. If the initial
value of q / p happens to be an integer. then II takes on integer
values.

The most slowly convergent case has initial values p - q
and r - 1. The iterated values or u arc

iteration

u

0 2 3 4

4 196 7761796 >4•1010 >10
61

IIM J. RES. DEVELOP. • VOL Z1 • NO. 6 • NOVEMBER. ltU

It follows that after three iterations

If the arithmetic were done exactly. after three iterations
the value ~f p would agree with lh·c true value or p 9 q to 20
decimal digits. If there were further iterations. each one
would at least triple the number or correct digits. Initial
values with q < p produce even more rapid convergence.

With quadratically convergent iterations such u the clas­
sical square root algorithm. it is often desirable to use special
staning procedures to produce good initial approximations.
Our choice or initial values with q :$ p can be regarded as
such a starting procedure since the algorithm will converge
even without this condition. However. since the convergence
is so rapid. it seems unlikely that any more elaborate staning
mechanism would otfcr any advantage.

5. Round-off error and stopping criterion
In addition to being robust with respect to underflow and
overflow. the pcrf ormance of p~g in the presence of
round-off error is quite satisfactory. It is possible to show
that after each iteration the computed value of the variable p
is the same as the value that would be obtained with exact
computation on slightly perturbed staning values. The rapid
convergence guarantees that there is no chance for excessive
accumulation of rounding errors.

The main question is when to terminate the iteration. If we
stop too soon. the result is inaccurate. If we do not stop soon
enough. we do more work than is necessary. There arc several
possible types.of stopping criteria.

I. Take a fixed number of iterations.

The appropriate number depends ~pon the desired accura•
cy: two iterations for 6 or f cwer significant digits. three
iterations for 20 or fewer significant digits. four iterations for
60 or fewer significant digits. There is thus a very slight
machine and precision dependence. Moreover, rcwcr itera•
tions arc nccc:ssary for pythag(a.b) with b much smaller than
a.

2. Iterate until there is no change.

This can be implemented in a machinc•indcpcndent man•
ncr with something like

ps:- p

p :-p+2•s•p 579

CLEVE MOLD. ANO DONALD MOA.R.ISON

580

if p - ps then exit

This is probably the most foolproof criteria~ but it always
uses one extra iteration, just to confirm that the final
iteration was not nccc:ssary.

3. Predict that then: will be no change.

The idea is to do a simple calculation early in the step that
will indicate whether or not the remainder or the step is

ncc:cssary. Jr we use /(z) • y to mean that the computed
value of/(z) equalsy, then the condition we wisb to predict
is

When r is small, thens - r/(4 + r) is lest than and almost
equal to r/4. Consequently, a sufficient and almost equiva­
lent condition is

p + rp/2 •P·

It might seem that this is equivalent to

2+r•2.

However, this is not quite true. Let /J be the base of the
ftoating point arithmetic. For any floating point number p in
the range I :S p < /J, the set of Boating point numbers d for
which

is the same as the set o(d (or which

J+d•l.

In other words. the conditions p + dp • p and I + d • 1 arc
precisely equivalent only when p is a power of /J.

We have chosen to stop when

4 + r • 4.

There arc three reasons (or this choice. The quantity 4 + r is
available early in the step and is needed in computing s. The
condition is almost equivalent to predicting no change in p.
The variables p and q have already been somewhat contami­
nated by round-off error rrom previous steps.

The satisfactory error properties or pythag an: inherited
by norm2. It is possible to show that the computed value or
norm2(.r) is the exact Euclidean norm or some vector whose
individual elcmenu are within the round-off' error or the
corresponding clements or z.

CL!YE MOLEJt AND DONALD MOtUUSON

6. Some related algorithms
It is possible to compute ../-a-1 ---b-1 by replacing the
statement

r:- (q/p)z

~_in~gwith

r :-· -(q/p)z.

The convergence analysis in Section 4 still applies. except
that rand II take on negative values. In panicular, when a
- b, the initial value of II is -4 and this value docs not
change. The iteration becomes simply

p :- p/3.

q :- -q/3.

The variable p approaches mo u it sbou1d. but the conver­
gence is only linear. If a 1" b, the convergence is m:ntually
cubic. but m;any iterations may be nqu.in:d to enter the cubic
regime.

The iteration within pythag eff'cctivcly computes p ./i+r.
The related cubically convergent algorithm ror squan: root
is

function sqrt(z)
n:al z.p.r .s
p:- I
r:- z-1

while (r is numerically significant)

do
s :- r/(4+r)

· -1' :- p+l•s•p
r :- r•(s/(1 +2•s)) 2

od
sqn:- P

Although this algorithm will converge for any positive:. it is
most effective for values of z near I. The algorithm can be
derived from the approximation

~ 4+3r
VI +-r::.--,

4+r

which is accurate to second order for small values or r. The
classical quadratically convergent iteration for square root
can be derived from the approximation

which is accuratc only to ftnt order. The cubically conver•
gent algorithm requires (ewer iterations. but more operations
per iteration. Consequently. its relative efficiency depends
upon the det:ails of the implementation.

l
•• ,
~

I
I
I

I

I
J
I

]

l.

l
I

j
IIM J. RD. DEVELOP. • VOL Z7 • NO. 6 • NOYE.MIER ltlJ ,...__

,' ' (

J

I

I
1
a

7

~

The Eudidc:an norm or a vector can also be computed by a
generalization of pyth'1g(a.b) lo allow a vector argument
with any number of components in place of (a.b). a vector
argument with only two components:

vcctor•pytbag(x)
real vector x..q
n:al p.r .s.t
p :- (any nonzero component or x, preferably the largest)
q :- (x with p deleted)
while (q is numerically significant)
do

od

r :- (dot product or q/p with itself)
s :- r/(4+r)
p :- p+2•s•p
q :- seq

vcctor•pythag :- p

The convergence analysis of Section 4 applies to this
algorithm. but the initial value or u may be less than 4. The
convergence is cubic. but the accuracy attained after a fixed
number or iterations will generally be less than that of the
scalar algorithm. Moreover, it docs not seem possible to
obtain a practical implementation which retain$ the simplic•
ity or pytbag and norm2.

References
I. J. L Blue. •A Portable Fortran Program to Fmd the Eudidcan

Norm of a Vector." ACM Tnms. Ma1h. Sofrwan 4. 15-23
(1971).

ISM J. RES. DEVELOP. • VOL Z1 • NO. 6 • NOVEMIEll lflJ

2. C. L Lawson. R. J. Hanson. 0. R. Kincaid. and F. T. Krogh.
.. Basic Uncar Algebra Subprogr2ms for Fonran Usage. .. ACM
Tron,. Ma1h.SofrwonS. 308-323 (1979).

3. Cleve Moler. •MATLAB Uscn• Guide. .. T«Juum/ Rtpon
CSll-1. Dqianmcnt ot Computer Science. Uni'f'Cl'Sity or New
Maic:a. Albuquaquc.

Received·Jww6. 1983:rmsedJuly JS.1983

Cleff B. MoMr' ihptutlflffll of CompUla-Sdma. Utdwnity
of N" M~. Alb""1'ffllW. NrN Mui"' 81 /JI. Prolcssar Moler
bu been wit.la tbc UlliYmil)' oC New Mexico since 1972. He is
Cllff'aldy cbainnan of tllc Ocpartmcal or Compcatcr Scicncc. His

racarch iDtcraU iDdudc amncrical aaalysis. mathematical so(t•
ware. and scientific computing. He received bis Ph.D. iD matbanat•
ic:I (n,m Swuonl Ullnocnity. Calil'omia. in 1965 and taqbt at the
Uaiwenity of Micbipa from 1966 co l 972. Professor Moler is a
member ol tllc Asloc:iation for Computing Machiacry &Del the
Society (or Indl<rial aad ~pplicd Mathematics.

Donald R. Morrtson lhpartnwnt of Computer Sdot&e. Uni•
Yff'Sity of N" Maico. Albuqwrque. New Mui"' 811 JI. Profcsscr
Morrilm bu been with the: Univc:rsity or New Mweo since 1971.
He recc:m:d bis Ph.D. ill mathematics from the Unm:rsity o(
W'IICOCIIUI iD 1950. He taught at Tulane: Univcnity. New Orleans.
lo11m•n■ Crom 1950 to 1955. and was a st.aft" member. supcmscl'.
ud depanmc:nt manager at Sandia Laboratory from 1955 to 1971.
He bas pcablishcd screral papen in abstract algebra. compuution.
in(ormatioa retrieval and cryptography. Professor Morrison is a
member ol tllc Associatioa for Computing Mac:hincry and the
Mathcmaucal As:sociatiou of America.

581

CUYE MOLU AND 00,,,ALO MOlllllSON

]

rl~
1
I
I
I
I

. J
'

1
(

(l_j

'

J
- {

