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Computer System Support for S~ientific and Engineering 
Computation 

Lecture 18 - June 30, 1988 (notes revised July 27, 1988) 

Copyright @1988 by W. Kahan and David Goldberg. 
All rights reserved. 

1 Twenty-Five Years with Mathematical Software 

This is a summary of the lecture by Cleve Moler, currently of Ardent Computers, about 
writing portable software for solving linear algebra problems. 

1.1 Machine Epsilon 

Machine epsilon (hereafter referred to as aps) is defined to be the separation between 1 and 
the next floating point number, and is often approximated as the smallest floating point 
number £ so that 1 + £ > 1. The earliest program that Moler presented, a linear equation 
solver from 1963, required the user to specify eps as an input parameter. That program 
also used assembly language routines ILOG2, DOT, SDOT, and DAD, a.swell as using fixed size 
arrays. The programs in Computer Solution of Linear Algebraic Systems by Forsythe and 
Moler {1967) buried eps in the code, setting it equal to o-o, which the user ha.d to replace 
with the correct value for his machine. Moler gave an anecdote concerning a program that 
went into an infinite loop on the Ardent machine. The reason was it used a routine from 
Bell Labs called r1mach, which requires the porter to find the para.meters for his machine in 
the comments, and then "uncomment" that piece of code. The code had come from being 
run on a Pyramid machine, and it miraculously had run correctly even though the constants 
in the code were for neither the Pyramid nor the Ardent computers! The translation of 
Computer Solution of Linear Algebraic Systems into Hungarian replaced o-o with 1. 0E-8. 

The volume on linear algebra of Handbook for Automatic Computation by Wilkinson and 
Reinsch appeared in 1971.1 The routines in this book not only required giving eps a.s an 
argument to procedures, but also a variable tol which was used to guard against underflow. 
The reason an underflow check was needed, can be seen as follows. Suppose you wanted 
to scale a vector (a,b,c) to have norm 1. You would compute the norm a= .Jo.1 + b2 + cl 
and replace the vector with ( a/ s, b/ s, c/ s ). But suppose that the vector is 10-19( 1, 2, 1 ). In 
IEEE single precision, the underflow threshold is 1.2 x 10-38• If underflows are flushed to 
zero, then the computed value of the norm a will be 2 x 10-19 and the normalized vector 
will be ( ½, 1, ½), which doesn't have norm 1. This situation can be avoided by e."<:plicitly 
checking for underflow using the paramater tol. 

1Wi1Jcinaon's earlier book has been re£ened to u the Bible. this volume as the New Tes~ment. 
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The book Computer Methods for Mathematical Computations by Forsythe, Malcolm and 
Moler (1977) gives the followi~g machine independent code for computing eps 

EPS • 1. 
10 EPS • O.S•EPS 

EPSP1 • EPS + 1 
IF (EPSP1 .GT. 1.) GO TO 10 

This code appears to compute EPS = ½ ulp(l) on IEEE machines and IBM 370 and 
EPS = ¼ ulp( 1) on VAX machines. Beyond that, it may not work correctly for machines 
with a high precision accumulator, because it might compute EPSP1 in a high precision 
accumulator, and compare this high precision number with 1, rather than rounding EPSPl to 
the precision used to store floating point numbers in memory. Or even worse, an optimizing 
compiler might change the test EPSP1 .GT. 1. to EPS .GT. O, which would compute the 
smallest positive representable number rather then eps. A routine that uses this algorithm 
for eps is the zero finding program ZEROIH. It requires the user to provide an argument TOL 
for the amount of error that can be tolerated in the answer. If TOL is zero, than the result 
is computed to within eps. 

One of the tricks in ZEROIH concerns finding the midpoint between Band C. The naive 
formula CB + C)/2.O may not work on a non-binary machine. For example in two digit 
decimal, if B • 9. 7 and C • 9. 8 then B + C is 19.5 and will be rounded to either 19 or 
20, thus (B + C) /2. O will be either 9.5 or 10, neither of which is between 9. 7 and 9.8. The 
routine ZEROIH uses the formula B + (C-B)/2.0 instead. 2 

Not all the routines in Computer Methods for Mathematical Computations compute EPS 
directly. For example, the singular value decompostion program SVD adds A.BS (SMALL) 
to AHORM, where SMALL is a small quantity computed in the algorithm. When the sum 
equals AXORM, the iteration stops. A1J with eps, this calculation can be ruined by optimizing 
compilers, and a truly careful routine would be 

COMKOR FIEST 
TFST • ABS(SKALL) + AHORM 
CALL FOO(TFST) 
IF (FIEST .EQ. ANORK) 

SUBROUTINE FOO 
COMMON FIEST 
FTEST • TEST 

In 1974, EISPACK appeared, which was basically the translation of Wilkinson and 
Riesch into FORTRAN. The only unportability in EISPACK concerned eps. It was defined 
by KACHEP • ? , so that the programs wouldn't compile unless ? was replaced with a value. 
The variable tol was eliminated by scaling the vector ( a, b, c) before taking its norm. 

In EISPACK III (1983), code for computing eps was provided, namely 

A• 4.0D0/3.0DO 
10 B • A - 1.0D0 

C • B + B + B 
2This trick is due to Householder and dates Crom around 1953. 
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EPS • DABS(C-1.0DO) 
IF (EPS .EQ. O.OD).) GO 'IO 10 

The GO TD 10 is inserted in order to foil optimizing compilers. The reason why this program 
works, is that 4. OD0/3. ODO can only be represented ~tly on ternary machines, or in other 
words can't be represented exactly on any known machine, and so will be rounded. This is 
the only rounding enor that occurs in this program, and so C will be slightly different from 
1. The subtraction B • A - 1. ODO guarantees that the last bit of B will be zero, and thus 
the last bit of C is zero. To illustrate, consider p = 5 and base /3 = 10. Then 

A • 1.3333 
B • .33330 
C • .99990 

EPS • .00010 

The only roundoff error occured when computing A, and .0001 is the distance between 1.0 
and the next representable number 1.0001. However, EISPACK m doesn't really use eps 
directly. Rather it tests for a negligible elements directly as we illustrated above for the 
routine SVD in Computer Method3 for Mathematical Computations. 

1.2 Iterative Refinement 

We earlier studied how to use iterative refinement to improve the accuracy of solutions to 
linear systems. When doing iterative refinement, it is essential to compute the residual b-Ax 
in a higher precision than the main calculation. The earliest linear equation solver from 
1963 used the assembly coded routines DOT and DAD to compute in double precision. The 
book Computer Solution of Linear Algebraic Systems has its algorithms written in ALGOL, 
and points out that accumulating sums in double precision can't be written in ALGOL 60. 
It refers to the routine innerprod, giving a reference for it. However, the FORTRAN 
version of the algorithm used the fact that FORTRAN compilers could recognize D = D + 
X•Y and compute the product in double precision. The PL/I version used the statement 
MULTIPLY(A(I ,J), X(J), 12) to a.ccumula.te, using the fa.ct that the default precision 
was 6. 

But neither Computer Methods for Mathematical Computations (1976) nor UNPACK 
(1979} use iterative refinement. Some of the reasons are 

• Its hard to write iterative refinement portably in FORTRAN, because when the work­
ing precision is double precision (as it usually is when doing scientific computing on 
all contemporary machines except CRAY and CDC}, there is no portable way to 
efficiently code the extended precision operations. 

• The extra accuracy you get using iterative refinement is not usually worth it, because 
the input data is usually not precise. In fact, the input matrix is often the output of 
another program. 

• One of the uses of iterative refinement is to give a bound on the accuracy of the 
solution, but this information can be easily obtained by estimating the condition 
number of the matrix. 
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1.3 Efficiency 

The 1967 book Computer Solution of Linear Algebraic SystemJJ has the.ALGOL comment 

comment Inner loop. Only column subscript varies. Use 
machine code if necessary for efficiency. 

Ideally, portable software shouldn't require writing in machine code, but rather should be 
written in such a way that compilers can optimize the code. In the first version ofEISPACK, 
the inner loop of TRED1, the routine for reducing a lower triangular matrix to a tridiagonal 
one, looks like this 

DO 180 K • 1, J 
180 G • G + l(J,K) • A(I,K) 

JPl • J + 1 
IF (L .LT. JP1) GO TO 220 
DO 200 K • JPl, L 

200 G • G + A(K,J) * l(I,K) 

It contains an IF statement so it can't be vectorized on Cray class machines. In EISPACK 
III, the loop was rewritten as 

DO 240 J • 1, L 
F • D(J) 
G • E(J) + A(J,J) * F 
JPl • J + 1 
IF (L .LT. JP1) GO TO 220 
DO 200 K • JP1, L 

G + G + l(K,J) * D(K) 
·ECK)• E(K) + l(K,J) * F 

200 COHTIRUE 
220 E(J) • G 
240 CONTINUE 

The code has been changed so that the inner loop does not have an IF statement. 
The LINPACK codes address efficiency by using the BLAS, the Basic Linear Algebra 

Subprograms designed by Lawson, Hanson, Kincaid and Krogh (1978). Almost all the inner 
loops of LINPACK occur inside a BLAS routine, and LINPACK only uses column oriented 
BLAS. A typical BLAS routine is SAXPY, which performs the operation y = y + az. 
The BLAS are written in FORTRAN but can be replaced by assembly language coded 
versions for machines with compilers that can't optimize them. Another advantage of 
using the BLAS is that for those who are familiar with it, codes which use it are easier to 
understand.3 Unfortunately, the BLAS tend to get in the way of very high quality compilers 
and can actually reduce efficiency. 

In order to improve portability, LINPACK contains no machine dependent constants, 
no I/0, no character manipulation, no COMMON or EQUIVALENCE statements, and no 
mixed-mode arithmetic. 

3 And in fact, familiarity with BLAS ia ao widespread, tb&t a company wu D&med after SAXPY. 
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1.4 Comments on EISPACK 

EISPACK and LINP ACK cc:ist over a. million dollars to develop, and are very high quality 
codes. As mentioned above, EISPACK is now available as EISPACK ill, which has im­
proved in portability (no longer have to modify th~ code to insert your own MACHEP) and 
in performance (inner loops are column oriented a.nd vectorizable). However, even in codes 
which are so highly developed, problems can be discovered. For example Guenter Ziegler 
and Andrew Odlyzko used the routine RS in EISP ACK to compute the eigenvalues of the 
following real symmetric matrix : 

-1 1 1 -1 -1 1 1 -1 -1 
1 1 -1 -1 1 1 -1 -1 1 
1 -1 -1 1 1 -1 -1 1 1 

-1 -1 1 1 -1 -1 1 1 -1 
-1 1 1 -1 -1 1 1 -1 -1 

1 1 -1 -1 1 1 -1 -1 1 
1 -1 -1 1 1 -1 -1 1 -1 

-1 -1 1 1 -1 -1 1 -1 1 
-1 1 1 -1 -1 1 -1 1 1 

EISP ACK reported that 5 eigenvalues were on the order of roundoff' error using double 
precision D format on the VAX. The correct answer is that 4 eigenvalues a.re 0. EISPACK 
got the wrong answer due to an underflow bug. 

1.5 Pythagorean Sums 

The expression Ja,2 + b2 occurs quite frequently. It represents the length of a vector and 
the norm of a. complex number among other things. The obvious formula. has two poten tia.l 
shortcomings. The first is that it requires a square root function to be available. The second 
is that it can underflow or overflow. In IEEE single precision, the maximum representable 
number is a.bout 1.7 x 1038, so if a, orb is much bigger than 1.3 x 1019, the computation 
of J a2 + 62 will overflow, even though the final answer is well within range. The pa.per 
Replacing Square Roots by Pythagorean Sums by Moler a.nd Morrison gives an itera.ti ve 
algorithm that avoids these problems. If a ~ b, it starts by setting p = a, and q = b. At ea.ch 
step, pl+ q2 = a2 + 62, but q gets smaller a.nd hence p gets bigger. When q is negligible, 
then p will be an extremely good approximation to ✓a2 + b2• The rule for computing p and 
q is 

r = (!)2 
p 

T 
8 = 4+r 

p - p + 2p ( 4 : r) = p + 2p., 

q - ,(-r) =qa 
4+r 

Since r < 1, clearly , < t, so a.t each iteration q is a.t most ½th the value of the previous 
iteration (in fact, it decreases even more rapidly). And p2 +q2 becomes y(l+2s)2 +(sq)2 = 
p2(4s+4s2)+p2+(s2 -l)q2 +q2 = (.s+1){4sp2+(.s-l)q2}+p2+q2• Since(.s-l)(q/p)2 = -4s, 
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the quantity in braces is 0, so p2 + q2 is preserved. The algorithm obviously doesn't involve 
square roots, and since p starts with the value max(a,6) and grows at ea.ch step, it will not 
underflow nor overflow. The main problem with this algorithm is that it is too slow. It 
requires 2 divisions per iteration, but hardware implementations or square root take about 
the same amount or time as a single division step. A more practical algorithm would be 
faf✓l + (6/a)2, where a= max(a,b). 

One interesting facet of this algorithm is that it is noticeably more accurate on machines 
supporting gradual underflow. If µ is the smallest positive representable floating point 
number, and a = 4µ, b = 3µ, then s =:: .1233 so q =:: .37µ underflows. If underflows 
are flushed to zero, then the algorithm stops after 1 iteration, giving an answer of p + 
2sp =:: 4.986µ, compared with the correct answer of 5µ.. A machine with gradual underflow 
would give a much more accurate result. A related situation occurs with the alternate 
formula laf y'l + (b/a)2. This is does not benefit from gradual underflow, but it can have 
an error as large as 1 + 3/1/4 ulps on machines that use base /3. A more accurate formula is 
a+b/ ((a/b) + y'l + (a/6}2), and this modified formula does benefit from gradual underflow 
when a and b are small. 

1.6 Comments on IEEE 754 

What is the impact of IEEE 754 on writers of portable software? 

• The most common languages for portable software, FORTRAN and C, don't have 
any language facilities that allow you to exploit the IEEE standard, particularly in 
the area of exception handling. The development of libraries such as Apple's SANE 
package may help in the future, although SANE on a Macintosh is quite slow. 

• Portable software must work on VAX, Cray a.nd mM/370 as well as IEEE machines, 
so portable software can't assume that IEEE facilities will be available. 

• The ANSI C and FORTRAN Sx efforts are more important to portable software than 
the IEEE standard. 

A demo of MATLAB indicates how well this particular portable software deals with the 
IEEE standard. It correctly computes u = 0/0 as Nan and max(5, u) = Nan, but incorrectly 
sets max( u, 5) = 5. The impact of IEEE on mini-supercomputer companies like Ardent is 

• Gradual underflow is too slow for vector processors. 4 Both the Weitek chips a.nd all 
their imitators require extra cycles for processing denormalized numbers, but vector 
processors require predictable computation times. 5 

• The IEEE standard contains many fine points that a.re too much trouble to implement. 
An example of such a fine point is that when square root is implemented in software, 
that software must correctly set the inexact bit. 

'Gradu&l undedow wu the moat controversial pan o( t.he standard, and probably acc:ount.ed Cor the 
length of t.ime it took to get adopted. A foreign visitor to the U.S. waa advised that. the sights not to be 
miaed were Lu Vega.a, the Grand Canyon. and the IEEE sc.&nduds committee meeting. 

5Kahan suggest.a that the IEEE standard didn't address vector processors, because CRAY appeared to 
have a lock on the market, and wun't interested in cbuging ita arithmetic to conform to the IEEE standard. 
Hough: earlier drafts did address pipelined implementations via warning mode; at the instigation of some 
Apple people that was taken out to simplify the standard, sub1equently complicaung everybody's life to 
1ach u extent that Hough regrets supporting that simplicatioa. 
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16. ALGOL 60 PROGRAM 

Computer programs that use Gaussian elimination or one of its variants 
have been written in many programming languages and used on many 
computers. Several of these programs have also used some form of iterative 
improvement. Together with )Villiam McKeeman we have developed the 
set of four ALGOL 60 procedures now to be given as program (16.1). Earlier 
versions of this program are found in Forsythe (1960) and McKceman (1962). 
See Baumann ti al. (1964) and Naur et al. (1963) for an introduction to and a 
definition of the ALGOL 60 language. Several pages of explanation follow our 
program. 

(16.1) ALGOL 60 program for solving linear systems 

begin 
comment Linear system package, ALGOL 60 version; 
integer array ps(l: 100); comment Global pivot index array. We 

assume n S: 100; 
procedure DECOMPOSE(n, A, LU); 

nlue n; integer n; 
real array A, LU; comment A, LU[l :n, 1 :n]; 
comment Uses global integer array ps; 
comment Computes triangular matrices L and U and per· 

mutation matrix P so that LU = PA. Stores L - I 
and U in LU. Array ps contains permuted row 
indices; 

comment DECOMPOSE(n, A, A) overwrites A with LU; 
begin 

real array scalts[l :n]; 
integer i, j, k, piuotindtx: 
real normrow,pioot, si:t, biggtst, mult; 
comment Initialize ps, LU and scales: 
for i := I step J until n do 

begin 
p.r[i] ::a ;,• 
normrow :=-= O; 
for/:- I step 1 until n do 
l,eain 

LU[i,j] :== A(i,j]; 
if 11ornrro,~ < abs(LU(i,j]) then nonnrow :=- abs(LU[i,J]); 

end; 
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SEC. 16 ALOOL 60 PROORAM 59 

if normrow ::/,: 0 then scala{i] :== I/normrow 
else begin scale.s(i] := O; SJNGUUR(O) end; 

encl; 
comment Gaussian elimination with partial pivoting; 
fork :-= l step l 1111til n - 1 clo 
begin 

biggat :-= O; 
!or i :- k step 1 1111til n do 
be&in 

size :-= ab.s(LUfp.s(i), kD x .rcal,sfps[iD; 
if biggt.rt < .rize then 

begiD biggut :a: .riz~,· plootindtx :== i end; 
end; 
i! biggat za O tbea 

begin SINGULAR(I); 10 to tndlcloop end; 
i! piootindex ¢ k thea 

begin 
j := p.s(k]; p.s(k] :== ps{piootinda]; ps(pioatindex] := j 

end; 
picot :== LU(p.s(k], k]; 
for i :== k + 1 step 1 antil n do 
begin 

LU(ps[i), k) :== mult := LUl'p.s(i), k]/pivot: 
IC ult 
or J : = k + 1 step 1 antfl n do 

LU(p.s(i],J1 :::a LCl(ps[i],j] - mu/t x LU[ps[k],j]; 
comment Inner loop. Only column subscript varies. Use 

machine code if necessary for efficiency; 
end; 

endkloop: 
end; 
Ir LU(p.s(n], n] == 0 then SINGULA.R(l); 

end DECOMPOSE,· 

procedure SOLYE(n, LU, b, .r); 
ftlue n; integer n; 
real array LU, b, .x; comment LU{l :n, 1 :n), b, .x[l :n]; 
comment Uses global integer array ps; 
comment Solves Ax - b using LU from DECOMPOSE,· 

heefa 
latqer i,J; 
ml dot; 



60 ALGOL 60 PROCillAM 

for; := 1 step 1 until n do 
begin 

dot :== O; 
for j :== 1 step 1 antil ; - 1 do 

dot :=-dot+ LU{ps(i],j] X .xfJ1; 
.x[i] := b(ps[iD- dot,· 

end; 
for i := n step - 1 1111til 1 do 
be&iD 

dot :-= O; 
for j :cz I + l step 1 1111111 n do 

dot :m dot + LUCps[iJ,j] X .xfJ1; 
.x[i] :== (.x[i) - dot)/LU(ps(i], i]; 

end; 

SEC. 16 

comment As in DECOMPOSE, the inner loops involve only the 
column subscript of LU and may be machine coded 
for efficiency; 

end SOLYE: 

procedure IMP RO YE(n, A, LU, b, x, digits); 
ftlue n; integer n; 

• real array A, LU, b, z; comment A, LV[l :n, 1 :n], b, x[l :n]; 
real digits; 
comment A is the original matrix, LV is from DECOMPOSE, b 

is the right-hand side, x is solution from SOLYE. 
Improves x to machine accuracy and sets digits to the 

real array r, d.x[l :n]; 
intqer ittr, itmax, i; 

• its of x which do not chan e • 

real t, normx, normdx, tps.· 
real procedure /og(x); nlue x; real x; 

log:= .4342944819 X /n(x); 
real procedure accumdotprod(n, A, ·i, x, extrattrm),· 

ftlue n, i, utrattrm; hateaer n, i; real ~xtratam,· 
real arny A, z; 
comment This procedure should evaluate the inner product of 

the •• 
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y of the procedure c:innot be written 

comment he bo y o accumdotprod could be written as 
follows in terms of the code procedure innerprod on 
p. 206 of M~rtin, Peters, and Wilkinson (1966): • 

end; 
begin 

comment (code); 
accumdotprod :== 0-0; comment 0-0 indicates code result; 

tps := 0-0; comment Machine-dependent round-off level; 
itmax := 0-0; comment Use approximately 2 x log (1/eps); 
nor 
for ; : == I step 1 until n do 

lfnormx < abs(x{iD then normx := abs(x[i]); 
if normx = 0 then . 

begin digits := -log(eps); go to converged end; 
for iter := 1 step 1 until itmax do 
begin 

for i : ::s 1 step I until n do 
r[i] := -accumdotprod(n, A, i, x, -b[iD; 

SOLYE(n, LU, r, dx); 
normdx := O; 
for i := 1 step I until n do 
begin 

t := x[i]; 
.x{i] := x{i] + dx[i]; 
if normdx < abs(x[i] - t) then normd:c := abs(x[i] - t); 

end; 
if iter = l then 

digits :== -log(iC nornid.t.,:. 0 then normd:r/11orm."C 
else eps); 

if normdx ~ eps x norm."C then go to com·erged; 
end iter: 
comment Iteration did not com·crgc: 
SING ULA R(2); 
com·ergtd: 

end IMPROVE: 
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62 AL00L 60 PROGRAM. 

procedure SJNGULAR(why): 
nlue why: Integer why: 

SEC. 16 

comment Prints error messages for DECOMPOSE and 
IMPROYE; 

comment outstring means write; 
be&fa 

if why az O thea 
outstringf Matrix with zero row in DECOMPOSE.j; 

if why- I tbm 
outstring(•Singular matrix in DECOMPOSE. SOLYE will 

divide by zero.j; 
Ir v.•hy c: 2 then 

outstringf No convergt!nce in IMP ROYE. Matrix i.r nearly 
.1ingular. j: 

end SINGULAR,· 
end Unear system package, ALGOL 60 version 

Nott!s on the ALOOL program: DECOMPOSE (n, '4,LU) uses elimina­
tion to find n-by-n triangular matrices L and U so that LU = PA, where PA 
is the matrix A. with its rows interchanged. The interchange information is 
stored in the global array ps, and the matrices L - I and U are stored in LU. 

SOLYE (n, LU, b, x) uses the LU factorization from DECOMPOSE 
to find an approximate solution to a single system of equations, b = b. 

IMPROYE(n, A.,LU, b, x, digits) requires a copy of the original matrix 
.A., its LU decomposition, a right-hand side b, and the approximate solution 
x computed by SOLYE. It carries out the iterative improvement process 

. until, if possible, xis accurate to machine precision. It also provides an esti­
mate digits or the accuracy or the first approximation. The value of digits 
is, roughly, the number of decimal digits of .T which are not changed by the 
iteration. This is a measure of the condition of A.. 

SJNGULA.R (why) is used by the other procedures to indicate the 
occurrence or an error condition. 

In practice. these procedures are used by another procedure or executive 
program written to handle a specific class of problems. As an example, we 
have included in Sec. 18 a procedure which inverts a matrix. 

DECOMPOSE uses elimination, basic::illy in the form described in 
Sec. 9. Temporarily ignoring scaling and pivoting. we c:in express the central 
calcuhition. the elimination. by 

(16.2) for j ::a k + I step I antil n do 

a,., :== a,.1 - (a,..Jau) :•: a •. ,. 
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17. FORTRAN, KITERJESZTETT ALGOL 
ES PL/1 PROGRA~OK 

Az elozc5 fcjezetben leirt cljarasok legtobb r6mcte kozvetlcniil lcfordithat6 
mas algoritmikus szamit6gepnyelvrc. Ezt tes.mik most a FORTRAN egy clfogadott 
stanc:fardinU8s4val, egy kiterjesztctt ALGOL Jcookret realizalasaval cs a PL/1 cgy 
elozetcs specifikaci6javal kapcsolatban. Mindcgyilc program illu.sztra.Jja maguknak 
az eljarasoknak bizonyos reszeit, valamint a ff!fbaszn8Jt nyelveket es sz.arnitogepeket. 
(Javasoljuk az Olvas6nak,0 hogy tajekoz6djon azokrol a nyelvekr516s szamit6gepek­
r61, amelyekkcl ncm ismcr&.) 

Ugy gondoljuk, hogy az altalunk hasm'1t FORTRAN nyelv megfelcl az American 
Standard A.uociation (1964) '1tal lclrt, legtobbszor ASA FORTRAN-nak nevczctt 
nyelvnek. Amennyire cz lehetscges, mapban foglalja harom FORTRAN dialcktus: 
az IBM 7090/94-rc keszitctt FORTRAN IV, a CDC 1604-rc kcszitett FORTRAN 63, 
cs az IBM System/360-ra kcsz:ftett Basic Programming Support FORTRAN kozos 
vonisait (lasd International Business Machines (1965a), Control Data Corp. {1963), 
cs International Business Machines (196Sb)). Elkeriiltillc az olyan vonasokat, mint 
a tlpusdcklaraci6k, rcl4ci6s kifcjezesek, cfmkes kozos tarolas es valtoztathat6 tomb­
dimcnzi6k, amelyek hasmosak lchetnenck, de egyuttal killonboz6 formajuak is, 
cs cgy vagy tobb rendszcrben ncm ~ lctc:znck. Ncbany kisebb osszeegyeztethctctlcn­
seg elofordul: a JAV1T-ban a kctt6s pontossag deklarac:i6janak a formaja, a FEL­
BON es JAVlT-ban az ABS, AMAXl a ALOGI0 fiiggvcnynevck, valamintaz out­
put egysegszar a KIIR-ban. :E pootokon csetleges valtoztatasokat eszkozolvc, a szub­
rutinok mas FORTRAN rendszerckre is atvihctok. 

(17.1) 

C 

FORTRAN program linearis egyenletrendszcrck mcgolda.sara 

SUBROUTINE FELBON (NN, A, UL) 
DIMENSION A(30, 30), UL(JO, 30), SK.ALJ\K.(30), IPS(30) 
COMMONIPS 
N=NN 

C MEGADJUK IPS, UL ES SKALAK KEZDETI ERTEKET 
DOS 1=1, N 

IPS (1)=1 
SORNOR=0.0 
DO 2J=l,N 

UL (I, J)=A (I, J) 
IF (SORNOR-ABS (UL (I, J))) l, 2, 2 

1 SORN OR =ABS (UL (I, J)) 
2 CONTINUE 

IF (SORNOR) 3, 4, 3 
3 SKALAK (1)= l.0/SORNOR 

GOTOS 
4 CALL KUR (1) 

SKALAK (l) :::z0.0 
5 CONTINUE 

S 1Jac,ril alsct,ni problauk 6S 
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C 
C 
C 

C 
C 
C 

C 

OAUSS FaLE KIKOSZOBOW R6ZLEGES. FOELEM• 
KIV ALAsZT ASSAL 
NMl=N-1 
DO 17 K= l,NMI 

NAOY=O.O 
DO 11 l=K,N 

IP=IPS (I) 
M~RET=ABS (UL (IP, K))• SKALAK (JP) 
IF (~RET-NAGY) II, 11, 10 

10 

11 

12 

NAGY=M~RET • 
IDXFOE=I 

CONTINUE 
IF (NAGY) 13, 12., 13 

CALLKIIR(2) 
GOTO 17 

13 IF (IDXFOE-K) 14, IS, 14 
14 J=IPS(K) 

JPS {K)= JPS (IDXFOE) 
JPS (IDXFOE)=J 

IS KP==IPS(K) 
F6ELEM=UL(KP,K) 
KPl=K+l 
DO 16 laaK.Pl, N 

IP=IPS (I) 
EM= - UL (IP, K)/FOELEM 
UL(IP,K)=-EM 
DO 16 J =KPI, N 

J 
UL (IP, J)=UL (IP, J)+EM• UL CX,, J) 

BELS6 CIKLUS. HASZNALJUNK GUI K6DOT 
HA A COMPILER NEM AD HAttKONY PROG­
RAMOT. 

16 CONTINUE 
17 CONTINUE 

KP=IPS(N) 
IP (UL (KP, N)) 19, 18, 19 

18 CALL KIIR (2) 
19 RETURN 

END 

SUBROtrrINE MEGOLD (NN, UL, B, X) 
DIMENSION UL (30, 30), B (30), X (30), IPS (30) 
COMMON IPS • 
N=NN 
NPl=N+l 

IP=IPS (I) 
X (l)=B (IP) 

j 

., 
I 

I 
I 
I 

·1 

.I 
i 

') 

~J 
] 

) 
( 

J 
( 

I 
t 

J 
( 

~ 
1 

~1 
.: :/-:--~ ;:,;~~?Jl 



, 
l 

: r: 
.:r 

r 

C 

DO 2 1=2., N 
IP=IPS {I) 
IMl=l-1 
SUM=0.0 
DO 1 J=l, IMI 

I SUM=SUM+UL OP, J)•X (J) 
2 X (I)=B IP)-SUM 

JP=IPS(N) 
X (N)=X (N)/UL (IP, N) 
DO 4 IVISSZ=2., N 
I-= NPI -IVJSSZ 

C I WGIGFUT AZ {N-1), ... , 1 ERTacElCEN 
IP=IPS (J) 
IPl=I+ 1 
SUM=0.0 
DO lJ=IPI, N 

3 SUM=SUM+UL (IP, J)•X (J) 
4 X (l)=(X (1)-SUM)/UL (IP, I) 

RETURN 
END 

SUBROtmNE IA vtr (NN, A, UL. B, X, JEGYEK) 
DIMENSION A (30, 30), UL (30, 30), B {30), X (30), R (30), 

DX(30) 
C HASZNALJA AZ ABS (), AMAXl (), ALOGI0 {) 
C FOGG~KET 

DOUBLE PRECISION SUM 
C N=NN ~ 

EPS=l.OE-8 ., 
ITMAX=16 

C • • • EPS ES ITMAX A GEPTOL FOGGENEK. • • • 
C 

C 

XNORM=0.0 
DO 11=1,N 

1 XNORM =AMAXI (XNORM, ABS (X (I))) 
IF (XNORM) 3, 2. 3 

2 JEGYEK= -ALOGI0 (EPS) 
GOTO 10 

3 DO 9 llER=I, ITMAX 
DO 1=1, N 

SUM=0.0 
DO 4J=I, N 

4 SUM=SUM+A (l, J)•X (J) 
SUM= B ())-SUM 

5 R (l)=SUM 

31.S 

67 
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C • • • ·L~NYEGES HOGY A (I, J) • X (J) KETIOS PON-
C • TOSSAGU EREDMENY'T ADJON 6 A FENTI 
C + 6 - KE'ITOS PONTOSSAGO LEGYEN. • • • 

CALL MEGOLD (N, UL,.~ DX) 
DXNORM=0.0 
DO 61=1,N 

T=X(I) 
X (l)=X (l)+DX (I) 
DXNORM =AMAXI (DXNORM, ABS (X (1)-T)) 

6 CONTINUE 
IF (IT.ER.-1)8, 7,8 

7 JEGYEK=-ALOGI0(AMAXI (DXNORM/ 
/XNORM, EPS)) 

8 IF (DXNORM-EPS • XNORM) 10, 10, 9 
9 CONTINUE 

C AZ ITERACI6 NEM K.ONVERGALT 
CALLKIIR (3) 

10 RETURN 
END 

SUBROUTINE KIIR (IMIER.1) 
11 FORMAT (54HOMATRIXFELBONTASBAN ZEROS SOR.) 
12 FORMAT (54HOSZINGULARIS MATRIX A FELBON-

TASBAN. A MEGOLD ZERUSSAL oszr. ) 
13 FORMAT (54HOJAVIT NEM K.ONVERGAL. A MATRIX 

KOZEL SZINGULAR.IS. ) 
NKl=3 

C NIC.I=STANDARD OUTPtrrEGYS~G 
00 TO (1, 2. 3), IMmR.T 

1 WRITE (NKI, 11) 
GO·TO 10 

2 WRITE (NKI, 12) 
GOTO 10 

3 WRITE (NKI, 13) 
IO RETURN 

END 

Figyeljiik meg, hogy az ALGOL programbeli LU-ta FORTRAN programokban 
ULcl fejeztilk ki. 

E16fordulhat, hogy cgyetlen ALGOL utasitast - killonosen indexeket, valamint 
logilcai vagy Boole-kifejezeseket tartalmaz6t - c:sak tobb FORTRAN utasitassal 
tudunk kifejezni. Viszont a fordft6program bizonyos crtelemben karp6tolhat eurt, 

• hatckooyabb gcpi kod e164llftasaval. E.setilDkben ez ldilon&eu fgy van. A FORTRAN­
ban a FELBON-beli bels6 cildus 

;(17.2) DO 16 J = KPI, N 

16 UL(IP,J) == UL(IP,J)+EM•UL(KP,J) 
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76 R>R~N. EXTENDED ALOOL, AND PL/I PROORAMS SEC.. 17 

IN,-OVE: PltOCEOUlE IN, A, LUe I, X, DIGITSI ; 
DECLARE &t•,•I I• ORIGINAL "'TRIX •I, 

LUC•e•I FLnAT I• DFCONPOSITION OF A •I, 
tl• I I• RIGHT HANO SIDE •I , 
11•1 I• &PPROIINATE SOLUTION JO IE IMPROVED •I, 
DIGITS I• WILL IE SET TO ACCUAACY OF INPUT I •I: 

DECLARE ca.011 CNI, INURNI, NOlNDI, Tl FLOAT, 
ll, Je ITEAI FIXED IINARY, 
fPS INITIAL lleE•61 I• MCHINE DEPENOENT ROUNDOFF LEVEL •I, 
ITNAI INITIAL 1121 I• USE Z-LOGlOll/EPSI .VPROIINATELY •I 

DECLARE OPSUN FLOAT llZI 
I• IT IS fSSENTl&L •M&T PRECISION OF DPSUM IND &AGUICENT OF NUL.TIPLY 

USED IELDW IE TWICE DEFAULT l'AECISION. DEFAULT PAECISION CF 6 
ASSURED HERE. •I; 

NOR"X • 0; 
DO I • l TO N : 

NOANX • NAICN0lNX,AISlllll11 
END; 
IF KOAMI • 0 THEN 

DO; DIGITS• -LOGlOCEPSI: GO TO CDNYERCEO: END 

DO ITE•. l TO ITNAI a 
DO I • l TO N ; 

OPSUM • 0 ; 
00 J • 1 TO N ; 

DPSUM • OPSUN • NULTIPLYC&ll,JI, ICJI, 121 
END ; 
DPSUN • 1111 - DPSUN 
A 111 • DPSUN : 

END; 
CALL SOLYECN,lU,R,011 
NOANDI • 0 : 
DO I • 1 TO N ; 

T•IIII: 
1111 • 1111 • D1111: 
NORNUX • N&ICNnlNDl,&BSCXCII-TII 

ENO ; 
IF ITEl • 1 THa. DIGITS• -LOGlOIN&llNORMOl/NOR"l•EPSII 
IF NOR~Ol <• EPS•NUlMI THEN GO TO CONVERGED: 

ENO; 
CALL SINGULAAl•CnN•I 
CONVERGED: 
END INPAnve: 

SINGULARS NOCEDIJRE CWHYI ; ~ 
DECLARE NHY CHAA&CTfRCJI ; 
IF Wtff••Row• THEN PUT SKIPCZI L ST 

l'ZERO •ow IN DECO"POSE'I: 
IF WHY•'PIY• THEN PUT SKIPCZI LIST 

c•SINGUl.AR "ATMII IN DECO-POSE. SOLVE WILL DIVIDE IY zeaa.•, 
IF WHY••CON• THEN ,UT S~IPC21 LIST 

C•NO CONYERGfNCl IN l"PROYE. "ATAll IS NE&lll.Y SINGULAA.•I ; 
IND SINGULAR I 
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SEC. 2.1 FLOA11N0-POINT NUMBERS 11 

and L ~ t ~ U. JC for every nonzero x in F, d1 ¢ 0, then the floating-point 
number system Fis said to be normalized. The integer~ is called the ~xpon~nt, 
and the number/= (d,/ P + ... + d,//1') is called the fraction. Usually the 
integer P'•/is stored using a common integer representation scheme such as 
signed magnitude, one's complement, or two's complement. 

Actual computer implementations of ftoating-point representations may 
differ in detail from the ideal ones discussed here, but the differences are minor 
and can almost always be ignored when dealing with fundamental problems 
or roundoff' errors. 

The following table gives some examples or floating point systems. The 
quantity p• -, is an estimate of the relative accuracy. or the arithmetic. We 
do not give the precise value of machine epsilon because it d~pends upon 
complicated details, such as the form or rounding. 

If the number of digits, t, is not an integer, it means that p = 2• and k • t 
bits are available for binary representation of the fraction. 

Computer , I L u ,,-, 

Univac JJOS 2 27 -128 127 1.49 X 10-1 

HoncyweJ16000 2 27 -128 127 J.49 X 10-1 

PDP-11 2 24 -128 127 1.19 x 10-' 
Control Data 6600 2 48 -916 J.070 7.JJ X JO-IS 
Cray-I 2 48 -16,384 8,191 7.lJ X JO-IS 
IJJiac-lV 2 48 -16,384 16,383 7.11 X JO-IS 
Setun (Russian) 3 18 ? ? 7.74 X 10-' 
Burroughs BSSOO 8 13 -SI 77 1.46 X 10-11 

Hewlett Packard HP4S JO 10 -98 100 1.00 X 10-f 
Teus Instruments SR-Sx 10 12 -98 100 1.00 X 10-11 
IBM 360 and 370 16 6 -64 63 9.54 X 10-' 
IBM 360 and 370 16 14 -64 63 2.22 X 10-1' 
TcJe(unkcn TR440 16 9¼ -127 127 5.84 X 10-11 
Maniac II 65536 lff -7 7 1.25 X 10-, 

Some computers use more than one floating-point number system. For 
example, the IBM 360 uses the two base-16 systems listed above. These two 
different systems arc called short precision and long precision. 

The set Fis not a continuum, or even an infinite set. It has exactly 
2(/J - l)JJ1

-
1(U - L + 1) + 1 numbers in iL These are not equally spaced 

throughout their rang_c but only between successive powers of p. Figure 2.1 
shows the 33-point set F r or the small illustrative system /J = 2, t = 3, L = 
-1, U= 2. 

Because Fis a finite set, there is no possibility of representing the con­
tinuum of real numbers in any det:iil. Indeed. real numbers in absolute value 

-·· + 
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14 FLOATINO•POlNT COMPUTATION CHAP. 2 

value) of e. That is, a program can discover the available precision for the 
machine it is executing on at ex~ci,tion time. The method we use for comput­
ing an approximation which differs from £ by at most a r actor of 2 is illus­
trated by the following segment of a Fortran program: 

EPS -1. 
10 EPS - O.S•EPS 

EPSPI - EPS + I. 
IF (EPSPl .OT. I.) 00 TO 10 
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PROBLEMS 25 

P2-5. (Kahan) (a) How arc the numbers¼, J, and¾ represented internally in 
your computer. Use an appropriate notation, i.e., binai:y, octal, hexadeci­
mal, etc. How are these numbers represented in the floating-point number 
systems or other computers such as the mM 360, CDC 6600, Univac 1108, 
Honeywell 6000, PDP-11, Burroughs 6500, etc.? 
(b) Consider the following Fortran program: 

H - 1./2. 
X-2./3.-H 
Y-3J5. -H 
E - (X+X+X) - H 
F - (Y+Y+Y+Y+Y) - H 
Q -FIE, 
WRITE (6,10) Q 
STOP 

10 FOR.MAT(IH, 020.JO) 
END 

The variable Q can take on seYeral different values depending on the 
floating-point arithmetic hardware used by the computer. Try to figure out 
the value or Q for computers you arc familiar with. Run the program on as 
many computers as you can to check your results. Explain your results. 

Pl-6. Consider the following two Fortran programs: 

EPS -1. 
10 EPS - EPS/2. 

WR.ITE (6,20) EPS 
20 FORMA T.(JH. 020.10) 

EPSPl - EPS + 1 
IF (EPSPl .OT. 1.) 00 TO 10 
STOP 

• END 

EPS - 1. 
JO EPS - EPS/2. 

WR.ITE (6,20) EPS 
20 FORMAT (1H, 020.10) 

lF (EPS .OT. 0.) 00 TO 10 
STOP 
END 

Run the programs on your system, and explain the results. 

P2-7. What output is produced when the following Fortran program is run on 
various computers with which you are famili:ar? Try to predict the output 
before act1mlly running the program; then run it to confirm your answer. 
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164 SOLUTlON Of NONUNIWl EQUATIONS 

REAL FUNCTION ZEROIN(AX.BX.F.TOLJ 
REAL AX.BX.F.TOL 

CHAP. 7 

C 
C 
C 

A ZERO OF THE FUNCTION F(X) IS COMPUTED IN THE INTERVAL AX.BX . 

C INPUT-
C 
C AX 
C IX 
c·, 
C 
C TOL 
C 
C 
C 

LEFT ENDPOINT OF INmAL INTERVAL 
RIGHT ENDPOINT OF INn'IAL INTERVAL 

FUNCTION SUlftROORAM WHICH EVALUATES F(X) FOR ANY X IN 
THE INTERVAL AX.IX 

DESIRED LENGTH OF THE INTERVAL OF UNCERTAINTY OF THE 
FINAL RESULT ( .GE. 0.0) 

C OUTPUT .. 
C 
C ZEROIN ABCISSA APPROXIMATING A ZEllO OF F IN THE INTERVAL AX.BX 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

n' IS ASSUMED THAT F(AX) AND F(BX) HAVE OPPOSITE SIGNS 
WITHOUT A CHECK. ZEROIN RETURNS A ZERO X IN THE OIVEN INTERVAL 
AX.BX TO WITHIN A TOLERANCE ••MACHEPS•ABS(X) + TOL. WHERE MACHEPS 
IS THE RELATIVE MACHINE PRECISION. 

THIS FUNCTION SUBPROORAM IS A SLIGHTLY MODIFIED TRANSLATION OF 
TH~ ALOOL 60 PROCEDURE ZERO GIVEN IN RICHARD BRENT. ALCiORITHMS FOR 
MINIMIZATION WITHOUT DERIVATIVES. PRENTICE• HALL. INC. (1973). 

REAL A.B.C.D.E.EPS.FA.FB.FC. TOLi .XM.P .Q.R.S 
C 
C COMPUTE EPS. THE RELATIVE MACHINE PRECISION 
C 

EPS • 1.0 
10 EPS • EPS/2.0 

TOLi • 1.0 + EPS 
IF (TOLi .OT. 1.0) GO TO 10 

C 
C INITIALIZATION 
C 

A• AX 
8 • BX 
FA • F(A) 
FB • F(B) 
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SEC7.2 SUBROU'l1NE ZEROIN 165 

C 
C BEGIN STEP 
C 

lO C • A 
i FC • FA 

J 
D•B•A 
E•D 

JO IF (AIS(FQ .GE. AIS(fl)) GO TO 40 

t A•I 

I l•C 
C • A 
FA• Fl 

Fl•FC ✓ FC • FA i CONVERGENCE TESt 

40 TOLi • U-EPS•AIS(ll + O.S-TOL 
XM • .$-(C • ll 
IF (ABS(XM) .LE. TOLi) GO TO 90 
IF (Fl .EQ. 0.0) GO TO 90 

C 
C IS IISECTION NECESSARY 
C 

If (ABS(E) .LT. TOLi) GO TO 70 
IF (ABS(FA) .LE. ABS(F8)) GO TO 70 

-' 
C 
C IS QUADRATIC INTERPOLATION POSSIBLE 
C 

IF (A .NE. C) GO TO 50 
C 
C LINEAR INTERPOLATION 
C 

S • FB/FA 
P • 2.0-XM•S 
Q • 1.0 • S 
GO lO 60 

~ C 
C INVERSE QUADRATIC INTERPOLATION 
C 

SO Q • FA/FC 
R • FB/FC 
S • FB/FA 
P • s•cz.o•xM•O-tO • R) • (8 • A)9(R • 1.0)) 
Q • CQ • I.0)•(R • I.0)•(S • I.Ol 

~ 
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166 JOLtmOH OF HONLDfEAR. EQUAnONS 

C 
C ADJUST SIGNS 
C 

C 

60 IF (P .GT. 0.0) Q • -0 
P • ABS(P) 

C IS INTERPOLATION ACCEPTABLE 
C 

C 

IF (fl.0-P) .Ol. (l.0-XM•Q • ABS(TOLI-On, CiO TO 70 
IF (P .OE. AIS(O.J•E-Q)) CiO TO 70 
E•D 
D • P/0 
CiO TO m 

C IISECTION 
C 

10 0 • XM 
E • D 

C 
C COMPLETE STEP 
C 

C 

ICJA•B 
FA• FB 
IF (ABS(D) .OT. TOLi) 8 • B + D 
IF (ABS(D» .LE. TOLi) 8 • B + SICN(TOLI. XM' 
FB • F(B» 
IF ((fll•(FC/ABS(FC))) .GT. 0.0) CiO TO 20 
CiO TO )0 

C DONE 
C 

90 ZEROIN • B 
RETURN 
ENO 

J 
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SEC. 5.5 

C 
C LOCATE NEXT INTERVAL 
C 

C 

72 IF (NIM .EQ. 2•(NIM/2)) 00 TO 15 
NIM• NIM/2 
LEV • LEV-I 
00 TO 72 

75 NIM • NIM + I 
IF (LEV .LE. 0) 00 ,TO IO 

C ASSEMBLE ELEMENTS REQUIRED FOR THE NEXT INTERVAL 
C 

OPREV • ORIGHT(LEV) 
XO • X(l6l 
FO • F(l6) 
DO 71 I • I. I 

ft2•1) • FSA VE(I.LEV) 
X(2•1) • XSA VE(I.LEYl 

71 CONTINUE 
00 TO lO 

C 
C ... STAGE I ••• FINALIZE AND RETURN 
C 

IO RESULT • RESULT + CORII 
C • 
C MAKE SURE ERREST NOT LESS THAN ROUNDOFF LEVEL. 

C IF [ERREST .EQ. 0.0) RETURN < 
12 TEMP • ABS(RESUl Tl + ER REST ~ 

IF (TEMP .NE. ABS(RESULT)) RETURN 
ER.REST • 2.0-ERREST 
GO TO 12 
END 

05 
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.; ... 



SEC. 9.S 

.. 

C 

C 

C 

DO~ II• I. MN 
I • MN + I • II 
L • I + I 
(i • W(I) 
IF Cl .EQ. N) 00 TO 430 

D0420J • L N 
420 UCI.J) • 0.0 

4l0 IF (Ci .EQ. 0.0, CiO TO 47S 
IF (I .EQ. MN) 00 TO 460 

C 

C 

DO 430 J • L N 
S • 0.0 

DO..OK•LM 
440 S • S + U(K.I) • U(K.J) 

C --- DOUBLE DIVISION AVOIDS POSSIBLE UNDERFLOW --
F • cs , uu.m I c; 

C 
DO 430 K • I. M 

U(KJ) • UCK.J) + F • U(K.O 
4,0 CONTINUE 

C 
460 DO 410 J • I. M 
410 UU.I) • U(J.I) / Ci 

C 
00 TO 490 

C 
47~ 00 480 J • I. M 
.UO U(J.I) • 0.0 

C 
¥JO UCl.ll • U(I.I) + 1.0 
~ CONTINUE 

C -- OIAOONALIZATION OF THE BIOIAOONAL FORM·••--· 
C --·-· FOR K•N STEP •I UNTIL I 00 - --·· 

~10 00 100 "" • I. N 
Kt • N • KK 
K •~I+ I 
ITS• 0 

C' - ........ TEST FOR SPLITTING. 
C FOR L•K STEP •I UNTIL I DO - ......... . 

,ro 00 ,lO LL • I. K 
LI • ~ • LL 
L•Ll+I ~ 
IF (ABS(RVl(LH + ANORM .EO. ANORMl CiO TO S6$ 

C' .......... R\'l(ll IS ALWAYS ZERO. SO THERE IS NO EXIT 
C THROUGH THE BOTTOM OF THE LOOP ···-•-•• 

IF CABS(W(LI)) + ANORM .EO. ANORMt GO TO ~ 
,» CO~TINUE 
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4. ALGOL Programs 

procedure lredl (n, tol) tra,is: (a) re.s11ll: (d, e, e2); 
value n, tol; integer n; real tol; array a, d,.e, e2; . 
comment TI1is procedure reduces the given lower trfangle of a symmetric matrix, 

A, stored in tl1e army a[ 1 : "• 1 : n], to tridiagonal form using House­
holdef s reduction. TI1e di3gonal of the result is stored in tl1e a.my 
d( 1 : ,. ] :ind the sub-diagonal in the fast "-1 stores of the array e[ 1 : "] 
(Wlth the addltlOnal element 'L1J=O). ac,1 is set to equal e(s] t2. 
n1e strictly lo\Ver triangle of tl1e array 11, together with the array e, 
is used to store sufficient information for the details of the trans­
formation to be recoverable in the procedure lrbak 1. The upper 
triangle of the array a is left unaltered; 

begin integer i, f. k, l; 
real/. g, h; 

end trr,11; 

_._._ .. ·.-.. .·-:-. 

for i:z:s 1 step 1 until n do 
d(s1 :== a[i, •1; 
for i:= n step -1 until 1 do 
beginl:==i-t; h:=O: 

fork:= 1 step 1 until l do 
la:= h+a[i, k] xa[i, k]; 
comment if h is too small for orthogonality to be guaranteed, 

the transformation is skipped; 
if h:;; tol then 
begin e[s] := e2(i1 := O; go to skip 
end; 
e2(s] := /1; /:= a[i, i-1]; 
,[,] :=g::a if /~O then -sqn(/s) else sqn(h); 
h:==h-/xg; a(i,i-1]:=/-g: /:=O: 
for f := 1 step 1 until l do 
begin g:= o; 

comment form element of A x11; 
for k: = 1 step 1 until i do 
g := g + a[j, k] xa[i, k]; 
for k : = f + 1 step 1 until l do 
g := g + a[k, 11 xa[i, k]; 
comment form element of p; 
g := e(fl :== gfl,; I:=/+ g xa[i, 11 

end i: 
comment form K: 
/1 :=//(/,+I•); 
comment form reduced A; 
for f :=-1 step t until l do 
begin/:- a(i, 11: g :- e[,1 :=i e(,1 -/, x/; 

for I: : =- t step I until i do 
a[i, k] ::a aU, k]-/xe[k]-gxa[i, kj 

end j; 
skip: /1 := d[,J; J[•1 :== a[i, i]: a[i, i] := /1 
end i 

.l 
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procedure tqll (,c, macheps) trans: (d. e) ezil: Uail): 
value n, macliep.s; integer n; real macliep.s; array d, e; label /au; 
comment This procedure finds the eigenvalues of a tridfagonal matri:<, T, given 

with its diagonal elements in the amiy tl( 1 : n] and its subdi:igonal 
elements in the last n-1 stores of the array e(t :n], using QL trans­
formations. The eigenvalues are overwritten on the diagonal elements 
in the array tl in ascending order. The procedure will fail if any one 
eigenvalue takes more than 30 iterations: • 

begin integer i, f, l, m: 

end tqll; 

real b, ,, /, g, Ii, p, ,, s: 
for i:-=2 step 1 until" do c(i-1] :== ,[,]: 
,[n] :== 6 :=z / := o: 
for I : c: 1 step t until n do 
begin f :== O; Ii:== ,nacAepsx(abs(d(l]) +abs(c[l])); 

If b<h then b :== Ii; 
comment look for small sub-diagonal element: 
for m :-= l step 1 until n do 
If abs(e[m]) =ab then go to contl: 

conll: If m == l then go to ,oot: 
nestil: If i szjO then go to /ail; 

f:==i+t: 

,oo,: 

comment form shift: 
g :::s d(l]: p :== (d[l + 1] -g)/(2 xe[l]): r := sqn(pt2 + 1): 
d[l] :== e(Z]/(if p < O then p-r else p + r); h: = g-d[l]; 
for i:= Z +1 step 1 until" do d(s1 :== d(s] -h; 
/:==/+h; 
comment Q L transformation; 
p != tl[,n]: c: :== 1: s :== O; 
for i:= 111-1 step -1 until l do 
beging:=cxe(,]: Ii:= ,xp; 

if abs (P) ~ abs (e(r1) then 
beginc:== etiJ/p: r:= sqrl(ct2+1J; 

e[i +1] := sx; xr: s := c/r; c := 1/r 
end 
else 
begin,:==t,/e[s]: r:= sqrl(ct2+1); 

e(i+1]:=sxe(11xr; s:=1/r; c:==c/r 
end; 
p :-= c:xtl(s1-s xg; 
tl[i +1] :== h+sx(cxg +sxcl(,j) 

end i; 
e[l]: = s x;: cl(l] :== c: ~;: 
If abs (e(Z]) > 6 then go to ne:dit: 

p :- tl[l]+/: 
comment order eigenvalue; 
for i: =- l step -1 until 2 do 
if p < tl[i -1) ttien d(1j : :::a d(i -1] else go to co11l2; • 
i: :c:l 1: 

COIi~! d[i]: = p 
end l 
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7.1·201 

SUBROUTINE·TRED1(NM,N,A,D,E,E2) 

INTEGER I,J,X,L,N,II,NM,JPl 
REAL A(NM,N),D(N),E(N),E2(N) 
REAL F,G,H,SCALE 
REAL SQRT,ABS,SIGN 

DO 100 I• 1, N 
100 D(I) • A(I,I) 

C •••••••••• FOR I•N STEP -1 UNTIL l DO -- •••••••••• 
DO 300 II• 1, N 

I•N+l-II 
L • I - 1 
H • 0.0 
SCALE• 0.0 
IF (L .LT. 1) GO TO 130 

C ********** SCALE ROW (ALGOL TOL THEN NOT NEEDED)********** 
DO 120 J:. • 1, L 

120 SCALE• SCALE+ ABS(A(I,I)) 
C 

C 

C 

C 

IF (SCALE .NE. 0.0) GO TO 140 
130 E(I) • 0.0 

E2(I) • 0.0 
GO TO 290 

140 

150 

DO 150 I• 1, L 
A(I,K) • A(I,I) / SCALE 
H • H + A(I,l) * A(I,I) 

CONTINUE 

EZ(I) •SCALE* SCALE• H 
F • A(l,L) 
G • ·SIGN(SQRT(H),F) 
E(I) •SCALE* G 
H • H • F * G 
A(I ,L) • F - G 
IF (L .EQ. 1) GO TO 270 
F • 0.0 

DO 240 J !' 1, L 
G • 0.0 

C •••••••••• FORM ELEMENT OF A*U ********** 
DO 180 X • 1, J 

180 G • G + A(J,I) * A(I,K) 
C 

JPl • J • 1 
IF (L .LT. JPl) GO TO 220 

C 
DO 200 X • JPl, L 

200 G • G + A(X,J) * A(I,X) 
C ********** FORM ELEMENT OF P ********** 

220 E(J) • G / H 
F • F • E(J) * A(I,J) 

240 CONTINUE 

345 



.. :;.· . 

c. 
C 

C 

260 
C 

270 
280 

C 
290 

7.1-202 

ff• F /(ff• ff) 
•••••••••• FORM REDUCED A********** 

DO 260 J • 1, L 
F • A(I,J) 
G • E(J) ·ff* F 
E(J) • G 

DO 260 I• 1, J 
A(J,I) • A(J,I) - F * E(I) - G * A(I,I) CONTINUE 

DO 280 I• 1, L 
A(I,I) •SCALE* A(I,I) 

ff • D(I) 
D(I) • A(I,I) 
A(I • I) • ff 

300 CONTINUE 
C 

RETURN 
END 

346 
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C 

C 

7.1-184 

SUBROUTINE TQL~(N,D,E,IERR) 

INTEGER 1,J,L,M,N,II,Ll,MML,IERR 
REAL D(N),E(N) 
REAL B,C,F,G,H,P,R,S,MACHEP 
REAL SQRT,ABS,SIGN 

C •••••••••• MACHEP IS A MACHINE DEPENDENT PARAMETER SPECIFYING 
C THE RELATIVE PRECISION OF FLOATING POINT ARITIOfETIC. 
C 
C •••••••••• 

C 

C 

C 

C 

NACHEP • 1 

IElUl • 0 
IF (N .EQ. 1) GO TO 1001 

DO 100 I• 2, N 
100 E(I-1) • E(I) 

F • 0.0 
B • 0.0 
E(N) • 0.0 

DO 290 L • 1, N 
J • 0 
H • MACHEP * (ABS(D(L)) + ABS(E(L))) 
IF (B .LT. H) B • H 

C •••••••••• LOOK FOR SMALL SUB-DIAGONAL ELEMENT********** 
DO 110 M • L, N 

IF (ABS(E(M)) .LE. B) GO TO 120 
C ********** E(N) IS ALWAYS ZERO, SO THERE IS NO EXIT 
C THROUGH THE BOTTOM OF THE LOOP********** 

C 
110 CONTINUE 

120 IF (M .EQ. L) GO TO 210 
130 IF (J .EQ. 30) GO TO 1000 

J • J + 1 
C ********** FORM SHIFT•••••••••• 

C 

C 

C 

Ll • L + 1 
G • D(L) 
P • (D(Ll) - G) / (2.0 * E(L)) 
R • SQRT(P*P•l.0) 
D(L) • E(L) / (P • SIGN(R,P)) 
H • G - D(L) 

DO 140 I • Ll, N 
140 D(I) • D(l) - H 

F • F • H 
•••••••••• QL TRANSFORMATION•••••••••• 

P • D(M) 
C • 1.0 
s. o.o 
MML • M - L 

328 
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1S0 

160 

200 
C 

210 
C 

7.1-18S 

•••••••••• FOR f•M-1 STEP ·1 UNTIL L DO 
DO 200 II• 1, JOCL 

I • M - II 
G • C * E(I) 
H • C * P 
IF (ABS(P) .LT. ABS(E(I))) ·co TO 1S0 
C • E(I) / P 
R • SQRT(C*C+l.O) 
E(I+l) • S • P * R 
S • C I R 
C • 1.0 I R 
GO TO 160 
C • P / E(I) 
R • SQRT(C*C+l.O) 
E(I+l) • S * E(I) * R 
S • 1.0 / R 
C • C * S 
P • C * D(I) • S * G 
D(I+l) • H + S • (C • G + S • D(I)) 

CONTINUE 

E(L) • S • P 
D(L) • C • P 
IF (ABS(E(L)) .GT. B) GO TO 130 
P • D(L) + F 

•••••••••• ORDER EIGENVALUES•••••••••• 
IF (L .EQ: 1) GO TO 2S0 

•••••••••• 

C •••••••••• FOR I•L STEP -1 UNTIL 2 DO •••••••••• 

C 

C 

230 

DO 230 II• 2, L 
I•L•2·II 
IF (P .GE. D(I-1)) GO TO 270 
D(I) • D(I-1) 

CONTINUE 

250 I• 1 
270 D(I) • P 
290 CONTINUE 

GO TO 1001 
C •••••••••• SET ERROR -- NO CONVERGENCE TO AN 
C EIGENVALUE AFTER 30 ITERATIONS********** 1000 IERR • L 
1001 RETURN 

END 

329 
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j eps1on.~ r:1 May 117:23:28 1987 

DOUBLE PRECISION FUNCTION EPSLON (X) 
DOUBLE PRECISION X 

C 

l 

C ESTIMATE UNIT ROUNDOFF IN QUANTITIES OF SIZE X. 
C 

DOUBLE PRECISION A,B,C,EPS 
C 
C THIS PROGRAM SHOULD FUNCTION PROPERLY ON ALL SYSTEMS 
C SATISFYING THE FOLLOWING TWO ASSUMPTIONS, 
C 1. THE BASE USED IN REPRESENTING FLOATING POINT 
C NUMBERS IS NOT A POWER OF THREE. 
C 2. THE QUANTITY A IN STATEMENT 10 IS REPRESENTED TO 
C THE ACCURACY USED IN FLOATING POINT VARIABLES 
C THAT ARE STORED IN MEMORY. 
C THE STATEMENT NUMBER 10 AND THE GO TO 10 ARE INTENDED TO 
C FORCE OPTIMIZING COMPILERS TO GENERATE CODE SATISFYING 
C ASSUMPTION 2. 
C UNDER THESE ASSUMPTIONS, IT SHOULD BE TROE THAT, 
C A IS NOT EXACTLY EQUAL TO FOUR"".THIIU>S, 
C B HAS A ZERO FOR ITS LAST BIT OR DIGIT, 
C C IS NOT EXACTLY EQUAL TO ONE, 
C EPS HEASOR.ES THE SEPARATION OF 1.0 FROM 
C THE NEXT LARGER FLOATING POINT NUMBER. 
C THE DEVELOPERS OF EISPACK WOULD APPRECIATE BEING INFORMED 
C ABOUT ANY SYSTEMS WHERE THESE ASSUMPTIONS DO NOT HOLD. 
C 
C THIS VERSION DATED 4/6/83. 
C 

A• 4.0D0/3.0DO 
10 B • A - l.ODO 

C • B + B + B 
EPS • DABS(C-1.0D0) 

~ IF (EPS .EQ. 0.000) GO TO 10 
EPSLON • EPS*DABS(X) 
RE'l'URN. 
END 

· .. ·: .•.•. 
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C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

C 

C 

100 

120 

rri May 117:23:47 1987 

SUBROUTINE TRED1(NM,N,A,D~E,E2) 

INTEGER I,J,K,L,N,II,NM,JPl 
DOUBLE PRECISION A(NM,N),D(N),E(N),E2(N) 
.DOUBLE PRECISION F, G, H, SCALE 

1 

THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TREDl, 
NtJM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON. 
HANDBOOK FOR AOTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226 (1971). 

THIS SOBROOTINE REDUCES A REAL S?MMETRIC MATRIX 
'rO A SYMMETRIC TRIDIAGONAL MATRIX USING 
ORTHOGONAL SIMILARITY TRANSFORMATIONS. 

ON INPUT 

NM MOST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL 
ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM 
DIMENSION STATEMENT. 

N IS THE ON>ER OF THE MATRIX. 

A CONTAINS THE REAL Snoa:TRIC INPUT MATRIX. ONLY THE 
LONER TRIANGLE OF THE MATRIX NEED BE SUPPLIED. 

ON OU'l'POT 

A CONTAINS INFORMATION ABOOT THE ORTHOGONAL TRANS­
FORMATIONS USED IN THE REDtJC'l'ION IN ITS STRICT LOWER 
TRIANGLE. THE FULL UPPER TRIANGLE OF A IS UNALTERED. 

D CONTAINS THE DIAGONAL ELEMENTS OF THE TIUDIAGONAL MATRIX. 

E CONTAINS THE StJBDIAGONAL ELEMENTS OF THE TRIDIAGONAL 
MATP.IX IN ITS LAST N-1 POSITIONS. E(l) IS SET TO ZERO. 

E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF E. 
E2 MAY COINCIDE WITHE IF THE SQUARES ARE NOT NEEDED. 

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, 
MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY 

THIS VERSION DATED APRIL 1983. 

DO 100 I• 1, N 
D(I) • A(N,I) 
A(N,I) • A(I,I) 

CONTINUE 
.......... FOR I•N STEP -1 UNTIL l DO 
DO 300 II• l, N 

I• N + 1 - II 
L • I - 1 
H • 0.000 
SCALE• 0.0D0 
IF (L .LT. 1) GO TO 130 

.......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) ......... . 
DO 120 K • 1, L 
SCALE• SCALE+ DABS(D(K)) 

IF (SCALE .NE. 0.000) GO TO 140 

DO 125 J • 1, L 
D(J) • A(L,J) 
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125 
C 

130 

C 
140 

150 
C 

C 

170 
C 

C 

200 
C 

220 
240 

C 

C 

245 
C 

A(L,J) • A(I,J) 
A(I,J) • 0.0D0 

CONTINUE 

E(I) • O.ODO 
E2(I) • 0.0D0 
GO TO 300 

DO 150 K • 1, L 
D(K) • D(K) / SCALE 
H • H + D(K) * D(K) 

CONTINUE 

E2(I) •SCALE* SCALE* H 
F • D (L) 
G • -DSIGN(DSQRT(H),F) 
E(I) •SCALE* G 
H • H - F * G 
D(L) • F - G 
IF (L .EQ. 1) GO TO 285 

•••••••••• FO~ A*U 
DO 170 J • 1, L 
E(J) • 0.0D0 

DO 240 J • 1, L 
F • D(J) 
G • E(J) + A(J,J) * F 
JPl • J + 1 
IF (L .LT. JPl) GO TO 220 

DO 200 K • JPl, L 
G • G + A(K,J) * D(K) 
E(K) • E(K) + A(K,J) * F 

CONTINUE 

E(J) • G 
CONTINUE 

. . . . . . . . . . FORM P 
F • O.ODO 

DO 245 J • 1, L 
E(J) • E(J) / H 
F • F + E(J) * D(J) 

CONTINUE 

H • F / (H + H) 
C • • • • • • • • • • FORM Q •••••••••• 

250 
C 

C 

DO 250 J • 1, L 
E(J) • E(J) - H * D(J) 

.......... FORM REDUCED A 
DO 280 J • 1, L 

F • D (J) 
G • E(J) 

DO 260 K • J, L 

2 

260 
C 

A(K,J) • A(K,J) - F * E(K) - G * D(K) 

280 
C 

285 

290 

CONTINUE 

DO 290 J • 1, L 
F • D(J) 
D (J) • A(L, J) 
A(L,J) • A(I,J) 
A(I,J) • F * SCALE 

CONTINUE 

. :····· . . . : ~ . .. ~- . • 
• ·:: .. 
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C 

C 
300 CONTINUE 

RETURN 
END 
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SUBROUTINE TQLl (N,D, E, I·ERR) 

INTEGER I,J,L,M,N,II,Ll,L2,HML,IERR 
DOUBLE PRECISION D(N),E(N) 

1 

DOUBLE PRECISION C,C2,C3,DL1,EL1,F,G,H,P,R,S,S2,TST1,TST2,PYTHAG 

THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TQLl, 
NUM. MATH. 11, 293-306(1968) BY BOWDLER, MARTIN, REINSCH, AND 
WILKINSON. 
HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 227-240(1971). 

THIS SUBROUTINE FINDS THE EIGENVALUES OF A SYMMETRIC 
TRIDIAGONAL MATRIX BY THE QL METHOD. 

ON INPUT 

N IS THE ORDER OF THE MATRIX. 

D CON'l'AINS THE DIAGONAL ELEMl!!NTS OF THE INPtJT MATRIX. 

E CON'l'AINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX 
IN ITS LAST N-1 POSITIONS. E(l) IS ARBITRARY. 

ON OUTPUT 

D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN 
ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT AND 
ORDERED FOR INDICES 1,2, ... IERR-l, BUT MAY NOT BE 
THE SMALLEST EIGENVALUES. 

E HAS BEEN DESTROYED. 

IERR IS SET TO 
ZERO FOR NORMAL RETURN, 
J IF THE J-TH EIGENVALUE HAS NOT BEEN 

DETERMINED AFTER 30 ITERATIONS. 

CALLS PYTHAG FOR DSQRT(A*A + B*B) . 

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, 
MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY 

THIS VERSION DATED APRIL 1983. 

~-------------------~---------------------------------------------
IERR • 0 
IF (N .EQ. 1) GO TO 

DO 100 I• 2, N 
E(I-1) • E(I) 

F • 0.0D0 
TSTl • 0.0D0 
E(N) • 0.0D0 

DO 290 L • 1, N 
J - 0 

1001 

H • DABS(D(L)) + DABS(E(L)) 
IF (TSTl .LT. H) TSTl • H 

.......... LOOK FOR SMALL SUB-DIAGONAL ELEMENT ......... . 
DO 110 M • L, N 

TST2 • TSTl + DABS(E(M)) 
IF (TST2 .EQ. TSTl) GO TO 120 

.......... E(N) IS ALWAYS ZERO, SO THERE IS NO EXIT 

..·······::, .. :._-,, .• 



tq11.~ rr~ Kay 117:23:46 1987 2 

C THROUGH THE BO~TOM OF THE LOOP 
110 CONTINUE 

C 
120 IF (M .EQ. L) GO T0·210 
130 IF (J .EQ. 30) GO TO 1000 

J - J + 1 
C •••••••••• FO~ SHIFT ......... . 

Ll • L + 1 
L2 • Ll + 1 
G • D(L) 
P • (D(Ll) - G) / (2.0D0 * E(L)) 
R • PYTHAG(P,1.0D0) 
D(L) • E(L) / (P + DSIGN(R,P)) 
D(Ll) • E(L) * (P + DSIGN(R,P)) 
DLl • D (Ll) 
H • G - D(L) 
IF (L2 .GT. N) GO TO 145 

C 
DO 140 I• L2, N 

140 D(I) • D(I) - H 
C 

145 
C 

C 

200 
C 

210 
C 

C 

C 

C 

230 

2S0 
270 
290 

F • F + H 
.......... QL TRANSFORMATION 

P • D (M) 
C • 1.0D0 
C2 • C 
ELl • E(Ll) 
S • 0.0D0 
MML•M-L 

.......... FOR I•M-1 STEP -1 UNTIL L DO -- ......... . 
DO 200 II• 1, MML 

C3 • C2 
C2 • C 
S2 • S 
I• M - II 
G • C * E(I) 
H • C * P 
R • PYTHAG(P,E(I)) 
E(I+l) • S * R 
S • E(I) / R 
C • P / R 
P • C * D(I) - S * G 
D(I+l) • H + S * (C * G + S * D(I)) 

CONTINUE 

P • -S * S2 * C3 * ELl * E(L) / DLl 
E(L) • S * P 
D(L) • C * P 
TST2 • TSTl + DABS(E(L)) 
IF (TST2 .GT. TSTl) GO TO 130 
P • D(L) + F 

.......... ORDER EIGENVALUES ......... . 
IF (L .EQ. 1) GO TO 250 

.......... FOR I•L STEP -1 UNTIL 2 DO 
DO 230 II• 2, L 

I • L + 2 - II 
IF (P .GE. D(I-1)) GO TO 270 
D(I) • D(I-1) 

CONTINUE 

I • 1 
DCI) • P 

CONTINUE 

GO TO 1001 

I 
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C 
C 

1000 IERR • L 
lOQl RETURN 

END 

SET ERROR--· NO CONVERGENCE TO AN 
EIGENVALUE AFTER 30 ITERATIONS ......... . 
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C 
SUBROUTINE TQLRAT(N,D,E2,~ERR) 

INTEGER I,J,L,M,N,II,Ll,HML,IERR 
DOUBLE PRECISION D(N),E2(N) 

1 

.DOUBLE PRECISION B,C,F,G,H,P,R,S,T,EPSLON,PYTHAG 
character*20 string 

C 
C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TQLRAT, 
C ALGORITHM 464, COMM. ACM 16, 689(1973) BY UINSCH. 
C 
C THIS SUBROUTINE FINDS THE EIGENVALUES OF A SYMMETRIC 
C TRIDIAGONAL MATRIX BY THE RATIONAL QL METHOD. 
C 
C ON INPUT 
C 
C N IS THE ORDER OF THE MATRIX. 
C 
C D CONTAINS THE DIAGONAL ELEMEN'?S OF THE INPUT MATRIX. 
C 
C E2 CONTAINS THE SQUARES OF THE SUBDIAGONAL ELEMENTS OF THE 
C INPU'l' MATRIX IN ITS LAST N-1 POSITIONS. E2(1) IS ARBITRARY. 
C 
C ON OUTPUT 
C 
C D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN 
C ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT ANO 
C ORDEUD FOR INDICES 1,2, ... IERR-1, BUT MAY NOT BE 
C THE SMALLEST EIGENVALUES. 
C 
C E2 HAS BEEN DESTROYED. 
C 
C IERR IS SET TO 
C ZERO FOR NONO.L RETtmN, 
C J IF THE J-TH EIGENVALUE HAS NOT BEEN 
C DETERMINED AFTER 30 ITERATIONS. 
C 
C CALLS PYTHAG FOR DSQRT(A*A + B*B) . 
C 
C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, 
C MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY 
C 
C THIS VERSION DATED APRIL 1983. 
C 

C ------------------------------------------------------------------C 
IERR • 0 
IF (N .EQ. 1) GO TO 1001 

C 

C 

C 

DO 100 I• 2, N 
100 E2(I-1) • E2(I) 

F • 0.0D0 
T • 0.0D0 
E2(N) • 0.0D0 

DO 290 L • 1, N 
J - 0 
H • DABS(D(L)) + DSQRT(E2(L)) 
IF (T .GT. ff) GO TO 105 
T • ff 
B • EPSLON(T) 
C • 8 * B 

C •••••••••• LOOK FOR SMALL SQUARED SOB-DIAGONAL ELEMENT ......... . 
105 DO 110 M • L, N 

IF (E2(M) .LE. C) GO TO 120 

1 
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C 
C 

110 
C 

120 
130 

C 

C 

.......... E2(N) IS ALWAYS ZERO, SO THERE IS NO EXIT 
THROUGH THE BOTTOM OF THE LOOP •••••••••• 

CONTINUE 

IF (M .EQ. L) GO TO 210 
IF (J .EQ. 30) GO TO 1000 
J - J + 1 

.......... FORM SHIFT ......... . 
Ll • L + l 
S • DSQRT(E2(L)) 
G • D(L) . 
P • (D(Ll) - G) / (2.0D0 * S) 
R • PYTHAG(P,1.0D0) 
D(L) • S / (P + DSIGN(R,P)) 
ff • G - D (L) 

140 
C 

DO 140 I• Ll, N 
D(I) • D(I) - ff 

C 
F • F + ff 

•••••••••• RATIONAL QL TRANSFORMATION 
G • D(M) 
IF (G .EQ. 0.0D0) G • B 
R•G 
S • 0.0D0 
MML • M - L 

C .......... FOR I•K-1 STEP -1 UNTIL L DO -- ......... . 
DO 200 II• 1, MML 

I• M - II 
P • G * H 
R • P + E2(I) 
E2(I+l) • S * R 
S • E2(I) / R 
D(I+l) • H + S * (ff+ D(I)) 
G • D(I) - E2(I) / G 
IF (G .EQ. 0.0D0) G • B 
H • G * P / R 

200 
C 

CONTINUE 

E2(L) • S * G 
D(L) • ff 

C .......... GUARD AGAINST UNDERFLOW IN CONVERGENCE TEST 
IF (H .EQ. 0.0D0) GO TO 210 
IF (DABS(E2(L)) .LE. DABS(C/H)) GO TO 210 
E2(L) •ff* E2(L) 
IF (E2(L) .NE. 0.0D0) GO TO 130 

210 P • D(L) + F 
C .......... ORDER EIGENVALUES ......... . 

IF (L .EQ. 1) GO TO 250 
C .......... FOR I•L STEP -1 UNTIL 2 DO -- ......... . 

C 

C 

C 
C 

DO 230 II• 2, L 
I• L + 2 - II 
IF (P .GE. D(I-1)) GO TO 210 
D(I) • D(I-1) 

230 CONTINUE 

250 I• 1 
210 D (I) • P 
290 CONTINUE 

GO TO 1001 

1000 IERR • L 
1001 RETURN 

SET ERROR -- NO CONVERGENCE TO AN 
EIGENVALUE AFTER 30 ITERATIONS ......... . 

.. _._ .. ;..::·• 
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UNDERFLOW IN EISPACK 

by Eric Grosse, Bell Labs,-Murray Hill, NJ 
and Cleve Moler, Dana Computer, Sunnyvale, CA 

We recently came across an interesting case where EISPACK fails 
to give the correct eigenvalues for what appears to _be an easy 
matrix. The difficulties can be traced to floating point underflow. 
They are most insidious in double precision arithmetic on the VAX[*] 
where the •D" floating point foanat has an unfortunately small exponent 
range. However, a scaled version ~f the example can fail on any machine, 
including ones which fully confoxm to the IEEE floating point standard. 
We recommend a simple change to the EISPAClt top level routine •RS" 
which should protect most users from the problem. 

The example !s due to Guenter Ziegler of the University of Augsburg 
in West Ge=-any and Andrew Ocllyzko of AT,'l' Bell Laboratories. They 
were investigating a question raised by Amir Dembo of Brown University 
regarding the distribution of rank in real symmetric Hankel 
matrices whose elements are +1 and -1. (A Hankel matrix is constant 
along each anti-diagonal, but that's irrelevant for what concerns us 
here.) One of their matrices is 9-by-9: 

-1 1 l -1 -1 1 1 -1 -1 
1 1 -1 -1 1 1 -1 -1 1 
1 -1 -1 l 1 -1 -1 1 1 

-1 -1 1 1 -1 -1 1 1 -1 
-1 1 l -1 -1 1 1 -1 -1 

1 1 -1 -1 1 1 -1 -1 1 
1 -1 -1 1 1 -1 -1 1 -1 

-1 -1 1 1 -1 -1 1 -1 1 
-1 l 1 -1 -1 1 -1 l l 

It is not obvious, but this matrix happens to have four eigenvalues 
equal to zero, and hence its rank is five. From the many possible 
ways to compute the rank of such matrices, Zeigler and Odlyzko 
chose to use the EISPACK routine RS (for Real Symmetric) and count 
the number of negligible computed eigenvalues. For this example, 
running on a VAX in D foxmat double precision, EISPACK incorrectly 
claimed there were five eigenvalues on the order of roundoff error. 
The same program, running on almost any other computer, would produce 
the correct answer, which is only four negligible eigenvalues. 

The problem turns out to be a catastrophic underflow in the EISPACK 
routine TQLRAT. This is a square-root-free variant of the QR algorithm for 
finding eigenvalues of a symnetric tridiagonal matrix. It operates on 
the squares of off-diagonal elements. On the VAX, the square of 
double precision roundoff error is roughly 10•(-34) and the underflow 
limit is only l0•(-38). There is not ~nough room between those two 
numbers for 'l'QLRAT to operate properly. On other computers, similar 
difficulties will occur if the example ia scaled by a factor on the 
order of the square root of the underflow limit. For IEEE machines, 

.. -.... -·· .. 
. . ·: .-::.-:-: .... 



the acale factor would have to be about lOA(-150), so such examples are 
much less likely in practice, but TQLRAT might not properly handle 
any which do turn up. 

The easiest solution is to replace 

CALL TQLRAT(N,ALPHA,BETA,IERR) 

in EISPACK routine RS by 

CALL TQLl(N,ALPHA,BETA,IERR). 

Since TQLl does not work with the squares of the tridiagonal elements, 
it is much less prone to underflow trouble. No change is needed in 
the case when eigenvectors are being computed, since RS then calls TQL2 
rather than TQLRAT. 

An alternate solution, an improved version of TQLRAT, is available from 
the authors. But its range of applicability is still limited to a smaller 
portion of the floating point exponent range than TQLl and TQL2. 

Ironically, advances in floating point hardware make the need for 
square-root-free algorithms less pressing. On one recent chip, 
the builtin square root is even slightly faster than division! 

[*] VAX is a trademark of Digital Equipment Corporation. 
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I.4 

and formats Fortran.programs to clarify their structure. It also generates variants of 

programs. The "master versions" of all ·th~ LINPACK subroutines are those which use complex 

arittnetic; versions which use single precision. double precision, and dou~le precision 

complex arittlnetic have been produced automatically by TAHPR. A user may thus convert from 

one type of arithmetic to another by simply changing the aeclarations· in his program and 

changing the first letter of the LINPACK subroutines being used. 

Anyone reading the Fortran source code for LINPACK subroutines should find the loops and 

logical structures clearly delineated by the indentation generated by TAMPR. 

The BLAS are the Basic Linear Algebra Subprograms designed by Lawson, Hanson, Kincaid 

and Krogh (1978). They contribute to the speed as well as to the modularity and clarity of 

the LINPACK subroutines. LlNPACK is distributed with versions of the BLAS written in 

standard Fortran which are intended to provide reasonably efficient execution in most 

operating environments. However, a particular computing installation may substitute 

machine language versions of the BLAS and thereby perhaps improve efficiency. 

LINPACK is designed to be completely machine independent. There are no machine depen­

dent constants, no input/output statements, no character manipulation, no COfflON or 

EQUIVALENCE statements, and no mixed-mode ar1tlwnetic. All the subroutines (except those 

whose names begin with Z) use the portable subset of Fortran defined by the PFORT veri­

fier of ~der (1974). 

There is no need for machine dependent constants because there is very little need to 

check for •small" numbers. For example, candidates for pivots in Gaussian elimination are 

checked against an exact zero rather than against some small quantity. The test for singu­

larity is made instead by est1mat1ng the cond1t1on of the matrix; this is not only machine 

independent, but also far more reliable. The convergence of the iteration in the singular 

value decomposition 1s tested in a machine independent manner by statements of the fonn 

TEST! • something not small 

TEST2 • TESTl + something possibly small 

IF (TESTl .EQ. TEST2) ... 

The absence of mixed-mode arithmetic implies that the single precision subroutines do 

not use any double precision arithmetic and hence that the double precision subroutines do 

not require any kind of extended prec1s1on. It also implies that LINPACK does not include 

a subroutine for iterative improvement; however, an example fn Chapter 1 indicates how such 
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a subroutine could be added by anyone with easy access to mixed-mode arithmetic. (Some of 

the BLAS involve mixed-mode aritllnetic, but they are not used by LINPACK.) 

Floating point underflows and overflows may occur in some of the LINPACK subroutines. 

Any underflows which occur are harmless. We hope that the operating system sets underflowed 

quantities to zero and continues operation without producing·any error messages. With some 

operating systems, it may be necessary to 1nsert control cards or call special system sub­

routines to achieve this type of underflow handling. 

Overflows, 1f they occur, are much 1110re serious. They must be regarded as error situa­

tions resulting from improper use of the subroutines or fro~ unusual scaling. Many precau­

tions against overflow have been taken 1n LINPACK, but it fs impossible to absolutely 

prevent overflow without seriously degrading performance on reasonably scaled problems. It 

is expected that overflows will cause the operating system to terminate the computation and 

that the user will have to correct the program or rescale the problem before continuing. 

Fortran stores matrices by col111111s and so programs in which the inner loop goes up or 

down a column, such as 

DO 20 J • 1, N 
DO 10 I• 1, N 

A(I,J) • 
10 CONTINUE 
20 CONTINUE 

generate sequential access to memory. Programs in which the inner loop goes across a row 

cause non-sequential access. Sequential access 1s preferable on operating systems which 

employ virtual memory or other fonns ~f paging. LINPACK is consequentially "column 

oriented". Almost all the inner loops occur within the BLAS.and, although the BLAS allow a 

matrix to be accessed by rows, this provision is never used by LINPACK. The column orienta­

tion requires revision of some conventional algorithms, but results in significant improve­

ment in performance on operating systems with paging and cache memory. 

All square matrices which are parameters of LINPACK subroutines are specified 1n the 

calling sequences by three arguments, for example 

CALL SGEFA(A,LDA,N, ... ) 

Here A is the name of a two-dimensional Fortran array, LOA is the leading dimension of 

that array, and N is the order of the matrix stored in the array or in a portion of the 

array. The two parameters LOA and N have d;fferent meanings and need not have the same 

value. The amount of storage reserved for the array A is detennined by a declaration in 



SSVOC (continued) C.126 

C 
C MAIN ITEP.ATION LOOP FOR ~E SINGL'LAR VALUES. 
C 

MM• M 
ITER • 0 

360-CONTINUE 
C 
C QUIT IF ALL THE SIHGULAR VALUES HAVE BEE?~ FOtnm. 
C 
C ... EXIT 

C 
C 
C 
C 

C 

370 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

C 

C 

380 
390 
400 

410 

420 
430 
440 

450 

IF (M .EQ. 0) GO TO 620 

IF TOO MANY ITERATIONS HAVE BEEN PERFOP.HED, SET 
FLAG AND RETURN. 

IF (ITER .LT. MAXIT) GO TO 370 
INFO• M 

...... EXIT 
GO TO 620 

CONTINUE 

THIS SECTION OF THE PROGRAM INSPECTS FOR 
NEGLIGIBLE ELEMENTS IN THE S AJ.~D E ARRAYS. ON 
COMPLETION THE VARIABLES KASE AND LARE SET AS FOLLOWS. 

KASE• 1 
KASE• 2 
KASE• 3 

KASE• 4 

IF S(M) AND E(L-1) ARE NEGLIGIBLE AND L.LT.M 
IF S(L) IS NEGLIGIBLE AND L.LT.M 
IF E(L-1) IS NEGLIGIBLE, L.LT.M, AND 
S(L), ... , S(M) ARE NOT NEGLIGIBLE (QR STEP). 
IF E(M-1) IS NEGLIGIBLE (CONVERGENCE). 

DO 390 LL• l, M 
L • M - LL 

... EXIT 
IF (L .EQ. 0) GO TO 400 
TEST• ABS(S(L)) + ABS(S(L+l)) 
ZTEST •TEST+ ABS(E(L)) 
IF (ZTEST .NE. TEST) GO TO 380 

E(L) • O.OEO 
...... EXIT 

GO TO 400 
CONTINUE 

CONTINUE 
CONTINUE 
IF (L .NE. M - l) GO TO 410 

KASE • 4 
GO TO 480 
CONTINUE 

LPl • L + 1 
MPl • M + 1 
DO 430 LLS • LPl, MPl 

LS • M - LLS + LPl 
... EXIT 

IF (LS .EQ. L) GO TO 440 
TEST• O.OEO 
IF (LS .HE. M) TEST• TEST+ ABS(E(LS)) 
IF (LS .NE. L + 1) TEST• TEST+ ABS(E(LS-1)) 
ZTEST •TEST+ ABS(S(LS)) 
IF (ZTEST .NE. TEST) GO TO 420 

S(LS) • O.OEO 
...... EXIT 

GO TO 440 
CONTINUE 

COl~TIHUE 
CONTINu"'E 
IF (LS .~'E. L) GO TO 450 

KASE• 3 
GO TO 470 
CONTINUE 
IF -~~-.NE; M) GO TO 460 
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Replacing Square Roots by Pythagorean Sums 

An al,oritltm u pratnttd for computinr a "Pytlulgon011 .rum .. a E9 b - .Ja2 + Ir dirtttly from a and b wirlaour compuli.nr 
tltar squans or talcin1 a squart root. No dutrvctivt floating poilll owrflows or undtrflows an pouiblt. TM algorithm can~ 
uttndtd to computt tht Euclidtan norm of a wctor. TM ratdting subroutiM u short. portable, robust. tllld tll:t:W'tllt, hat not 
os tj/idtnt os somt otlrtr pouibilitiu. Tlat algoritltm u paniculor/y atrractiw for computers wlrtn sp«e and nliability an 
man lmportalll than lpttd. 

1. Introduction 
It is generally accepted that .. square root" is a fundamental 
operation in scientific computing. However, we suspect that 
square root is actually used most frequently u pan of an 
even more fundamental operation wbicb we call Pythagorean 
addition: 

a EB b - .Jr + 112. 

The algebraic propcnics or Pythagorean addition arc very 
similar to those of ordinary addition or positive numbers. 
PythagOt'Can addition is also the basis for many diff crent 
computations: 

Polar convcnion: 

Complex modulus: 

lzl - rtal(z) e imag(z); 

Euclidean vector norm: 

Givens rotations: 

where r - x E9 y, c - x/r, ~ - y/r. 

The conventional Fortran construction 

R - SQRT(X••2+Y••2) 

may produce: damaging underflows and overflows even 
though the data and the result arc well within the range of 
the machine"s Boating point number system. Similar con• 
suuctions in other programming languages may cause the 
same difficulties. 

The remedies currently employed in robust mathematical 
software lead to code which is clever, but unaatural. lc:ngthy, 
possibly slow, and sometimes not portable. This is c:vcn true 

of the recently published approaches to the calculation of the 
Euclidean vector norm by Blue ( J ] and by the Basic Linear 
Algebra Subprograms group, Lawson et al. (2). 

In this paper we present an algorithm pyrnag(aJ,) which 
computes a @ I, directly from a and b, without squaring 
them and without taking any square roots. The result is 
robust. portable. short. and, we think. elegant. It is also 
potentially faster than~ square root. We recommend that the 
algorithm be considered for implementation in machine 
language or microcode on future systems. 

One of our &nt usa or pythag and the resulting Euclidean 
norm invomd a papbics minicomputer which bas a sophisti• 
catcd Fortran-based operating system. but only about l2K 
bytes of memory available to the user. We implemented 

o Coprript 1983 by ln1ematicmal Busincu Machiacs Corporation. Copying in printed form (or private use is pcnniucd witbout paymc:Dl of 
royalty prvwided ahat (I) cacb n:pn,duction ii doac without alteration and (2) the Jollffflll rcfcrcncc and IBM copyrisht notice arc mdudcd on 
the fi~t pasc- Tbc title and abstract. but no otbcr portions. of this paper may be c:opic:d or distributed royally f rec witboat funhcr pc:rmissioa by 
compulcr•bucd and other information-service systems. Pcnnissioa to ,~pub/isl, aay otbcr portioa o( tbis paper must be obtained from &be 
Editor. 577 
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MATLAB [JJ, an interactive matrix calcu~tor based on 
UNPACK and EISPACK. In this setting. the space occu­
pied by both source and object code was crucial. MATLAB 
doc:s matrix computations in complex arithmeti~ so pythag is 
panicialarly useful. We arc able to produce robust. portable 
software that uses the full range of the ftoating point 
cxponcnL 

2. Algorithm pythag 
The algorithm for computing pytlrag(a.b) - a EB b is 

real function pytbag(a,b) 
real a.b,p.q.r .s 
p :- max( I a I, I b I ) 
q :- min( I a I. I b I) 
while (q is numerically significant) 
do 

r :- (q/p)z 
s :- r/(4+r) 
p ·:- p+2•s•p 
q:-••q 

od 
pythag :- p 

The two variables p and q arc initial~ so that . 

p @ q - a E9 I, and O S q ~ p. 

The main pan or the algorithm is an iteration that leaves 
p EB q invariant while increasing p and decreasing q. Thus 
when q becomes negligible, p bolds the desired resulL We 
sbow in Section 4 that the algorithm is cubically convergent 
and that it will never require more than three iterations on 
any computer with 20 or (ewer significant digits. It is thus 
potentially faster than the classical quadratically convergent 
iteration for square root. 

There arc no square roots involved and. despite the title of 
this paper, the algorithm cannot be used to compute a square 
root. If either argument is zero, the result is the absolute 
value of the other argument. 

Typical behavior or the algorithm is illustrated by 
• pythag( 4.J ). The values of p and q after each iteration arc 

iteration p q 

0 4'.000000000000 3.000000000000 

-1.986301369863 0.369863013698 

2· 4'.999999974 l 88 0.OOOS080S2633 

J .S.000000000000 0.00000000000 I 

Tbc most important f caturc or the algorithm is its robust­
ness. There will be no overflows unless the 6nal result 
overflows. In fact. no intermediate results larger than a 9 b 

CUVI! NOLD AND D0 .. ALD MOlllllSON 

arc involved. There m:iy be underflows if I b I is much smaller 
than I a I. but as long as such underftows arc quietly set to 
zero, no harm will result in most ClSCS. 

There can be some deterioration in accuracy if both I af and 
:·:lbl arc very n=ir "" the smallest positive floating point 

number. As an extreme c:umplc. suppose a - 4,i and b 
- 31&- Then the iterates shown above should simply be scaled 
by p. But the value of q after the first iteration would be less 
than " and so would be set to zero. Tbc process would 
terminate early with the corresponding value of p. wbic:h is 
an inaccurate. but not totally incorrect. raulL 

3. Eucfldean vector norm 
A primary motivation for our development of pythag is its 
use in computing the Euclidean norm or 2-aorm of a vccior. 
The conventional approa~ which simply cakes the square 
root or the sum of the squares of the components. disregards 
the possibility of underflow and overflow. thereby ctr ectively 
halving the Boating point exponent range. The approaches or 
Blue [ 1] and Lawson ct al. (2) provide for the possibility of 
accumulating three sums. one or small numbers whose 
squares W1derilow, one of large numbers whose squares 
overflow. and one or "ordinary-sized" numbers. Environ­
mental inquiries or machine- and accuracy-dependent con­
stants arc needed to separate the three classes. 

With pytbag available. computation of the 2-nonn is 
easy: 

n:al function norm2(x) 
real vcc:tor x 
reals 
s:- 0 
for i :- I to (number of elements in x) 

s :- pytbag(s.x(i)) 
norm2 :- x 

This algorithm has all the characteristics that might be 
desired of it. except one. It is robust-there are no destruc­
tive underflows and no overflows unless the result must 
overflow. It is accurate-the round-off' error corresponds to 
a few units in the last digit or each component of the vector. 

. It is portable-there arc no machine-dependent constants or 
environmental inquiries. It is shon-both the source code 
and the object code require very litdc memory. It accesses 
each element of the YCCtor only once. which is or some 
importance in rinual memory and other modern operating 
systems. 

Tbc only possible drawback is its speed. for a vector or 
length n. it requires n calls to pythag. Even if pythag were 
implemented efficiently. this is roughly the same as n square 
roots. The approaches of (I] and (2) require only n muhipli• 
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cations ror the most frequent case where the squares or the 
vector clements do not underflow or overflow. However, in 
most or the applications we arc aware or. speed is not a major 
consideration. In matrix calculations. ror ex.ample. the 
Euclidean norm is usually required only in an ouicr loop. The 
time-determining calculations do not involve pythag. Thus. 
in our opinion. all the advantages outweigh this one disad• 
vantage. 

4. Convergence analysis 
When the iteration in pythag is terminated and the final 
value or p accepted u the result. the relative Cff'Or is 

e - (p E9 q - p)/(p e q) 

- c.Jr+r-1>1.Jr+r. 
where r - (q/ p) 2

• (We assume throughout this section that 
initially p and q arc positive.) 

The values ore and , are closely related. and the values of 
their reciprocals arc even more closely related. In fact. 

1 1 .Jr+; 
---+ 1 +-. 
e r r 

Since 1 < .Jr+; < 1 + r /2. it fallows that 

2 l 2 3 
-+ 1 <-<-+-. 
r e r 2 

Thus l / e exceeds 2/ r by at least 1 and at most l.S. 

To sec bow 2/r and hence the relative error varies during 
the itcr.ltion. we introduce the variable 

4 
u--. 

r 

The values of II taken in successive iterations arc given by 

u :- u(u + 3)2
• 

If the initial value of II is outside the interval -4 :$ u S -2. 
then u increases with each iteration. Hence 11 - co, r - O. 
and p - a EB b. The fact that u is more than cubed each 
iteration implies the cubic convergence of the algorithm. 
Since initially we have O < q S p. it follows that 

0 < r S I and 4 S u, 

and II increases rapidly Cram the very beginning. If the initial 
value of q / p happens to be an integer. then II takes on integer 
values. 

The most slowly convergent case has initial values p - q 
and r - 1. The iterated values or u arc 

iteration 

u 

0 2 3 4 

4 196 7761796 >4•1010 >10
61 
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It follows that after three iterations 

If the arithmetic were done exactly. after three iterations 
the value ~f p would agree with lh·c true value or p 9 q to 20 
decimal digits. If there were further iterations. each one 
would at least triple the number or correct digits. Initial 
values with q < p produce even more rapid convergence. 

With quadratically convergent iterations such u the clas­
sical square root algorithm. it is often desirable to use special 
staning procedures to produce good initial approximations. 
Our choice or initial values with q :$ p can be regarded as 
such a starting procedure since the algorithm will converge 
even without this condition. However. since the convergence 
is so rapid. it seems unlikely that any more elaborate staning 
mechanism would otfcr any advantage. 

5. Round-off error and stopping criterion 
In addition to being robust with respect to underflow and 
overflow. the pcrf ormance of p~g in the presence of 
round-off error is quite satisfactory. It is possible to show 
that after each iteration the computed value of the variable p 
is the same as the value that would be obtained with exact 
computation on slightly perturbed staning values. The rapid 
convergence guarantees that there is no chance for excessive 
accumulation of rounding errors. 

The main question is when to terminate the iteration. If we 
stop too soon. the result is inaccurate. If we do not stop soon 
enough. we do more work than is necessary. There arc several 
possible types.of stopping criteria. 

I. Take a fixed number of iterations. 

The appropriate number depends ~pon the desired accura• 
cy: two iterations for 6 or f cwer significant digits. three 
iterations for 20 or fewer significant digits. four iterations for 
60 or fewer significant digits. There is thus a very slight 
machine and precision dependence. Moreover, rcwcr itera• 
tions arc nccc:ssary for pythag(a.b) with b much smaller than 
a. 

2. Iterate until there is no change. 

This can be implemented in a machinc•indcpcndent man• 
ncr with something like 

ps:- p 

p :-p+2•s•p 579 
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if p - ps then exit 

This is probably the most foolproof criteria~ but it always 
uses one extra iteration, just to confirm that the final 
iteration was not nccc:ssary. 

3. Predict that then: will be no change. 

The idea is to do a simple calculation early in the step that 
will indicate whether or not the remainder or the step is 

ncc:cssary. Jr we use /(z) • y to mean that the computed 
value of/(z) equalsy, then the condition we wisb to predict 
is 

When r is small, thens - r/(4 + r) is lest than and almost 
equal to r/4. Consequently, a sufficient and almost equiva­
lent condition is 

p + rp/2 •P· 

It might seem that this is equivalent to 

2+r•2. 

However, this is not quite true. Let /J be the base of the 
ftoating point arithmetic. For any floating point number p in 
the range I :S p < /J, the set of Boating point numbers d for 
which 

is the same as the set o( d (or which 

J+d•l. 

In other words. the conditions p + dp • p and I + d • 1 arc 
precisely equivalent only when p is a power of /J. 

We have chosen to stop when 

4 + r • 4. 

There arc three reasons (or this choice. The quantity 4 + r is 
available early in the step and is needed in computing s. The 
condition is almost equivalent to predicting no change in p. 
The variables p and q have already been somewhat contami­
nated by round-off error rrom previous steps. 

The satisfactory error properties or pythag an: inherited 
by norm2. It is possible to show that the computed value or 
norm2(.r) is the exact Euclidean norm or some vector whose 
individual elcmenu are within the round-off' error or the 
corresponding clements or z. 

CL!YE MOLEJt AND DONALD MOtUUSON 

6. Some related algorithms 
It is possible to compute ../-a-1 ---b-1 by replacing the 
statement 

r:- (q/p)z 

~_in~gwith 

r :-· -(q/p)z. 

The convergence analysis in Section 4 still applies. except 
that rand II take on negative values. In panicular, when a 
- b, the initial value of II is -4 and this value docs not 
change. The iteration becomes simply 

p :- p/3. 

q :- -q/3. 

The variable p approaches mo u it sbou1d. but the conver­
gence is only linear. If a 1" b, the convergence is m:ntually 
cubic. but m;any iterations may be nqu.in:d to enter the cubic 
regime. 

The iteration within pythag eff'cctivcly computes p ./i+r. 
The related cubically convergent algorithm ror squan: root 
is 

function sqrt(z) 
n:al z.p.r .s 
p:- I 
r:- z-1 

while (r is numerically significant) 

do 
s :- r/(4+r) 

· -1' :- p+l•s•p 
r :- r•(s/(1 +2•s)) 2 

od 
sqn:- P 

Although this algorithm will converge for any positive:. it is 
most effective for values of z near I. The algorithm can be 
derived from the approximation 

~ 4+3r 
VI +-r::.--, 

4+r 

which is accurate to second order for small values or r. The 
classical quadratically convergent iteration for square root 
can be derived from the approximation 

which is accuratc only to ftnt order. The cubically conver• 
gent algorithm requires (ewer iterations. but more operations 
per iteration. Consequently. its relative efficiency depends 
upon the det:ails of the implementation. 
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The Eudidc:an norm or a vector can also be computed by a 
generalization of pyth'1g(a.b) lo allow a vector argument 
with any number of components in place of (a.b ). a vector 
argument with only two components: 

vcctor•pytbag(x) 
real vector x..q 
n:al p.r .s.t 
p :- (any nonzero component or x, preferably the largest) 
q :- (x with p deleted) 
while (q is numerically significant) 
do 

od 

r :- (dot product or q/p with itself) 
s :- r/(4+r) 
p :- p+2•s•p 
q :- seq 

vcctor•pythag :- p 

The convergence analysis of Section 4 applies to this 
algorithm. but the initial value or u may be less than 4. The 
convergence is cubic. but the accuracy attained after a fixed 
number or iterations will generally be less than that of the 
scalar algorithm. Moreover, it docs not seem possible to 
obtain a practical implementation which retain$ the simplic• 
ity or pytbag and norm2. 
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