
Computer System Support for Scientific and Engineering 
Computation 

Lecture 19 - July 5, 1988 (notes revised June 14, 1990) 

Copyright @1988 by W. Kahan and David Goldberg. 
All rights reserved. 

1 Exception Handling 

The IEEE standard defines 5 classes of exceptions. Here is a brief description. For more 
details see Why Must o0 = 1 ? 

Inexact This means that the result had a rounding error. Only IEEE standard conforming 
machines require that hardware detect this kind of exception and signal it. 

Underflow This is what you get when the computed result is smaller than the smallest 
representable floating point number. The VAX can trap on underflow, but the trap 
enable bit is reset on every procedure call. 

Overflow This is what you should get when you try to compute exp(1010). In the IEEE 
standard, overflow returns oo and sets the inexact flag. IBM/370 FORTRAN can set 
the result to the largest representable number. • 

Divide by Zero This includes anything that' is exactly equal to oo, such as log0 and 
arctan 1, created from finite operands in one operation. 

Invalid Examples are referencing the VAX reserved operand, values outside the domain 
of a function, indefinite results like 0/0, and invalid control. Invalid control might 
include things like dereferencing a null pointer, an out of bound array reference, or 
operating on a matrix with negative dimensions. 

There is such a diversity in how the common ma.chines handle these exceptions, that it is 
probably hopeless for portable software to do anything other than try to avoid exceptions 
at all costs. The details of this diversity will be presented in a future lecture. For now, 
consider the role played by exceptions in an important piece of software, namely linear 
equation solvers. 

2 Gaussian Elimination 

Despite 30 years of intensive work on algorithms for numerically solving systems of linear 
equations, we still don't know of an algorithm that works reliably for all problems, yet is 
efficient. Here are some of the issues. 
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2.1 Scaling 

Consider the matrix 

( 

10-98 10-99 ) 

10- 98 1.5 X 10- 99 

2 

on a decimal machine without gradual underflow that can represent nonzero magnitudes 
between 9.99 ... 9 x 1099 and 1.0 x 10- 99 . Performing Gaussian elimination results in the 
singular matrix 

where the O in the lower right hand corner isn't really 0, but underflowed to O. This 
is completely different from what you get if you first scale the matrix by 1099 and then 
perform Gaussian elimination. The result transforms 

into 

(1i o\) 
which is a perfectly reasonable matrix. Unfortunately, no one knows a scaling algorithm that 
is both efficient and which always picks reasonable scale factors. This is why LINPACK does 
not perform scaling, leaving users vulnerable to wrong answers due to avoidable underflow. 

When solving a system A£= b, scaling the watrices A and b by a merely scales the data ~ 
without changing the result. In fact, we can scale each row and column of A separately. If 
we let 

diag(..\) = ( ~1 12 ·.. ~ l 
0 0 ..\n 

then A • diag( ,.\) multiplies the jth column of A by ..\;, and diag(µ) • A multiplies the ith row 
of A by µi. So if we rewrite Ax= bas (diag(µ) •A• diag(..\))(diag(..\-1 ) • x) = diag(µ)-· b, 
we see that rescaling the matrix A by multiplying the (i,j)th entry by µi..\; simply scales i 
and the solution vector b by ,.\-1 andµ respectively. The scale factors should be powers of 
the radix, to prevent roundoff errors. 

Using arbitrary scaling, let us try a more interesting problem. Consider 

( 

1 -2 1 ) 
-1 10-20 10-20 

1 10-20 - 10-20 

Unless the machine precision is so high that it can hold 20 decimal digits, Gaussian elimi
nation will yield the singular matrix 
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If instead we scale the rows by (10- 10
, 1010

, 1010
) and the columns by (10- 10 , 1010 , 1010 ) 

we get the matrix 

This matrix has a problem: the upper left hand entry is not a good choice for a pivot. li 
we rearrange the rows to 

this reduces to the very reasonable matrix 

One of the best scaling algorithms is due to Curtis and Reid (1972), however in order to find 
the scale factors you need to solve a linear system which is sometimes almost as difficult as 
the original problem! 

2.2 Roundoff Error 

When we perform Gaussian elimination, we perform a series of row operations, where a row 
operation consists of adding a multiple of one row to another row below it. This is the same 
as multiplying on the left by a matrix. For example, adding .X times the first row to the 
second is the same as multiplying by 

When Gaussian elimination is complete, we have an upper triangular matrix U, that is 
AnAn-1 .. . A1A = U. Each Ai is lower triangular, with l's on the diagonal. Since the 
product of two such matrices is another matrix of the same form, we have AA = U. Also, 
the inverse of such a lower triangular matrix is another such matrix, so A- 1 = L and A = LU 
decomposes A into the product of a lower tTiangular matrix with 1 's on the diagonal and an 
upper triangular matrix. A backward error analysis of Gaussian elimination shows that the 
computed matrices Land U satisfy the equation LU= A+ E· exactly, where E represents 
the rounding error, and E is bounded by the roundoff in the maximum element that occurs 
in place of A during Gaussian elimination. 1 That explains why it is not a good idea to 
use a small element as a pivot: it will have to be multiplied by a large element in order 
to cancel other elements in its column, and that will most likely generate large elements 

1 Roughly speaking, the reasou is this. As we perform Gaussian elimination, we replace elements of A with 
other elements, until the upper triangular half of A is filled with the elements of U. If we always choose the 
largest possible pivot, then the multipliers used to manipulate A are always less than 1. Thus the rounding 
error committed in computing U is bounded by the rounding error of the largest element that appears in 
place in A. 
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elsewhere in the matrix. How large can elements grow to be? The following. example was ~-
discovered independently by Wilkinson and Kahan around 1959. 

1 0 0 0 1 
-1 1 0 0 1 
-1 -1 1 0 1 

Ar= 

-1 -1 -1 1 1 
-1 -1 -1 -1 X 

It has l's on the diagonal (except for the last element), O's in the upper triangle, -l's in 
the lower triangle, and 1 's along the rightmost column. After the first step of Gaussian 
elimination, the right hand column will contain 2's from the second row on. After the 
second step, it will contain 4's from third row on, and so on. When Gaussian elimination is 
complete, the lower right hand element will be 2n-t -1 + x. So error analysis suggests that 
rounding error will be severe. And if x = 0 and n is larger than the floating point precision, 
the -1 will be lost to roundoff error, so it will be as if x = 1. The inverse of this matrix can 
be computed exactly, it is the difference of two matrices 

1 0 0 0 0 0 0 2n-2 2n-3 2n-4 2 1 1 
1 1 0 0 0 0 0 2n-l 2n-2 2n-3 4 2 2 2 1 1 0 0 0 0 
4 2 1 1 0 0 0 1 2" 2n-l 2n-2 8 4 4 

Q 

2n-3 2n-4 2n-5 1 1 0 
22n-4 22n-3 22n-2 2n-l 2n-2 2n-2 

2n-2 2n-3 2n-4 2 1 1 
0 0 0 0 0 0 

where a = 2n-t - 1 + x. Since l/(2n-l - 1) :::::: 1/2n-l + 1/2 2"- 2 , changing x from O to 1 
will perturb the inverse by 2- 2n+ 2 times the second matrix. For example, the second to last 
row will change from (O, 0, 0, ... ) to(¼, i, ... ). Since the solution to Ax= bis x = A- 1&, 
this change to A- 1 will result in a dramatic change to the solution. 

When performing Gaussian elimination, the usual procedure is at each step to select the 
row that will give the largest pivot. This is called partial pivoting. Scaling the matrix results 
in selecting different pivots, so finding a good scaling algorithm is equivalent to finding a 
good pivoting strategy. 

Selecting the row that gives the best pivot is equivalent to permuting the rows of the 
matrix and then picking the pivots in order. This changes the LU decomposition from 
LU = A+ E, to LU = PA+ E', where P is a permutation matrix. Hopefully if we pick the 
correct P, the error E' will be negligible. We IQ.entioned earlier that the error Eis bounded 
by the maximum element that occurs in place in A during Gaussian elimination. It turns 
out that with partial pivoting, the elements of A grow by a factor of at most 2n- 1 . And 
the example above shows that the bound can be obtained. 

If we also reorder the columns a.s wells a.s the rows ( complete pivoting), then Wilkinson 
proved that the growth is bounded by roughly n(logn)/ 4. However, no one knows if this 
is best possible, and in fact the largest known growth is linear. For n ::; 4, it has been 
proven that the growth is at most n. For random matrices, the growth appears to be ,In 
on average; for real life matrices the maximum often shrinks! It is extremely unusual for 
the elements to grow by more than a factor of 1000. The code HUPA and L UPA perform 
partial pivoting, and print out a message if the growth is more than Sn. No one ha.s ever 

l~ 

reported seeing the message except for matrices like Ar. :~ 
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Even if we knew an optimal pivoting strategy, for sparse matrices you would like to 
choose pivots to retain the sparse structure. There are papers by Skeel (197x) and Arioli, 
Demmel and Duff (1988) that show that iterative refinement can undo the roundoff damage 
created by a not too poor choice of pivots, even when the residual is computed in working 
precision rather than more. Thus iterative refinement, which was out of fashion in the 
seventies, may come back into fashion. Another way to correct for a poor choice of pivots 
( or scaling) is to provide extra precision. An extra 10 bits of precision would compensate 
for a growth of the elements of A by a factor of 210 = 1024. And in fact, IEEE extended 
precision provides 10 extra bits of significand over double precision.2 

2.3 Zero Pivots 

Suppose that during Gaussian elimination all the possible pivots are zero. Many programs 
give up at this point, announcing that the matrix was singular. There are two reasons why 
this is not a good idea. The first is that sometimes you want to solve an equation with a 
singular matrix. For example in the inverse iteration method for computing eigenvectors, 
you solve the equation (A - Al)x = y, where ..Xis the eigenvalue, and y is an estimate for 
the eigenvector. The second reason is that finding a zero pivot is not a good test of whether 
a matrix is singular, because of roundoff error. The condition of A, cond(A) = IIAII IIA-1 11 
is the correct way of estimating how singular a matrix is, and_ in particular, how close the 
computed solution is to the true solution. Remember that backward error analysis only 
says that the computed solution is the exact solution of a slightly perturbed problem. It 
doesn't say that the computed solution is a slight perturbation of the true solution. If f 

is the distance between 1 and the next representable number, than the relative error in 
Gaussian elimination is about€• cond(A). 

Since the determinant of a matrix is zero exactly when the matrix is singular, you might 
think that estimating the size of the determinant (which is the product of the diagonal 
elements of U from the LU decomposition) would be a good estimate of the condition. But 
it is not. The matrix 

( lQ:-l 
0 

10~-. ) 

10-1 
., .. 

0 

has determinant 10-n but condition 1. The matrix 

1 -1 -1 -1 -1 
0 1 -1 -1 -1 
0 0 1 -1 -1 

0 0 0 1 -1 
0 0 0 0 1 

has condition n2n-l but determinant 1. So there is no correlation between the condition 
number and the determinant. 3 Estimating the condition by computing A- 1 is expensive. 

2 lncidentally, the reason why extended precision has 64 bits of precision, is because that (plus 3 bits for 
guard, round and sticky) was the widest precision across which carry propagation could be done on the Intel 
8087 without increasing the cycle time. 

3 However, when n = 2, the condition number and determinant are comparable in size. 
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LINPACK instead uses a condition estimator based on finding a special vector d and solving ~ 
Ax =d. 

This suggests that when Gaussian elimination discovers a small pivot, it should continue 
and compute the LU decomposition anyway. From the LU decomposition the condition can 
be estimated, giving an estimate of the accuracy of the solution to the linear system. In 
addition, the LU decomposition can be used to find eigenvectors. In the HUP A and L UPA 
codes, if a zero pivot is discovered, the pivot is replaced with f times the largest element in 
its column. This would be a useful fa.ct to record in a log of retrospective diagnostics. 

3 Zero Finding and Quadrature 

Linear algebra codes are generally quite robust, but good zero finding routines are more 
likely to depend on the pecularity of the machine they are running on. The root finder on 
the HP 28C, 28S and 19C calculators can handle functions with singularities and restricted 
domains. When the root finder gets a NaN in response to evaluating the function, it refines 
its guess until the function returns a valid answer. This obviously requires that the hardware 
support NaNs. It can be done on a Vax, using its reserved operand, but it is painful because 
reserved operands cause too many traps. On an IBM/370, every bit pattern represents a 
floating point number, so supporting NaNs is impossible. 

Another problem with root finders is knowing when to stop the iteration. Doing this 
correctly requires knowledge about the distribution of floating point numbers. The recom
mended IEEE function nextafter is useful for this. Having control over rounding is also 
very helpful. Another example where the distribution of floating point numbers is crucial 
is in quadrature programs. When integrating a function with a singularity, it is important 
not to sample the function at a singularity. For..functions with vertical tangents, the precise 
point where the function is evaluated is crucial (since the derivative is oo ). Once again, 
knowing the distribution of floating point numbers is very important. Another problem 
with quadrature programs occurs when integrating functions with long tails. It is possible 
to get underflow far out in the tail, but very long tails can contain a lot of area. Gradual 
underflow helps here. 

To summarize, accurate algorithms for finding zeros and quadrature benefit from fea
tures of the IEEE standard. However, rather than create clever algorithms that exploit the 
IEEE standard, it is also possible to solve these problems using multiple precision. 

4 Multiple Precision 

In lecture 17, we discussed representing multiple precision floating point number$ as an 
array of working precision numbers. We gave a distillation algorithm that will collapse the 
sum of two such arrays. In order to multiply two such arrays, we need to be able to represent 
the product of two working precision numbers as a sum of working precision numbers. On 
some machines (IBM/370 and Cyber 17x) there is a single instruction 4 that computes a full 
product, placing it in two words. The problem is that portable software isn't able to use this 
instruction, because when multiplying two numbers corresponding to the largest floating 
point data type, there is no floating point type available to assign the product. John Cocke 
(1967) has suggested a multiply /add instruction that would compute A• B + C exactly and 
then round the result. If a machine had such an instruction, and if the compiler recognized 

4 Actua1ly two instructions on the Cyber. 



Lecture 19 - July 5, 1988 (notes revised June 14, 1990) 7 

the expression A•B - C, then products could be computed portably. First compute P = 
A•B to working precision. Then compute Q = A•B - P. The two variables P and Q contain 
the two halves of A • B. 

There is a way to compute a full product portably, which was discovered by Dekker and 
Veltkamp. It involves spliting a working precision variable into two halves. This will be 
discussed in lecture 20. 


