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1 Multiple Precision Floating Point 

1.1 Why Multiple Precision 

We mentioned earlier that the QR algorithm and compensated summation as clever algo
rithms that ca.n avoid the need for multiple precision. Here is another example. Consider a 
linear system with feedback that is characterized by a linear operator A. Typically, we would 
like to diagonalize A (that is, A= CAc- 1) where the eigenvalues of A are the elements of 
A. The eigenvalues (which may be complex numbers) give a simple way of understanding 
the system. However, the eigenvalues don't correspond to anything physically, and may 
change dramatically when the system is slightly perturbed. In fact, the matrix can change 
from being diagonalizable to not being diagonalizable. Here are two examples. Suppose A 
is the identity matrix, and we perturb it slightly by adding 10- 40 above the diagonal. 

1 10- 40 0 
0 1 10- 40 

0 0 1 
B= 

1 10-40 

0 1 

Its easy to see that B is no longer diagonalizable. If it were, then CAC- 1 = B and 
det(B - a/)= det(C)det(A - aJ)det(C)- 1 = det(A - a/)= TT(.Xi - a). On the other 
hand, direct computation gives det(B - a/)= (1- at. Since these two polynomials must 
the same, Ai = 1 and A = /, which is a contradiction. Th us B is not diagonalizable. 
A second example of a small perturbation changing a matrix from nondiagonalizable to 
diagonalizable is to start with 

1 1010 0 
0 1 1010 

0 0 1 
A= 

1 1010 

0 1 

1 
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which is not diagonalizable, and perturb it by adding 10-so to the lower left hand corner. 

1 1010 • .,() 

0 1 1010 

0 0 1 
B= 

1 1010 

10-so 0 1 

Letting ;1 = e110-50(101u)n-l be the complex nth roots of 1010n-60, the eigenvalues of this 
matrix are 1 - ii. Since these are all distinct, the matrix B is diagonalizable. 

Geometrically, let S be the surface of diagonalizable matrices with double eigenvalues 
in the space of all matrices. 1 The closer a matrix gets to this surface, the harder it is to 
diagonalize it. In fact, this is an example of the general phenomenon we have mentioned 
before, that the amount of ill-conditioning is roughly inversely proportional to the distance 
to the surface of ill conditioned problems. Unfortunately, optimizing linear systems tends 
to drive their matrices towards this unstable surface. Thus multiple precision is necessary 
if the systems are to be analyzed by diagonalizing their matrices in a straightforward way. 
There are clever techniques available for avoiding multiple precision. Some of them are 
discussed in the book Sensitivity Analysis in Linear Systems by Assem Deif (1986). 

1.2 Double Precision Addition 

In the last lecture we explained how to do multiple precision without "bit-twiddling", that 
is, as a portable program that will work on any machine with reasonable arithmetic. A 
multiple precision number was represented by a list of working precision numbers. The sum 
of two such lists could be collapsed using the distillation algorithm. In this section we will 
discuss the special case of "double precision", that is, double the working precision, where 
working precision is the widest precision supported by the hardware. As before, we will use 
a+ b to mean exact addition, and (a+ b] to mean machine addition (i.e. rounded to working 
precision), and similarly for subtraction. We will represent our double precision numbers 
as pairs (x, {), where x and { are both working precision numbers, and are disjoint, which 
means that X = (x + e]. First recall 

Algorithm 1 (Single+ Single) Given x 1 and x2 in working precision, x1 + x2 is rep
resented by (z, (), where in fact x 1 + x 2 is exactly equal to the disjoint sum z + (. The 
decomposition is computed using z = [x1 + x2] and ( = [(xmax - z] + Xmin]. Here, Xmaz is 
the Xi with the largest absolute value, Xmin the smallest absolute value. 

We can use this to build up an algorithm for adding a single precision number to a double 
precision one. The notation (z,() ~ x 1 + x 2 is shorthand for applying this algorithm. 

Algorithm 2 (Double + Single) The sum (x, e) + y is ~presented by (z, (), where 
l(z + () - (x + e + y)I < £2lx + e + YI, E =· {3P.::-l is an ulp of 1.0. If IYI > lxl, then swap 
x and y. If IYI < 1e1 then swap y and e, so that 1e1 :5 IYI :5 lxl, Lett = [[{ + y) + x] and 
T = [[[x - t] + y] + e]. Then (z,() ~ t + T. 

The proof is unpublished, but a number of people have examined it and believe it is correct. 
Finally, the algorithm for adding two double precision numbers. 

1 Actually, you need to take the closure of this set. 
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Algorithm 3 (Double + Double, W. Kahan) The sum (x, {) + (y, TJ) is represented 
by (z, (}, and z + ( = (x + {)(1 + £1) + (y + r,)(1 + £2), l£il '5:. k£ 2 , k is a small integer and£ 
is 1 ulp as before. Swap (x, e) and (y, TJ) if necessary so that lxl ~ IYI• Lett= [[{ + y] + x], 
r = [[[[x - t] + y] + {] + r,]. Then (z,() +- t + r. 

This algorithm has probably been proved to be correct, but may only work for IEEE 754 
arithmetic, because it appears to require round to even. An algorithm that works on any 
hardware is 

Algorithm 4 {Double+ Double, W. J. Cody) The sum (x, e) + (y, 11) is represented 
by (z, (}, with the accuracy of algorithm 3, where 

s = ma.x(lxl, jyl) • (32 

- = s • signum(x) 
x' = [2 - [: - X )]; f = [( X - :t1 + {] 
N = s • signum(y) 
y' = [N - [N - y]]; 'f/

1 = [[y - y'] + T/] 
t = [x' + y'] 
T = [[[(x' - t] + y'] + 'f/1] + e'] 
z = [t + r]; ( = [[t - z] + r]. 

This algorithm requires about twice as many operations as the previous one, including a 
multiplication. Both algorithms can produce an answer where z is in error by 1 ulp, in fact 
where z has every digit wrong! 

X = 1010. 
e = -0.1000 

x+e = 1001.1 
y = -1001. 
T/ = -0.000001 

y + 11 = -1001.000001 
(x+{)+(Y+T/) = 0.011111 

Kahan's algorithm gives ( = t = 0, r = 0.1, z = 0.1000, ( = 0. Cody's algorithm gives 
x' = x, e' = e, y' = -1000, TJ1 = -1.000, t = 10., r = -1.1, z = 0.1000, ( = o. In each 
case z = 0.1000 instead of .01111. An algorithm that is believed always to have z correct 
follows. 

Algorithm 5 {Accurate Double + Double, W. Kahan) The sum (x, () + (y, 11) is 
represented by (z,(), computed as follows. Begin by swapping (x, {} and (y, r,) if necessary 
80 that lxl ~ IYI• Lett= [[{+y]+x]. 1ft = 0 then {lett = [[x+y)+e], and(z,() +- t+11}. 
Otherwise let u = [[x - t] + y). If u = 0 and T/ # 0 then {replace (x, {) with (x', {'), 
where (x', e') +- t + {. Replace (y, 11) with (0, r,). Go back to the beginning}. Otherwise let 
T = [(u + e] + r,]. Then (z,() +- t + T. 

1.3 Multiplication 

In order to multiply two multiple precision numbers, all we need is a way of representing 
a working precision number as a sum of two half precision numbers. That is, suppose the 
precision is p, then the number .x1x2 •.. Xp can be written as the sum of .z1x2 ... Xp/ 2 and 
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.0 • • •0Xp/ 2+1 ... Xp• As long as pis even, the product of two numbers of this form fits ~ 
exactly into a working precision number. So to multiply x by y exactly, write x = x1 + x2 

and y = Y1 + Y2 and the exact product is xy = X1Y1 + X1Y2 + X2Y1 + X2Y2• One of the 
addition algorithms from the previous section can be used to collapse the sum. When pis 
odd, this simple splitting method won't work. However we can gain an extra bit by using 
negative numbers. For example, if p = 5 and x = .10111, we can split it as x1 = .11 and 
x2 = -.00001. There is more than one way to split a number: we want to pick a splitting 
that is easy to compute. 

Algorithm 6 (Split, Dekker and Veltkamp) Let p be the precision, k = rp/21 be half 
the precision (rounded up), and m = 2k + I. Then x = x 1 + x 2 with Xi representable using 
l.P/2J bits of precision is computed with x1 = [[m • x] - [[m • x] - x], x2 = [x - x1]. 

When the radix /3 is 2, this works for any precision. For /3 > 2, p must be even. In order to 
use this algorithm, we need a way to compute m. 

Algorithm 7 Compute in working precision b = 1/1(4.0/3.0 - 1.0)3.0 - 1.01, r = ✓4.0 • b, 
and m = ( ( r + rb) - rb) + 1.0. Then b is exactly 2P-1 , and m is exactly 2k + 1. 

To verify algorithm 7, write 4/3 in binary as 1.01010h • • •· If pis odd, then in working 
precision 4/3 = 1.01 • • • 012, 4/3- 1 is .01 • • • 0102, 3( 4/3 - 1) is .11 • • • 1102 so 13( 4/3 - 1 )- 1 I 
is exactly .00 • • • 0102 = 2-P+l. The calculation works the same way when p is even. Next, 
observe that r = v'4b = J2P+f. If p is odd, then p = 2k - l so r = 2k. In this ca.se 
r + rb = 2k + 2k+p-l can be represented exactly in working precision, so that ((r + rb) -
rb) + 1.0 = 1 + r = l + 2k exactly. 

Finally, assume pis even, so that p = 2k. Then r = vf.ib = ✓22k+I = .J2 .2k. In binary, ,~ 
v'2 = 1.01102 • • •· We need to compute what [[r + rb] - rb] will be in working precision. For 
simplicity, sea.le everything by 2-k, so that rb rounded to working precision is an integer. 
Then r + rb = /2 + y'22P-l looks like this 

rb 10110 .. . xxx. 
r 1.0110 ... 

so that [r + rb] is exactly rb + 1, and [[r + rb] - rb] is exactly 1. Or since we scaled 
everything by 2-k, ((r + rb)- rb) in working precision is 2k, so just as when pis odd, again 
( ( r + rb) - rb) + 1.0 = 1 + 2k, which shows that algorithm 7 is correct. 

Algorithm 6 is based on the following fact. 

Algorithm 8 (Round} Let O < k < p, and set m = 2k + 1. Then [[m • x] - [(m • x]- x]] 
is exactly equal to x rounded to p - k significant digits. 

It is easy to see why algorithm 8 implies algorithm 6. The computation of x1 will be 
x rounded to p - k = [p/2 J places. H there is no carry out, then certainly x 1 can be 
represented with l_p/2J significant bits. If there is a carry out, then the low order bit of x1 

must be zero, so again x1 is representable in l_p/2J bits. 
What about x2? We can assume that x is an integer satisfying 2P-1 $ x $ 2P - 1. 

Let x = Xh + x; where Xh is the p - k high order bits of x, and x; is the k low order 
bits. If x; < 2k- 1, then rounding x top - k places is the same as chopping and x1 = xh, 
and x2 = x; < 2k-l is representable with k - 1 $ l_p/2J significant bits. If x; > 2k-t then 
computing x1 involves rounding up, so x 1 = Xh + 2k, and x2 = x- x1 = x- Xh -2k = xi -2k, 
thus lx2I < 2k-l so can be represented with k- 1 ~ l_p/2J bits. If x; = 2k-l and computing ~ 
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x1 doesn't round up, then x 1 = Xh and x 2 = 2k-t can be represented with. 1 significant 
bit. Finally, if Xj = 2k-l and x1 does round up, then x2 = 2k-l - 2k which can also be 
represented with 1 significant bit. 

Finally, we will show how to prove the correctness of algorithm 8 ( and thus of algorithm 
6). The proof breaks up into two cases, depending on whether or not the computation of 
mx = 2kx + x has a carry-out or not. 

Assume there is n~ carry out. Then the computation of mx = x + 2kx looks like this: 

aa ... aabb ... bb + aa ... aabb ... bb 
zz zzbb .. . bb 

where we have partitioned x into two parts. The low order k digits are marked band the 
high order p- k digits are marked a. To compute [m • x) from mx involves rounding off the 
last k digits (the ones marked with b) so • 

The value of r is 1 if .bb •••bis greater than ½ and 0 otherwise. That is 

·r 1 ·r 1 
d r = 1 1 .bb • • • b > 2 or 1 .bb ... b = 2 an ao = 1. (2) 

Next we compute [m • x) - x = mx - x mod(2k) + r2k - x = 2k(x + r)- x mod(2k). Below 
we show the computation of [m • x) - x rounded, that is, [[m • x] - xl. 

aa ... aabb ... bB00 ... 00 
- bb ... bb 
+r 

zz zzZ00 ... 00 
If .bb • • • b < ½ then r = 0, and when subtracting there is a borrow from the digit marked 
B, but rounding to p adds 1 back into that place. The rounded result of the subtraction is 
thus 2kx. If .bb • • • b > ½ then r = 1, 1 is subtracted from B because of the borrow, and 
rounding the answer top places truncates, so again the result is 2kx. Finally if .bb • • • b = ½, 
the digit Z will be forced to 0 independent of the value of r, and since the low order digit 
of .bb •••bis also zero, once again the result is 2kx. To summarize 

(3) 

Combining equations (1) and (3) gives ([m • x] - ([m • x] - x)] = x - x mod(2k) + r2k. The 
result of performing this computation is 

r 
aa ... aabb ... bb 

- bb ... bb 
aa ... aa00 .. . 00 

The rule for computing r, equation (2), is the same as the rule for rounding a••• ab• •• b 
to p - k places. Thus computing mx - ( mx - x)) in working precision is exactly equal to 
rounding x top - k places, in the case when x + 2kx does not carry out. 

When x + 2k x does carryout, then mx = 2k x + x looks like this: 

aa ... aabb ... bb + aa ... aabb ... bb 
zzz zwbb ... bb 
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Thus [m. x] = mx - x mod(2k) + w2k. The reason for adding w2k is that if w = l, then ~, 
you need to subtract off w2k, but you also round up thus adding w2k+t for a net gain of 
w2k. Next, [m. x] - x = 2kx - x mod(2k) + w2k. In a picture 

aa . .. aabb . .. bb00 . .. 00 
- bb ... bb 
+w 

Rounding gives [[m-x]-x] = 2kx+w2k -r2k, where r = 1 if .bb·· •b > i or if .bb·· ·b = ½ 
and a0 = 1. Finally, [m • x] - [[m- x] - x] = mx - x mod(2k) + w2k - (2 x + w2k - r2k) = 
x - x mod(2k) + r2k. And once again, r = 1 exactly when rounding a• • •ab• • • b to p - k 
places involves rounding up. Thus algorithm 8 is proved in all cases. 

2 Gaussian Elimination 

A few comments on the appendix Gaussian Elimination with Extra-precise Accumulation of 
Products. Both HUPA and LUPA use extra-precise accumulation of inner products. LUPA 
is the traditional algorithm, and does 2 reads and 1 write in its inner loop. HUPA is a 
more clever algorithm, and only requires two reads in its inner loop. In addition, HUPA. 
has much better paging performance. HUPA improves paging performance over LUPA in 
much the same way as the column oriented matrix multiply formula discussed in lecture 16 
improves paging performance over the obvious multiply algorithm. 

Another feature of HUPA and LUPA is that they never fail because the input matrix is 
singular. If they encounter a pivot of 0, they replace it with machine epsilon. The reason 
for this is so that the user can determine where the singularity is, namely, which column is 
a linear combination ( or almost a linear combination) of other columns. I""\, 

There is a method called preconditioning that can change the equation Ai = b to 
A' x = b' with the same solution, but where A' is less singular than A. It requires the 
inexact flag, because when dealing with close to singular matrices, a small roundoff error 
can make a big change to the solution, so it is important that when preconditioning, no 
roundoff error is incurred. The inexact flag has a historical precursor in the IBM 7090 and 
7094. In those machines, arithmetic operations produced an answer in two registers, the 
second register containing low order bits. Thus the computation was inexact just when the 
second register was non-zero. 2 

2With one exception, namely that if a < b, then a + b set the second register to zero. However, in this 
case, the inexactness didn't matter. ~. 
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