
Computer System Support for Scientific and Engineering
Computation

Lecture 21 - July 12, 1988 (notes revised June 14, 1990)

Copyright ©1988 by W. Kahan and David Goldberg.
All rights reserved.

1 The Orbit of Pluto

Recently, Prof. Gerald Sussman of Massachusetts Institute of Technology received a lot
of press (including an article in Science) a.bout his calculations on the orbits of the outer
planets, which suggest that the orbit of Pluto is unstable. What he does is to use Newton's
equations of motion

•. C '°' Xj - Xi
Xi = 4' m;1lxi - x;ll3

J

• and solve them numerically using a formula of the form

Xi(t +At)= Xi(t) +Correction+ O(At14
)

(1)

(2)

If {Xi(t)} is a solution to Newton's equations, then {xi(-t)} is also a solution. Thus given a.
set ofinitial conditions for time to, we can run the equations forward to time t+to using (2),
and then take the values of {xi(t + to), -xi(t + t0)} as initial conditions for time t + to and
use (2) again to get back to time to. The difference between what we get and our original
initial conditions will give us an estimate of the accuracy of the answer computed by (2),
we hope. Sussman also used things like conservation of energy to check the accuracy of his
solution. What he discovered is that for certain values of At the error was dramatically
smaller than for other values of At. A variation of 10% in At could make a difference of a
factor of 1000 in the error.

How can this be explained? The error consists of two parts, one due to the factor
O(At14), and the other due to roundoff error. For a fixed t, as At gets smaller, the first
source of error will decrease, and the second source of error will increase (since more steps
will be required). His "lucky" values of At have an error that is much less than the worst
case error predicted by error analysis, so probably some symmetry in the calculation is
causing the roundoff errors to cancel. He can only get this result when he uses VAX style
rounding, that is, rounding 2.5 to 3 rather than to 2 as in the IEEE standard. Perhaps this
is one of those anomalies that will never be explained.

2 Exception Handling

In the next few sections, we will examine the variation of exception handling that exists on
commercial hardware.

1

Lecture 21 - July 12, 1988 (notes revised June 14, 1990) 2

2.1 Inmos T-800

The Inmos T-800 chip combines the Invalid Operation, Overflow, and Divide by Zero excep­
tions into a single bit. A situation where this can cause a problem is in evaluating continued
fractions as outlined in Presubstitution, and Continued Fractions. In that method, divide
by zero is harmless, but invalid operations can occur and are not harmless. H you are
programming the T-800 to evaluate continued fractions in this way, you will have to turn
on trapping in order to distinguish an invalid operation from a divide by zero, and every
time you get a trap you will have to backtrack to see whether you got a harmless divide by
zero, or a serious invalid operation exception.

2.2 CDC 6600, 6400, 7600, Cyber 17x

These CDC machines have numbers that partially underflow. Such a number X has the
property that X . NE. 0. 0 but 1. 0•X . EQ. Q. 0 and 0 . 00123/X causes a divide by zero.
The reason is that when doing a multiply or divide, the CDC machines check for the special
case of the arguments being zero. But when it does that check, it only looks at the first
12 bits, which contain the sign bit and the exponent field. Thus numbers with the smallest
possible exponent will be treated as if they were O for multiplication and division (but not
for addition, subtraction or comparison).

CDC was the first American computer to use NaNs (they call them indefinites) and oo.
However, the user does not get a trap when an oo is generated, only when it is referenced.
H trapping on oo is turned off, then operating with oo can generate NaN s. • There are
several anomalies with these "indefinite" values. They misbehave in comparisons. And
1.0/(-oo) = +o.o, so 1.0/(1.0/(-oo)) = +oo.

Underflows never signal, and always flush to 0.

2.3 Cray

On tl1e Cray, 1.0•X can overflow, even when Xis prefectly representable. To illustrate how
this can happen, consider a decimal machine with 4 significant figures and an exponent range
of -99 to +99, where the largest representable number is .9999 x 1099 • H you multiply 1.0
times 1 x 1098 , you will be multiplying .1 x 101 times .1 x 1099 and will first get .01 x 1099+1

and then upon normalizing 0.1 x 1099 . Thus the exponenent was temporarily bigger than
99, even though the normalized result had an exponent of 99. On the Cray, if the exponent
ever gets larger than the maximum allowed, it signals overflow even if the final result is
representable as in the calculation above.

On the Cray, X/Y is computed by converting it to a multiplication by a reciprocal
X•(1/Y). Thus even when the exact value of 0.00123/X is in range on the Cray, it can
overflow because 1/X overflows for the smallest values of X. However, since the exponent
range on the Cray is quite large (15 bits of exponent compared with 11 in the IEEE stan­
dard), overflow and underflow occur much more rarely than on other machines. As on CDC
machines, underflow never signals, and always flushes to 0.

2.4 IEEE 754 Implementations

The IEEE standard says that when underflow occurs and traps are enabled, the trap handler
should get the exact result times an adjustment factor 2° to bring the exponent back into
range. The result is rounded after multiplication by the adjustment factor. For example,

Lecture 21 - July 12, 1988 (notes revised June 14, 1990) 3

consider a decimal machine similar to the previous example : if o = 144, then 22.99 x 10- 3

multiplied by .5 x 10-99 will underflow, so the trap handler will get .11495 x 10- 101+144

which when rounded gives .1150 x 1043 • If the user wants to continue computation with
the correct denormalized result, then the trap handler might naively multiply .1150 x 1043

by 10- 144 to get .1150 x 10- 101 = .001150 x 10- 99 . Rounding to 4 significant digits gives
.0012 x 10- 99 , which is the wrong answer, because of double rounding. In order for the
trap handler to work correctly, it needs more information than just the result scaled by 2c:t.
Knowing whether the operation was inexact plus whether there was a round up (a total
of 2 bits of state) would be enough. The Intel 8087 keeps these two bits, although they
are undocumented. The newest Weitek chips chop rather than round, so they only need to
keep an inexact bit. However, that means you cannot do correctly rounded over/underflow
counting.

In general, code that works on at least two different pre-existing machines will also run
correctly on a machine with IEEE arithmetic. There is one serious caveat to this. Codes
that would halt with an exception on a non-IEEE machine, will return a NaN or oo and
keep going on an IEEE machine. It is possible that such codes might get into an infinite
loop, especially if they involve iteration, because comparing a number to a NaN should
return false (and give an invalid operation exception). This problem can be avoided by
enabling traps. A less serious problem is that a code which checks for underflow by testing
for zero will not detect an underflow because of gradual underflow.

2.5 Pyramid 98xx

The Pyramid 98xx series resembles IEEE 754, with the following notable differences.

• There is no gradual underflow. Numbers with the smallest exponent represent ±0.

• All NaN's are signalling.

• The boolean expression x > y will sometimes return true when one of the arguments is
a NaN (the standard says any comparision involving a NaN should be false), although
it will raise the invalid flag.• There is no condition code for unordered.

• Division does not always deliver the infinitely precise quotient rounded to working
precision. Errors of 1 ulp have been observed. Furthermore, divide does not correctly
set the inexact flag.

• The trap handler for over /underflows does not receive the result with the exponent
adjusted by 2°.

• The default action for Invalid Operation, Overflow and Divide by Zero is to abort the
program (IEEE says the default should be to continue).

If an exception is generated at compile time (for example, a compile time constant of 1/0)
the compiler halts.

•The problem is that the compiler will sometimes convert x > y into not x Sy, which makes it more
difficult to get comparisions invol\'ing NaNs to work properly.

Lecture 21 - July 12, 1988 (notes revised June 14, 1990) 4

2.6 HP

HP machines can save the results of up to 7 floating point exceptions. This works as follows.
The FPA has 16 64-bit floating point registers. The first 4 of these registers are used for
exception handling, and are sub-divided into 8 32-bit registers, the first of which contains
status bits, and the other seven of which are exception registers. An exception registers
holds the offending instruction. Since part of the opcode contains bits specifying that the
operation is a floating point operation, and this information is redundant, those bits are
used to indicate what the exception was. When the trap handler wants to continue from
an exception, it will emulate the instructions still in the pipeline. Because of hardware
interlocks, in the sequence C = A•B; A = E + F the ADD instruction will not complete (and
clobber A) until the hardware can be sure that the MUL won't trap. t Thus the trap handler
will still have access to all the operands necessary to emulate the instructions.

Other points: there are 2 extra bits for the underflow handler so that it can correctly
convert to a denormal. The compiler converts -x to 0 - x, which gives the wrong answer
when z is 0, because -(0) is -0, but 0 - (+0) is +o. The power function raises invalid
operation on o0 and oo0t

On HP machines, transcendental functions do not change the inexact flag. The reasoning
is that since transcendental functions a.re almost always inexact, there is essentially no
information conveyed by setting the inexact flag. In older releases, sine, cosine and tangent
could raise the non-IEEE exception TLOSS/ERANGE, which occurs if argument reduction
destroys all the precision of the argument. This doesn't happen in the current software
release. They raise the invalid operation exception when given an argument of NaN or ±oo.

2.6.1 Trigonometric Functions

Raising the correct exception for trigonometric functions can be tricky. Suppose arccos(x)
is implemented as arccos(x) = 2arctan(~°). Then evaluating arc~os(3.0) will give an
invalid operation exception, which is reasonable, although it will be for taking a negative
square root, which may be misleading. On the other hand arccos(-1.0) will raise the
divide by zero exception, which is definitely not what the user wants, although it will
correctly deliver ,r as the result. There are two solutions to this problem. The :first would
be to explicitly check for the argument -1.0. The other would be to save the divide by
zero flag before beginning the operation, and restore it afterword. Although this method
might seem preferable because it doesn't involve a special test, it may well be slower because
changing the exception flags often involves flushing the pipeline.

2. 7 Sun-3 and Sun-4

The standard Unix™ signal handling mechanism is not sufficient for an IEEE trap handler.
About all you can reliably do is to set a global variable and continue or else abort. It isn't
possible to distinguish one floating point exception from another: they a.re all SIGFPE.
Sun has an improved signal handling mechanism that allows you to get the address of the
instruction that caused the exception, which may be different than the value of the PC at
the time the handler was called. It also delivers the type of the exception. However, on

1In all the implementations so far, the ADD won't complete until the KUL completes.
* Kahan suggests that z 0 should always return 1.

Lecture 21 - July 12, 1988 (notes revised June 14, 1990) 5

underflow or overflow you do not get a wrapped-exponent result. And on Sun-3, the trap
handler may not be able to find the 68881 's operands.

To implement IEEE arithmetic with Weitek 1164/5 chips, there is a system trap handler
independent of any user-defined trap handler. The system trap handler is in a library on
Sun-3's and in the kernel on Sun-4 's. It smooths over the differences between the IEEE
standard and the 1164/5 arithmetic. For example, the Weitek chip does not support gradual
underflow. The system-level trap handler traps on any underflow, obtains the operands,
and recomputes the results and exceptions, signaling a user-level trap if enabled.

Sun supports the IEEE default of not trapping on exceptions, despite a few customers'
complaints.

'
. r: /

·r
l r

,

I
l

IN t'XCl?P7"tO--V -/-f 4,v~1»G--

LIVA L,.I,:> 0 ~,. Al O ,re,~ I' a..o w.1 , , a..U.
S ~ 'rW2 Sa-~ -Pl.-.3 . lo .L.•,-,.~w~t. ~ ... ,1

~ rvat"a.~ ~,t "• cl<-traJc ~ e-,c,~
✓

~ O'f2,r..,,,.,Js ot ~w-~ "t---r~(s) ~tuJ

~ .p_.e,,.j. ,~~, ho.~lea Ch,b£ -•Y• !~Lo

C:.-. A. ~.:.."'&._I ~ C:..C,,_.::f le. f'4S>I~ ov-e.r •

• •

'' -Pa.r~ (..("'~~-!. '' oc.c. .. rs :.,.. ~,,..~,f 6,;,.a k;

~se ~ nst· '1.079•~ ~ ~ ~-~

~ a.J.J./sJ.fr&d, 6-::I ~ ~ ~ ;.,_

~''/ I ~..J.D . I~~ . ,:.. F'H'T.<.A ,(./'

l~ (X .II~. c.o) Q = o. oo 1 ~ 3 /)(

.
"""

to/f- co) s .., o.o
I s,o

•

UW\~ ... (J +~'-a~ +o D.o).

l<A.AA.11 ! 2- JiJ f y 8'5'

. ·• · ..

1.0-x

o.oo ''2~/x
.~sl

1-t ;s .J-..,-+ ~oss;..&~

"-'tJ..&r~~ ~ ~.,,,

1o

• •

~fr-. ,:.J- ~ ~ ~
tA..~- ~-J.~ 'lo I,. ._.:,;,.J.

J
I

"i
I

·1
]

!

]

1
]

1
]

]

J
I

j
f

~
j
_j

1
J

f ' r
t I.

I
I
I
I
I
' i
l

' i
..
r

l.

A

..4 • -r' , -

.
•

D,·vu,~ •'JY- c eeo .;.t-J ;

2 ,o 11 (Hu:-7 ,+,v (,-a£ 9t ((t ,o • -,<)I (f, o .,, x))) ~

,A •

Pyramid Floating-Point Exceptions
Wendy Thrash, Xen Drottar
July 11, 1988

_Pyramid 98xx (AAO) arithmetic resembles IEEE 754, but

1) There is no gradual underflow. Any number with zero exponent represents
plus or minus zero.

2) All NaNs are signaling.

3) Trichotomy is enforced in comparisons: although a NaN never compares
equal to anything (including itself), it will be either< or> any
given number (including itself). Any comparison of a NaN (including
comparison for equality) raises the invalid flag.

All this happens because comparisons are done via condition codes,
with no code or combination representing unordered.

4) There are peculiarities in divide:

a) Division does not always produce the correctly rounded result;
errors of l ulp have been observed.

b) Rounding mode can affect the accuracy of division.

c) The inexact flag is generally meaningless following a divide.

5) Re-biasing the results of a trapped overflow or underflow is not supported.

]

]

1 ,

]
~

J,
J

I

J

C

i
r-
r-

.
J
4

' j

I

t.

l

(.

IEEE Exception Default Action

-----------------+-------------------------Invalid
Overflow
Division by Zero
Underflow
Inexact

I • Abort program
I Abort program
I Abort program
I Ignore (flush ~o zero)
I Ignore

All exceptions are indicated by flags in the program status word as
they occur. Exception status accumulates to the end of the process.
A trap is taken if an exception occurs while its interrupt enable
bit is set in the PSW. Enabling the interrupt for an exception whose
status bit is already set will not cause a trap until the next time

- that exception occurs.

Programs can be run with floating-point traps disabled, though this
requires a bit of effort on the user's part. When programs are
executed in this manner, exceptions are handled as follows:

IEEE Exception Action/Result
~----------------+-------------~---------------------------Invalid
Overflow
Division by Zero
Underflow
Inexact

Raise invalid flag/ NaN
Raise overflow flag/+- Infinity
Raise divide-by-zero flag/+- Infinity
Raise underflow flag/+- Zero
Raise inexact flag/+- Rounded result

These comments do not apply to Pyramid's older 90x/98x systems with
FPA arithmetic or floating-point software.

float finvaliderr(opnd,namestr,msg_ccde,error code)
float *opnd; -
char *namestr:
int msg code, error code:
{ - -

)

int math_err(), getout() ;.
struct exception excpt;
int int opnd, an actlon:
unsigned int status;
union {

unsigned int i [2] ;
doubled;

} temp;

I* get integer copy of opnd */
int_opnd - *((int *)opnd);

/* Is opnd a Han?*/
if (((int_opnd >> 23) & Oxff) - Oxff && /*exponent• 'Zmax */

}

(int opnd, OX007fffff) 1• O) { /* mantissa 1• o */
7• Since *opnd is a Han, do the convert manually. */
temp.i[O] • (int_opnd >> 3) I OX7ffOOOOO;
temp.i[l] • int_opnd << 29:
excpt.argl • temp.d;

/* if •opnd is signaling Han, make returnecl value quiet */
if (temp.i[O] & OXOOOSOOOO)

temp.i[O] • (temp.i[O] & Oxfff7ffff) I OX00040000;
excpt.retval • temp.d;

else {

)

excpt.argl • (double) •opnd;

/* retumed value will be a double precision quiet Han*/
temp.i[O] • OX7ff40000;
temp.i[l] • OXO;
excpt.retval • temp.d:

/* Is invalid trap enabled?*/
if ((status • get_fpu_status()) & OX10) {

/*setup struct excpt */
excpt.type • DOMAIN; /* error type */
excpt.name • namestr; /* routine name */
if (lmatherr(&excpt)) (

)

ermo • EIX>M;
if (error_code) {

)

/* LIBF or LIBH */
(void) FTN GETLIBTRAP(&on action,&excpt.retval,&error code);
if (on_action - on_abortT { -

(void) math err (msg code) :
(void) getait () ; -

}
else if (on_action 1• on_proc ,, on_action 1• on_ignore)

(void) math_err(msg_code) ;

/* LDM */
else (void) math_err(msg_cocle);

)
else xchg_tpu_status(status OXSOOOOOOO); /* set invalid nag*/

retm:n excpt.retval; /* return value */

]

~
]

J
]

]

]

1
]

]

]

J
J
J
_J

J
J

: r:
• l r

r

' L

' l

;
J

i .

I.

.
. . . ~ . : .

~ • , ·-:
t .-)?~·t ~----·

INEXACT EXCEPTION for
TRANSCENDENTAL FUNc-1--'IONS

Most transcendental functions return
transcendental results for most of their
algebraic operands. Therefore,
transcendental functions are almost
always inexact.

For functions of interest to us the
exceptions are :

acos(O), asin(O), atan(O), atan2(0,y),
cos(O), cosh(O), cosh(-oo), cosh(+ oo),
erf(O), erf(+oo), erfc(O), erfc(+oo), exp(O),
exp(-oo), exp(+oo), log(O), log(+oo),
loglO(O), loglO(+ oo), sin(O), sinh(O),
sinh(-oo), sinh(+oo), tan(O), tanh(O),
tanh(-oo), tanh(+co), loggamma(l),
loggamma(2), loggamma(+co) (and if you
don't mind the odd order poles :
loggamma(O) & loggamma(negative
integers)), Jn(O), Jn{ +oo), Yn(O), Yn(+co)
and· power(for many operands)

. .
.• .· .. :

•. ·-.-::···:·. ·.::·-:·· .. ·:. . ·--, .-. : ·:

co·sINE, SINE, TANGENT

INVALID: NaNs, ±oo. In these cases,
trap on DO1v.lAIN/EDOM if enabled,
otherwise. return quiet(x). If the range
reduction used has an upper bound
beyond which there is a total loss of
precision, any Ix I > some max. In this
case, trap on TLOSS/ERANGE if
enabled otherwise return quiet(x).

OVERFLOW: None.

UNDERFLOW: None !mown to exist.

SPECIAlS: None.

.. l

··1 . -
..

1
-1

J
J
]

J
;)

.....

J
]

J
I

]

_J

J
J
'

J
-)

. ·. . . :. : .:· ·: : .: • 1

J

I EXPONENTIAL

I INV AI ,ID: NaNs only. Trap on
DOMAIN/EDOM if enabled,
otherwise return quiet(x).

; • ·-•.
. .

OVERFLOW: If x > 88.02968667
(single) or x > 709.0895658 (double).
Trap on OVERFLOW /ERANGE if
enabled, otherwise return + oo.

UNDERFLOW: If x < -87.33654476
(single) or x < -708.3964186 (double).
Trap on UNDERFLOW /ERANGE if
enabled, othenvise return denorm
result.

SPECIALS: exp(-oo) = +0, exp(+oo) =
+oo.

..

. .

-·· ;:-:-;: :.

.... •

{ii.
\ff~

POWER

INV AT ,ID: NaNs, power(O,O), power(x,y)
for negative x and non-integer y,
power{oo,O). Trap on
DOMAIN/EDOM if enabled,
otherwise return quiet(x) or quiet(y).

OVERFLOW: Trap on ·
OVERFLOW /ERANGE if enabled,
otherwise return oo.

UNDERFLOW: Trap on •
UNDERFLOW /ERANGE if enabled,
otherwise return denorm result.

SPECIALS: power(O,y) = 0 for y > 0,
power(O,yJ = co for y < 0, power{l,y)
= 1 for non-NaN y, power(x,O) = 1 for
x > 0, power(+oo,y) = +oo for y > 0,
power +oo,y) = 0 for y < 0,
power x,+oo) = +oo for x > 1,
power x,-oo) = 0 for x > 1,
power x,+oo) = 0 for O < x < 1,
power x,-oo) = +co for O < x < 1.

: ,·/: r: -·::?·<.:·t(fr~?J?~)-7 _,:: :>-:-: · • • · : •. . . .
. ·.

d
"·

]

]

J
]

J
]

:1
J
J
J
J
J
j
j

IEEE Exception Handling

SunOS 4.0 and Fortran 1.1

Sun-3 -f68881

Sun-3 -ffpa

Sun-4

David Hough
11 July 1988

Accrued-Exception Bits

Simple operations according to IEEE 754
nonstop not always popular

Binary-decimal conversion
decimal_ to_ floating(3)
floating_ to_ decimal(3)

Transcendental functions
68881 atomic - read manual
someFPA
software in Sun-4

ieee flags(3m) -
char *out; int k, ieee_flags();
ieee flags ("clear" ,"exception" ,"all" ,&out);

/*Clear all accrued exceptions*/

• • •
. . . (code that generates three exceptions:

overflow, invalid, inexact)
• • •

~ k = ieee_ftags("get" ,"exception" ,"overflow" ,&out);

/* then out = "overflow", and on a Sun-3, k=25. */

How do you get IEEE out of Weitek 1164/5?

Recomputation
user mode in FP A via SIGFPE
inexact: first exception and trapping
Sun-4 in kernel

Performance
underflow & nonstandard arithmetic()
NaNs • -

IEEE Trapping

What can you expect from a
standard Unix signal handler?

Bad vibes: SVID, POSIX, X3Jll, X/Open, ...
set a global variable
abort

setjmp/longjmp?

no pre-substitution
no continuation with new result

SunOS SIGFPE

Does ...
signal, code, context, instruction address
confusion with other types of exceptions
FP A recomputation works

Doesn't ...
no exceptional operand
no 68020 effective address
no exponent wrap

Little used, little debugged
setting f-regs doesn't work on Sun-4

ieee handler(3m) -
void sample_handler(sig, code, scp, addr)
int sig ; 7* sig == SIGFPE always */
int code;
struct sigcontext *scp ;
char *addr;
{

I*
Sample user-written sigfpe code handler.
Prints a message and continues.
struct sigcontext is defined in <signal.h>.

*I
printf("ieee exception code %x occurred at pc %X \n",

code,scp->sc _pc);
}

.~ extern void sample handler();

main()
{
#include <floatingpoint.h>

sigfpe _handler_ type hdl;

I*
* set new overflow handler to sample handler() and set
* new invalid handler to SIGFPE ABORT
*I -

hdl = (sigfpe_handler type) sample handler;
if(ieee handler(" set"," overflow" ,hdl) != 0)

printf("ieee_handler can't set overflow \n");
if(ieee handler(" set"," invalid" ,SIGFPE ABORT) != 0)

printf("ieee_handler can't set invalid \n");
•••

