
Computer System Support for Scientific and Engineering
Computation

Lecture 23 - July 19, 1988 (notes revised June 14, 1990)

Copyright ©1988 by W. Kahan and David Goldberg.
All rights reserved.

1 Floating-Point Exceptions (Continued)

1.1 Cray

The Cray has 64 bit words, and its single precision floating point format has 1 sign bit, 15
exponent bits and 48 bits of significand. The exponent bias is 214 • Cray manuals use octal
notation, so that they write the bias as 400008 . Whenever the biased exponent is less than
200008 , the result is flushed to 0, and whenever the biased exponent is greater than 60000s,
the number becomes an "indefinite". So there are effectively only 14 exponent bits.

By default, a program halts execution when an indefinite (a number of the form 6xxxxs)
is created. The indefinite has encoded in it the operation that caused the exception. It is
possible to change the default so that computation continues, with the indefinite being prop­
agated like Na.N's. However, unlike IEEE arithmetic, which has three kinds of indefinites
(-oo, +oo, and NaN) with a careful set of rules for how they propagate thru arithmetic
operations, the Cray's indefinites do not combine in a useful way.

Cray expects exceptions to be handled by ~ot getting any! • For this purpose, Cray lets
you provide a bit vector that specifies elements of a vector on which no operation should be
performed. The intended use of this facility is to inhibit division by zero, so that exceptions
can be avoided.

1.2 Apple

Apple has a very complete set of primitive functions, language extensions and library rou­
tines called SANE that work across their entire product line (except UNIX on th~ Mac II).
SANE has the three precisions single, double, extended, and always computes intermediate
results in extended precision (assignments implement rounding to narrower precision). Thus
the primary reason for providing three types is to control the amount of storage. SANE in­
cludes routines for setting and saving rounding modes, rounding precision, exception flags,
and trap enables. Users can install their own trap handler(s). When a trap handler is
called, it is given the operation and the addresses of the operands and result, so that it can
modify them. Up to this point, SANE has the same flavor (although more carefully done)
as exception handling on the VAX and IBM/370. The new element that SANE provides
is a pair of routines called ProcEntry and ProcExit. ProcEntry saves the current floating
point environment, and resets the environment to the IEEE default. ProcExit restores the

1

Lecture 23 - July 19, 1988 (notes revised June 14, 1990) 2

environment, adding to it any flags that were set at the time of the ProcExit call (and .~
causing corresponding halts if they are enabled). An example of its use is

myprog()
ProcEntry(myCallerEnvironment)

y = 2*arctan(sqrt((x+1)/(x-1)))
SetException(DivByZero, false)
ProcExit(myCallerEnvironment)

H xis 1, then there will be a divide by zero exception, but y will get the correct value of
,r, so the divide-by-zero flag is cleared. Any other exception that occurs (for example an
invalid exception if x is -3) will be passed on to the calling program. Although ProcEntry
and ProcExit are very useful, they could become inefficient if.in a long chain of procedure
calls, each procedure invoked ProcEntry and ProcExit.

On machines with a Motorola 68881, exception handling is the same, but programmers
must use the 68881 's trap handling mechanism rather than the software trap mechanism.
By default, transcendental functions are computed in software. Users desiring more speed
can ask for the on-chip transcendentals, which are faster but less accurate.

SANE is designed to require the minimum number of changes to the host language, but
some are unavoidable. For example, standard Pascal has only one :floating point type, which
isn't sufficient to exploit SANE's three precisions. Compilers must also be altered to cope
with IEEE comparison involving NaNs and with 1/0 of NaNs and infinities.

In summary, SANE provides a portable floating point environment with little overhead,
but it appears that its exception handling and trapping features are not heavily used by
customers, perhaps because most are disincli~ea to change their habits developed elsewhere.

1.3 APL

A slightly different strategy from the ProcEntry approach is used in STSC APL for the
IBM PC, to handle a similar problem. APL has a global variable called CT which controls
the tolerance for comparisons. When comparing two numbers, the comparison will be true
if it holds within this tolerance. This has strange consequences. For example, you can have
x=y and y=z but not x=z!

In STSC APL, you can declare CT to be local to a procedure, and it will have a "copy-on­
write" behavior. It initially has the same value as the global CT, but if it is modified in the
subroutine, it will affect the compare tolerance only in the procedure, and not change the
global value of CT. Thus if you write to the local CT, you will get a local copy. This is a nicer
model for the programmer than ProcEntry, but it does require changing the compiler.
There is a fine point connected to associating complex operations with an assignment.
Suppose you have the code fragment

C = A*B;
RndMode = Up
D = A•B;

Suppose the assignment to RndMode has the side effect of changing the rounding mode. An
over-optimizing compiler might see the common subexpression A*B a.nd avoid the second
multiply, not realizing that it may have a different value because the rounding mode has
changed.

Lecture 23 - July 19, 1988 (notes revised June 14, 1990) 3

2 Precise Interrupts

When discussing exceptions, it is useful to have the concept of a precise interrupt. Consider
the instruction sequence

100 E = E + 1
200 A= B / C
300 B = D + F

Suppose that the division operation causes an overflow exception. We would like the trap
handler to see the state of the machine as if all the instructions preceeding the division had
completed, and none of the instructions following the diviison had initiated. Thus if the
trap handler accesses E, it should have its value incremented by statement 100, and if it
accesses B, it should not have had its value destroyed by statement 300.

There are two main obstacles to precise interrupts. The :first is the compiler. An
optimizer might have decided to move statement 100 after statement 200. The second is
the hardware. The hardware might perform statements 200 and 300 in parallel, and by the
time the division operation overflows, statement 300 could have completed and overwritten
B. To some extent this is similar to what happens with virtual-memory systems, where an
instruction can fault because the data it is accessing has been paged out. However, in this
case the fault handler is specified by the system and is going to do a very predictable thing,
namely bring the data into memory. User-specified trap handlers for floating point show
much more diversity in their behavior.

The DEC VAX family has a further distinction between traps and faults. A fault occurs
(logically) before the offending instruction executes, and so returning from the exception
handler will execute the instruction that caused the fault. A trap occurs after the offending
instruction executes, so returning from the exception handler will begin with the instruction
after the offending instruction.

Machines that have overlapped instruction execution (due to pipelining or multiple
floating point units) often simulate precise interrupts with extra hardware. One approach
is to take checkpoints, and when an exception occurs roll back to the last checkpoint,
proceeding from the checkpoint one instruction at a time. Another approach is to have
shadow registers to save the state of registers that might be needed later by the trap handler.
The approach taken by the HP spectrum is to ensure that the hardware never overwrites
the arguments to a floating point operation until it is sure that operations will not trap. In
each of these schemes, extra hardware is required to guarantee precise interrupts.

SANE

Standard Apple Numeric Environment

14July 1988
Chy-fovt Le •n1.5

AJJJJle Numerics GrouJJ

SANE Data TJJJJes
IJSingle

Precision 7 - 8

1 8

IJDouble

-45 38 Range 10 to 10

23

Precision 15 -16 Range 10 •324 to 10 308

1 11 52

IJExtended
Precision 19 - 20 Range 10·495l to 10 4932

= 32 bits

= 64 bits

1 15 64 = 80/96 bits
68881 format stores 16-bits of junk here

IJ Comp(utational)
Precision 18-19 Range -10 19 to 10 19 integers

63 = 64 bits

* Range and Precision are dec~ma,l approximations

14July 1988

--:.....

AJJJJle Numerics GroujJ

SANE OJJerations

,_ * • +, -, , : , "1, Remainder, round-to-integer
With rounding control I+- - + -+I
Correct to the last bit

,_ .
• Comparisons

ti Conversions

(l,iiiiiiiiiiiiiilfi:; \)
With rounding control

ti IEEE auxiliary operations

absolute va"/ue negate nextafter scaleb
logb. cklssify copysign

ti Elementary functions
/~tni :rieosr> :-:.·
f taH)H:a¥.ttti,f<:

finance

:.:.;.:/}:;i)/}_i/(t){i:/){{::-:<:·:::::

i1Illlliii trigonometric
exponentials ::::;(:/? ,:::::::::::

logarithms

random numbers 14Ju~ 1988

AJJJJle Numerics GroujJ

SANE in High Level Languages

9 SANE languages support the abstract environment:

9 SANE languages offer:

~ Minimum impact on language standards

.. SAN~features not expressible in the minimally-
modified language are placed in a library

.. Old sources run (more accurately)

.. Expressions ev~luated in extended precision

.. Data -types, operations, and environment
under full user control

.. 1/0 supports NaNs·and Infinities n

.. Source constants held in extended precision

14July 1988

ApJJle Numerics GrouJJ

SANE Availabilit)'

• SANE is available on all Apple machines

~~Ii;

• SANE is available in· software and in hardware

a:=:s
• SANE is available in high-level languages

114i.l~ti

14July 1988

AJJJlle Numerics Grou;JJ

SANE Libraa Services

~ Conversions between binary formats

• --
~ IEEE and IEEE auxiliary functions

~ Environmental access routines •

~ Elementary functions

~_Relation
14July 1988

AJJJJle Numerics GrouJJ

SANE ExceJJtions

ti What happens when an exception occurs

-~ Flags are raised

Corresponding halts are checked
Invalid .
OVerflow
Underflow
Division-by-zero .
Inexact

-
ti A reasonable value is returned ©

aosest machine representation
NaN (Not a Number)
Infinity

L

•Examples

~ _.. NaN (invalid)
BIO _.. Inf (division-by-zero)
0/0 _.. NaN (invalid)
2*maxvalue ~ Inf (overflow, inexact)
minvalue/2 _.. 0 (underflow, ine~act)
1/3 _.. .33333333333333333333 (inexact)

C, 14July 1988

AJJJJle Numerics Grou;JJ

Control after Exce;J)tions

* Software SANE (software-based)

* Hardware SANE (6888J-based)

14July 1988

