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1 Floating-Point Exceptions (Continued) 

1.1 Cray 

The Cray has 64 bit words, and its single precision floating point format has 1 sign bit, 15 
exponent bits and 48 bits of significand. The exponent bias is 214 • Cray manuals use octal 
notation, so that they write the bias as 400008 . Whenever the biased exponent is less than 
200008 , the result is flushed to 0, and whenever the biased exponent is greater than 60000s, 
the number becomes an "indefinite". So there are effectively only 14 exponent bits. 

By default, a program halts execution when an indefinite ( a number of the form 6xxxxs) 
is created. The indefinite has encoded in it the operation that caused the exception. It is 
possible to change the default so that computation continues, with the indefinite being prop­
agated like Na.N's. However, unlike IEEE arithmetic, which has three kinds of indefinites 
(-oo, +oo, and NaN) with a careful set of rules for how they propagate thru arithmetic 
operations, the Cray's indefinites do not combine in a useful way. 

Cray expects exceptions to be handled by ~ot getting any! • For this purpose, Cray lets 
you provide a bit vector that specifies elements of a vector on which no operation should be 
performed. The intended use of this facility is to inhibit division by zero, so that exceptions 
can be avoided. 

1.2 Apple 

Apple has a very complete set of primitive functions, language extensions and library rou­
tines called SANE that work across their entire product line (except UNIX on th~ Mac II). 
SANE has the three precisions single, double, extended, and always computes intermediate 
results in extended precision (assignments implement rounding to narrower precision). Thus 
the primary reason for providing three types is to control the amount of storage. SANE in­
cludes routines for setting and saving rounding modes, rounding precision, exception flags, 
and trap enables. Users can install their own trap handler(s). When a trap handler is 
called, it is given the operation and the addresses of the operands and result, so that it can 
modify them. Up to this point, SANE has the same flavor (although more carefully done) 
as exception handling on the VAX and IBM/370. The new element that SANE provides 
is a pair of routines called ProcEntry and ProcExit. ProcEntry saves the current floating 
point environment, and resets the environment to the IEEE default. ProcExit restores the 

1 



Lecture 23 - July 19, 1988 (notes revised June 14, 1990) 2 

environment, adding to it any flags that were set at the time of the ProcExit call ( and .~ 
causing corresponding halts if they are enabled). An example of its use is 

myprog() 
ProcEntry(myCallerEnvironment) 

y = 2*arctan(sqrt((x+1)/(x-1))) 
SetException(DivByZero, false) 
ProcExit(myCallerEnvironment) 

H xis 1, then there will be a divide by zero exception, but y will get the correct value of 
,r, so the divide-by-zero flag is cleared. Any other exception that occurs (for example an 
invalid exception if x is -3) will be passed on to the calling program. Although ProcEntry 
and ProcExit are very useful, they could become inefficient if.in a long chain of procedure 
calls, each procedure invoked ProcEntry and ProcExit. 

On machines with a Motorola 68881, exception handling is the same, but programmers 
must use the 68881 's trap handling mechanism rather than the software trap mechanism. 
By default, transcendental functions are computed in software. Users desiring more speed 
can ask for the on-chip transcendentals, which are faster but less accurate. 

SANE is designed to require the minimum number of changes to the host language, but 
some are unavoidable. For example, standard Pascal has only one :floating point type, which 
isn't sufficient to exploit SANE's three precisions. Compilers must also be altered to cope 
with IEEE comparison involving NaNs and with 1/0 of NaNs and infinities. 

In summary, SANE provides a portable floating point environment with little overhead, 
but it appears that its exception handling and trapping features are not heavily used by 
customers, perhaps because most are disincli~ea to change their habits developed elsewhere. 

1.3 APL 

A slightly different strategy from the ProcEntry approach is used in STSC APL for the 
IBM PC, to handle a similar problem. APL has a global variable called CT which controls 
the tolerance for comparisons. When comparing two numbers, the comparison will be true 
if it holds within this tolerance. This has strange consequences. For example, you can have 
x=y and y=z but not x=z! 

In STSC APL, you can declare CT to be local to a procedure, and it will have a "copy-on­
write" behavior. It initially has the same value as the global CT, but if it is modified in the 
subroutine, it will affect the compare tolerance only in the procedure, and not change the 
global value of CT. Thus if you write to the local CT, you will get a local copy. This is a nicer 
model for the programmer than ProcEntry, but it does require changing the compiler. 
There is a fine point connected to associating complex operations with an assignment. 
Suppose you have the code fragment 

C = A*B; 
RndMode = Up 
D = A•B; 

Suppose the assignment to RndMode has the side effect of changing the rounding mode. An 
over-optimizing compiler might see the common subexpression A*B a.nd avoid the second 
multiply, not realizing that it may have a different value because the rounding mode has 
changed. 
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2 Precise Interrupts 

When discussing exceptions, it is useful to have the concept of a precise interrupt. Consider 
the instruction sequence 

100 E = E + 1 
200 A= B / C 
300 B = D + F 

Suppose that the division operation causes an overflow exception. We would like the trap 
handler to see the state of the machine as if all the instructions preceeding the division had 
completed, and none of the instructions following the diviison had initiated. Thus if the 
trap handler accesses E, it should have its value incremented by statement 100, and if it 
accesses B, it should not have had its value destroyed by statement 300. 

There are two main obstacles to precise interrupts. The :first is the compiler. An 
optimizer might have decided to move statement 100 after statement 200. The second is 
the hardware. The hardware might perform statements 200 and 300 in parallel, and by the 
time the division operation overflows, statement 300 could have completed and overwritten 
B. To some extent this is similar to what happens with virtual-memory systems, where an 
instruction can fault because the data it is accessing has been paged out. However, in this 
case the fault handler is specified by the system and is going to do a very predictable thing, 
namely bring the data into memory. User-specified trap handlers for floating point show 
much more diversity in their behavior. 

The DEC VAX family has a further distinction between traps and faults. A fault occurs 
(logically) before the offending instruction executes, and so returning from the exception 
handler will execute the instruction that caused the fault. A trap occurs after the offending 
instruction executes, so returning from the exception handler will begin with the instruction 
after the offending instruction. 

Machines that have overlapped instruction execution ( due to pipelining or multiple 
floating point units) often simulate precise interrupts with extra hardware. One approach 
is to take checkpoints, and when an exception occurs roll back to the last checkpoint, 
proceeding from the checkpoint one instruction at a time. Another approach is to have 
shadow registers to save the state of registers that might be needed later by the trap handler. 
The approach taken by the HP spectrum is to ensure that the hardware never overwrites 
the arguments to a floating point operation until it is sure that operations will not trap. In 
each of these schemes, extra hardware is required to guarantee precise interrupts. 
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Standard Apple Numeric Environment 
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SANE Data TJJJJes 
IJSingle 

Precision 7 - 8 

1 8 

IJDouble 

-45 38 Range 10 to 10 

23 

Precision 15 -16 Range 10 •324 to 10 308 

1 11 52 

IJExtended 
Precision 19 - 20 Range 10·495l to 10 4932 

= 32 bits 

= 64 bits 

1 15 64 = 80/96 bits 
68881 format stores 16-bits of junk here 

IJ Comp( utational) 
Precision 18-19 Range -10 19 to 10 19 integers 

63 = 64 bits 

* Range and Precision are dec~ma,l approximations 
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SANE OJJerations 

,_ * • +, -, , : , "1, Remainder, round-to-integer 
With rounding control I+- - + -+I 
Correct to the last bit 

,_ . 
• Comparisons 

ti Conversions 

(l,iiiiiiiiiiiiiilfi:; \) 
With rounding control 

ti IEEE auxiliary operations 

absolute va"/ue negate nextafter scaleb 
logb. cklssify copysign 

ti Elementary functions 
/~tni :rieosr> :-:.· 
f taH)H:a¥.ttti,f<: 

finance 

:.:.;.:/}:;i)/}_i/(t){i:/){{::-:<:·::::: 

i1Illlliii trigonometric 
exponentials ::::;(:/? ,::::::::::: 

logarithms 

random numbers 14Ju~ 1988 
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SANE in High Level Languages 

9 SANE languages support the abstract environment: 

9 SANE languages offer: 

~ Minimum impact on language standards 

.. SAN~features not expressible in the minimally-
modified language are placed in a library 

.. Old sources run ( more accurately) 

.. Expressions ev~luated in extended precision 

.. Data -types, operations, and environment 
under full user control 

.. 1/0 supports NaNs·and Infinities n 

.. Source constants held in extended precision 
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SANE Availabilit)' 

• SANE is available on all Apple machines 

~~Ii; 

• SANE is available in· software and in hardware 

a:=:s 
• SANE is available in high-level languages 

114i.l~ti 
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SANE Libraa Services 

~ Conversions between binary formats 

• --
~ IEEE and IEEE auxiliary functions 

~ Environmental access routines • 

~ Elementary functions 

~_Relation 
14July 1988 
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SANE ExceJJtions 

ti What happens when an exception occurs 

-~ Flags are raised 

Corresponding halts are checked 
Invalid . 
OVerflow 
Underflow 
Division-by-zero . 
Inexact 

-
ti A reasonable value is returned © 

aosest machine representation 
NaN (Not a Number) 
Infinity 

L 

•Examples 

~ _.. NaN (invalid) 
BIO _.. Inf (division-by-zero) 
0/0 _.. NaN (invalid) 
2*maxvalue ~ Inf ( overflow, inexact) 
minvalue/2 _.. 0 (underflow, ine~act) 
1/3 _.. .33333333333333333333 (inexact) 
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Control after Exce;J)tions 

* Software SANE ( software-based) 

* Hardware SANE (6888J-based) 
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