
Computer System Support for Scientific and Engineering.
Computation

Lecture 24 - July 21, 1988 (notes revised June 14, 1990)

Copyright ©1988 by W. Kahan and David Goldberg.
All rights reserved.

1 Exceptions

The IEEE standard specifies 5 classes of exceptions: Inexact, Underflow, Overflow, Divide
by Zero and Invalid. The inexact exception is the one exception on this list that is pecu­
liar to the IEEE standard, the others exist (in possibly modified form) on at least some
commercially available hardware. The inexact exception can be understood by considering
old mechanical hand calculators. Those machines never discarded any digits: the user had
to explicitly reenter a rounded quantity. The inexact exception corresponds to a human
operator noticing when he discards digits.

The underflow exception occurs when quantities fall below the smallest positive normal­
ized representable magnitude. When floating point numbers are represented with base /3,
precision p and exponents between emax and emin, then the smallest normalized numbers
are separated by a spacing of 13emin-P, but the spacing between O and the smallest pos­
itive normalized representable number is 13emia. So there is a gap around O which is f3P
times larger than the spacing between normalized numbers. On machines which do not
have denormalized numbers, when a quantity falls into this gap it is flushed to zero. On
a machine with IEEE arithmetic, the quantity is rounded to the nearest denormal. An
underflow exception occurs when a number falls into the gap and can not be represented
exactly by a denormalized number. Cray's and Cyber's do not have an underflow exception,
and although VAX's and IBM/370's do have an underflow exception, it is usually masked
off.

Overflow is an attempt to create a numl;ler bigger than the biggest finite representable
number pemax, and on some machines defaults.to the biggest number with the right sign.
In IEEE arithmetic, this only occurs when the rounding mode is set to "round ·to zero",
otherwise overflow defaults to ±oo and signals an inexact exception as well as overflow.
Invalid represents an invalid operation. Machines differ on what value is produced as the
result of an invalid operation. APL sets 0/0 = 1, IBM sets 0/0 = 0, and the IEEE standard
sets 0/0 = NaN.

2 Singularities

Floating point calculations approximate mathematical functions, which are almost always
piecewise analytic. Imagine carving the plane into regions. Then a piecewise analytic

1

Lecture 24 - July 21, 1988 (notes revised June 14, 1990) 2

Figure 1: Stereographic projection.

function is analytic (representable by a power series) inside each region, but may have
singularities on the boundary of the region. The function /(z) = 1/z is analytic on {z :
x > 0} and {x : x < 0} but has a singularity at the boundary x = 0. Some singularities
are removable, that is, are only an artifact of the formula used to define the function. For
example, g(x) = sin(x)/x appears to have a 0/0-singularity at 0, since sin(0) = 0, but in
fact setting g(O) = 1 defines a prefectly reasonable analytic function. Another example
is g(x) = (x3 - y3)/(x - y), whose singularity when x = y can be removed by writing
g(x) = x 2 + xy + y2• The method of presubstitution can be used when computing functions
with a removable singularity. When f(x) = sin(x)/x, we presubstitute 1 for 0/0. Then if
the computation happens to evaluate /(0), it will be correctly computed as 1. On machines
with IEEE arithmetic, the default is to compute 0/0 as a NaN~ The hardware will have the
constant NaN stored somewhere, and when computing X = 0/0, copy the NaN into X. In
presu bsti tu tion, the programmer specifies what constant to use in place of NaN. This has the
advantage that in pipelined floating point hardware, precise interrupts are not necessary.
That is, if highly pipelined machines would offer presubstition to the progammer, they
could handle removable singularities with no performance penalty and not have to build
extra hardware to support precise interrupts.

The function /(z) = 1/x does not have a removable singularity when considering only
ordinary finite real numbers. The IEEE standard introduces the symbols ±oo to deal with
this situation. To understand these symbols better, it helps to introduce the closed line.
There are two ways to close the line. The simplest is the 1-point closure. To explain this
closure, consider the mapping between the -lin~ and the circle, illustrated in Figure 1. To
map a pointy on the line to a point Yon the circle, draw a line through y and the top of
the circle. This line will intersect the circle at exactly one point Y. The map takes y to Y.
This maps every point of the line to a point of the circle, and vice-versa with one exception.
The top of the circle isn't mapped to any finite point of the line. This is the point that
corresponds to ±oo.

Another way to think of the mapping between the line and the circle is via the formula
8 = 2 arctan(x). If -1r ~ 8 ~ 1r represents the circle with -1r and +1r representing the
same point, then this formula maps each point 8 of the circle to a point x of the line. The
points ±oo of the line map to 8 = ±1r. Why introduce the 1-point closure? It makes all
rational functions continuous. Consider f(x) = 1/x. Normally, we think of it as having a
singularity at oo. But if we think of it as a function on the circle, it is perfectly continuous.
On the real line, it maps 0 to oo. On the circle, it maps 8 = 0 to 8 = 1r. In a formula,
f(x) = 1/x mapping the line to the line gets transformed to g(8) = 2arctan(l/tan(8/2)),
mapping the circle to the circle. And this formula simplifies to g(8) = 1r - 8, which is a
continuous function of 8 mod 21r. To summarize, the I-point closure introduces the new
symbol oo, and it makes all rational functions continuous.

Lecture 24 - July 21, 1988 (notes revised June 14, 1990) 3

For transcendental functions, we need to use the 2-point closure, which introduces two
new symbols, +oo and -oo. While the I-point closure can be thought of as the circle, the
2-point closure can be thought of as the interval [-1, 1]. A formula that maps the line to
the 2-point closure is (2/,r)arctan(x)). Only in this case, -1 and 1 are completely different
points. The transcendental function f (x) = e~ is not continuous in the I-point closure,
since/(+oo) = +oo but /(-oo) = 0, but it is continuous in the 2-point closure.

3 Signed 0

We would like to have the relation

1/(1/x) = X {1)

hold true for all numbers, at least approximately. To have this relation hold true when
x = -oo, we must be able to distinguish +0 from -0. We also would like to know that

y+x=x => y=O (2)

Since the left hand side is true for both y = +o and y = -0, we must have +o = -0.
Finally we would like to know that

• 1.. 1
X = y => - = -,

X y
(3)

at least approximately. Unfortunately, this doesn't hold true for x = +o, y = -0 in the
2-point closure of the reals. The problem is that we can't have (1), (2) and (3) all hold
simultaneously. In the IEEE standard, it is equation (3) that is violated.

Although signed zero may appear to be mostly a nuisance, there is one situation where it
is very helpful. That situation is complex arithmetic. To take a simple example, consider the
equation ./f7z = 1/./z. This is certainly true when z;?: O. What about complex values of
z? Hz= -1, then we might naively compute .JfT=T. = yCI = i and 1/v'=I = 1/i = -i.
Thus ./f7z f; 1/.../z ! This is what happens on machines that either do not have signed 0,
or if they have it, do not do arithmetic consistently with it. However, on IEEE machines,
./flz = 1/.../z even when z = -1. The reason is signed 0. To see why requires a short
digression.

If numbers are represented in polar coordinates z = rei9, where (J is a number modulo
2,r, then w = ..fi = y'rei9/ 2 , or w = sei<I> with s = y'r and <J, = (J /2. As 8 goes from 0 to ,r,
then <J, goes from O to ,r /2 continuously. Similarly, as (J goes from O to -,r, then <J, ranges
from 0 to -,r /2. Thus in the range -,r < 8 < ,r, ..fi is continuous. But at 8 = ,r = -,r
(mod 21r), there is a discontinuity. As 8 < ,r approaches 1r, w approaches sei1r/2 = si while
as 8 > -,r approaches -1r, w approaches se-i1r/2 = -si. This discontinuity occurs because
✓ is multi-valued, that is, each number has two square roots. The negative real a.xis z < 0
is a branch cut. H we consider the complex plane minus the branch cut, we can define ✓
as a continuous single-valued function. On the branch cut, ,J has two values. In IEEE
arithmetic, a number on the negative real a.xis is of the form -x + i0, where x > 0 and 0
is a signed 0. Thus it is natural to define J-x + i(+0) = limy-o+ J-x + iy = iy'x and
J-x + i(-0) = limy-o- ✓-x + iy = -iy'x, and in fact, that natural formulas for compute
✓ will compute in just this way.

Back to ./f7z = 1/y'z. Hz = -1 = -1 + iO, then 1/z = -1 + i(-0) and ./f7z =
J-1 + i(-0) = -i, while 1/vz = 1/i = -i. So IEEE arithmetic preserves this identity for

Lecture 24 - July 21, 1988 (notes revised June 14, 1990) 4

Wall

Wall

Figure 2: Conformal maps of slitted domains.

Wall--!j~ Liquid Flow

Wall-----9
Liquid Flow

Figure 3: Liquid flow through a slot.

all z. To give another more realistic example, consider the conformal map (see Figure 2)
(= f(z) = l+z2 +z✓l + z2 +ln(z2 +z✓l + z2). The image of {z: R(z) > 0} is the region
wetted by a liquid that is being forced by high pressure to jet into a slot (see Figure 3).
The line { z = iy : y > 1} gets mapped to the line { (= { + i1r : { < 0} and the line
segment {z = iy: 0 < y < 1} gets mapped to the curve connecting Oto -oo + i1r/2. Since
f [z) = f (z), the graph is symmetrical about the real line. On an IEEE machine, everything
goes well. But on a non-IEEE machine, the line { z = iy : y < -1} does not get mapped to
{(= { - i1r: { < 0}, but rather to {(= { + i1r: { < 0}; hence, part of the slot's boundary
goes astray on a machine that lacks a proper signed zero.

4 Is o0 Exceptional?

It is not always obvious whether an operation should cause an exception. In this section,
we argue that o0 is not exceptional, but rather should be equal to 1. What is important is
not so much whether you believe this argument, but rather that it indicates the need for
retrospective diagnostics, which will be discussed in the next lecture.

When establishing the value of mathematical functions like x 11 , we would like to employ
the principle of parsimony, that is, derive the value of the function from the fewest possible
rules. The traditional rule for x11 goes back to Descartes: en = e • e • • • e where there are
n e's on the right hand side. In order to extend this to other values of n, we can use the
traditional rules

(4)
(,5)

The first rule is necessary because without it we could define en = can, where the right
hand side is ordinary exponentiation. Given these rules for n > 0. it is natural to apply

Lecture 24 - July 21, 1988 (notes revised June 14, 1990) 5

them for all n and thus extend the definition of en. Letting m = O in (5) en= cOcn, so if
c # 0 then we must have c0 = 1.

These rules do not give us any information about the special values o-x, o0 , oo-x and
00°. So we might try another set of rules.

c0 = 1
ci+1 = cic

(6)
(7)

These rules have appeared in textbooks, for example L. E. Sigler's Algebra published by
Springer-Verlag. They appear to be as parsimonious as the first set, and they also are
upward compatible with them. However they additionally define the cases that were am­
biguous previously: o0 = 1 (from (6)), o-n = 1/0n = oo (apply (7) n times), 00° = 1 (since
(6) is true for all c), oo-z = 1/ooz = 0. Any rule that gave a different value for o0 would
have to be more complex than these simple rules. Another reason why we would like to
have o0 = 1 comes from the identity

When x = 0 this says ao = a00°w hich forces o0 = 1.
Since c0 = 1 is independent of c, even NaN°= 1. Although it may bother you that an

expression involving a NaN produces a finite number, this is less strange than a function
that is independent of an argument suddenly taking on a different value when that argument
is a NaN. There are other examples where NaNs can disappear. The code fragment if (y=O
or x/y < 3) then z=15 should set z = 15 when x = y = 0. Thus the 0/0 Nan disappears.
If N aN's could never disappear, then there would be no point in generating them.

