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1 Retrospective Diagnostics

The IEEE standard categorically defines the numerical results of the basic operations of
addition, subtraction, multiplication, division and square root, even for exceptional argu-
ments like NaN and +o00. For transcendental functions, it is up to implementors to define
reasonable values, but this is not always easy. In lecture 24, we discussed 0°, and gave
reasons why it might be reasonable to define 0° = 1 as well as NaN® = 1. A more con-
troversial example is (—3.0)®. Since large floating point numbers which are integers are
always even (large means bigger than $P*!, where p is the precision), some would argue
that (=3.0)* = +o00, whereas others would find this unconvincing. A good way to deal
with these uncertain cases is to use retrospective diagnostics. In this way, the implementor
can provide what he feels is the most reasonable value (such as (-3.0)® = +0o0), but make
a record in the log of retrospective diagnostics.

One problem with keeping a log of exceptions is that the log can get very large. Since
users rarely have the patience to study long logs, failure to control the length of the log will
seriously decrease its value. Retrospective diagnostics keep the log size small in two ways.
First, a log entry is only made when an exception flag is changed from false to true. Thus
if an exception is raised in a loop that is executed 1000 times, but the exception flag is not
cleared within that loop, then a log entry will be made only the first time thru the loop
(and not even then, if the flag was true upon entry to the loop).

But suppose the exception flag is cleared with the loop? Each exception has an exception
type and a location (where the location may be only approximate), and these two values
form a key for the exception record. When a second exception occurs with the same key,
it overwrites the previous record. Hashing is one simple way to implement this scheme. If
an exception occurs in a loop that is executed 1000 times, and the exception flag is cleared
within the loop, the first entry in the log will be overwritten 999 times, but the log will
always contain exactly one record for the exception. There will probably be more exception
types for log entries than just the five IEEE exceptions. For example, if the implementor
decides to set (—3.0)> = 400 and log it, it is not clear which of the five IEEE exceptions
applies: a new one would probably be more appropriate. The subroutine that evaluates z¥
would call a library routine to makes an entry in the log, in the case of controversial values
of z¥.
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Using this scheme, the size of the log is not much bigger than #(flag types)(1 + #flag
lowering sites), that is, the number of exception types multiplied by one plus the number of
flag lowering sites. The “1” comes from the fact that all flags are implicitly lowered before
a program starts execution.!

We earlier discussed why precise interrupts are hard to implement. Retrospective di-
agnostics do not require precise interrupts. The location used as part of the key for a log
entry does not have to be the exact PC where the exception occured. It might be the last
checkpoint since the exception occured, where checkpointing is done in hardware or by the
compiler. Or it might only be the name of the subroutine that caused the exception. The
best system for the point of view of the programmer is to have a clear association between
locations and source code statements.

Rudimentray retrospective diagnostics were implemented on the IBM 7094-II, and are
described in the SHARE Secretary Distribution, SSD 159, C4537, pp 1-54.

2 Other Aspects of Exception Handling

Imagine giving data to a statistics program at a time when some of the data is not yet in
hand and so is entered as NaN. In some cases, the program may never reference the NaNs,
and so the program will complete uneventfully. However, if it does reference the NaN, the
user specified trap handler can interactviely query the user for the necessary data. Thus
the user only needs to produce that data if needed, by which time it may have become
available.

A simple example of a program that benefits from being able to manipulate the exception
flags occurs in evaluating z/, for j an integer. If j < 0, then 1/2~7 will be more accurate
than (1/z)~7. However, if this underflows, then z’ may overflow. So simply computing
1/z=J could give a misleading and spurious exception. Thus a careful program would save
the under/overflow flags, turn off under/overflow trapping, compute 1/z~7, and then check
the under/overflow flags. If the flags are not set, everything is fine, and the program
restores the flags and trap handlers. However, if the under or overflow flag is set, then the
computation must be redone as (1/z)~7 (after resetting the flags and trap handlers).

A feature that can be useful to users is an annunciator, which can be thought of as the
modern day analogue of the flashing light on a panel, which blinks whenever the overflow
bit is set. It could be implemented by blinking part of the display. Here’s a hypothetical
situation where the annunciator would be useful. John Doe buys a stock investment program
for his home computer, which predicts the price of stocks using time series. One day, the
time series routine overflows, resulting in the advice to sell IBM. If John sells IBM and
then it goes up, he will be justifiably angry. However, if the screen flashed when it gave the
advice to sell, John could call up the help line listed in his manual, and technical support
personnel could examine his log of retrospective diagnostics to find out what went wrong.

2.1 Response to Exceptions

The IEEE standard gives two possible responses to an exception: trap or continue. However,
a software environment might give the programmer more choices, such as

1The reason that the bound #(flag types)(1 + #flag lowering sites) doesn’t hold exactly is this. Suppose
the top of 2 loop has a flag lowering site, but the flag can be raised at 5 different places in the loop. Then
there could be as many as 5 different log entries, even though there is only one flag lowering site.
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ABORT There are different degrees of abort. For example, the subroutine might abort,
returning immediately to its caller. Or the entire process might abort.

PREMT Pre-emption. This is the programmers view of trap handlers. In BASIC, this is
invoked using the on error statement.

DEFLT Do some default action. The IEEE standard gives defaults for all operations.

PAUSE This only makes sense in interactive systems. It might throw the user into a
debugger, for example.

COUNT Under/overflow counting, as described in an earlier lecture.

PRESBS Presubstitution, as described in an earlier lecture.

2.2 Scope

There are two main strategies for the scope of exception handling: dynamic and lexical.
Dynamic scope is what the Apple SANE package uses with ProcEntry and ProcExit. The
state of flags is saved when the ProcEntry statement is executed. The user has to arrange
his code so that ProcExit will be called to restore the flags.

APL uses the lexical approach, where saving and restoring occurs within the scope of a
block. Unlike the dynamic approach, no matter how the flow of execution leaves the block,
the state of flags is restored automatically: the programmer doesn’t have to find each exit
path and put a ProcExit there. However, the lexical approach requires compiler support.

3 The Value of (1.0)®

We have discussed a number of (potentially) exceptional values of the power function z¥.
One approach to deciding these questions is to examine lim,_o f(2)9(*) where f(z) is an
analytic function satisfying lim._¢ f(z) = z and g(z) satisfies lim,_,o g(2) = y. Let’s try
this technique on 0°. Then f(2) = arz* + agy12*t1 + .- and g(2) = by2! + b 2t + - -+,
with £ > 0 and I > 0. Thus lim,_o f(2)%(?) = lim,_o 2+ = lim,_,o ekz'logz — 1, since
lim,—¢2'log z = 0. Thus once again we get that 0° = 1.

Trying this technique on (1.0)°, we get lim,_.o f(2)9(%) = lim,_.o e9(2)108 () If f(2) =
z+1, and g(z) = k/z, then the limit is e*. In other words, the limit depends on the exact
function f(2) and g(z) unlike the 0° case where the limit is always 0 independent of f and
g. Thus we can argue that (1.0)* should be NaN aund signal INVALID OPERATION.
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