Computer System Support for Scientific and Engineering
Computation
Lecture 25 - July 26, 1988 (notes revised June 14, 1990)

Copyright ©1988 by W. Kahan and David Goldberg.
All rights reserved.

1 Retrospective Diagnostics

The IEEE standard categorically defines the numerical results of the basic operations of
addition, subtraction, multiplication, division and square root, even for exceptional argu-
ments like NaN and +o00. For transcendental functions, it is up to implementors to define
reasonable values, but this is not always easy. In lecture 24, we discussed 0°, and gave
reasons why it might be reasonable to define 0° = 1 as well as NaN® = 1. A more con-
troversial example is (—3.0)®. Since large floating point numbers which are integers are
always even (large means bigger than $P*!, where p is the precision), some would argue
that (=3.0)* = +o00, whereas others would find this unconvincing. A good way to deal
with these uncertain cases is to use retrospective diagnostics. In this way, the implementor
can provide what he feels is the most reasonable value (such as (-3.0)® = +0o0), but make
a record in the log of retrospective diagnostics.

One problem with keeping a log of exceptions is that the log can get very large. Since
users rarely have the patience to study long logs, failure to control the length of the log will
seriously decrease its value. Retrospective diagnostics keep the log size small in two ways.
First, a log entry is only made when an exception flag is changed from false to true. Thus
if an exception is raised in a loop that is executed 1000 times, but the exception flag is not
cleared within that loop, then a log entry will be made only the first time thru the loop
(and not even then, if the flag was true upon entry to the loop).

But suppose the exception flag is cleared with the loop? Each exception has an exception
type and a location (where the location may be only approximate), and these two values
form a key for the exception record. When a second exception occurs with the same key,
it overwrites the previous record. Hashing is one simple way to implement this scheme. If
an exception occurs in a loop that is executed 1000 times, and the exception flag is cleared
within the loop, the first entry in the log will be overwritten 999 times, but the log will
always contain exactly one record for the exception. There will probably be more exception
types for log entries than just the five IEEE exceptions. For example, if the implementor
decides to set (—3.0)> = 400 and log it, it is not clear which of the five IEEE exceptions
applies: a new one would probably be more appropriate. The subroutine that evaluates z¥
would call a library routine to makes an entry in the log, in the case of controversial values
of z¥.

Lecture 25 - July 26, 1988 (notes revised June 14, 1990) 2

Using this scheme, the size of the log is not much bigger than #(flag types)(1 + #flag
lowering sites), that is, the number of exception types multiplied by one plus the number of
flag lowering sites. The “1” comes from the fact that all flags are implicitly lowered before
a program starts execution.!

We earlier discussed why precise interrupts are hard to implement. Retrospective di-
agnostics do not require precise interrupts. The location used as part of the key for a log
entry does not have to be the exact PC where the exception occured. It might be the last
checkpoint since the exception occured, where checkpointing is done in hardware or by the
compiler. Or it might only be the name of the subroutine that caused the exception. The
best system for the point of view of the programmer is to have a clear association between
locations and source code statements.

Rudimentray retrospective diagnostics were implemented on the IBM 7094-II, and are
described in the SHARE Secretary Distribution, SSD 159, C4537, pp 1-54.

2 Other Aspects of Exception Handling

Imagine giving data to a statistics program at a time when some of the data is not yet in
hand and so is entered as NaN. In some cases, the program may never reference the NaNs,
and so the program will complete uneventfully. However, if it does reference the NaN, the
user specified trap handler can interactviely query the user for the necessary data. Thus
the user only needs to produce that data if needed, by which time it may have become
available.

A simple example of a program that benefits from being able to manipulate the exception
flags occurs in evaluating z/, for j an integer. If j < 0, then 1/2~7 will be more accurate
than (1/z)~7. However, if this underflows, then z’ may overflow. So simply computing
1/z=J could give a misleading and spurious exception. Thus a careful program would save
the under/overflow flags, turn off under/overflow trapping, compute 1/z~7, and then check
the under/overflow flags. If the flags are not set, everything is fine, and the program
restores the flags and trap handlers. However, if the under or overflow flag is set, then the
computation must be redone as (1/z)~7 (after resetting the flags and trap handlers).

A feature that can be useful to users is an annunciator, which can be thought of as the
modern day analogue of the flashing light on a panel, which blinks whenever the overflow
bit is set. It could be implemented by blinking part of the display. Here’s a hypothetical
situation where the annunciator would be useful. John Doe buys a stock investment program
for his home computer, which predicts the price of stocks using time series. One day, the
time series routine overflows, resulting in the advice to sell IBM. If John sells IBM and
then it goes up, he will be justifiably angry. However, if the screen flashed when it gave the
advice to sell, John could call up the help line listed in his manual, and technical support
personnel could examine his log of retrospective diagnostics to find out what went wrong.

2.1 Response to Exceptions

The IEEE standard gives two possible responses to an exception: trap or continue. However,
a software environment might give the programmer more choices, such as

1The reason that the bound #(flag types)(1 + #flag lowering sites) doesn’t hold exactly is this. Suppose
the top of 2 loop has a flag lowering site, but the flag can be raised at 5 different places in the loop. Then
there could be as many as 5 different log entries, even though there is only one flag lowering site.

Lecture 25 - July 26, 1988 (notes revised June 14, 1990) 3

ABORT There are different degrees of abort. For example, the subroutine might abort,
returning immediately to its caller. Or the entire process might abort.

PREMT Pre-emption. This is the programmers view of trap handlers. In BASIC, this is
invoked using the on error statement.

DEFLT Do some default action. The IEEE standard gives defaults for all operations.

PAUSE This only makes sense in interactive systems. It might throw the user into a
debugger, for example.

COUNT Under/overflow counting, as described in an earlier lecture.

PRESBS Presubstitution, as described in an earlier lecture.

2.2 Scope

There are two main strategies for the scope of exception handling: dynamic and lexical.
Dynamic scope is what the Apple SANE package uses with ProcEntry and ProcExit. The
state of flags is saved when the ProcEntry statement is executed. The user has to arrange
his code so that ProcExit will be called to restore the flags.

APL uses the lexical approach, where saving and restoring occurs within the scope of a
block. Unlike the dynamic approach, no matter how the flow of execution leaves the block,
the state of flags is restored automatically: the programmer doesn’t have to find each exit
path and put a ProcExit there. However, the lexical approach requires compiler support.

3 The Value of (1.0)®

We have discussed a number of (potentially) exceptional values of the power function z¥.
One approach to deciding these questions is to examine lim,_o f(2)9(*) where f(z) is an
analytic function satisfying lim._¢ f(z) = z and g(z) satisfies lim,_,o g(2) = y. Let’s try
this technique on 0°. Then f(2) = arz* + agy12*t1 + .- and g(2) = by2! + b 2t + - -+,
with £ > 0 and I > 0. Thus lim,_o f(2)%(?) = lim,_o 2+ = lim,_,o ekz'logz — 1, since
lim,—¢2'log z = 0. Thus once again we get that 0° = 1.

Trying this technique on (1.0)°, we get lim,_.o f(2)9(%) = lim,_.o e9(2)108 () If f(2) =
z+1, and g(z) = k/z, then the limit is e*. In other words, the limit depends on the exact
function f(2) and g(z) unlike the 0° case where the limit is always 0 independent of f and
g. Thus we can argue that (1.0)* should be NaN aund signal INVALID OPERATION.

- Froatwe- Perve ARiTreme wC

EXCEPT(QN S

AND

RETROSPECTWV E AN -TiME
DiracyOsTICS.

Pn;. 1o, f%kgp\
u‘m'o . oF QCF @ Bei'l"@le?

Ll 3/0{\/ %3

- T TR e L

5(4’:—:—?7/00 /5//4A/DL/ NE_ |

———

AV\ E‘KCGPTIOA/ s not an E&QO&
unless handled badl,.

Aohat makes f Excepmenmi i Vhat

Ao QaiForM Policy ADOPTED /v ADVAVCE

would be uua’ueﬁc[@ acce,M/e/' ‘.sémeene wold

3.

“+

8.

take e,xcep"c'on Yo %fpoléy's ¢///c?a)‘c5n Yo hcs
excepfcsns, and wth Jocd reasean.

Dwerse APPROACHES are naed e 3 none
are -a.a:gpfd/e n Ve £°":7 rau wuless
w”fdgdé w;%
' CONCURREV T ARNHMGTIC OPERATOVS
PIPELNES, VECToR/IZED & PARALLEL. MACHINES,

IMPRECISE JTANTERRAUPTS

Excepzecon HAVDL)G Mv have Yo Je
tmplemented v waeqs
INDEPENDEWT of PROGRAMUIWV G- bAncur G ES

CompLeR-WRITEAS wonN'T HMHELP .

becoase
SANME£. , all rn run-fuve /:'6?07 D)

(f. APME s

BuT PRoOGRAMMN G- IANGUAGES HAVE THER
OWA B/ IGHTED IDEAS ABOuT ErCep ot
HAND ber/6 and we mugl res,oe‘f Meoy'.

Lavsurce Desicwens L Impresmetracs
o dd help e Ku;*/cé»-—h.aml/iuf n R areas:
¢) Scope of Afodes -..

Gy Ruw-rime EffFcicnvey .

Y ARcLes (X))
Ao i
Spve gz FLAG

=%

RES7oAE DwBZ FRG)!

Revurs A

SIGnALS JNVACID IF Ixl > 1.

No siewal if X=~

EXACT wrev APPROPLIATE

w0 Teszs 8 prmvcres!

4 #)

——

i : 4 t = + — 22
{2 3 4 8 ¢
Cf(?() = 4 - 3 4‘../0
S > -2 — 1
[- o
(nonzero)/ = £Co = -7+ 1
CFinite 2/co0 = 20 2 -2 — 2
% — 3
Y‘)t(x) . 622-7—(751 - 2(32.4- -— x(‘S? —_ 4,‘3)\ 17:
: Hﬂ-—x(fSl-x('y:__x(gq,-x333 overtlow
{OOXMNJo‘ﬁ

[aand S o

£y = @+ ég
2+ Q¢ + b

O f oo
2>c % QN

)e==' Qy ,o
$or J‘:.N—t +o O step-{ do
f::aj_‘_bd/(z_',p) o

) ?
toe f(x) = 'F now . SIMPLICIT Y.ﬂ
SO
Not IBM'3r0 tece 75¥, €54 (suw, rc,..)
NoT VAX after DEC VAX a$ter D.Barneft, Berke‘e)

CbC ? cRray ?

: on 5“!\// YAX afrer worscii
FRESuUBSTITUTION

A = ese ;

YoR ©/0 PRESUBSTITUTE A §

for. J=4 ™ N o . in porallel
Iy 1= Sin (A2¢) [sink (=) 4

REPEAL PRESUBR STITu Tcon

| S o —

For o/0 or /0 PRESUBSTTUTE OO 3
!’:._.0 3 £ 2= ay 3
foR J= N-{ To © sSTeP-{ vDO
J di= xef; A= 14f’

7 = b.r /d;

= —(d7ddeg 5 fi= g ;

ForR 000 PRESUBSTITUTE b}-i.d’/bj }
ooe Now £ = contriued #4,}@4 -.F[x),
P P f' = c‘aer)/che .

W thoat Preswbstitu tiom:

L 1)

d’[=00 THEN p
ELSE -(:Vd)eol' 3

;2: a;+9 .; ‘= LJ.. d’/L, } .

£ = confenued fracten f/xl,
£ = dfey /dx .

o SolveE 7{)/1) — O qér == 3

MAIN

ExTeamvAlL REAL F (RsAL) 3
L1B RARY PROCEDPURE SOLVER (REALEuNCZoA, REAL);

22 = e J‘(gf‘ se e
CALL sSower (£, =) 3

P [&2 N " owe

SOLVER (REAL Ihs(REAL) , REAL =g)3
eo o Start u;d" 451.3“255 at a.rg P

= 4hs(arg) ; -—
oo e "-Ahae.. d.l"s Q.v\d JO hfl‘-"’

| ovr ga.f 4-________‘

Tt

REAL Fuwctow +f (REAL 3¢)

Returw £ 1= Lnloe)e AL io-—x)

? £

+—f———— =

10

NalNs on EEE75¢ & 85
Chp-t2¢, 28<), hp-7(E

(”, Nalls on) SuWe, 1BM-PC,

(BM 370 VAX affer Baract!
DEC's VA X" cbc 2 ¢RAY 7 -

L

For Aot b A/ Jdo cee N pora,/(e.(er overlappedl

L]
r/ jh /xk>3 and luhl> ngls

t’\eﬂ zh ' = "/zh

5

———

Wehout “if % 2 I
for hkaf o &

——

oo .;P.mydwﬂﬂ”d
)?‘ 11:-“- (3)./"; >3) and (”n’>lﬂh’3)5
rwi= A4E, ;

SERECT Z.:= if b then n ebe -2, }

M

g

Wy Mels ner OOr

—

fodow = FALSE

A' k=1 v W& do ve. 0 Pdf'b//c/ or eoer(a,/el
{ 8.:= Ge =0

el ta i G then 1 edse 2
3&! = 3 & then { elso In
Ble:= f ba Hen | el 2k

s b2, 1= (2,<0)

by t= (9l /2l >3) aud (o) > 19,13)
Yo!= 4«(21,;) 3

2h3= F bb +hen e ele 2. 5

£=Ao~(ta fodow or(L-ah and Lk) } .

UP-toww (OYUACA/G oF Oven/uypc-m:cow.

CQ: 77;(%-;3,\/]-]; ((;7‘%>

—

Couﬂrovek_uﬂben.'Pcows_/A/ (x \) 3 _.',ﬂm coumter.
~ K:'=.o ; |

&R:=10 ;
for = i o @:i= Re (€ +Dy)
K:=~- K 7 @:‘:4/@/.

- |
for < = . do Qf.: Qt.(/.’-é-!-B(-) ;
-K-L . |
vee Mw (R = . Wi (Ai+B;) : _
2 /05
—_ i K F#Fo then

On IBM 7o9% @ Toronto (1962)
Burroughs Bssoo @ Stanford L)
IBM 260 @ waterloo Ci97)
VAX © Beckaley (Barnel ,1987)

ef Clenshaw - Olvey “level-index Arithmetc) Dramanc
RanG e~

;Ma‘/su'i &Ifc' ‘ ’SEZ(P . SiG. \ Precisien
[=< TRADE -of F

/ Hamava

THese 4t ULUoSE PRECcScon './

oo/ berg s Voo i Fcn (Q»W-AC- M, f95°>

Drc PoPt, vax
Sor BRR» FloAaTae— FOVT (1555 75.{. A >

14

ExpoNEY/T z FRACTowAL Si16. DISITS

ExPOREUT-BUS (

+2 o FRACTousL S1c. DlsrTs)

t “niooev T

GCRrRADURL- WANDEARFlLow . @gj VEC)
w’g‘ EXPoNEMNT = Minimue e;lponel.t ooe (o] mucyj

Minimum exponent -.B'(AS ""
+hen hy 2 x (. SRACToL S16. DIGITS

“&(/W’H- (.D(-norm-(fzel) MYumPer s (IEEE 754)

N—/‘\

. :(L\L\\' { \ 1 3 1 [
~ | . —'

4 t
] 23“4‘ S : . 2““ gAs
2

-BWS

lEmr due jo Gradud l-luderFlow‘ < lRoou.ﬁ? dseoheve(.

l Error duwe Ftushvés?%l >> ‘Ro«uJOf wew)'cre(.
, b J.Demmel (193%) StAm J.5c St Comy,
HAZARD with Gradual Under Qow :
MesT Test WUmdeErFow FAG ,
net test for Zero,
"’O ‘Qﬂd us\darF(ow $ '.o;; e‘F ac&uma

e.g. 0.0000 314 -1 fwstead of 31415926 ~10¢ .

Excep zion

ALLXS

» OVFLO
- - . DVBZ
UNFLO

- - InxeT

JNT xR

Te

InveD

20VR 2
rTovR<r

IVvDry

ZTMST
TMIN L

Fabo,q

. - UNDTA
PTSTR

NLP TR

ZACH K/AND oFf

Excep7ionAL Ww;{'

all of Yow /orn,)

eppenedf OVerFLOw 200 or 2HUGE
(Mouzere) /0.D, iNfo.0)... OO oc :MIGE
QM{ UNderFLOwW "Podugz o O
Znexact / rvanded resalf
f@cr Qchf'fu‘n or eRvor ?
ZpVal P opevatons Ala)
e e it
Oeo/ao Aa v
o /s p'j | A &
one of)
.00 00 W2 24
o - 0o . Ma
- =3 ot/
Uivitalized Doata V4

Ou¥side Date Stricre Mo/
Nall PoinTe R e X

]
Excepreon wHAS 1rs FLAG)

WHcH A PROGRAM CAN TEST, save, RES?0RE, ...

* Ipee 75¢, €5+

vSlDE“EFFECTS e Feags get rased °/
e —

vaa‘_{y UNAVO(DABLE dey‘-;.'{-e' Fuwcrcom, FRocRAMU WS,
DATA-Feow, OCCAM,

AETROS,PECTE Lrscnostics

% ¢2-|en.f¢‘;9 SITES of LEADING UNRERUITED EXCEP TcOX/S !

LOG
— 7
a=
e ———— ,
— A ,)
=— 7 hme [
o — ’,' . .r’ @ CALLED ‘r avces o®oos
O———— " —- - -
c— *‘/ o - - h
—— ——
e e
e

Ro.isn‘uj Furne disables Sq.‘;e’uen:t s'vgmls (tro,os, loﬁ:'ng,...) ,
lowefivj Fea6 enables 4% su‘so’,-quf 323M(.

Lo ¥(106ewtries) L (FFuac-Tepes)x (1 + ® (FLAG lowering si'res)_

1

c ¢ LOG cawwot grow unm'auejeailj .

On IBM 7094-T @ TorenTO
SHARE SSD¥(59 (Dec. (%) Irem C-4537 .
" IF kickeb (oFe) ... "

[fo

?;"'a'{'QMent Pu'f‘ wte our Yorfran.

Im p/emeu’{u?‘cé» MoTes

p—

=~ Mosf{’y Eny/emu/aé/e i Ha RPul TME LIBRARY,
indeperdan? of CoMPLER and OPERATNG SY5.

Hardware : mneeds Presuhshiutable reqisters n place f
PSS s - -
wirted-sn ©CO ANall, M/),

& ether Queur Hor siynals & -Flnjs,

o QUICKLY -TESTED STTUS -CHANGE b

(omE?/er‘ : must 3enerJ¢ Micestone s
or Buck -TesTs for s')u"‘u.s-:;‘ltmje

must fes‘)ec.'f ScoPiIMG Rults for medes

Oyerdl'ul 5367l€m‘: Mut a.l/O‘-v 14«' ANAJa.U‘cm;?ozS
m L/o drwers

- MU.ST Pw‘;‘J! ﬁf‘ LOG fe ‘(WU‘ZHGV\
ONTO or AFTER stardard emer file

- Must allow @icractee c&*cn-ojaﬁe.u of LOG

F'Vevjﬂ-ﬁy dse s far"f of Runw-Time LibrRAR)Y

ﬁﬂj@ﬁ of res porse - 6’4(-:.30%«9’15

ABorT ~Subrotite, modale, dask, ..
PREMT FPreemphion § o0 ERSCR Bo -

overrow €& {ARTHMETc ERRORST

"DEFLT 1sce 75¢ Defaults
PA'(A. SE .. R Resume .. Iwrermcrive Depusc/vs

COC(/(/ T. N&/uﬂbeﬁn,ows up/bo@ﬂ
PR 55 s PRESUB;TIT“TION

SCoFP&E ot~ MODES

—

— “Flat " o¢ " Dynamic ™ scope : (. ApPEly sANE)
~ uses Tun-frme /«:61‘007. ‘
- progrommer wmust- Save & restore modas .

- ~L¢rir4/._ ov langua,:- Ass.sted Swpe
ef. APL s
| LocALI2ATioA OF SYSTEM VARWABLES

- Recodn:ﬁén of Bettem-level (leaf-) procedures
S adaten of AHfomee Opermtcons

