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1 Signalling NaNs 

The IEEE standard contains signaling NaNs, which can be used to extend the set of numbers 
that can be represented. For example, the exact value of 1r could be represented by a 
signalling NaN. Then each time 1i appeared as the operand to an arithmetic operation, a 
trap handler would be called to specially handle the situation. 

The IEEE standard leaves open to implementors whether copying a signaling NaN or 
changing its sign should raise a signal. When using signaling NaNs to represent special 
kinds of numbers, it seems most appropriate to not raise a signal. In the example above, 
you wouldn't expect copying 1r to raise a signal. Also, these new numbers will typically 
have signs that obey the usual operations, so it would cause unnecessary overhead to raise 
a signal when only the sign bit was modified. If signals are not raised for copying and 
changing the sign bit, then x = abs (y) will go through without raising a signal. 

2 Test Suites 

There are a number of test suites for checking the correctness of floating point arithmetic. 
One is distributed by NAG and is based on an earlier program of Norm Schryer. This 
test uses operands of very special form, such as 100 • • • 00100 • • • 0 or 11 • • • 1100 • • • 00, and 
then tests to see if the sum, product, difference and quotient of these numbers is correctly 
computed. This test is good at detecting problems with propagation of carries. Also, the 
test can take as parameters values for the base and precision, and test whether those are 
indeed the parameters being used. Paranoia, written by W. Kahan, will actually attempt 
to deduce the parameters of a floating point system. In addition to computing the base and 
precision, it will also try to deduce whether operations are rounded or truncated. However, 
this test is not designed to detect machines that round, but occasionally round incorrectly. 
The handouts contain two test programs for this purpose. One of them computes operand 
values that when multiplied together, will result in a value almost halfway between two 
representable numbers. Thus if rounding is only slightly wrong, this test has a good chance 
of detecting it. The other program computes operand values for division. 

Benchmarks are another kind of test program. Unfortunately, most test only for speed, 
not for accuracy. Benchmarks usually consist of a fixed program to be run and timed on 
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various machines. A better way to do benchmarking might to be consider a particular ~ 
problem, like inverting a matrix, and time how long it takes a computer (by whatever 
algorithm is most appropriate to its architecture) to compute the result to within a specified 
accuracy. Sorting and transposing a matrix are other candidates for this benchmarking 
approach. 

Another problem with benchmarks is that they are not diagnostic. That is, if they run 
more slowly than they should, they don't offer any suggestions as to what is wrong. 

3 Computing Transcendental Functions 

One method for computing transcendental functions is the CORDIC algorithm, presented 
in earlier lectures. This is really only appropriate for hard ware implementions. Software 
algorithms are almost always done by approximating the transcendental function with poly­
nomials or rational functions. Polynomial approximations will always exist, because of the 
Weierstrass approximation theorem. 

Theorem 1 (Weierstrass) Given a finite interval [a,b}, a function f continuous on that 
interval, and a tolerance £, there exists a polynomial p such that If ( x) - p( x )I < £ for all x 
satisfying a ~ x ~ b . 

It is easy to see how the theorem can be extended to require the polynomial to take on a 
predefined value at a particular point (for example, when approximating the logarithm by 
a polynomial, you would like that polynomial to be exactly zero when x = 1). To specify 
the polynomial to be f ( c) at x = c, first find a polynomial p that approximates f to within 
£/2. Then replace p with p- p(c) + f(c). This ne,1w· polynomial approximates f to within£, 
and has the value f(c) when x = c. 

Unfortunately, Weierstrass' theorem doesn't tell us anything about the degree of the 
polynomial. When f has a vertical tangent ( such as y'x does at x = 0 ), the degree of the 
polynomial can get very high. It also doesn't say anything about how to construct the 
approximating polynomial. 

The classical schemes for constructing explicit approximations use interpolation, that 
is, finding a polyomial p that agrees with f exactly at n fixed points. Since a polynomial 
p of degree n - 1 has n coefficients, specifying the value of p at n points will result in n 
equations in then unknown coefficients. However, this does not always lead to a reasonable 
approximation. Runge discovered that for J(x) = 1/(1 + 25x2) on the interval [-1, 1) and 
equally spaced points, the interpolating polynomials not only don't approximate f, but that 
Pn(x) ~ oo for x near the endpoints ±1 as n ~ oo. However, there are unequally spaced 
points for which the interpolation polynomials will converge to f. 

Polynomials can only approximate functions over a fixed finite interval, but rational 
functions can approximate over an infinite interval. For example, to approximate a function 
f(x) for O < x < oo, consider the function g(x) = f(l/x) which is defined for O < x < 1 
and approximate it by a polynomial p(x). Then the rational function q(x) = p(l/x) will 
approximate the original function /. 

3.1 Remes Algorithm 

Although polynomial approximation can be done using interpnh t ion if the interpolation 
points are careful1y chosen, there is a better method. Fix an i11 1 • • ., 1 [a~h] and a function 
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f to be approximated on that interval. Then among all polynomials of degree n, what will 
the best approximation look like? The answer is given by 

Theorem 2 (Chebyshev) Given a continuous function f defined on the interval fa,b}, 
then p is the the polynomial with the smallest value of ma.xa <x< b If ( x) - p( x) I if and only if 
the error E(x) = f(x) - p(x) satisfies E(xi) = (-l)it for n-+-2 points Xi, where a$ x 0 < 
X1 < • • •Xn+i 5 band€= maxa:5.x:5b lf(x)- p(x)I. 

In other words, the best approximation by a polynomial of degree n has the property that 
the error oscillates at least n + 2 times. This theorem suggests that the way to find the best 
approximation is to attempt to constrain the error to haven+ 2 extreme points. And such 
an algorithm exists. 

Algorithm 1 (Remes) Let f be a function analytic on an interval [a,b}, and let p( x, a0 , ..• , an) 
be an analytic approximation to f pammetrized by n + 1 variables. Let E = f - p, and guess 
an initial set {xi} of n + 2 extrema satisfying a :5 x0 < x1 < • • • Xn+i :5 b. Then solve the 
following system of equations for the n + 2 unknowns {a;} and £ 

(1) 

Next, using these values of {aj}, solve the equations 

(xi - a)(xi - b) :X E(xi,ao, ... ,an)= 0, 0 :5 i $ n + 1 (2) 

to get new values of {xi}. Repeat solving equations {1} and (2) until then+ 2 unknowns 
{xi}, {aj} and£ converge. 

The second set of equations (2) are uncoupled, and can be solved one at a time using the 
ordinary one dimensional Newton's method. However, (1) is a coupled set of equations, 
and must be solved using then-dimensional Newton's method, which involve computing 
the partial derivatives {;-:. 

J 

The usual form of the Remes algorithm restricts the approximation p to be a polynomial 
or rational function with all of its coefficients as the unknown a;. This more general form 
is useful for rational functions with some of its coefficients fixed (see below), or even for 
approximations involving non-rational functions such as square roots. Using square roots 
might be appropriate for machines that have square root implemented in hardware at almost 
the same speed as divide. However, this more general form doesn't always converge, unlike 
the special case where pis a polynomial of degree n, with all the coefficients of p used as 
the parameters a;. In that special case, the algorithm is guaranteed to converge, no matter 
what the initial guess for the Xi are. 

It turns out (see the handout Superlinear Convergence of a Remes Algorithm) that under 
a few mild conditions on the f and p, this Remes algorithm will converge if the inital guesses 
for Xi and a; are close enough to the true values. And the convergence rate is superlinear, 
which means that the number of correct digits increases in a geometric progression. That 
is, the number of correct digits progresses like n, rn, r2n, ... , for some r > 1. Si~ce 
the algorithm migll t not converge if the initial guesses are bad ( or the conditions of the 
convergence theorem turn out not to be satisfied), it is comforting to know that when it 
does converge, it converges rapidly. As a practical matter, this means that if running the 
algorithm doesn't converge after a few rounds, it probably never will converge. 
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When solving equations (2), various problems can come up. For example, there may be 
more than n + 2 solutions. There is an improved algorithm that deals with this situation 
by introducing the zeros of E as another set of unknowns. After all, since E(xi)E(:ii+1) = 
-e2 < O, E must have a zero somewhere between Xi and Xi+i· And similarly, between 
two zeros of E there must be a point where the derivative is zero (Rolle's theorem from 
elementary calculus courses). 

Algorithm 2 (Improved Remes Algorithm) Let f and p be as in algorithm 1. First 
guess a set {yk} of n + 1 numbers, and use these numbers to solve 

E(Yk,ao, ... ,an)= 0, 0 $ k $ n 

for {a;}. Next use these values of a; to solve 

(xi - a)( xi - b) ! E( xi, ao, ~ .. , an) = 0, 0 ::; i $ n + I 

for {xi}, with the restriction that Xi < Yi < Xi+i • Then use these values of Xi to solve 

(-Ii+If + E(xi, ao, ... , an)= 0, 0::; i::; n + 1 

to get new values of {a;}. Finally use these values of a; to solve 

E(yk,ao, ... ,an)= 0, 0 $ k::; n 

and get new values of {yk}. Go back to equation {3) and repeat. 

(3) 

(4) 

(5) 

(6) 

Since each Yk is a zero of E, the function E will cross the x-axis in either a downward 
or upward direction. When solving equation (6), you should make sure that the· crossing 
directions alternate between successive values of Yk· It is also important to graph the 
function E to make sure that the extreme points Xi represent the maximum value of IEI, 
that is, to check that there are no spikes in E that shoot past the extrema. If a spike occurs 
during an iteration, an extrema adjacent to the spike should be moved to where the spike 
occurs. 

3.2 Other Details 

ff a transcendental function has symmetries, you normally want that symmetry to be re­
flected in the function's rational approximation. For example, since sin(-x) = - sinx, you 
would like an approximation to sin to be an odd rational function. 

For In, the situation is slightly more complicated, since in this case the identity is 
In 1/x = - In x. To translate that into a condition on the rational approximation, note that 
if x = ~' then 1/x = - (::J~~. So let R(x) be a rational function satisfying R(l/x) = 
-R(x). Then let g(s) = R(~) = R(x). Then g(-s) = R((::)~~ = R(I/x) = -R(x) = 
-g(s). So g is an odd function. To summarize, a rational function with the property 
R(x) = -R(I/x) (which we would want an approximation to In to have) must be of the 
form R(x) = g( ~!D for some odd rational function g. 

When x is near 1, ln(x) ~ x - I, so an approximation to In will look something like 
( x - I) + C( x - I )2 R( x ). On machines with a guard digit, x - I will be exact. so all the 
rounding error will come from the second term C(x - I)2R(x). If this term is much smaller 
than :r - 1. then the fina] resu1t will have practically no rounding error at all. because 
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the rounding error in C(x - 1)2 R(x) is in the lower order bits which get shifted off when 
it is added to x - 1. However, if C(x - 1)2 R(x) is about the same size as x - 1, then 
its rounding error becomes important. And a big contributor to that rounding error is 
C, which is a :floating point approximation to some transcendental number obtained from 
the Remes algorithm (it was one of the a;). A way to avoid this is to change C to an 
exactly representable floating point number, and rerun the Remes algorithm with one less 
parameter a;. The result will be a new approximation p with an error f which is a tiny 
fraction of an ulp larger than before. However, C will now be exact, so the net effect is that 
( x - 1) + C( x - 1 )2 R( x) is a much closer approximation to 1n than before. 

3.3 Piecewise Approximations 

As the number of parameters in p increases (which translates into increasing degree if p 
is a rational function), the error € wiil decrease. If w = b - a is the width of the approx­
imating interval, then f ~ Cwi, where j is the number of parameters. This means that 
by shortening the interval, the number of parameters can be decreased without decreasing 
the accuracy. And this translates into an approximation that is faster to compute. So one 
method of computing transcendentals is to chop the range into subintervals, and use a sep­
arate approximation in each subinterval. Athough this requires more code for the logic that 
decides what interval to use, and more space for tables of coefficients, the time to compute 
the approximations is decreased. So this method is faster, unless the time to access the 
extra tables from memory becomes significant. 

If the approximations are of the form 

(7) 

and the interval is so small that (x - xk)(gk + (x - xk)hk) <:: fk, then the multiplication of 
(x-xk) and (gk+(x-xk)hk) need only be done to half precision, which may be substantially 
faster than a full multiply. This trick is due to Farmwald (1982). 

One problem with (7) is that fk, which represents the value of the function at Xk won't 
be exact, since in general f(xk) is a transcendental number. So one useful trick is to 
slighly adjust the intervals so that f(xk) is very close to an exactly representable floating 
point number. This trick is due to J .C.P. Miller around 1958, and also independently 
Gal. Approximations constructed using this technique can give correclty rounded values 
over 90% of the time. One fine point: it isn't always possible to find an Xk which closely 
approximates a floating point number, in which case an extra addition must be performed 
to compensate for the error. Also, as we mentioned earlier, this method can result in large 
tables, although sometimes the tables can be collapsed due to special properties of the 
function being approximated. For example, the values of ex in two different intervals are 
just multiples of one another. 

4 Models 

Modern computer science books emphasize the importance of proving programs correct. 
Even though it is currently impractical to carry out a proof for large programs, taking this 
point of view is sometimes helpful. For example, it can help guide the design of programming 
languages. Proving things about floating point is complicated even when you assume IEEE 
a.rithmetic. as some of the proofs in these lectures have demonstrated. When IEEE is not 
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assumed, proofs become greatly complicated by the large variety of floating point hardware. 
Even among machines of the same manufacturer floating point can differ (as in the CDC 
6600 and 7600). Despite these obstacles, several people have attempted to con~truct general 
theories of floating point. However, these theories only consider the problem of rounding 
error, and ignore exceptions. 

One approach is to use axioms to characterize floating point arithmetic, motivated 
perhaps by the fact that all the properties of real numbers can be deduced from a few 
axioms. A. van Wijngaarden (best known for his work on Algol 68) introduced 32 axioms 
that he claimed characterized the behavior of floating point arithmetic on all hardware, 
but his axioms did not cover the CDC 6600, which was the fastest computer at that time. 
Stan Brown introduced 20 axioms that did cover the 6600, however this introduced so much 
complexity that he dropped 6600 compatibility from his axioms when he finally published 
them in Transactions on Mathematical Software. 

Brown considers a subset of all floating point numbers that he calls model numbers, and 
characterizes the model numbers by a radix, precision, and exponent range. His axioms 
constrain the behavior of the model numbers in the following way. Let a and b be model 
numbers, and let c = a ® b be the exact the result of operating on them. Then c lies in an 
interval bounded by model numbers, say [c1, c2]. Brown's model requires that the result 
of applying the floating point operation ® must result in a floating point number in the 
interval [c1, c2].1 The behavior of non-model numbers is defined in terms of the containing 
interval with model number endpoints. For a machine like the Cray, where the result of 
a multiply can be quite far (in terms of ulps) from the true product, Brown's model will 
apply if the model numbers are taken to be all floating point numbers with their last bits 
zero. That is, the precision of the model numbers is less than the actual precision of the 
hardware. 

The problem with Brown's model is that it tries to apply to all existing hardware, and 
so suffers from the fact that it doesn't consider any of the newer developments in floating 
hardware, such as guard digits, NaN's etc. In fact, it is actually is worse than any existing 
machine, because there are codes that work on all existing machines, but can't be proven 
correct in Brown's model. 

1 Actually, he calls operators with this property strongly supported, and for operations that are merely 
supported, lets them stray into an interval expanded on each end by one model number. 


