Floating-Point Indoctrination: A Summation

During May-July 1988, Prof. W, Kahan of the University of California presented a lecture course on
Computer System Support for Scientific and Engineering Computation at Sun Microsystems in Mountain
View, CA. To summarize this course, Prof. Kahan will present a final lecture, at 7:30 PM on Thursday, 28
July 1988, at Apple Computer’s DeAnza-3 Building, 10500 N DeAnza Boulevard, Cupertino, CA. Enter
from the south side.

This final lecture is free to the public. Please publicize to interested colleagues.

ABSTRACT

Most scientific and engineering computer users consider irrelevant the details of floating-point hardware implementation, compiler
code geaeration, and system exception handling, until some anomalous behavior confronts them and preveats the satisfactory comple-
tion of a computational task. Some of these confrontations are inevitable consequeaces of the use of finite-precision floating-point
arithmetic; others are gratuitous results of hardware and software designs diminished by the designers’ well-intentioned comer-cutting.
Distinguishing the intrinsic from the gratuitous is 8o simple matter; such chastened computer users are not sure what they might rea-
sonably demand of computer system purveyors.

The povice's impression that there is no thyme nor reason to the dark mysteries of floating-point computation is sometimes superseded
by a euphoric discovery that there is a good deal that can be axiomatized and proven about floating point; later experience may temper
such a discovery by indicating that not everything that can be axiomatized or proven is worth the trouble. Furthermore, what would be
worth knowing is often surprisingly difficult to encapsulate and refractory to prove; even when each subproblem of a realistic applica-
tion permits a satisfactory error analysis, the overall problem may admit no such analysis. The proofs of simple statements about algo-
rithms or programs often require machinery from other parts of mathematics far more elaborate than expected. Thus some of the
mathematically inclined who become involved in these studies, out of external necessity, then become permanently sidetracked by
intricate mathematical issues. To remain relevant, a sense of engineering economy must guide such studies, in order to distinguish the
things that are worth doing, and therefore worth doing well, from those that aren’t.

Over the nearly twenty years since this lecture course was first presented, the software environment has gradually deteriorated despite
that hardware has improved. The software deterioration may be attributable to the establishment of Computer Scieace as a separate
academic discipline, whose graduates need have little acquaintance with scieatific computation. The hardware improvement can be
principally attributed to the advent and acceptance, for most microcomputers, of the ANSVIEEE Standards 754 and 854 for floating-
point arithmetic. But some of the potential benefits of those standards are Jost because so much software was and is written to exploit
only those few worthwhile features common to almost all commercially significant existing systems. In fact, much portable
mathematical software, created with funding directly or indirectly from American taxpayers, is crippled by a misguided quest for per-
formance on the fastest existing supercomputters regardless of detriment to far more numerous mini- and microcomputers.

Well-intentioned attempts by language architects and standardizing bodies to ameliorate some of the difficulties encountered in
floating-point computation have too often exacerbated them and, in some instances, spread over them a fog caused by osteasibly
insignificant variations in the definitions of words with otherwise familiar connotations. What we need now is a measure of consensus
on language-independent definitions of needed functionality, even if we must sacrifice some compatibility with past practice to achieve
intellectual economy in the future. Alas, few professionals will pay the present costs of incompatibility with past errors to achieve
gains promised for an indeterminate future. The computing world has too many broken promises rusting in its basement.

One of the anticipated outcomes of this course is that lecture notes will eveatually be published reflecting current thinking on some of

these issues. In addition a group of students has undertaken to improve the implementation of certain elementary transcendental func-
tions to a better standard than has been customary.
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This is the final lecture of the floating-point indoctrination lecture series, and it is mostly
a summary of the materials presented in the course.

1 Is Floating-Point Arithmetic a Moral Issue?

Floating-point arithmetic has often been viewed by many as a moral issue instead of a
technical issue because there many analogies between them. Some of the analogies, listed
in the order of importance, are :

¢ Due allowance for consequences.

¢ Consideration for the interests of others.
o Deference to custom.

o Deference to authority.

¢ Informed choice.

Any decisions which make no allowance for consequences cannot be considered as moral.
In the floating-point arena, estimating the consequences of our deeds can be more compli-
cated than we expect. Although this task appears to be quite straight-forward, as floating-
point arithmetic is often perceived as merely a matter of mathematics, it is far from the
truth. It would be simple if we knew which mathematics is germane, but this is not so
because computers vary so much, and for the same computer, compilers differ too. Conse-
quently, predicting the consequences of our deeds in floating-point arithmetic is immensely
difficult.

The next most important moral issue in floating-point arithmetic has to be consideration
for the interests of others. In the world of floating-point the interest of others tends to have
been entrenched for so long and to be so diverse that the issue is really a matter of deference
to custom. In the computing world, this is most often referred to as compatibility.

Another anology between floating-point arithmetic and moral issues is the deference
to authority. In the arena of floating-point, it is difficult to identify who the authorities
are. Suppose we can somehow identify them and we solicit their opinion on any interesting
floating-point issue, there’ll probably be more opinions than there are people. As it is
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Figure 1: Models of floating-point arithmetic.

so difficult to accept anybody’s opinion, there is no reason why a person should keep his
opinion constant over a reasonable period of time.

The bottom line of this discussion is really a matter of informed choice because each of
us should be able to make proper decisions, whether on technical or moral issues, without
any deference to authority except our own intelligence, but with due regard for deference to
customs. Deference to customs is important because it determines what people expect. We
must bear in mind that our ultimate goal is reliability, not moral rectitude. To be reliable,
we ought to do things in accordance to people’s expectations.

2 Due Allowance for Consequences.

2.1 Models of Floating-Point Arithmetic.

How can we estimate the consequences of our deeds? We have discussed the various models
of floating-point arithmetic in previous lectures. Stan Brown’s model, which has been
adopted by ADA and ANSI C, was discussed in Lecture 26 and Kulisch-Miranker axioms
were discussed in Kulisch’s lecture. The principles of operations of various commercial
computers, such as the IBM 370, the DEC Vax and the CRAY, have been discussed in
preceeding lectures.

In the past, a small number of computer companies dominated the floating-point world,
so floating-point arithmetic was defined by these few companies. At present there is a stan-
dard more widely adopted than any single design; in fact, it may be more widely adopted
than all the other designs combined. The widespread adoption of the IEEE standard 754
came as a pleasent surprise to many people, especially to those people involved in mathe-
matical software, because the standard is quite difficult to implement.

The IEEE standard is difficult to implement because it presents such a clear face (see
Figure 1) to the user, with very few anomalies, and has a number of features not available
in most other machines : infinities and denormalized numbers (each feature represented by
a “ear” in the figure). On a Vax, infinities and denormalized numbers are not available
and it has some exponent limitations; besides these descrepencies, the Vax has very good
arithmetic. The IBM 370 is quite peculiar mainly because it uses hexadecimal radix. On
a CRAY, the arithmetic is appalling: the lack of a guard digit results in a slowdown in
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double precision arithmetic by a factor of about 50 instead of about 5 to 10 in most other
reasonable machines. CDC also lacks a guard digit, but in a different manner, such that
there are anomalies in its denormalized numbers; it has infinities, though.

If we have a model, such as Stan Brown’s model, which is supposed to explain what
a machine will do in mathematical terms that are sufficiently general to encompass all
machines of commercial significance, then we have a model that describes, in some sense
intrinsically, the things we cannot do in general. The reason is that if we use a particular
machine and encounter any of its anomalies, something bad will happen to our program.

Stan Brown’s model is designed to prove that a program is correct so that we can predict
the consequences of our deeds. We can only do such a prediction if we avoid the union of all
the anomalies of the machines encompassed in the model, as well as some other anomalies.
So Stan Brown’s model, designed as a tool to aid us, turns out to be the principle of
operations for a machine worse than any that has been built. It is particularly sad that this
model has been incorporated into ADA and ANSI C by people who sincerely believe that
it'll lead to portability of code when, in reality, it’ll result in our inability to prove if a code
is correct because we don’t have a categorical description of the mathematics used.

2.2 Surprising Consequences Abound.

Even if we have a categorical description of the mathematics for our arithmetic model, we
can still encounter various surprises. It is possible to be astonished by simple computations,
two of which are shown below.

2.2.1 A Stripline Model.

A pulse is introduced in a medium (a string, for instance) and as this pulse travels along
the medium, it broadens due to dispersion. Let’s consider the simplest model, that is, one
where there is no dispersion. This pulse can be modeled by the partial differential equation

0’E  ,0°E
—_— = 0 —
012 Oz2

which when discretized yields (let %% = 10c)
ED —2EL 4+ EI"' = (0.1)%(EL,, - 2EL+ EL_)).
The various ways to compute E‘t! are :

Formulal: Ei!'=2.(1-(0.1)?)EL—- EL 4+ (0.1)(EL,, + ELy)
Formula2:  EX!' =2F! - Et-1 4 (0.1)%(EL,, - 2EL+ EL_;)
Formula3:  Ef! = El(E; - EI7') + (0.1)*((EZ4y — EZ) — (Ez - Ezy))
Formula 4 : Formula 3 with compensated summation

Formula 1 appears to be economical because the constants can be computed in advance and,
therefore, the amount of arithmetic is minimized. Minimizing the amount of arithmetic
would lead one to conclude that the amount of rounding errors is minimized too, but
this is not true. Formula 2, which is found in some textbooks, is a rearrangement of
Formula 1, but Formula 3 is actually superior to Formula 2 because when two numbers are
close together and one is subtracted from the other, no rounding error is introduced (on
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reasonable machines). ! Since the values at a certain time and the next (like Et ! and EY)
and those of neighboring points (like EX., and E% or E; and E7_,) are quite small, no
rounding error is introduced in computing E% — EX™!, E%,, —~ E% and E} — E_,. The first
add in Formula 3 is the operation which introduces the most rounding errors; compensated
summation (see lecture 9) can be used to circumvent this problem, and it is implemented
in Formula 4.

It takes a certain amount of experience and expertise in floating-point arithmetic to
determine where rounding errors will occur in the four formulae; what most people see are
simply algebra. The ability to predict the consequences of one’s deeds requires the expertise
to see these invisible rounding errors.

The results produced by the four formulae are quite astonishing; the experiments were
performed on an IBM 3090. When a positive pulse (pulse with positive amplitude) was
introduced into the medium, Formulae 1-3 produced negative pulses; the pulse for Formula 1
was more negative than the one for Formula 2, which in turn was more negative than the
one for Formula 3. Consequently, one would say that Formula 2 is better than Formula 1,
but if one does not know the correct answer apriori, how does one know that one is better
than the other and they are all wrong? Afterall, the pulses seemed nice and smooth. The
difference in the pulses is a result of the difference in patterns of rounding errors. Formula 4
produced a pulse which did not have a negative amplitude, which is correct. For a person
who is not acquainted with the physics of pulses there is no reason for him to suspect that
Formulae 1-3 produced incorrect solutions.

An interesting observation is that if the computations were performed to the resolution
of the graph, all four formulae produced the correct solution. This implies that rounding
on the IBM 3090 was biased. For machines which are truly unbiased, like machines which
conform to the IEEE standard (Apple Macintosh, Sun), or which are almost unbiased (DEC
Vax) the law of averages is in their favor, irrespective of the formula used. An important
point about the IEEE standard is that, on the whole, we tend to get results which are
at least as good as those obtained from other machines of comparable capacity (precision,
memory, ...), yet the cost incurred is not that great.

2.2.2 Monotonicity.

Monotonicity simply means that if the data are altered, the results change in the correct
direction, if they are supposed to change. This property can actually persevere even if the
results are not what we expect, that is, even if the number of correct figures in the results
is less than desired, monotonicity is preserved.

Monotonicity is a very important property because it is transitive on composition. Con-

sider
h(z) = g(f(z)).

If f() and g() are both monotonic then A() is also monotonic. If f() and g() are both
accurate, k() is not necessary accurate because the result of f() may cause the input of g()
to change by very little, but sufficiently large to destroy the accuracy of the final answer.
Therefore, accuracy is not a transitive property. The fact that accuracy do not persevere
when programs, which produces accurate results separately, are composed is one of the
reasons why the ACRITH system does not work as well as desired.

!Reasonable machines do not include the CRAY or the CDC.
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In practice, the situation is more interesting than we would like. The function

f(z) =z - sin(z)

is monotonic since

fl(z) = 1- cos(z)
= 2sin%(z/2)
> 0

which implies that f(z) increases monotonically with z. Let F((X) be the computed value
of f(z) when z = X. Assume that the trigonometric function sin(z) is correctly rounded
for all z. Is F(X) monotonic? The result is quite surprising : ’

Number of significant Is it
digits (decimal) monotonic?
4 Yes, no exceptions
5 one exception at 0.010000
6 one exception at 0.100167

How can we anticipate such counter-intuitive results? Interested readers should try to prove
the results and find out what happens in binary. This example is an instance where our
intuitions do not survive a few rounding errors.

If we have a program which works correctly in theory and in practice, it must be trea-
sured. Such a program is very valuable and should be usable by others without having the
proof for correctness destroyed by somebody who would rather save a few milliseconds by
cutting corners thereby sacrificing accuracy. These correct codes correspond to commodities
that an engineer can buy with the greatest confidence that they’ll work as expected.

In the world of floating-point, even the smallest probability of failure should not be
tolerated (see Lecture 1). If floating-point operations were to fail on one occasion in a
million, then with current computers, we’ll have a failure every second. Therefore, we must
subject ourselves to an extremely high standard of reliability; otherwise people will waste
their time debugging our software.

3 Consideration for the Interests of Others.

Even though many people consider floating-point arithmetic to be a matter of mathematics
and should therefore be predictable, they fail to see that mathematics is a game where
mathematicians play with whatever rules they like. There is no mathematical law that
obliges you to stick with any other mathematical law. He who plays the game may choose
and change its rules.

When we have to work together in a community, since we depend on the work of others,
we must be considerate and choose mathematical rules with due regard to what others
expect. Otherwise, what may seems like a change of mathematical rule to us becomes a
capricious change that introduces an element of unreliability for others.
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j<0 |j=0]|5>0
zin X (1/z)~? 1 zd
z 1s NaN T

Table 1: Exponentiation z¥ with y = integer j.

y=-00 | —co<y<0|0<y<+o0 |y=+00
z< -1 +0 400
r=-=1 NaN *
-l<z<0 |
z=0 +00 +o0 ¥ | +0
0<zr<l1 )
z=1 NaN * exp(y - In(z)) NaN *
1<z < 4+x
T=+0 +0 | +o0
z is NaN z

Table 2: Exponentiation z¥ with y # integer.

3.1 Exponentiation zV.

We had a lengthy discussion in lecture 24 on what the values of z¥ should be. Should
0° = 1? What about NaN?? Tables 1 and 2 are intellectually economical specifications for
exponentiations z¥.

In the specifications, much care was taken to ensure that the results of exponentiation
can be extended smoothly to the complex domain, even though we are working with real
numbers. Consequently, a NaN is obtained when a negative number is raised to a fractional
power because if we had obtained a real result we would have encountered problems when
we deal with complex numbers.

Although Table 2 appears complicated, the code to implement it isn’t. Whenever we
cross a line in the table, we cross a singularity : a singularity is a boundary between domains
of analyticity where everything on one side follows a set of rules while those on the other
side follows another. Fortunately, most of the boundaries are not reflected in the code by
the usual tests and branches because they are taken care of by exp() and In(). All entries in
the table, except (z < 0)%*, 0(¥>9) and 0~ are produced automatically, including signal
marked by *, by the expression exp(y - In(z)) provided it is evaluated in 2 way analogous
to the specifications of the IEEE standards. Thus, despite the need to handle infinities
and NaNs, the code needed to implement z¥ is actually quite simple, while other models of
arithmetic require the users to handle exceptional values by themselves.

For people who do not have the perserverence to handle all the details of what to do in
each domain of analyticity, rectrospective diagnostic is a useful tool (see lecture 25). Rectro-
spective diagnostic allows the users to provide whatever values they feel are reasonable for
exceptional cases, but record these exceptional events in a rectrospective log. Since these
are exceptional events, usually there won’t be any entry in the log. but when exceptional
events occur, the users can investigate further.
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3.2 Maximun max(z,y).

This is an example simpler than exponentiation to illustrate some of the difficulties which
cannot be solved by simply waving a mathematical wand. It is hard to imagine that there’ll
be difficulty defining the maximun of two numbers, but it’s more complicated than most of
us would expect.

One way to implement max(z,y) is by

(z+y)+z -yl

2
which is short and simple, and is often used. This implementation works well if there’re no
rounding error or over/underflow. But even for integers, it can malfunction since integers
can overflow. For floating-point numbers, it can malfunction in lots of interesting ways. For
instance, if z = —10%° and y = 5 and double precision numbers are used,

max(z,y) =

z+y=-10° and |z-y|=+10%

so max(z,y) = 0! The formula malfunctioned because of rounding errors.
Another implementation of max(z,y) is

max(z,y)= ifz2 >y thenz
else y

but it does not work correctly for certain operands :

max(NaN,5) = 5
max(5,NaN) = NaN

This is a rather bizzare situation because a different result is produced when the two
operands are swapped. The reason for the strange behavior is because any predicate which
involves <, <, > or > is false when either of the operands, or both, is a NaN. 2

The code below functions properly for all operands :

max(z,y) = if z # z then y
else if 27 > y then =
else y

The predicate “z? > y” is true when ¢ > y or when either z or y, or both, is a NaN, and
the predicate “z # z” is false only when z is a NaN. Now

max(NaN, 5) = max(5,NaN) = 5

which is acceptable by most people, although some people argue that if NaN is not a number
(literally), how can we say that 5 is greater than NaN? The point is that the result can
be either one, but it must be consistent. There is no proof that 5 (or NaN) is correct, but
experience (such as windowing applications) indicates that 5 may be a better choice.

Another problem spot for max(z,y) is when the arguments are +0 and —0. The values
of max(+0,—0) and max(—0,40) are arithmetically equal, but they may be represented by
different bit strings. It would be a good idea to have the maximun function implemented in
hardware, which uses lexical comparison of bit strings, such that +0 > —0 lexically. In fact,
both max(z,y) and min(z,y) should be implemented in hardware since it is much faster
than software implementations.

2The invalid operation flag is signaled. so presumably the user can use this flag to circumvent the problem.
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4 Inevitable Conflict : Speed Versus Reliability.

Speed and Reliability are two qualities most commonly used to determined the performance
of a computer system, but unfortunately they are often conflicting properties. Most people
value reliability no higher than the price of the insurance premium paid to insure against
the consequences of unreliability. On the other hand, there are some people who feel that
reliability is so important that they make sure others pay attention to it by instilling fear
in unreliability.

Actually numerical computations are extremely reliable, all things considered, and much
of the reliability come about because they really do not matter, that is, a large fraction of
numerical computations, correct or incorrect, are discarded unread. Until there is an error
serious enough to be noticeable will the users be aware of the unreliability. Consequently,
unreliable computations very often do not upset us because they do not sufficiently hurt us
or their existance passed by unnoticed.

The issue of speed versus reliability should be dealt with in a rational, though not
necessary uniform, manner so that we can predict the consequences of the computations.
These decisions should be made with intellectual economy, economy of effort and humane
use of human talent in mind.

Unfortunately, if something is unreliable, then somebody will be blamed for it. This is
one of the reasons why some people consider the speed versus reliability issue a moral issue
because they believe morality is a question of deciding whom to blame. This is a common,
but incorrect, view. It is so common because if we can determine who to blame, we know
who is responsible for changing things.

Programmers usually bear most of the blame, but this is usually unjustified because
the environment in which he live is so intellectually unmanageable and is full of anomalous
diversity, incoherent standards, non-uniform implementations, “optimizing” compilers, fee-
ble diagnostic aids (especially at run-time), cumbersome text-processing, and chaotic I/O
and graphics. Things have gotten increasing complicated to the point where programmers
would have to be much better educated than they have been or will be in the near future.
There is such a deversity that if programmers were really professionals they would have to
know about the arithmetic on several machines. How many programmers do you know who
is knowledgeable in the arithmetic of more than one machine?

At present, there is such diversity in languages, arithmetic and exception handling
among commercial computers, so it is not reasonable to blame the programmers if something
do go wrong. Read lectures 21-23 to determine for yourselves how some current commercial
machines deal with exception handling.

4.1 Horrors Programmers Encounter.

In lecture 26 we discussed how programming costs are exaburated when a programmer most
conform to Stan Brown’s model. In particular, we saw this example :

f(z) = if z > 1 then -arctan(ln(z))/arccosh(z)?
else if r = 1 then —-0.5
else arctan(In(z))/arccosh(z)?

This seems like a simple task but if it is written in the obvious way, we’ll encounter anomalies
on certain machines. If this code, transcribed in any language, is executed on machines like
the IBM 370, the DEC Vax or machines which conform to the IEEE standard 754, the
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relative error bound is small for all arguments. If we want to predict the error bound using
Stan Brown’s model, the bound is very pessimistic; in fact, for certain arguments, like those
near r = 1, the bound approaches infinity because this model makes allowance for machines
like the CRAY, the Cyber or the UNIVAC. On these machines something bad could happen
near z = 1 as a result of cancellation errors.

If a programmer wants to write a portable code for the above task and if he is restricted
to using Stan Brown’s model, then he must figure out, at great time expense, a special
Taylor series for f(z), so that bad things do not happen near z = 1. If in the vacinity of
z=1

1, (z=-1) (z=-1) 124(z-1)°
e ==+~ "~ e T
is used instead of the usual formula, then the error bound near 2 = 1 are suppresed.
Consequently, the error bound for Stan Brown’s model is more manageable now, although
still very pessimistic.

This example illustrates a situation where the reward for the diligent extra efford on
the part of the programmer is a program which is less accurate than the original code
executed on IEEE machines. If the modified code is executed on an IEEE machine, the
best error bound is actually worse than that of the original code executed on a similar
machine. This means that in the process of writing a portable code, the performance on
reasonable machines is penalized.

4.2 Effect of the IEEE 754 Standard on Reliability

The IEEE standard 754 is now the most widely adopted design for a family of floating-point
arithmetic computers. Last year (1987) there were over 8 million machines which conform
to the standard, but the count is probably much higher now because there are more chips
conforming to the standard.

The standard is appreciated most by people who used to devote a part of their youthful
exuberance dealing with the lack of arithmetic uniformity among the various machines.
Fortunately now there’s a surprising degree of uniformity as a result of the standard. Among
the chips which conform to the standard are :

Intel 8087, 80287, 80387 (IBM PC, XT, AT, ...

Motorola 68881, 68882 (Sun III, new Macintosh, ...)

AT&T WE 32106 (AT&T and Zilog systems)

National Semiconductor 32081 (IBM RT-PC, ...)

Weitek 1164/5 (Sun III Floating-Point Accelerator, ...)

Because of the widespread adoption of the standard, arithmetic is much more uniform and
the consequences of our deeds are more readily predictable.

4.3 What does the IEEE 754 Standard Confer upon You?

Figure 2 shows a consequence of the clear-face presented by the IEEE standard, which
has so few anomalies. Any numerical software, portable to any two of the three machine
families (IBM 370, DEC Vax and CDC Cyber), will almost certainly run at least as well
on any machine that conforms to IEEE 754 with comparable capacity (speed, memory and
precision). No existing arithmetic design can make this claim, though DEC Vax F-G-H
formats can come close with appropriate software support.
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Figure 2: Importability of “portable” software.

As more machines conform to IEEE 754, more software will be designed specifically for
them. Therefore, we will have access to a growing body of superb software designed to run on
IEEE 754 machines, but difficult or impossible to adapt to other machines. Examples of such
softwares are statistical packages that exploit IEEE 754’s NaN for missing or uninitialized
data.

4.4 Computer Software Support.

Computer software support are essential for the development of more sophisticated soft-
wares, but unfortunately the software support situation is not satisfactory on some ma-
chines.

4.4.1 Signed Zero.

In lecture 24 we discussed the situation where some machines do not support signed zero.
It is important to have both +0 and —0, otherwise strange things will happen. When both
+0 and —0 exist,
R A S
(+0) © (-0) '
This relation, which is not true if —0 is represented as +0, must hold or the program for
comformal maps of slitted domain (discussed in lecture 24) will not work. When we attempt
to plot the graph of conformal maps on an IEEE machine (has signed zero) everything works
well, but on non-IEEE machines without signed zero part of the slot’s boundary goes astray.
It is a shame that so few implementations of computer arithmetic have signed zero,
especially when we are in an era when one of the main application using complex arithmetic
deals with conformal maps.

4.4.2 You Don’t Always Get All You Bought.

There are things which we don’t have, though we’ve paid for them. For instance, we still
do not have good extended precision capabilities. Borland’s PASCAL compiler on the
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IBM PC has facilities to access the Intel 80-bit extended precision format, but most other
compilers, such as Microsoft’s, do not provide such capabilities. Therefore, very often we are
denied access to extended precision capabilities even though we’ve paid for them. Extended
precision numbers are very useful for matrix operations like iterative improvement.

Another two features missing in most compilers are convenient exception handling capa-
bilities and tools for providing directed rounding. Exception handling and directed rounding
are useful in the development of some software like those for stability analysis.

All the features described above are accessible on the Macintosh because of Apple’s dili-
gent supervision of higher-level language implementations. Convenient exception handling
and directed rounding are also available on the Sun.

5 Major Tasks Remain.

There are still several major tasks remaining which need to be addressed, and some of them
are :

1. Computer scientists, especially compiler writers, need to be made aware of the issues
they affect by better educating them on floating-point issues.

2. Good exception handling capabilities need to be implemented: implement rectrospec-
tive diagnostic to ease debugging of purchased code; implement presubstitution to
alleviate dependence upon precise interrupts; and permit vast exponent range exten-
sion in certain very special contexts.

3. The provision of benchmark with diagnostic capabilities. When performing bench-
marks, this capability aids us to determine the things about our systems the bench-
marks do not like.

Problems 2-3 are technical problems where solutions are now in sight, but problem 1 is
political in nature, and therefore refractory.

So far most of the work have been done by very few individuals. We need to devote
more attention to floating-point research, but funding agencies are more interested in “sexy”
machines, such as supercomputers and parallel machines, many of which have very perverse
arithmetic.
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ExpTable July 27, 1988

INTELLECTUALLY EcConomica L

Specifications for Exponentiation x”
over the Extended Reals X :

W. Kahan

EXPONENTIATION x” with y = integer

L, B ¢ ) 3 =0 1 3>0
' ——— - ! ’ -
(] [ 1] [}
x in X N & 4 2 R H x? .
- l_ ____l j t e e - ]
1 [ 1} 1]
x is NaN | x H ' b4 H
---------- $mmmm e e b ———— -t

EXPONENTIATION xv with y # integer

o A G B Bt B Bt P Bt Bt Bt Ao s B -~ o ~ o o A Pt A B B Bt B Pt P2 P B Pt

L] ]
‘ '
' | e rrm: s '
x =0 ‘ +0 ' +T X ! +0 '
------------ : et i £ :
0 <x <1 ‘ H .
———————————— | | ————————
x =1 ' NaN x | exp( y*ln(x) J H NaN x |
——————————— | m————————— | —————————
1 < x < +9 | H h '
———————————— H aalat D D it £ ‘
X = +& H +0 ' +00 '
------------ D e T T ST,
x is NaN | b's :

+

All entries in this table except (x<0)=*, 0‘*’°’ and 0" are
produced automatically. including the signals where marked by an
* . by the expression exp( y*lnlx) ) provided it is evaluated
in a way analogous to the specifications of the IEEE standards.
and then the expression exp( NaN#lni(x) ) quietly produces NaN
for x"** too. In the previous table 1/0 signals DIVBZ .

JEEL 754 does at (rast about as well as ...
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NEVER, ha.w'n.j to Saqy “Sorry "
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2

0—25 Tve PROGRAMME R
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( Dante )
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BLAME?... WHAT StrouL> Bt CHANGED ?



- JNTELLECTUALLY
' UNMANAGEABLE
AND ANOMALOUS

DIVERSITY.

APPLICAT ONS. The nrodern

Tower of Babel/

Z;)co/lerent’ St'aadar/;
/ywum}/orm -z«f/emehﬂﬁéa; .
,r LN . A1} -
Opf/#}/zny Co »v,af/er‘s .
Feeble Diagnostic Ads,
es/)eee'a/é a¥ Run~Tiwre.
Cumbersome Text- Proces:/'ay .
Chaotecé I/O) 31":1/)/!62‘5 .

A/arc?war?




caee Lo R B ¥ IR B N W i e e LAY alg 100

Jean—Michel Muller's Example

From his forthcoming book ARITHMETIQUE DES ORDINATEURS 1t

Qo = 11/2

a, .= 61/11

Aney = 111 = ( 1130 = 3000/@n-1 )/aa

This should generate a sequence { a. 2 that converges slowly

to 6 . but when computed i1n floating-point on any comput.. . -

only finite precision the computed sequence converges rapidly to
100 instead.

B39 16 I I I W U6 T I I I T I I W I AT

W. K. s example:

An example of a singularity removable numerically only if the
computer s arithmetic carries a gquard digit in subtraction:

Real function {( real z ) =
if z < Oorz > 1 then 0/0Q
else if z = 1 then -0.35
else arctan. lniz? J/arccoscz)® .,

]

The function has a power series expansion near = 1 :

fdz) = -0.3 + (z=1)/&6& — (z-1)2/20 — 1232-1)3/945% + ... .
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Exampere (oversimpre but TYPLCAL)
to shoew hoew Pt‘ojmmm:nj cosls are erxacerbated

when a prog rawmer MusT conform o Brown's /dth/’

T 2> 4 then —amtancaen(x))/qrzcosh(x)z

£ loe =
else tf > = ( +hen - 0.5
else avctan ( €n (2)) /4"6603(3\')9" -
Best evvor T P
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Loy 1 = if 22> 14T +hen —avctan (Pn/x))/arcc:osly(w)z

else tf 22 > (=T +hen

T iz e Threshdd dependeut vpon veundofC level ...

L' % +(e=00/6 = (x-00/20 ~ 124:(x-1) /945..,

-,

else F 23>0 +then -arcfau (ln/x))/arccosﬁr)z

2lse ... P"ERpLPoOR"

-2/
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& L}
arctcos(z) —e arccos /x.r Szx7
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« IEEE MICRQ , Aug.198¢ pp. 86—100
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WHAT DoesS IEEE 754 CoNFER upov You ?

/
TMPORTABILITY of ‘Portamre" soFTwARE
T6m 370 Ak )
yec Y Ay nuwmencal soffware ,
Por‘i'abl-e to any “+wo of the ~ane.e

machine f’uml‘//.es
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JEEE must alwmest certnm'n{y vun at least
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cDc cvBers comparable capae?fj ( speed,

memory , Pret?sl.on(s) ) .

No orHER EXISTING ARITHMET/c DPESIGA CAN MAKE TH/S

clAam, {-hcujk DEC VAX F~&-{~ formats cawn come clese
with appmpm'afe ( vien ~DEC) sefrwvare supporf.

2, Access z(o R jr‘own\cf Aoa_’y o/’ .sa,oeré $o)c7‘war~e

O‘esfjmea(’ Yo run on JTEEE 754 but difficull or
I‘Mfoss'/‘le %o aalqo?‘éa ofher wmachivec.

e.q9. -~ S‘}uﬁ‘s*tc'a./ Pdckdfe,t )"Aa‘/‘ %P/o:f (EEEC 75 ¢ s Ala A/
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— «.23 BSD Ber/<a/ej UNIX Math. ll'él‘ar_y of
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one h’bv—ary fo VAX D,

one l;ém-'j kr JEE&— 75 4 Dauéle

—  Stabfe versions of “listable A(ﬁor%ms
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hP 2000
B 6500
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tw pese s No Ly /T R xcep? oueo/auJerf/ow
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