
Floating-Point Indoctrination: A Summation 

During May-July 1988, Prof. W. Kahan of the University of California pre.,ented a lecture course on 
Computer System Support for Scientific and Engineering Computation at Sun Microsystems in Mountain 
View, CA. To summarize this course, Prof. Kahan will present a final lecture, at 7:30 PM on Thunday, 28 
July 1988, at Apple Computer's DeAnza-3 Building, 10S00 N DeAnza Boulevard, Cupenino, CA. Enter 
from the south side. 

This final lecture is free to the public. Please publicize to interested colleagues. 

ABSTRACT 

Most scientific and engineering computer users consider irrelevant the details of floating-point bardwue implementation, compiler 
code generation, and system exception handling. until some anomalcus behavior confronts them and prevents the satisfactory comple
tion of a computational task. Some of these confrontations are inevitable consequences of the use of finilC-pleCision floating-point 
arithmetic; others are grablitous results of hardware and software designs diminished by the designers' well-intentioned comer-cutting. 
Distinguishing the intrinsic from the grablitous is no simple matter; such chastened computer users are not sure what they might rea
sonably demand of computer system purveyors. 

The novice's impression that there is no myme nor reason to the dark mysteries of floating-point computation is sometimes superseded 
by a euphoric discovery that there is a good deal that can be axiomatized and proven aboot floating point; later experience may temper 
such a discovery by indicating that not everything that can be axiomatized or proven is worth the trouble. Furthermore, what would be 
worth knowing is often surprisingly difficult to encapsulate and refractory to prove; even when cam subproblem of a realistic applica
tion permits a satisfactory enor analysis, the overall problem may admit no such analysis. The proofs of simple stalcments about algo
rithms or programs often require machinery from Olher pans of mathematics far more elaborate than expected. Thus 101DC of the 
mathematically inclined who become involved in these studies, out of external necessity, then become pel'Dlll1eady lidelracted by 
intricate mathematical issues. To remain relevant, a sense of engineering economy must guide such studies, in order to distinguish the 
things that are worth doing, and therefore wonh doing well, from those that aren'L 

Over the neady twenty years since this lecblre course was first presented, the software environment has gradually deteriorated despite 
that hardware has improved. The software deterioration may be attn"butable to the establishment of Computer Science as a separate 
academic discipline, whose graduates need have linle acquaintance with ICientific compdati011. The hardware impovement can be 
principally aan"buted to the advent and accepeance, for most microcomputcn, of the ANSI/IEEE Standards 7S4 and 8S4 for floaling
poiat arithmetic. But some of the potential benefits of those standards are lost because 10 much softwale was and ii wrilteD to exploit 
only those few worthwhile features common to almost all commercially lipificant Wiling l)'ltCmS. In fact. much portable 
mathematical software, created with funding disecdy or indirecdy from American taxpayen, is crippled by a misguided quest for per
formance on the fastest existing supercomputers regardless of detriment to far more numerous mini- and microcamputers. 

Well-intentioned auempts by language architects and standardizing bodies to ameliorate some of the diffimllies encou.atemd in 
floating-point computation have too often exacerbated them and, in ane instances, spread over them a fog caused by Oltellll"bly 
insignificant variations in the definitions of woms with otherwise familiar connotaliom. What we need now is a meume of comcna:ua 
on language-independent definitions of needed functionality, even if we must l&Clitice 10111C compall"bility with put practice to achieve 
intellec&ual oconomy in the future. Alas, few professionals will pay lbe praent com of incompllibility with put errors to achieve 
gains promised for an ind~tenninate future. The computing world has too many bmtcn promilCI l\llting in its buemenL 

One of the anticipated outcomes of this course is that lecture ncus will evmlUllly be published retlecaing c:unenl thinking on 101DC of 
these issues. In addition a group of Sbldents has undertaken to improve the implementation of cenain elementary llaDscelldental func
tions to a better standard than has been customary. 

summation 1.3 88/07/14 



Computer System Support for Scientific and Engineering 
Computation 

Lecture 27 - July 28, 1988 (notes revised June 14, 1990) 

Copyright ©1988 by W. Kahan and Shing Ma. 
All rights reserved. 

This is the final lecture of the floating-point indoctrination lecture series, and it is mostly 
a summary of the materials presented in the course. 

1 Is Floating-Point Arithmetic a Moral Issue? 

Floating-point arithmetic has often been viewed by many as a moral issue instead of a 
technical issue because there many analogies between them. Some of the analogies, listed 
in the order of importance, are: 

• Due allowance for consequences. 

• Consideration for the interests of others. 

• Deference to custom. 

• Deference to authority. 

• Informed choice. 

Any decisions which make no allowance for consequences cannot be considered as moral. 
In the floating-point arena, estimating the consequences of our deeds can be more compli
cated than we expect. Although this task appears to be quite straight-forward, as floating
point arithmetic is often perceived as merely a matter of mathematics, it is far from the 
truth. It would be simple if we knew which mathematics is germane, but this is not so 
because computers vary so much, and for the same computer, compilers differ too. Conse
quently, predicting the consequences of our deeds in floating-point arithmetic is immensely 
difficult. 

The next most important moral issue in floating-point arithmetic has to be consideration 
for the interests of others. In the world of floating-point the interest of others tends to have 
been entrenched for so long and to be so diverse that the issue is really a matter of deference 
to custom. In the computing world, this is most often referred to as compatibility. 

Another anology between floating-point arithmetic and moral issues is the deference 
to authority. In the arena of floating-point, it is difficult to identify who the authorities 
are. Suppose we can somehow identify them and we solicit their opinion on any interesting 
floating-point issue, there'll probably be more opinions than there are people. As it is 

1 



Lecture 27 - July 28, 1988 (notes revised June 14, 1990) 2 

IEEE 754 DEC Vax IBM 370 CRAY CDC 

Stan Brown's model 

Figure 1: Models of floating-point arithmetic. 

so difficult to accept anybody's opinion, there is no reason why a person should keep his 
opinion constant over a reasonable period of time. 

The bottom line of this discussion is really a matter of informed choice because each of 
us should be able to make proper decisions, whether on technical or moral issues, without 
any deference to authority except our own intelligence, but with due regard for deference to 
customs. Deference to customs is important because it determines what people expect. We 
must bear in mind that our ultimate goal is reliability, not moral rectitude. To be reliable, 
we ought to do things in accordance to people's expectations. 

2 Due Allowance for Consequences. 

2.1 Models of Floating-Point Arithmetic. 

How can we estimate the consequences of our deeds? We have discussed the various models 
of floating-point arithmetic in previous lectures. Stan Brown's model, which has been 
adopted by ADA and ANSI C, was discussed in Lecture 26 and Kulisch-Miranker axioms 
were discussed in K ulisch 's lecture. The principles of operations of various commercial 
computers, such as the IBM 370, the DEC Vax and the CRAY, have been discussed in 
preceeding lectures. 

In the past, a small number of computer companies dominated the floating-point world, 
so floating-point arithmetic was defined by these few companies. At present there is a stan
dard more widely adopted than any single design; in fact, it may be more widely adopted 
than all the other designs combined. The widespread adoption of the IEEE standard 754 
came as a pleasent surprise to many people, especially to those people involved in mathe
matical software, because the standard is quite difficult to implement. 

The IEEE standard is difficult to implement because it presents such a clear face (see 
Figure 1) to the user, with very few anomalies, and has a number of features not available 
in most other machines : infinities and denormalized numbers ( each feature represented by 
a '"ear'' in the figure). On a Vax, infinities and denormalized numbers are not available 
and it has some exponent limitations; besides these descrepencies, the Vax has very good 
arithmetic. The IBM 370 is quite peculiar mainly because it uses hexadecimal radix. On 
a CRAY, the arithmetic is appalling: the lack of a guard digit results in a slowdown in ~ 



Lecture 2i - July 28, 1988 (notes revised June 14, 1990) 3 

double precision arithmetic by a factor of about 50 instead of about 5 to 10 in most other 
reasonable machines. CDC also lacks a guard digit, but in a different manner, such that 
there are anomalies in its denormalized numbers; it has infinities, though. 

If we have a model, such as Stan Brown's model, which is supposed to explain what 
a machine will do in mathematical terms that are sufficiently general to encompass all 
machines of commercial significance, then we have a. model that describes, in some sense 
intrinsically, the things we cannot do in general. The reason is that if we use a particular 
machine and encounter any of its anomalies, something bad will happen to our program. 

Stan Brown's model is designed to prove that a program is correct so that we can predict 
the consequences of our deeds. We can only do such a prediction if we avoid the union of all 
the anomalies of the machines encompassed in the model, as well as some other anomalies. 
So Stan Brown's model, designed as a tool to aid us, turns out to be the principle of 
operations for a machine worse than any that has been built. It is particularly sad that this 
model has been incorporated into ADA and ANSI C by people who sincerely believe that 
it'll lead to portability of code when, in reality, it'll result in our inability to prove if a code 
is correct because we don't have a categorical description of the mathematics used. 

2.2 Surprising Consequences Abound. 

Even if we have a categorical description of the mathematics for our arithmetic model, we 
can still encounter various surprises. It is possible to be astonished by simple computations, 
two of which are shown below. 

2.2.1 A Stripline Model. 

A pulse is introduced in a medium (a string, for instance) and as this pulse travels along 
the medium, it broadens due to dfspersion. Let's consider the simplest model, that is, one 
where there is no dispersion. This pulse can be modeled by the partial differential equation 

82E 82E --=c2 __ 
8t2 8x2 

which when discretized yields (let ~ ~ 10c) 

The various ways to compute E!:t1 are : 

Formula 1: 
Formula 2: 
Formula 3: 
Formula 4: 

Formula 1 appears to be economical because the constants can be computed in advance and, 
therefore, the amount of arithmetic is minimized. Minimizing the amount of arithmetic 
would lead one to conclude that the amount of rounding errors is minimized too, but 
this is not true. Formula 2, which is found in some textbooks, is a rearrangement of 
Formula 1, but Formula 3 is actually superior to Formula 2 because when two numbers are 
close together and one is subtracted from the other, no rounding error is introduced (on 



Lecture 27 - July 28, 1988 (notes revised June 14, 1990) 4 

reasonable machines). 1 Since the values at a certain time and the next (like E;-1 and E;) 
and those of neighboring points (like E!.+1 and E~ or E!: and E;_i) are quite small, no 
rounding error is introduced in computing E! - E;- 1

, E;+l - E! and E! - E!_1 • The first 
add in Formula 3 is the operation which introduces the most rounding errors; compensated 
summation (see lecture 9) can be used to circumvent this problem, and it is implemented 
in Formula 4. 

It takes a certain amount of experience and expertise in floating-point arithmetic to 
determine where rounding errors will occur in the four formulae; what most people see are 
simply algebra. The ability to predict the consequences of one's deeds requires the expertise 
to see these invisible rounding errors. 

The results produced by the four formulae are quite astonishing; the experiments were 
performed on an IBM 3090. When a positive pulse (pulse with positive amplitude) was 
introduced into the medium, Formulae 1-3 produced negative pulses; the pulse for Formula 1 
was more negative than the one for Formula 2, which in turn was more negative than the 
one for Formula 3. Consequently, one would say that Formula 2 is better than Formula 1, 
but if one does not know the correct answer apriori, how does one know that one is better 
than the other and they are all wrong? Afterall, the pulses seemed nice and smooth. The 
difference in the pulses is a result of the difference in patterns of rounding errors. Formula 4 
produced a pulse which did not have a negative amplitude, which is correct. For a person 
who is not acquainted with the physics of pulses there is no reason for him to suspect that 
Formulae 1-3 produced incorrect solutions. 

An interesting observation is that if the computations were performed to the resolution 
of the graph, all four formulae produced the correct solution. This implies that rounding 
on the IBM 3090 was biased. For machines which are truly unbiased, like machines which 
conform to the IEEE standard (Apple Macintosh, Sun), or which are almost unbiased (DEC ~. 
Vax) the law of averages is in their favor, irrespective of the formula used. An important 
point about the IEEE standard is that, on the whole, we tend to get results which are 
at least as good as those obtained from other machines of comparable capacity (precision, 
memory, ... ), yet the cost incurred is not that great. 

2.2.2 Monotonicity. 

Monotonicity simply means that if the data are altered, the results change in the correct 
direction, if they are supposed to change. This property can actually persevere even if the 
results are not what we expect, that is, even if the number of correct figures in the results 
is less than desired, monotonicity is preserved. 

Monotonicity is a very important property because it is transitive on composition. Con
sider 

h(x) = g(f(x)). 

If J() and g() are both monotonic then h() is also monotonic. If f () and g() are both 
accurate, h() is not necessary accurate because the result off() may cause the input of g() 
to change by very little, but sufficiently large to destroy the accuracy of the final answer. 
Therefore, accuracy is not a transitive property. The fact that accuracy do not persevere 
when programs, which produces accurate results separately, are composed is one of the 
reasons why the ACRITH system does not work as well as desired. 

1 Reasonable machines do not include the CRAY or the CDC. 



Lecture 27 - July 28, 1988 (notes revised June 14, 1990) 

In practice, the situation is more interesting than we would like. The function 

f(x) = x - sin(x) 

is monotonic since 

J'(x) = 1- cos(x) 

= 2sin2(x/2) 

2: 0 

5 

which implies that f(x) increases monotonically with x. Let F(X) be the computed value 
of J(x) when x = X. Assume that the trigonometric function sin(x) is correctly rounded 
for all x. Is F(X) monotonic? The result is quite surprising : 

Number of significant 
digits ( decimal) 

4 
5 
6 

Is it 
monotonic? 

Yes, no exceptions 
one exception at 0.010000 
one exception at 0.100167 

How can we anticipate such counter-intuitive results? Interested readers should try to prove 
the results and find out what happens in binary. This example is an instance where our 
intuitions do not survive a few rounding errors. 

If we have a program which works correctly in theory and in practice, it must be trea
sured. Such a program is very valuable and should be usable by others without having the 
proof for correctness destroyed by somebody who would rather save a few milliseconds by 
cutting corners thereby sacrificing accuracy. These correct codes correspond to commodities 
that an engineer can buy with the greatest confidence that they'll work as expected. 

In the world of floating-point, even the smallest probability of failure should not be 
tolerated (see Lecture 1). If floating-point operations were to fail on one occasion in a 
million, then with current computers, we'll have a failure every second. Therefore, we must 
subject ourselves to an extremely high standard of reliability; otherwise people will waste 
their time debugging our software. 

3 Consideration for the Interests of Others. 

Even though many people consider floating-point arithmetic to be a matter of mathematics 
and should therefore be predictable, they fail to see that mathematics is a game where 
mathematicians play with whatever rules they like. There is no mathematical law that 
obliges you to stick with any other mathematical law. He who plays the game may choose 
and change its rules. 

When we have to work together in a community, since we depend on the work of others, 
we must be considerate and choose mathematical rules with due regard to what others 
expect. Otherwise, what may seems like a change of mathematical rule to us becomes a 
capricious change that introduces an element of unreliability for others. 



Lecture 27 - July 28, 1988 (notes revised June 14, 1990) 6 

j<O j=O j>O 
:r in X (l/x)-3 1 x' 
xis NaN X X 

Table 1: Exponentiation x 11 with y = integer j. 

y = -oo I -oo < y < 0 I O < y < +oo I y = +oo 
X < -1 +o +oo 
X = -1 NaN* 

-1 < X < 0 
z=O +oo +oo * I +o 

O<x<l 
X = l NaN• exp(y • ln(z )) NaN• 

1 < :r < +oc 
X = +oo +o I +oo 
:r is NaN X 

Table 2: Exponentiation xY with y-:/; integer. 

3.1 Exponentiation xY. 

We had a lengthy discussion in lecture 24 on what the values of x 11 should be. Should 
o0 = 1? What about NaN°? Tables 1 and 2 are intellectually economical specifications for 
exponentiations xY. 

In the specifications, much care was taken to ensure that the results of exponentiation 
can be extended smoothly to the complex domain, even though we are working with real 
numbers. Consequently, a K aN is obtained when a negative number is raised to a fractional 
power because if we had obtained a real result we would have encountered problems when 
we deal with complex numbers. 

Although Table 2 appears complicated, the code to implement it isn't. Whenever we 
cross a line in the table, we cross a singularity : a singularity is a boundary between domains 
of analyticity where everything on one side follows a set of rules while those on the other 
side follows another. Fortunately, most of the boundaries are not reflected in the code by 
the usual tests and branches because they are taken care of by exp() and In(). All entries in 
the table~ except (x < 0):1:00

, 0< 11>0) and 0-00 are produced automatically, including signal 
marked by •, by the expression exp(y • ln(z)) provided it is evaluated in a way analogous 
to the specifications of the IEEE standards. Thus, despite the need to handle infinities 
and NaNs, the code needed to implement zY is actually quite simple, while other models of 
arlthmetic require the users to handle exceptional values by themselves. 

For people who do not have the perserverence to handle all the details of what to do in 
each domain of analyticity, rectrospective diagnostic is a useful tool (see lecture 25). Rectro
spective diagnostic allows the users to provide whatever values they feel are reasonable for 
exceptional cases~ but record these exceptional events in a rectrospective log. Since these 
are exceptional events, usually there won't be any entry in the log. but when exceptional 
events occur, the users can investigate further. 



Lecture 2i - July 28, 1988 (notes revised June 14, 1990) 7 

3.2 Maximun max(x,y). 

This is an exa.mple simpler than exponentiation to illustrate somP. of the difficulties which 
cannot be solved by simply waving a mathematical wand. It is hard to iruagine that there'll 
be difficulty defining the maximun of two numbers, but it's more complicated than most of 
us would expect. 

One way to impl~ment max(x, y) is by 

max( x' y) = ( x + y) + Ix - y I 
2 

which is short and simple, and is often used. This implementation works well if there're no 
rounding error or over/underflow. But even for integers, it can malfunction since integers 
can ov~rfiow. For floating-point numbers, it can malfunction in lots of interesting ways. For 
instance, if x = -1030 and y = 5 and double precision numbers are used, 

x + y = -1030 and Ix - YI= +1030 

so max(x, y) = O! The formula malfunctioned because of rounding errors. 
Another implementation of max(x, y) is 

max(x, y) = if x > y then x 

else y 

but it does not work correctly for certain operands : 

max(NaN,5) = 5 

max{5, NaN) = NaN 

This is a rather bizzare situation because a different result is produced when the two 
operands are swapped. The reason for the strange behavior is because any predicate which 
involves<, :5, > or 2: is false when either of the operands, or both, is a NaN. 2 

The code below functions properly for all operands : 

max(x, y) = if x # x then y 
else if x? > y then x 

else y 

The predicate "x? > y" is true when x > y or when either x or y, or both, is a NaN, and 
the predicate "x # x" is false only when xis a NaN. Now 

max(NaN,5) = max(5,NaN) = 5 

which is acceptable by most people, although some people argue that if NaN is not a number 
{literally), how can we say that 5 is greater than NaN? The point is that the result can 
be either one, but it must be consistent. There is no proof that 5 ( or NaN) is correct, but 
experience ( such as windowing applications) indicates that 5 may be a better choice. 

Another problem spot for max(x, y) is when the arguments are +o and -0. The values 
of max( +o, -0) and max( -0, +0) are arithmetically equal, but they may be represented by 
different bit strings. It would be a good idea to have the maximun function implemented in 
hardware, which uses lexical comparison of bit strings, such that +0 > -0 lexically. In fact, 
both max(x, y) and min(x, y) should be implemented in hardware since it is much faster 
than software implementations. 

2The invalid operation flag is signaled. so presumably the user can use this flag to circumvent the problem. 



Lecture 27 - July 28, 1988 (notes revised June 14, 1990) 8 

4 Inevitable Conflict : Speed Versus Reliability. 

Speed a.nd Reliability a.re two qualities most commonly used to determined the performance 
of a computer system, but unfortunately they are often conflicting properties. Most people 
value reliability no higher than the price of the insurance premium paid to insure against 
the consequences of unreliability. On the other hand, there are some people who feel that 
reliability is so important that they make sure others pay attention to it by instilling fear 
in unreliability. 

Actually numerical computations are extremely reliable, all things considered, and much 
of the reliability come about because they really do not matter, that is, a large fraction of 
numerical computations, correct or incorrect, are discarded unread. Until there is an error 
serious enough to be noticeable will the users be aware of the unreliability. Consequently, 
unreliable computations very often do not upset us because they do not sufficiently hurt us 
or their ex.istance passed by unnoticed. 

The issue of speed versus reliability should be dealt with in a rational, though not 
necessary uniform, manner so that we can predict the consequences of the computations. 
These decisions should be made with intellectual economy, economy of effort and humane 
use of human talent in mind. 

Unfortunately, if something is unreliable, then somebody will be blamed for it. This is 
one of the reasons why some people consider the speed versus reliability issue a moral issue 
because they believe morality is a question of deciding whom to blame. This is a common, 
but incorrect, view. It is so common because if we can determine who to blame, we know 
who is responsible for changing things. 

Programmers usually bear most of the blame, but this is usually unjustified because 
the environment in which he live is so intellectually unmanageable and is full of anomalous -~ 
diversity, incoherent standards, non-uniform implementations, "optimizing" compilers, fee-
ble diagnostic aids ( especially at run-time), cumbersome text-processing, and chaotic 1/0 
and graphics. Things have gotten increasing complicated to the point where programmers 
would have to be much better educated than they have been or will be in the near future. 
There is such a deversity that if programmers were really professionals they would have to 
know about the arithmetic on several machines. How many programmers do you know who 
is knowledgeable in the arithmetic of more than one machine? 

At present, there is such diversity in languages, arithmetic and exception handling 
among commercial computers, so it is not reasonable to blame the programmers if something 
do go wrong. Read lectures 21-23 to determine for yourselves how some current commercial 
machines deal with exception handling. 

4.1 Horrors Programmers Encounter. 

In lecture 26 we discussed how programming costs are exaburated when a programmer most 
conform to Stan Brown's model. In particular, we saw this example : 

f(x) = if x > l then -arctan(ln(x))/arccosh(x)2 

e]se if x = l then -0.5 
else arctan(ln( x)) / arccosh( x )2 

This seems like a simple task but if it is written in the obvious way, we'll encounter anomalies 
on certain machines. If this code, transcribed in any language, is executed on machines like 
the IBM 370, the DEC Vax or machines which conform to the IEEE standard 754, the 



Lecture 27 - July 28, 1988 (notes revised June 14, 1990) 9 

relative error bound is small for all arguments. If we want to predict the error bound using 
Stan Brown's model, the bound is very pessimistic; in fact, for certain arguments, like those 
near :r = 1, the bound approaches infinity because this mo<lel makes allowance for machines 
like the CRAY, the Cyber or the UNIVAC. On these machines something bad could happen 
near x = l as a result of cancellation errors. 

If a programmer wants to write a portable code for the above task and if he is restricted 
to using Stan Brown's model, then he must figure out, at great time expense, a special 
Taylor series for J( x ), so that bad things do not happen near x = 1. H in the vacinity of 
x=l 

f(x) = _!_ + (x - 1) _ (x - 1)
2 

_ 124(x - 1)
3 + ... 

2 6 20 945 
is used instead of the usual formula, then the error bound near x = 1 are suppresed. 
Consequently, the error bound for Stan Brown's model is more manageable now, although 
still very pessimistic. 

This example illustrates a situation where the reward for the diligent extra efford on 
the part of the programmer is a program which is less accurate than the original code 
executed on IEEE machines. If the modified code is executed on an IEEE machine, the 
best error bound is actually worse than that of the original code executed on a similar 
machine. This means that in the process of writing a portable code, the performance on 
reasonable machines is penalized. 

4.2 Effect of the IEEE 754 Standard on Reliability 

The IEEE standard 754 is now the most widely adopted design for a family of :floating-point 
arithmetic computers. Last year (1987) there were over 8 million machines which conform 
to the standard, but the count is probably much higher now because there are more chips 
conforming to the standard. 

The standard is appreciated most by people who used to devote a part of their youthful 
exuberance dealing with the lack of arithmetic uniformity among the various machines. 
Fortunately now there's a surprising degree of uniformity as a result of the standard. Among 
the chips which conform to the standard are : 

Intel 8087, 80287, 80387 
Motorola 68881, 68882 
AT&T WE 32106 
National Semiconductor 32081 
Weitek 1164/5 

{IBM PC, XT, AT, ... ) 
(Sun III, new Macintosh, ... ) 
(AT&T and Zilog systems) 
(IBM RT-PC, ... ) 
(Sun III Floating-Point Accelerator, ... ) 

Because of the widespread adoption of the standard, arithmetic is much more uniform and 
the consequences of our deeds are more readily predictable. 

4.3 What does the IEEE 754 Standard Confer upon You? 

Figure 2 shows a consequence of the clear-face presented by the IEEE standard, which 
has so few anomalies. Any numerical software, portable to any two of the three machine 
families (IBM 370, DEC Vax and CDC Cyber)~ will almost certainly run at lea.st as well 
on any machine that conforms to IEEE 754 with comparable capacity (speed, memory and 
precision). No existing arithmetic design can make this claim, though DEC Vax F-G-H 
formats can come close with appropriate software support. 



Lecture 27 - July 28, 1988 (notes revised June 14, 1990) 

IBM 370 

CDC Cyber 
~ 

t 
IEEE 754 

DEC Vax 

Figure 2: Importability of "portable" software. 

10 

As more machines conform to IEEE 754, more software will be designed specifically for 
them. Therefore, we will have access to a growing body of superb software designed to run on 
IEEE 754 machines, but difficult or impossible to adapt to other machines. Examples of such 
softwares are statistical packages that exploit IEEE 754's NaN for missing or uninitialized 
data. 

4.4 Computer Software Support. 

Computer software support are essential for the development of more sophisticated soft
wares, but unfortunately the software support situation is not satisfactory on some ma
chines. 

4.4.1 Signed Zero. 

In lecture 24 we discussed the situation where some machines do not support signed zero. 
It is important to have both +o and -0, otherwise strange things will happen. When both 
+o and -0 exist, 

1 1 
+oo = ( +o) ~ ( -0) = - 00. 

This relation, which is not true if -0 is represented as +O, must hold or the program for 
comformal maps of slitted domain ( discussed in lecture 24) will not work. When we attempt 
to plot the graph of conformal maps on an IEEE machine.(has signed zero) everything works 
well, but on non-IEEE machines without signed zero part of the slot's boundary goes astray. 

It is a shame that so few implementations of computer arithmetic have signed zero, 
especially when we are in an era when one of the main application using complex arithmetic 
deals with conformal maps. 

4.4.2 You Don't Always Get All You Bought. 

There are things which we don't have, though we've paid for them. For instance, we still 
do not have good extended precision capabilities. Borland's PASCAL compiler on the 



Lecture 27 - July 28, 1988 (notes revised June 14, 1990) 11 

IBM PC has facilities to access the Intel 80-bit extended precision format, but most other 
compilers, such as Microsoft's, do not provide such capabilities. Therefore, very often we are 
denied access to extended precision capabilities even though we've paid for them. Extended 
precision numbers are very useful for matrix operations like iterative improvement. 

Another two features missing in most compilers are convenient exception handling capa
bilities and tools for providing directed rounding. Exception handling and directed rounding 
are useful in the development of some software like those for stability analysis. 

All the features described above are accessible on the Macintosh because of Apple's dili
gent supervision of higher-level language implementations. Convenient exception handling 
and directed rounding are also available on the Sun. 

5 Major Tasks Remain. 

There are still several major tasks remaining which need to be addressed, and some of them 
are: 

1. Computer scientists, especially compiler writers, need to be made aware of the issues 
they affect by better educating them on floating-point issues. 

2. Good exception handling capabilities need to be implemented: implement rectrospec
tive diagnostic to ease debugging of purchased code; implement presubstitution to 
alleviate dependence upon precise interrupts; and permit vast exponent range exten
sion in certain very special contexts. 

3. The provision of benchmark with diagnostic capabilities. When performing bench
marks, this capability aids us to determine the things about our systems the ~ench
marks do not like. 

Problems 2-3 are technical problems where solutions are now in sight, but problem 1 is 
political in nature, and therefore refractory. 

So far most of the work have been done by very few individuals. We need to devote 
more attention to floating-point research, but funding agencies are more interested in "sexy" 
machines, such as supercomputers and parallel machines, many of which have very perverse 
arithmetic. 



, -

A MOR.AL Icssu.E Q 
• 

L -' 

- Cori.s<.~e.v-a..tio., fov- the. hie.reds 
of O t:rilfe.-v-s . 

INFoRMED 



f--\ Ou..J CAN Yo U. 

Wt+ AT T t+e Y W I L- L. 

- s ta.Ill -g Y"Ocu,-e 's M..oel.e l 
... d. A l>A ., A Iv Sr (! , 

AX t'09M..S 

., Pr,~ c.~pl.es of Op,a,,r-4. -I,~,, oT 
ll!.M , ~70 t>cc VA~ 

754 

0 QG)C) 
Gt>L. 

• • • 



A 

_fl __________ _ 

_______ A __________ _ 

__________ /\ ____________ _ 

---------------~----------



..j>1w.J. •'1-udecf, a1 .. i. '°"3. & C .. -,,,!-er Sc.1. 
(..(. c. 1&4--k«•, 

.... 
l>l~C'-.&T12S'b I ' --.. o,. •e, s.•• ~ .,.t. ~ .... l ... 

- toe. a .-. .. -... .... o • •-. :a.-~ ~ ..... •ts . ..,. -
' .,, 

I' 
" E*•' 2£: t-• 

(0.1 l· ( 't 1 E. .. E ;,_,) - ♦ E:-. T E.,.. - i-.. • 

Et-., .... 

~ 



) ) ) 

w 

s I MULAT I ON or WAVE PPOF-'AGAT I OM 
f2N[I ORDER EOURT10Ml 

].2~-------~-----,----------,,----,---------,...----,----------. 

J .00 

0.25 

0.00 

-0.2:, 

I 
I 

' I 
I 

' I 
I 

I • : • • • : • I ···••••·· .. ,••··· ... • ... ~ ............ ~ .......••. r .... •••• ........ r •••••••••• , ................... i, .................. ,. •••••••••• ••·••·•••• 

I I • I I I I I 
t • I f f f I 
I I I I 
I I I • 

' . ' : 
I 

• o I 
I • , I I I ..................................................... ~ ........................................ ~ ................................ ·•------·· 
• I I I I I I 

. . . . . . . . . . ~ ..... . 

t I I I 

' ' ' ' 
I 
I 
I 
I 

.. ·'.· ········ .. ~ .••••• ·····•··········~·-····· ... ~ .......... ~. ·········•······· 
I I I I 
I I I t 

I I I 
I I I 
I I ' • I 

I 
I 
I 

I• I 
I I 

••.. -· ...... -········,.·-····· ... ,. .... -·-· ··•···········-···-
' I f I I 

I I I t 
I I I 
I I I 
I I I 

: : : 
• I 
I I 
I I 

I 

f .. 
I . 
I 
I 
I 
I 
I 
I • ·r··· 
I 
I 
I 
I 
I 
I 

I 
I . . . ·t ..... - .. 

I 
• I I 
• I I t I I 

•••• ··--••►-······-- .......................... ·····•········•·1>••·····•-·t-••·-········ 
t I I • • I 
• I t I t I 

' I 
' I 

I 

: 
: 

I 

-o.so-----------+----+----+---+---+'---+----+---4 

200 . 0 2~,0 . 0 

:iF'ACE STEP 
30(1.0 

r X J 
'3SO.O 400.0 

t - 3 
4 

450.0 500.0 



Cl.S 

s I' <Zed.) m.e.m or:1 , . . . ) 



SLlR'PR.lS'!NG- CotvSEQe-tEA./CG5 A~ouAJ-P 

LAA,VS lclVe 

IF 
J 

- I 
_......, 

;,c • 
)'l(OMofoM.~ a cc_u v-et 7-E. 1$ 

' 
~M.o-t OJ,ff..~ Q.Cc.. w.~J ~ ~ J ts 

, 

- ~/~ 
h • 

)'t,\.OYLo i-o a-u. c 0..t!Lc.-t~Te.. I ,, 
j _.,.;- ~ 

... "1.....1 
I . 



MoNo-roNt c_ : 

J't•>:. -f - .. ~.,-. -:.~.) 

>0, 

, -·- X -- SIN( X) 

ls Ftx) 
6 st, tk.c. •. 

5 -5(_j~~ 
'1 s~3 J.a.c._~ 

CAN 

t_ Q.$Sco,. 4!. C.oA. Q E C.'T:'L.1' R,ow,., M1' ~ 

? 
• 

1 ~- -- r;:.~.... O· ... { I-, " { /_ 7 1 C:. "rl '-L p l LC •• 'I ~;._. ... • - ._. • Q 

1 e..-r:~>{-~1-"'@ o. o 1 aooo 

YES'., ""t\.O ~ K c-e. f t~"'-.S • 

ltf! S ( • 
? 

a 



MATrf-£/tAA-C-tCAL LA:W..J 

To S Tl C"" 

Cl-1-oose AA/b C-I-IAJJG£ /<.> 'RL(L-ES. 



ExpTe.ble 

_ INTE-LLE<-1U.ALLY El.oNOM.lCA L 
Speoiticatioos for Exponentiation x~ 

over the Extended Reals X: 

W. Kahan 

July 27. 1988 

EXPONENTIATION with y = inteQer J 

J = 0 J > 0 
----------:-----------:-~-------:--------~: 
x in X ( 1 /v' - ' : x" : 

j ----------:-----------: 
xis NaN X X 

----------+-----------+---------+---------+ 

EXPONENTIATION 

y = -o.• 

x < -1 +O 

X: -1 

-1 < X < 0 

X = 0 

with y t integer 

NaN * 

Y = +ro 

+O 
:--------------:--------------+ 

0 ( X < 1 
------------ ---------~: 

x = 1 NaN* exp( Y11f ln(xJ J 
·----------' t 
' NaN* 
I I ,----------, 

I 
I 

+--------------:--------------+ 

xis NaN 

+O I 
I +00 

----------+--------------+--------------+----------: 
X 

------------+---------------------------------------------------+ 
All entries in this table except (x<O)~•. O'v•0

• and o-• are 
produced automatically. including the signals where marked by en 
*, by the expre•sion exp( y#ln(xJ J provided it is evaluated 
in a way analogous to the specifications of the IEEE standards. 
and then the expression exp< NaN•ln<xJ ) quietly produces NaN 
for xH•H too. In the previous table 1/0 signals DIVBZ 

IEE£ i54 



~ 

,, 
Eve!Yt--lz<.~ 

?°s,s;,1~~ 

ff'~ 

t ~, J ! ~~it 

30 

1 ~-= - to 

~ =- t- 5 

' -. --. 

I -. -

~·~ 
1~-~ l 

(~+~) 

_,.. t 
~o 

- 0 

-+ + fO'IO 

.. -. - it 

MO.I( { N~N. 5 ! 
wt4 1c ~ 5 ~ NQAJ ~ 

+ I X-'j I 
• 

2-

J nlctX ~ Q 
oops I . 

• 

LOST 



,. ~ "l> ~" ,.~ 

wleW\ ~ '> j ot-

4t~C!r ;~ N~# , 
a~ Alo $16NAL 

. -. -

13"-"~ 'M.(1. x: t + o , - o ! 
t-k,e So.wt.e r:t - s-1-r/iAj Q.$ 

'j 

-e.lse ~ f x. '?> ~ 1-kcu1 ~ 

e..l.se. ~ . 

,S ..-c+ .-..e.c.e•~ 4f r:; 
MQ k -{ -0 ~ ..f-0 1 , 

N&6 l> ( ka r-J'-Cl4t'e t~p ~ -,.o:,..4-eJ ) 

l..tXlCAL CoMPARlSoJJ 

so +O ..... 



f-ha VI 

• 
' In sura11c~ premt"-YJI/ 

ReLtA-6/J.t 7)--

CU C:U n s"t '/-I,, e t:.&>-#1. .$ e'j, U e ,t C e_s 

Cl#'REt-lA- e1L-1rv. 

;-I. c.os1 s 

lt,$ wr "4~ ct s 'fl.. e ea m.p,.,_1J~n '-Y hos~ C.Of"'("e c r N!~S ; t-

c.,ou/. J ensurE , a .. 4 a_({ i-oo of+e..n trter-e.l~ 

I-low To JusT1,=-y CONcE~A/ Fo~ RcL-1A6JL1TY: 

cf. 

IAISTtGATE' FEAR . 

. .. 
Ac+U4.[ l~, 

het;t ju.sh-1,cQ+t.;,., ~r- .L:t-e..tvcr.t A"""""'vrte::lu ,'.J 
;+s use ,., 

~e'°s or 

SE:Ftrt.CHtAIG ?ROG~.A,tS -,../,,:if S&:t.,~ tor 
F x1re.1ttA of, mu..(fc.'- t1ar: a(, /Q .f1v..ft..C..~"-S • 

( e lcJ.oM Hctf'\$0~ ) 

.. ' 
-fo ~~ r'1 ~~€.:. 1-o..- 8c.c1✓c1A Y 

~ I'\ t e. IY €'Ci- V. a.. ( e C C· t•-c "''" J ) 
CC...0 t\..O ~ ~ C t e ff c· - t ' 
h.(.(. mc::111 e :.ts. e bf h.c..c. Vl'\a"' -ta..l e11 t . 

I 



WHO 3ets 81.AMFl> .fo-r t/nre//ql,/e -14,,,er/eo.l Sof,..,•re 

? • 

THE' 'PROGRAMMER 
__ _.,.~----•,t 

11
7Ae Bae:/ /3/qck>HI~~ 

13/a-A11t!!.$ ii e Iron '' 
( D~111te J 

/S To Bl-AM£' FoR... 

uAJRe-LIA BJ...€ ~ME A.ICA-L Sor=rtA/,+f<.J;' 

WHAT S HOU.L.- i), 



APPl.lCATlON5 

/larJware 

JNTELLE-CTuA Ll Y 
UNMklvA GE A 13,t E 
AND ANO/V\ALc::><..tS 

nIVE-R SrTy. 

The modt2r,,,, 
"7ocuer- o~ 6a.b~ / 

Zn~ohere,, t St'a 11dor✓.J. 
~nu11i,£orwr L,;Je"'e~*~A.S, 
,, 0 ..L ' ' • " - .. ,/ 

-prn'1✓Z1H:f '-omp~,-ers . 

.,le~.6/e :DtOJ,tos~ic A,els J 

-espe~c'a/f a:I R~h-7;;,,e. 
Cu #1 D-e rso,,, ,e te'IC- f-_ pre c.es.s; ~ . 
Chaot,c I/CJ, ~plt,cs. 

* 



From his forthco,ning book ARITHMETIQUE DES ORDINATEURS t 

•o : • 11 /2 

a, : • 61 / 11 

.a ... , : = t t l - < 1 t 30 - 3000 / a .. - , > I a .. 

This should 9enerat• a seQuence {A.} that converges slowly 
to 6. but wh•n COfflputed in flo.tir.g-point on any comput~. 
only finite precision th• comput•d s•quence converges rapidly to 
1()0 instead. 

***************************************************************~** 

W. K. • s example: 

An example of a singularity removable numerically only if the 
computer's arithmetic carries a guard digit in subtraction: 

Real function f( real z J 
if Z ( 0 0~ 2 ) ~ 

else if ~ = I 

·.-
then 0/0 

then -0.5 
else arctan, ln(z) )/arccos(z) 2 • 

The function has a power series exoansion near z = 1 

f(z) = -0.5 + <z-1)/6 - Cz-1) 2 /20 - 124tz-1) 3 /945 + 



..-a/rr 

~' 

£~A~PL.~ ( OVt;.A.S1Mr,L.~ bufr TvP'C..Ai-) 

i:a Sk.DC4.I ko~ pn,.JNlfttM ;l<j u,sls- Qr~ e_.ra c.e ~ ~o.1-~ 

w ke., 4::l p ~ NA.Hf 111 ~ r /L/.t.t s T eo .,,_ fo r-1#1 -1-o Bro"'"'' s. Al oJ d ~ 

·.,_ 

Se1 t ~'C"rOr

bou.wt ~"° 
Co "'f" 1-ecf 

/. 

e.lse if. :rt" -= t "tie."' - o.s 
el$e. Q.-,-ta,.. ( £~ {,1)) / 4r~co$(::Jt') 2.. • 

J,p ~«(ce&.l.to .. 
lBM ~?'O 
DE<:. VAIC 
tG~C ?5~ 

T: :- •-• Tkf""!shc/' ~pe"ttd.ew1 upo~ Y"faattJo-fr /e..ue.( •. , 

J,;;,~ .' = if ~ > 1 t-T -Hten -arcfatt (f'n(w) )/arc.ccs4 (~)2. 

~lse. ii :,e,. > 1-T +heva 
~ -! 

- ~ + (:H.-t)/G - (;,,-t)
2
/2..o - l2'4-•(';JJC-f) /915 .. , i 

-e.(5q ;p ~>O -H,~v, -Qr<:ta .. (t .. r,,,,) /at-ct::os(~) "2. 

.e,( 5-~ t~ ?(":-0 ~~v, - 2 /,rr-
-er~ • , # 

// E~ ,/cO/<._ IC 

] 



~ 1NGL.G M.os T c.vtOELY At>oP"rl=l> 7.:)E:SIC.AI 

for Cl. .Pa..~:<.l':f of t-l~a:fl'.J.;J- po1Kt ct 1"'~ -,rt~.:t:s ,~ e.&>tlfl-fl09e.-$ : 

... 
J\1ofon:.lQ 6C-86/., '9"2.., i., Stt# Ii[) Ne.w ~,µ;-osH, ••• 

AT&T w~ 3~t0e ~WI AT~T' 7 ~ilo~ s_ys+e1t1.5 

#Q:l,..;.J Sea.""<'. 32011 I, ;,,. ..t8M 'RT-PC J , ,, 

\f'ei'tek 1 u,+/s :, ;.,. SctNllr :#,Pet ~ ••• 

A~, Do.n~~ ~ AM l:>, 8JT., 'Fc::t.,rc.ltil~ ~'c.l,'pper ,, , .... 

{ IN~os T"ioo ~ 'lft2ar-/y ) 

Sl~AA.Y 

A PPC.€:. )AA.~ ~oSH ~ 

E LX S.I ~ctoo 

1-lEwLETT'- PACt<.ARl> 

4 1>::1+~ ~o<GL e 
~ ~::,ie. boc.t 13,LE 

0 p+..:» ... ,( ?: fO &:rt-e ,, " E ')(. rr:AJ b E:b 

( =t 4 ~·,1' b ;1. , 10.:t-32 ) 

(_ 53 .s~. 1,-.:J . ., foi ~o~ ) 

L ;?: b4s~.b~f J to ±'4ttoo) 

Ie£E: 854 DE,C-(,1,tAL: ltp-7fB (h.a~-ke(~ BASIC) 

q 

( hp- t %C., ltp-:Z. ~ C ~hi,..1--pack~, IJJTeR~ltUY) 

( i Z s !j. de2c~ ~ 1o±'t-~<t ) 



~ 

WHAT DOES lEfE 754 CoNFER l-tf>otV You ~ 

2. 

I/Yl!>oRTA-f:>ILl ry or 
// \\ 

PoRTA13J..& SoF rwAR_E 

ANY Y1 lA V'lf e fY. CO ( sof fc..ua. r-e , 

port-'2bf-e f:o Q'"J +,.,,o of "-Hie t-/t~e 

WI d eJt / 111,e /!r:t 1M; /1~ S 

IBM '37c,, t>FC \IA)() C l>C ~'-an , 

""&.1st al"" ost- c.Q ,--6:::,. i ~ ~ n.u, a.-t I-ea a 
a.bOtAt cts I.de{/ on 4M..!f )ltl4c.lt; 11e 

thld- eo,,:for111s -to I GE G 754'- w,+tt 
Cowtporo bl~ capae; fy ( SP42-e..d, 

wtewt.or~ J tpNZt!~'~" (s) ) • 

Ala orHc~ E~tsT1ArC. AR1Tl"I.A4Gr,c DES 1t:;,,v cr1A/ Al'IA-1< G TN/5 

CLA1M.) "t-'1.cu3h. t>Ec V/!fX {:"- G- (-} -fo~s ca:"' Col'tt~ c.lc-'e-

~ ;'I-ft Q. pp t-op -,.c."a.1 E ( l'tot-\ - ?> ~~ ) s c- f:. f't..Ja ~ s. "p pc.,. r . 

Acces;s to " Joe!Y o/ :;'V'erb S.o~~a..~-e Q ,.7row1~ 

d.es~12J -Co rut'? on IEEE 7S¥, Ju.-! cli-b",culc o,-

t"Wt ft>SS~ ,~ to aeJ.°l°f ~ o-r-Aer- wt4.c.h r',,,,e~. 

~-,.. - s+a+,'·11,I-,~ pa ck4f~S f-'ltaf ~plo,'t le€'5 7-5¥ ~ AlciAI 
,/;:, r »t,'ss, ;.J or "" ,...,,, ,1 rt::a I, ~J d a -f-et 

Ro6"'~t e,~,. - solver ( t NI.Q.f v'6/e) 1,~;u i'""-t-o 

hp-l~C, hp-2trC; Soo"' +o appe4tv-e..lsevfqe.re. 

4. 3 13SJ:> Ber-l<.ele.:, UNJJC Me,~. lil:.rar:1 o+ 
~ k m'2 >t 'f:-4 r:y Tv-i!t If, cew:le H..f o I 1=8"" d-, o ·"-5 , 

oHe /;l,~ry :f-r- VAK z;;,, 

owe (ii>'°r, .for Jf:/:€ 75cf- l>outfe 

S+a./,fe 



JET 

+0 --o . 
I 

8u,t + oo = 1/(+o) 

C OA/Fo/<..MAL" /14~ PS 

St-.tTtEl:> 

see. c.~. 7 0 r ,, The S~Ate of 1-i4l A-,.t ,;. A/4.111~4' AMAl~iis \I ( fq-g 7) 

ed. ,!I .A. Z-se:rle s &, ~J. l>.. Pi,,uQ.//J O,c{;,td U11,'11. 'Press. 

I 
~ .--'? f -f(. 

.,- I 
: 3 

-1 ~ ' 
' 

. 1/"L 

(-1 .+ o,) = tO 4 t 

(-1 =-0-a )"I.= +0 = t 
.,.,:. ,... . I 
·• -~ T -i 

0 

0 0 

---------------
WAL\... ... 

""'t .............................. 
~--__;.;;.,_~_.;.;..:...;;;::;:..:...:..:...;,.;,,,' ---------................ -.. --..... 

"4A • •a-. a• • .. • • .= .,..: ) 
WAU~------ ~ 



I) 

tf 

1.vdl, ; -go 117 
1. cgoz..~7 

/'4- 6tr8'8 I 

... 

FxTcA11:>Et> PR1:c1s10.AJ Fol'tM'4T 

~· t'I a. Alt1 Ot't - +1,c.,_ J.;.,, 

( ,4 si3, ,i¥t > fo ± 1-?Do) 

u;;.e/:..,,../ -/or-

,WA-T,t,x 0,IOE~7;,o;IV_$ /lice ITGM-71t/~ Re:F1He,'lte-ur 
( el- 1>c- MATLAB) 

- Ta.ctt.N/~S y SYST'~A,1 ,;.,p/e,,c.g>('!-4.f-.-o~.s 
( <! f . ifp ca..! t:J 4.,1-e, rs ) 

CoNUtENl<:NT t~ceP-r,oA/- HAA.tll>£1Jt/f!r, 

- FJ.AG! -+o s,5';..~ XNlJA ~It> of>EAA-74'o.,,v 

'' ?)rv•r.>E-- SY- ~E~o•• 
O\IE-A.Ft-o~ 

t<>J z,GA.Ft.-o ~ 

LNG.,CA CT 

s~, l't:+E5 (; 1_1<~ Access, P.:>L<;. ON /tA.ACt)/(c,St-f 

flt~~ fo APPL£'.$ ~If~ Super,_,,; ✓~ of /ujher~ 

/ 4. ':J"-4. P U#(..////4, Hf €,;,f, r-4 ft o ~ s 



1) 
tl\l t>o<., Rt.AJA r,~tt/ 
E°DL\<:! A 7tc,,V 

'8,RAIJV • uJA SH ING, 

of. Compu..-ter 

es,pe.a'a.l& eo.,.ler lu"tiers .,I 

io wta.ke -He.ell\ at.CJ•~~ of. ,ls"-42$ ilr.ej,' A#ec f. 

,. 
ot •• I 

- Re.+ros.,ec:l-;,,,e Z>,.i~"'•s~,~s ... ~ eAS.c cle J,"-33;".J 
of -p u ~4..Se.l ~ cLe s . 

... io Q.llwt'e.. +~ de2.f>at'-4c "< .e 

u.po_. .PR&c.,s e- IArr.A.Aul> TS 

, Pe~~t 1/4~ t &,cfot1e1t't .. ~Q."';j~ E~t-a,._,; o-, '" c:.r"hl.'-'~ . 

.,.,,,._, s.P4c.~o l ,..,.,. 1-~f.s ... cuo,·J kll.&Jes ,:.,. 

p~ I ~e,•i Loop$ 

c.f. bAw-8> BltRJJ& rr'S wor-Jc. Oto\ l>i<: UA~ Q.Al.ct Su.Al 
f.,. Ba.r"'-el~ LlJJ,~ (J.qq7) 

"P'"" L le""- 2.) ,l Q.. -r &c.tiA> ,c A-L p r-o 6 /€ ~ ""lc:u2.. ~0{14., i--~ <.l 

')'\OC.C., c.,.., :si c3 lt,1 . 

t) 'PoL I 71 CA-L , Q.~ rE.-f-rca. c. {or ':J .. 



! 
I 

! 

I 
\ 

\ 

l 
i 

W. ,] , 0 ~:J 

J · 7. Coo n.t!"' 

J. (A/. L)Pl'r./ff+: f 

D • Ho(.J ,jA 

RI ,Nave 

J.r. p~lh\Pr 

./ F- N . R : s 

J)/S-kw,e.r,.S-Or\ 

R . ~ ~ 0A' t 

( A ,rJOt"-tlQ /✓.L. ) 

( 1 ·c n ;;,, ~,, A-rrl~ '. 1..1 c;:;,,;> - °J, •. ; 

( UC6) //Yt:t , 

( IAC8.,., 1 ektron.:..,., ~ ¾-'ff" 1 

( T,,,+e.1 ') 

( Lvi-leJ ) 

f/6 '5'1-o ~ ( ~-~~.JI • •1_) 

_G. 7et.-j, /4y ~',,.-t/f_~-~ . G-t.J<?<.1 /'1 JPr;j 
J. /I-- a/,/ ,k ~ e,. r.\,-, 

-------•-·:-- ·-----··•-·••"" -··· - . • . - ·• • 

,·,} } 

/ {,(1/,) (.._ 

/ ur...rdJ 4,, AT&. -r = ~; rJ,. "': 

ta ,;c..Lltt ··ci1/~,. •• J 

µn ,._..J.Q$ ~ .:.'\ . . { 

/\ A-e pLP. ff ~ w-/lt- 5. A. JI. C . 
f"Lx: s / G c.1-o V Sc<ft:" r !),:.,,._/ 

!-Ir.:~./, f1L. r,.,, ,.J~ ,..,.f, Sf·,; r -:·« u_ M 

i:., ~ :.,, r 

( ..,. J.-:, ,. 
- fl • ( /'I([ I )• 0 r _;_.-



(4tJP&.\9LtSlfE 1> 'Trl&e,~E'A .. N 

'Rot.ttltd,"t4j #re w-:7 ../€<:E 7!i"4- ,,.,. VA-X do-e$ 

{ o'I'~ w,f(,, °' /;ft/~ »to~ e {{o,--t.; 

R <!>" ~/ ~ 'f4 way Z:/ ,S & oK/2 tn" .ISM 'S70 
hp 30G>o 
~,500 

) 

IIM poS~ S /VO .~/MIT 

• 

accur-t1~,., o.P 
por--,..0,~ l.e 

COwt.fJ","/.et ~'1f LUI "::J 

( f:"01:tTlt,f,V 7 ,P'AS(.'Ai,., ... ) ~uk.s • 

( 1>e/4r.o-r 1crr f., 'P,dtot J 17 .t., . . . ) 

or Cl<AY, 

or- A/ON- >oR-r~L~ 

{ or bo'Hi) 

pro3ra ~wr,~ ~~$. 

ltw.e fur C /Qi Y o£,,.Jf.. p "'2c 
1
11 

-r,"IA f.v- ~y s~/-(J p~~''-1 
> 50 

( l). ~4 ;/ ey / A/A-~ J'f /. 

l)o ,A/OT' ae- 81..(N'bGD a Y Ml ScoNC<c.0 T/e,N',S AfS.O'-< T 
1

' 5TA6/L 1,y •l q_lf'ltA. '' 8 ,q..c l<"'VA RD £.~ le.oil A-A/A LY5I S '' _I 

1:>tl\T/1-t- ~1·PA1"4 J.;P> MFfc:e.J.A,.cS-P. ~ ~ 
(1>A7A t····· - Fu✓.4 L. 

-- - PA"'Ti4 + 2>:.· PATA ~ lArn:rv~P~--z ~ 

1l___ BR.. 0 ><€N CoNNt:-c..-r,oA.J ! _/ 



CRU.t:.IAL P~o'1~12.TY of /./e,a./1~- P-';,~ a,-/:#,,,,.J,-;_.. o.., 

6650D.; 18M'310) DECVA~ J 'kpG:tl,u(~f-,:,,-s, IE-S~ 754,/~sc/- : 

II {loo.I-,;. .J - po ,",,,f -,,," we W > 

%. ~ -,,/'I, ~ 
7' 
:2. 

i 

c')(' A-Cc L Y. 

Ii 

,_, ~ 

\ wi1less p-4i utAeur~lo4uS _,... -rJ,~~NA/t:n" HA jl)Pt;:..V ~ /($(;~ 7~,,r/g;4:) 

TN,/$- TJ,, ,,,.,, ,s F9Al. >IS: 1 G' l> 9 >' 

• 

' Srt.c.u,r1> /tlode_{ ( ~ -b~ CZ)C> CR.,A Y~ l/NIV~C., T.r ) 
- O Iv er • s 1'2</el- ,.,~ a t"",'..J.h wt.e.'1-c. c 

p.erwc,Ys 

Cale;14./Q-/,,_.;~ o~. Are~ ~ 1~.1le, "':-, Q Tr,~"'f}p., 
:J'"~,, ds s:,Jp~ , 

des,,;rQ 11ed r)(..es.s 'lo /JeeJlt? -.s.J...,~ ,, 

'PR£C.ON />17/o,,,tl/A/ &- • of. if/ .. co"-d ,t~oA":e.:/ ,., 
- {,;.. tco.,. S .J, 1" evtt~ A :at = ~ --.!J> ? A :ii<. --= -P l> If! "I< d c-f/_y 

1<.{A) ::;:a.> 1< C ?A) 

- Polj not«co./ l!J:J,~'«.s J QSf- Q,.,.Jrd-lt ;S. ~ CJ,'e~ • 

• 5u.pp~s$1:11 o I ~,owf/, oF ,rc:>u.~o{f Li 4 

& ( !41. "1e s -1-Ep) or ~ ( 1//,-;,., es:/-~ ) z. . 
,-~ T~J€{'ToAY pr-oVq,,.~ cafp~1~l ,,,<;~J,4 "'".f 

CJ {f/£::.x)'+ ,',,, BEAM C~c..Jq-1~'",.5 _!} ;., = h'~) ... 




