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1. Introduction 

The Aerolis, developed by aerospatial, achieves the conception of 
the complex left surfaces. These surfaces are defined by polynomials 
of relatively high degree ( up to twenty). Some operations temporarily 
go through representation of surfaces by higher degree polynomials. 

The mathematical algorithms that are actually used for some oper­
ations require the calculations to be done with 30 significant digits so 
that the final result is within an acceptable precision ( error less than 
a micron for global results of many meters). 

Actually, these calculation are executed on computers having float­
ing point coprocessors, where numbers are represented with 128 bits, 
that is almost 110 bits for the mantissa, which is more than 30 signif­
icant digits ( especially CDC 930 and CDC 990). 

Today, there is no workstation that is capable of fast floating point 
calculations on 128 bits. Only the MicroVa.x family of computers 
provide 128 bit calculations but because they are implemented in 
software response times are too large for an interactive software. 

To be able to use the software on Sun workstations the first solution 
considered was to develop an arithmetic coprocessor in 128 bits and its 
interface to Sun Fortran. Beside the cost, this solution has evolution 
problems (must redesign board for performance enhancement), and 
portability problems. Especially such a solution is totally contrary to 
Sun's "Open System" philosophy, to A.B.I programs and Spare. The 
quadruple precision type was not retained in Spare specifications. 

The other solution consists of modifying the algorithms used in 
Aerolis to get final results that are as precise as the intermediary 
calculations done on the standard Sun coprocessors where numbers 
are represented in 64 bits ( double precision). The object of this study 
is to determine the feasibility of this last solution. 

In order to simplify the analysis, the first objective was to execute 
with the necessary precision a Benchmark selected by Aerospatial 
as representative of the most critical precision problems. The results 
obtained with the modified algorithms on Sun ( excellent precision and 
performance) helped to respond positively to the feasibilty question. 

3 



This note describes methods of analysis and the solutions. 

Chapters 2 and 3 are general introductions on methodology of anal­
ysis and the notion of "unsuitable representaion" or "ill conditioning". 

Chapter 4 describes the path to the actual solution in the special 
case of Reducs and Spctra. 

Then there are Appendices which represent the mathematical devel­
opments used in programs or general ideas which may be applicable 
to Aerolis. 

The only reference that was useful is the article "family of orthogonal 
polynomials" from Encyclopaedia Universalis which I have reproduced 
in the appendix. 

All the developments and proofs presented have been done by myself. 

This study wouldn't have been possible without the support a.nd 
assistance of Frederic Andre and Patrick Jubert of Aerospecial. 

This note is designed for the lecturers who know the Aerolis software. 
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2. Methods of localisation of critical points 

The Aerolis software has 150,000 lines of source. Therefore we need 
a method for localizing critical points, that is zones where a source 
modification is necessary to have the desired precision in 64 bits. 

This method was applied in the case of the Benchmark ( approxi­
mately 3000 lines). 

The first phase is obvious: we limit the analysis to modules where 
the CDC version uses "double" precision. ( double CDC= 128 bits and 
single CDC= 64 bits= double sun). 

In the case of the Bench, more than half the modules use the option 
"double CDC". So on Sun, those different modules will contribute to 
the total error. Things are more complex in reality but in order to 
explain the method we can simplify: if modules A and B respectively 
bring errors of 1 and 1000 on the final result, we could not test the 
improvements brought by the module A as long as we haven't made 
module B precise. The inverse however is not true. 

The second phase consists of executing the benchmark on the CDC 
with all the modules in double except one each time. The module 
that brings the highest final error will be the first to study. We could 
accelerate the method by proceeding dichotomically: each half of the 
modules is executed without the "double", then each fourth, etc. 

That's how we found in the case of Benchmark that the module 
reducs is responsible for the biggest part of the error. So I had to start 
the correction with it. It's only after I have corrected it that I have 
found a secondary source of error, negligable compared to the one in 
reducs but still too large to be acceptable. 

The third phase of localization of the critical points is similar to 
the second but more subtle. We don't look for which module but 
which data representation is responsible for the error. This consists of 
successively truncating different double tables to single ones (simply 
by converting them to single and again to double: that way we have 
lost all the significant digits after the 16 or the 17th one) and to see the 
effect on the final result. H the calculations done in double precision 
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on this truncated table gives wrong results then we should have a data 
representation that conditions better the final result. 

This third method raises an essential point: the method of analysis 
of the conditioning of the algorithms. It is more useful to state the 
problems in terms of conditioning of the intermediate results rather 
than the loss of precision in different treatments. For example, if 
matrix A has small pivots when inverting it and therefore has an 
inverse with large coefficients, it's useless to improve the matrix 
inversion: we need simply to change the matrix. If the problem is 
physically well stated (good conditioning) then there should exist a 
method that will not go through ill conditioned representations. 

It's this intuition that has guided my work. 
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3. The notion of "bad" representation 
of data. 

For the purpose of clarification I will illustrate what I mean by bad 
data representation in a simple case. 

Let's consider in Ill.2 .the base (1,0) et (1,e) withe= 10-20• H we 
want to represent the point (1, -1) in this base, we would write : 

(1, -1) = (1 + 1020) X (1, 0) + (-1020) X (1,e) 

The new coordinates of the point is (1 + 1020) and (-1020). If we use 
these new coordinates on a machine that like Sun works almost with 17 
significant digits (1 + 1020) is impossible to represent without "losing 
the one". The only fact of transforming the coordinates of (1, -1) in 
the new basis and to put them back in the old basis gives errors larger 
than the order of magnitude of the initial coordinates. 

Representing the points of the plane in this basis is a typically bad 
representation of data ( compared to the canonical basis of Ill.2). 

The fundamental problem of Aerolis is that the representation of 
polynomials of high degree in the canonical basis 1, x 1 , x2 , x3 , ... , xn 
is a bad representation of data compared to the defined geometry. 
The representation in the Bernstein basis is much better since it 
is closer to the defined geometry. All the conceived solutions are 
changes of the representation basis of the polynomials, better than 
the representation in the canonical basis. The exact definition of what 
a good representation is can be the objective of a future note. 
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4. Reducs and Spctra 

4.1. The purpose of Reducs 

Given a polynomial P of degree N, find the nearest polynomial Q of 
degree n in the sense of the norm L2 on [O, 1], with of course n < N. 

Pis defined by its coefficients in the canonical basis, and we are look­

ing for Q also under this form. We note: < f . y >= fo1 
f ( :c) . y( :c) . dz 

the scalar product L2. 

P is defined by : 
N 

P(x) =~Pi .xi 
i=O 

Q is defined by : 

• The problem can be written: 

Q minimum of< (P - Q). (P- Q) > with Q E Iln (Iln sub-space 
of polynimials of degree5 n, Iln of dimension n + 1). 

• Another way of formulating the problem and that leads naturally to 
the solution that I considered can be stated : 

Q is the orthogonal projection of Pon Iln. 

Using the classical method of "least squares", the differential of the 
quadratic form brings a linear system: 
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Q minimum of < ( Q - P). ( Q - P) >. 

<=> -k [ < (Q - P). (Q- P) >] = 0 

<=> 2 < W, ( Q - P) . ( Q - P) > = 0 
<=> <xi. (Q - P) >= 0 
<=> < xi.Q >=< xi.P > 
<=> < x• • E1=o Q; . xi >= < x• . P > 
<=> EJ'=o < x• .x; > .Q; =< x• .P > 

Vi = 0, 1, 2, ... , n 
Vi= O, 1, 2, ... , n 
Vi = 0, 1, 2, ... , n 
Vi = O, 1, 2, ... , n 
Vi = 0, 1, 2, ... , n 
Vi=0,1,2, ... ,n 

It's the linear system for which the matrix is < xi. x; > and the 
second member < xi. P >. We have : 

The inverse of the matrix< xi. x; > can be written in an analytical 
form which would be an improvement as we will avoid inherant errors 
to a matrix inversion algorithm. Unfortunately, even without any error 
in the inversion, this method goes through intermediate values which 
are "ill representations". 

In fact, in the case n = 15, the inverse matrix of< x•. x; > has 
terms of order 1020• 

This means that a variation e on one of the second members can 
cause a variation of 1020 • eon the solutions Qi. So, even if the second 
members are calculated without error ,the relative rounding errors of 
10-17 by themselves can completely invalidate the final result. 

It is therefore useless to look further in this sense: any method 
using scalar products < x•. P > as intermediate representation of 
P is unusable in Sun double precision. 
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4.3. The first proposed method 

All the methods consist of representing the polynomials in a basis 
other than the canonical basis. 

The primary problem of the canonical basis being that the inverse 
( < xi . xi >) has very large terms, we will look for a basis bi such that 
the inverse of< bi. bi> has terms of a smaller order of magnitude. 

I have chosen the normalized Legendre polynomial basis which 
verifies:1 

and that has the advantage of being a more elegant solution to the 
stated problem 

The ( L0 , ••• , L n) form an orthonormal basis of Il n. The coordinates 
of the orthogonal projection of P on Iln are the respective scalar 
products of P with the basis vectors: 

n 

Q=E <Li.P> .Li 
i=O 

We have: 

N N 

< Li .P >=<Li. L Pi .xi>= L Pi. <Li.xi> 
i=O j=O 

In the actual method, the < Li. xi >, for i = 0, 1, 2, ... , 20 and 
j = O, 1, 2, ... , 80 are precalculated on the CDC and read as a 
table of values when the program is initialized. In fact, with the 
second method, this calculation can be done on Sun while preserving 
a,n acceptable precision. Another solution will consist in calculating 
< Li. P > by numerical integration of the Gaussian method (see 
appendix 2). • 

1 *see Annexe 1 



4.4. The second proposed method 

The old method gives the correct results until n = 8. The first 
method is valid for n much larger, but it is impossible to approximate 
P to less than 10-1 ou 10-2. In fact, if in the version CDC quadruple 
precision, we truncate the table defining the polynomial P (in the 
canonical basis), the final result is wrong with 10% error. The problem 
is already badly stated in Reducs because the knowledge of the 
coefficients of Pin double precision ill conditions the final result. Only 
a global solution Spctra/Reducs can give a satisfactory precision. 

The polynomial Pis the result of composition of two polynomials. 
The calculation of the coefficients of P is done in Spctra. As soon as 
these coefficients are calculated, the information is lost, we don't have 
any more chance to calculate Q. So we have to represent P under 
a better form than its coordinates in the canonical basis. For this 
there are a number of solutions. The values of P for the n ~ N points 

of Gaussian interpretation seem to be an elegant representation, (see 
appendix 1) but I have choosen the representation easiest to implement 
in the actual code and that has the advantage, if we generalize it, to 
be able to solve other precision problems. We represent Pin the basis 

( z - ½) n which ca.n be expressed with a translation on the para.meter: 

u = z -½ , u E [-½,½] 
with substituing ( u + ½) for z e obtain a polynomial that describes 

the same curve with a parameter that doesn't go over [0,1) but 

H•½l 
Practically, we have: P = f o y. 

We substitute ( u + ½) in the definition· of y, we use the same 

algorithm of calculation of composite polynomial's coefficients and we 
obtain the coefficients of Pin the new basis. 
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We certainly need to change Reducs ; we have this time: 

N • 
• ~ • ( l)J <L'.P>=~PJ. <L'. :c- 2 > 

J=O 

the< Li. ( z - ½Y > are calculated with integration on the variable 

u = :c - ½, with the analytical calculation of the coefficients of the 

Legendre polynomials on [-½ , ½] · 

The canonical basis on [-½ , ½] is a better representation compared 

to the norm L2 than the canonical basis on [O, 1]. The rigorous 
explanation of this fact is very technical and can be done in a future 
note if necessary. 
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ANNEXE 1 

Family of orthonormal polynomials 

1) Definition 

Given (a, ,8] an interval of Ill. We choose a given interval because we 
will need further on to calculate the family of orthonormal polynomials 

on [O, 1) and on [-½, ½]. 
We note 1In the vector space of dimension n + 1 formed by poly­

nomials of dimension ~ n ; II~ vector space of dimension n - 1 of 
polynomials 1In with roots in a et ,8. Given: 

a= (x - a)(x - ,8) 

notice that any non zero element of II~ factorizes a. 

We will establish the formulas that lets us compute the coefficients 
of the family of the polynomials that verify 

1. Legendre : 

for n ~ 0 
Ln of degree n 
and V / E 1In, If f(x). Ln+1(x) dx = 0 

2. (No name that I know of): 

for n ~ 2 
Sn of degree n, Sn E II8 
and V /En~, It f(x) .Sn+1(x). dx = 0 

we can easily verify that these definitions are equivalent to: 
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1.' {Lo,L1,L2,--•,Ln} orthogonal basis of Iln; Vn ~ 0. 

2.' {S2, Sa, S4, ... , Sn} orthogonal basis of Il~ ; V n ~ 2. 

orthogonal is relative to scalar product L 2 : 

< f .g >= J: f(x).g(x)dz 

Note that these definitions are sufficient to determine uniquely Ln and 
Sn within a multiplier coefficient ; In fact, the first definition can be 
expressed : "Ln is in the sub-vector space othogonal to Iln-1 in Iln" ; 
which is of dimension 1. Same reasoning for Sn. 

2) Usefulness 

The Ln are used in Reducs to find the orthogonal projection of 
the (olynomial P on Iln. In Reducs, we use the coefficients of Ln 

on l-½, ½] to calculate the scalar products with the "translated" 

polynomial and the coefficients of Ln on [O, 1] to express the solution 
Q in the canonical basis. 

The Sn answer to the same problems but in the case that we have 
contra.ints in the extremes of the interval. Find the polynomial Q of 
degree n nearest in the sense of L2 to a polynomial P of degree N and 
proving: 

Q(a) = P(a) et Q(/3) = P(/3) 

We have: 

P'(x) = P(x)- P(a) - [P(/3) - P(/3)] ; =: 
we have: P' de degre Net P'(a) = P'(/3) = 0. 

We project P' on ng which will give a polynomial Q' and the solution 
Q can be expressed: 

Q(x) = Q'(x) + P(a) + [P(/3)- P(a)] ; =: 
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3) Method of calculation 

We can derive from the Rodrigues formula the following: 

where D"' means the nth derivative. 

(3) 

(4) 

It is easy to prove that these formulas verify the respective defini­
tions (1) et (2). Let's do it for the first : Given P a polynomial of 
degree n - 1. 

J: Ln.P = J: D"(an).P.dz 

= [Dn-l (un).PJ: - J: Dn-l (a). P' dz 

(integration by parts). 

But an = [(x - a)(x - fj)r has in o and fj poles of order n so the 
derivative of a"' until order n - 1 become zero at a et (3. The term 
in brackets is zero so. We reiterate n n time the operation, which will 
give: 

because P is of degree n - 1. The proof of Sn is similar. 

Therefore the formulas (3) et (4) give the orthogonal family. It's 
more practical to use the orthonormal family. Let's clarify the nor­
malization in the case of L,,, : 

Ln = !n < L,,,.L,,, >= 1/J nn(an).D"'(a"').dx v< L,,,.Ln > a 

like the proof for (3), we don integrations in parts : 

< Ln .Ln >= (-lt 1: a". D2"(an) .dz 

an is a polynomial of degree 2n that has a coefficient of the highest 
term 1 so: 
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and 

< Ln. Ln > = (-1)"(2n )! 1: a". dx 

< Ln. Ln > = (-1)". (2n)! 1: (z - o,)"(z - /3)" dz 

again using integration by parts : 

= (-l)n(2n)! [ [n!i (x - o)n+l. (x - ,8)n]: -

J! n:l (x - a)n+l(x - ,Bt-1 dx] 

= (-l)n+1(2n)! J! n:l (x - a)n+l(x - ,Bt-1 dx 

we reiterate n times the integration by parts: 

= (-1)2n(2n)! (n!)
2 1'3 

(x - o)2n. dx 
(2n)! la 

' 2 (,8 - a)2n+l 
= (n.) 2n+ 1 
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4} Development 

In order to show that these formulas lead to an efficient and precise 
method of calculation of the coefficients Ln and Sn, we develop the 
calculations in the particular case of Ln with a= 0 and /3 = 1 : 

n 
Ln = Dn(an) = Dn [x(x - l)r = Dn L C~(-1)Cn-i). xn+i 

i=O 

and if we normalize: 

( ')2 1 = n! 
n. 2n + 1 y'2n + 1 

Ln = t Tr .z; avec T,n = (-1r-i. ✓2n + 1 C'~~t ~'-), 
i=O t. n t • 

The method of computation of these coefficients is then iterative: 

(5) 

(we can invert the sign). 

This method is more costly and very precise because we don't do 
multiplications and divisions. 
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APPENDIX 2 

Integration by the Gaussian Method 

Eventhough this technique is not used in the actual version of the 
benchmark, I will present it here because it leads to another type of 
representation of a polynomial : the knowledge of its values in n points. 

We go back to the notation of appendix 1. Even though these 
techniques exist in certain books, I don't know of any reference 
that talks about precision problems, probably because, used in finite 
elements, we restrict ourselve to weak degrees. That's why we integraly 
reproduce my reasoning about the superiority of the Gaussian method 
in precision. 

1. Integration methods of Newton-Cotes 

Given Pa polynomial of degree less than or equal to N - 1. Soient 
x1,x2,•••,xN, N distinct points of[a,p]. The values of P(x1), 
P( x2), ••• , P( x N) detemine P uniquely, more precisely : 

'P: IlN-1 ~ m,Np ~ (P(xi),i = 1, ... ,N) 

'Pis an isomorphism of the vector space (bijective linear application). 
In fact, it is evident that 'Pis linear and that the kernel of 'Pis reduced 
to 0. 

H we note S the linear form integrated on (a,P)" : 

S(P) = J: P(x) .dz 

We have: 
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II _:!_,. ]RN N-1 

ls 
IR Sovr1 

So vr1 is a linear form on m,N and can be represented by an N uplet 
( tenseur covariant) : 

which can be written : 

/3 N 
S(P) = 1 P(x) .dx = I: Oi .Xi 

o i=l 

This is the Newton-Cotes integration method. 

The Oi can be simply calculated: Given Bi E IIN-1, defined by : 

We have: 

and 

n,,u (x - x;) 
B . - j#,i ,--N-----TI, ... 1 (xi - x;) 

i~i 

1
/3 N 

Bi(x). dx =Lo; Bi(x;) = Oi 
o j=l 

Given U E IIN-1 the polynomial defined by : 

U(x)=l, VxeIR 

We have: 

1
/J N 

0 

U ( x) . dx = (/3 - o) = ~-Qi 

The sum of Qi is /3 - o but, in the case that Xi are equidistant, the Xi 

have alternate signs and very large absolute values , that is why this 
method is imprecise for a high degree. 
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2. Method of Gaussian integration 

Consider Il2N-t• Given P a polynomial of degree inferior or equal 
to 2N - 1. Given LN a polynomial of degree N on [a,,8]. We know 
that there are two unique polynomials of degree inferior or equal to 
N - 1 such that : 

P= LN.Q+R 

Q and R are respectively the quotient and the remainder of the divion 
of P by LN. 

The theorem on the orthogonal polynomials ( see article) says that 
LN has N real distinct roots in ]a,,8[. Given x1,x2,•••,xN these 
valuse, we have: 

On the other hand : 

J: P(x;) dx = J: LN(x). Q(x).dx+ J: R(x).dx 

By definition of LN, the first term of the second member is zero and : 

J: P(x) dx = J: R(x) .dx 

we could apply the NewtonCotes method to R, polynomial of degree 
less than or equal to N - 1 : 3 a 1, ... , aN such that : 

1
/3 f3 N N 

P(x).dx = 1 R(x).dx = E ai.R(xi) = E ai.P(xi) 
°' °' i=l i=l 

the first advantage of this method is that it is enough to know that 
value of a polynomial of degree 2N - 1 in N points to be able to 
compute its integral. But the first advantage of this point of vue is 
precision. In fact, this time we can compute 4ifferently the coefficients 
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ai : we have: 

therefore: 

N 

ai > 0 , Vi = 1, 2, ... , N et E Oi = /3 - a 
i=l 

This time, the Oi are all positive of teh same order of magnitude than 
/3-a h J b .. --y:r-, t euore a etter prec1s1on. 

3. Application to Spctra/Reducs 

Given N the degree of the polynomial P to be approximated and 
nthe maximum degree of the desired polynomial (here n = 19). 

The method described in chapter 4 requires the calculation of the 
scalar products: 

1/J . 
<Li.P>= 0t P(x).L'(x)dx with i 5 n 

It's enough to know P( x;) for n ~ N + 1 = K points x; root of LK to 

calculate precisely< Li. P > by the method of Gaussian integration. 
The idea is that P(x;), j = 1, ... , K define a very good representation 
of P that can eventually replace the decomposition in the basis of 

(x-½Y-

21 


