
6/24/88 3:18 PM LOG.TXT·

LOG (X) := THE LOGARITHM OF
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

Page 1

X (BA S E E)

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required system supported functions:
scalb(x,n)
copysign(x,y)
logb(x)
finite(x)

Required kernel function:
log_L (s)

Method (Due to Dr. K.C. Ng, UCB) :
1. Argument Reduction: find k and f such that

x = 2Ak * (l+f),
where sqrt(2)/2 < l+f < sqrt(2) .

2. Lets= f/(2+f) ; based on log(l+f) = log(l+s) - log(l-s)
= 2s + 2/3 s**3 + 2/5 s**5 + ,

log(l+f) is computed by

log(l+f) = 2s + s*log_L(s)
where

log_L(s) appoximates (log(l+f)-2s)/s.

3. Finally, log(x) = k*log2 + log(l+f). (k*log2 will be stored
stored in two floating point number: k * log2hi + k * log2lo,

k * log2hi is exact since the last 17 bits of log2hi are 0.)

Special cases:
log(x) is NAN with signal if x < 0 {including -INF) ;
log(+INF) is +INF; log(0) is -INF with signal;
log(NAN) is that NAN with no signal.

Accuracy:
log(x) returns the exact log(x) nearly rounded. In a test run with
288,000 random arguments, the maximum observed error was 0.82 ulps.

Implementation:
LOG2HI = 2 **
LOG2LO = -2 **
SQRT2 = 2 **

<---------- hex --------->
-0001 * l.62e4 2fef a3a0 0000
-0031 * l.0ca8 6c38 98cf f81a

0000 * l.6a09 e667 f3bc c908

if finite(X) then
{

if X > 0
{

then

Perform the argument reduction.

k := logb (X) ;

=

=

hi part log 2
low part log 2
sqrt 2

6/24/88 3:18 PM LOG.TXT

X := scalb(X, -k) ;
if k = -16383 then ... Xis subnormal
{

}

n := logb(x) ;
x := scalb(x,-n) :
k := k + n;

if x >= SQRT2 then
{

k := k + 1;
X := X * 0.5;

}
X := X - 1;

Compute log(l+x) and return.

S := X / (2 + X) ;
t := X * X * 0.5;
z := k * LOG2LO + s * (t + log_L(s));
log(X) :=

Page 2

k * LOG2HI + (x + (k * LOG2LO + s * (t + log_L(s)) - t)) ;
}

else ... Xis finite but non-positive
log(X) := -1 / 0 if x = 0, else

:= 0 IO; ... NaN with invalid signal for X < 0

else ... xis NaN or INF
log(X) := 0 / 0 if X NOT(?>=) 0, else

:= X; ... +INF or NaN

6/24/88 3:18 PM LOGlP.TXT

LOG 1 P (X) := THE LOGARITHM OF
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

Page 1

1 + x (base e)

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required system supported functions:
scalb(x,n)
copysign(x,y)
logb(x)
finite(x)

Required kernel function:
log_L (s)

Method (due to Dr. K.C. Ng, UCB)

1. Argument Reduction: find k and f such that
1 + x = 2 A k * (l+f),

where 0.5 sqrt 2 < l+f < sqrt 2. See remarks (i & iii).

2. Let s = f /(2+f) ; based on log(l+f) = log(l+s) - log(l-s)
= 2s + 2/3 s**3 + 2/5 s**5 + ... ,

log(l+f) is computed by

log(l+f) = 2s + s*log_L(s)
where

log_L(s) approximates (log(l+f)-2s)/s.

3. Finally, log(l+x) = k * log 2 + log(l+f). See remark (ii).

Remarks
(i)

(ii)

(iii)

f may not be representable. A correction term c for
f is computed. It follows that the correction term for
f - t, the leading term of log(l+f) , is c - c * x. We
add this correction term to k * (low part of log 2) to
compensate the error.

k * log 2 will be represented as the sum of two floating
point numbers

k * (high part of log 2) + k * (low part of log 2) ,
where (high part of log 2) is chosen with enough trailing
zeros (bits) so that

k * (hi part of log 2)
is exactly representable; for compatibility with other ar
chitectures, at least two more than the width of the widest
exponent field is used for the number of trailing zeros.

To compute loglp(2x) , even when 2x overflows, a special
entry loglp_r7 into the the loglp code is used. The entry
permits k to be incremented by one after the argument
reduction.

Special cases:

6/24/88 3:18 PM LOGlP.TXT

loglp(x) is NaN with signal if x < -1; loglp(NaN) is NaN;
loglp(INF) is +INF; loglp(-1) is -INF with signal;
only loglp(0)=0 is exact for finite arguments.

Accuracy:
loglp(x) returns the exact log(l+x) nearly rounded. In a test run
with 288K random arguments, the max. observed error was 0.82 ulps.

Implementation:
LOG2HI = 2 **
LOG2LO = -2 **
SQRT2 = 2 **

<---------- hex --------->
-0001 * 1.62e4 2fef a3a0 0000
-0031 * 1.0ca8 6c38 98cf f81a

0000 * 1.6a09 e667 f3bc c908

if finite(X) then
{

if X > -1 then
{

Perform the argument reduction.

Save the sticky flags; save the trap enables;

hi part log 2
low part log 2
sqrt 2

lower the sticky inexact flag; leave the inexact trap as is;
disable all other traps.

k := logb(l + X) ;
z := scalb(X, -k) ;
t := scalb(l, -k) ;
if z + t >= SQRT2 then
{

k
z
t

}

:=
:=
:=

k + 1 ;
z * 0.5;
t * 0.5;

At this point, modify the assembly code so that k is
incremented by one if the entry is by loglp_r7.

t := t - 1;
X := Z + t;

Compute the correction term for x.

z : = z + (t - x) ;

Return log(l + X) .

S := X / (2 + X) i
t := X * X * 0.5 i
z := s * (t + log_L(s)) + (z + (k * LOG2LO - z * x))

Restore the saved flags or'ed with the sticky
inexact flag upon return; restore the trap enables.

loglp(X) := k * LOG2HI + (x + (z - t)) ;

} ... end of X > -1

else ... finite(X) and X =< -1
loglp(X) := -1/0 if X = -1, else

:= 0/0

Page 2

6/24/88 3:18 PM

} ... end of finite(X)

else ... Xis NaN or INF

LOGlP.TXT

loglp(X) := 0/0 if X NOT(?>=) 0, else
:= X; ... +INF or NaN

Page 3

6/24/88 3:19 PM LOG L.TXT

LOG L (s) returns (log(l+x)-2s)/s,
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

where s = x/(2+x) and
lxl =< sqrt(2) - 1.

Page 1

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Method:
1. Save the divide-by-zero's sticky flag and trap status;

disable its trap.

2. Using a continued fraction approximation based on

log(l+x) = 2 atanh s, where s = x / (2+x),

(log(l+x)-2s)/s is approximated by

2

a
3

z + a + ---------------------
2 a

5
z + a + --------------

4 a
7

z + a + ------
2 6 z + a

where z = 3 / s 8

3. Restore the divide-by-zero's sticky flag and trap status.

Accuracy:
Assuming no rounding error, the maximum magnitude of the approximation
error (absolute) is 2**(-79.32) .

Implementation:
A(2) = -2 ** 0000 * 1.cccc cccc cccc cd98 =- -9/5 =- -1.8
A(3) = -2 ** -0001 * 1.3bfa 2608 c6e8 0050 =~ -108/175 =~ -0.62
A(4) = -2 ** 0000 * 1.8888 8888 9f56 de96 =~ -23/15 =- -1.5
A(5) = -2 ** -0001 * 1. 2786 d548 7541 7322 =- -400/693 =~ -0.58
A(6) = -2 ** 0000 * 1.8348 Saea 5e37 05e8 =~ -59/39 =~ -1.5
A(7) = -2 ** -0001 * 1. 2360 4356 c206 lf38 =- -5292/9295=~ -0.56
A(8) = -2 ** 0000 * 1.87f6 19f9 e8a2 8cd8 =- -333/221 =~ -1.5

Save the divide-by-zero's sticky flag and trap status; disable the trap.

Z := 3 / (S * S) ;

Restore the divide-by-zero's sticky flag and trap status upon return.

log_L(s) := 2 / (A(2)+A(3)/(A(4)+A(5)/(A(6)+A(7)/(A(8)+z)+z)+z)+z) ;

6/24/88 3:19 PM LOGl0.TXT

LOG 1 0 (X) := THE LOGARITHM OF
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

Page 1

X (B A S E 1 0)

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required kernel function:
log(x)

Method:
log x

logl0(x) = -----
log 10

Note:
[log(l0)] rounded to 64 bits has error 1/16 ulps,
[1/log(l0)] rounded to 64 bits has error 3/16 ulps;
therefore, for better accuracy, division is preferred
over multiplication.

Special cases:
logl0(x) is NAN with signal if x < 0;
logl0(+INF) is +INF with no signal; logl0(0) is -INF with signal;
logl0(NAN) is that NAN with no signal.

Accuracy:
logl0(x) returns the exact logl0(x) nearly rounded. In a test run
with??? random arguments, the maximum observed error was??? ulps.

Implementation:
LOGl0 = 2 ** 0001 * 1.26bb lbbb 5551 582e = log 10

logl0(x) := log(x) / LOGl0;

6/24/88 3:19 PM ASINH.TXT

AS IN H (X) := ARC HYPERBOLIC SINE OF X
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

Page 1

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required functions:
copysign(x,y)
fabs(x)
sqrt(x)
loglp(x) ... log(l+x)

Method:
s := copysign(l,x);
z := IX I;
t := 1/z + \/1 + (1/z)A2 ignoring under/overflow and /0;

asinh(x) := s * loglp(2z) if t = 1, else
:= s * loglp(z + z / t) ignoring underflow.

To compute loglp(2z) , even when 2z overflows,
a special entry loglp_r7 into the loglp code is used.

The entry permits k to be incremented by one
after the argument reduction

1 + z = 2 A k * (l+f) , where \/1/2 < l+f < \/2,
occurs in loglp.

Special cases:
asinh(x) is NaN with invalid exception for x < 1;
asinh(NaN) is NaN.

Accuracy:
ASINH has not been proven monotonic; however, it is if loglp is.
ASINH obeys ATRIGH(x) := atrigh(x) nearly rounded;

In a test run with??? random arguments, the maximum observed
error was ???1.58 ulps.

References:
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley
On the Monotonicity of Some Computed Functions, w. Kahan.

Implementation:
After the input argument has been referenced,
save the sticky flags; save the trap enables;
lower the sticky inexact flag; leave the inexact trap as is;
disable all other traps.

s .- copysign(l,x) ;
z := fabs(x) ;
t := 1/z + sqrt(l + (1/z) A2) . ,

asinh(x) := s * loglp r7(z,1) if t = 1 else ,
.- s * loglp(z + z / t) ;

Before calling loglp or loglp_r7, restore the saved flags or'ed with

6/24/88 3:19 PM ASINH.TXT Page 2

the sticky inexact flag; restore the trap enables.

6/24/88 3:20 PM ACOSH.TXT

AC OS H (X) := ARC HYPERBOLIC COSINE OF X
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

Page 1

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required functions:
sqrt(x)
loglp(x)

Method:

log(l+x)

acosh(x) := +loglp(2x) if x - 1 == x, else

:= +loglp(\/x - 1 * (\/x - 1 + \/x + 1))
To compute loglp(2x) , even when 2x overflows,
a special entry loglp_r7 into the loglp code is used.

The entry permits k to be incremented by one
after the argument reduction

1 + x = 2 A k * (l+f) , where \/1/2 < l+f < \/2,
occurs in loglp.

Special cases:
acosh(x) is NaN with invalid exception for x < 1;
acosh(NaN) is NaN.

Accuracy:
ACOSH has not been proven monotonic; however, it is if loglp is.
ACOSH obeys ATRIGH(x) := atrigh(x) nearly rounded;

In a test run with??? random arguments, the maximum observed
error was ???3.20 ulps.

References:
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley
On the Monotonicity of Some Computed Functions, w. Kahan.

Implementation:

acosh(x) := loglp r7(x,1) if x - 1 = x, else
:= loglp(sqrt(x - 1) * (sqrt(x - 1) + sqrt(x + 1))) ;

6/24/88 3:28 PM ATANH.TXT

AT ANH (X) := ARC HYPERBOLIC TANGENT OF X
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

Page 1

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required functions:
copysign(x,y)
fabs(x)
loglp(x) log(l + x)

Method:
z := I XI;
s := copysign(l,x) = +-1;

atanh(x) := s * loglp(2 * z / (1 - z)) / 2.

Special cases:
atanh(x) is NaN with invalid exception for I x I > 1;
atanh(NaN) is NaN;
atanh(+-1) is +-INF with /0 exception.

Accuracy:
ATANH has not been proven monotonic; however, it is if loglp is.
ATANH obeys ATRIGH(x) := atrigh(x) nearly rounded;

In a test run with??? random arguments, the maximum observed
error was ???1.45 ulps.

References:
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley
On the Monotonicity of Some Computed Functions, w. Kahan.

Implementation:
s := copysign(l/2, x) ;
z := fabs (x) ;
atanh(x) := s * loglp((z / (1- z)) * 2);

Make sure the division occurs before the doubling to prevent
a spurious overflow when twice z would otherwise overflow.

6/24/88 3:29 PM EXP.TXT

EXP (X) := THE EXPONENTIAL OF X
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

Page 1

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required system supported functions:
fabs(x)
fscalb(x,an)
finite(x)
fint(x)
frem(x,y)

Kernel function:

scalb for floating integers

round to floating integer
x REM y

an

exp_E(z,c) ... exp(r) - 1 - r, where r = z + c

Method:
1. Argument Reduction: given the input x, find r and integer k

such that
x = k log 2 + r,

r will be represented by z + c

2. Compute E(r) = exp(r) - 1 by

I r I<= 0.5 log 2.
for better accuracy.

E(r=z+c) := z + exp_E(z,c)

3. exp (x) : = 2 "' k * (E (r) + 1)

Remark
(i) To compute exp(x) / 2, even when exp(x) overflows, a special

entry exp r7 into the the exp code is used. The entry per
mits k to be decremented by one prior to the final scaling.

Special cases:
exp(INF) is INF, exp(NAN) is NAN;
exp(-INF) = 0;
for finite arguments, only exp(0) = 1 is exact.

Accuracy:
exp(x) returns the exponential of x nearly rounded. In a test run
with??? random arguments, the maximum observed error was??? ulps.

Implementation:
LOG2HI = 2 **
LOG2LO = -2 **
LOGHUGE = 2 **

<---------hex------------>
-0001 * 1.62e4 2fef a3a0 0000 = hi part log 2
-0031 * 1.0ca8 6c38 98cf f81a = low part log 2

0e * 1.bb a0 02 = (1 + 5 * 2"' (exp. width - 2)) log 2

if fabs(x) NOT(?>=) LOGHUGE then
{

Argument reduction: z + c := x REM (LOG2HI + LOG2LO)
hi := frem(x, LOG2HI) ;
k := fint((x - hi) / LOG2HI) ; ... keep k in floating point
c := k * LOG2LO;
z : = hi - c ;

6/24/88 3:29 PM EXP.TXT Page 2

C := (hi - z) - C;

Prior to the next addition, save the sticky flags and trap enables,
then disable the underflow and denormalized traps, perform the addition,
then restore the flags and traps to their previous settings.

z := z + exp E(z, c) ;
z := z + 1 ;-

At this point, modify the assembly code so that k is
decremented by 1.0 when the entry is via exp_r7 .

exp (x) : = fscalb (z, k) ; return 2Ak (E(x) + 1) .
}

then return 2 Ax.
x) ;

else if not finite(x)
exp(x) := fscalb(l,

else ... return INF (or
{

0) and signal overflow (or underflow) & inexact

}

z := fint(LOGHUGE / LOG2) ;
exp(x) := fscalb(l, z) if x > 0, else

: = f s calb (1, - z) ;

6/24/88 3:29 PM EXPMl.TXT Page 1

EXP M 1 (X) := THE EXPONENTIAL OF X , MINUS ONE
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required system supported functions:
scalb(x,n)
fscalb(x,an) ... scalb for floating integers an
finite(x)
frem(x,y)
fint(x) ... round to floating integer
fabs(x)

Kernel function:
exp_E(z,c) ... exp(r) - 1 - r, where r = z + c

Method: (Due to Dr. K.C. Ng, UCB)
1. Argument Reduction: given the input x, find r and

integer k such that

x = k log 2 + r, I r =< 0.5 log 2.

r will be represented by z + c for better accuracy.

2. Compute expml(r) := exp(r) - 1 by
expml(z + c) := z + exp E(z, c) .

k -k-
3. expml (x) . - 2 (expml (r) + 1 - 2) .

Remarks:
1. When k = 1 and z < -0.25, use the formula

expml(x) = 2 ((z + 1/2) + exp_E(z, c))
for better accuracy.

-k
2. To avoid a rounding error in 1 - 2 when k is large,

use k -k
expml(x) = 2 ((z + (exp_E(z,c) - 2)) + 1)

when k > 64 .

Special cases:
expml(+INF) is +INF;
expml(-INF) is -1;
expml(NAN) is NAN;
for finite arguments, only expml(0) = 0 is exact.

Accuracy:
expml(x) returns the exact exp(x) - 1 nearly rounded.
In a test run with 144,000 random arguments, the maximum
observed error was 0.769 ulps.

Implementation:
LOG2HI = 2 **
LOG2LO = -2 **

<-----------hex------------>
-0001 * 1.62e4 2fef a3a0 0000
-0031 * 1.0ca8 6c38 98cf f81a

= hi part log 2
= low part log 2

6/24/88 3:29 PM EXPMl.TXT

LOGHUGE = 2 ** 0e * l.bb 9d 3c = 5 * 2~(exp. width - 2) log 2

if fabs(x) NOT(?>=) LOGHUGE then
{

Argument Reduction: z '+' c := x REM (LOG2HI '+' LOG2LO) ,

Page 2

and k := nearest f.p. integer to x / LOG2HI.
z := frem(x, LOG2HI) ;
c := fint((z - x) / LOG2HI) ;
k := -c; ... keep as a floating point integer.
c := c * LOG2LO;
t
z
C

.-

.-

.-
z
z
C

;
+ C ;
+ (t - z) ;

Prior to the addition in the k = 0 case,
save the sticky flags and trap enables, then
disable the underflow and denormalized traps, perform the addition,
then restore the flags and traps to their previous settings.

expml(x)
:= z + exp_E (z, c) if k = 0 , else
:= 2 * ((z + 1/2) + exp_E(z, c)) if k=l & z < -1/4,
:= 2 * ((z + exp_E (z, c)) + 1/2) if k=l & z >= -1/4,
:= fscalb((1 - scalb(l,-k)) + (z + exp_E (z, c)) , k)

if fabs (k) <= 64 ,
: = fscalb (((exp_E (z, C) - scalb(l,-k)) + z) + 1 , k)

if fabs(k) < 200,

else
else

else

else
: = fscalb ((exp_E (z, c) + z) + 1 , k) if k > 0 , else
:= -1 + LOG2LO; ... return -1 and signal inexact

}
else ... Ix I >= LOGHUGE
{

expml(x)
:= fscalb(l, x) - 1 if not finite(x) , else
:= -1 + LOG2LO if x < 0, else ... overflow to INF inexactly
:= fscalb(l, fint(LOGHUGE / LOG2HI)) ;

The constants 64 and 200 are, respectively, the precision and
thrice the precision plus slop.

6/24/88 3:29 PM EXP E.TXT

EXP E (X, C returns exp(x + c) - 1 - x,
where lxl < 0.5 log 2 and lcl < 0.5 ulp of x,
ignoring all exceptions except INEXACT.

IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

Page 1

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Method:

1. Save the sticky flags; save the trap enables;
lower the sticky inexact flag; leave the inexact
trap as is; disable all other traps.

2. Using a continued fraction approximation based on

and
exp(x) - 1 = 2 / (coth(x/2) - 1)

tanh(x/2) = x/2 - (x/2) / CF(l2/xA2) ,

exp(x+c)-1-x is computed by

(x/2)W - (l+x/2)/CF
x*x/2 + (c + x (c + -------------------)) ,

1 - W

where W = (x/2) - (x/2) /CF= tanh(x/2) .

The continued fraction CF is approximated by

a
3

z + a + ---------------
2 a

5
z + a + ------

4 z + a
2 6

where z = 12 / x

3. Restore the saved flags or'ed with the sticky inexact flag;
restore the trap enables.

Approximation error:

I exp(x) - 1
I ------------ (exp_E(x,0)+x)/x <= 2**(-74), (IEEE extended)
1 X

Implementation:
A2 = 2 ** 0000 * 1.3333 3333 3333 37be =~ 6/5 =~ 1.2
A3 = -2 ** -0006 * 1.18de 5ab2 7bl7 54e6 =~ -3/175 =~ -0.017
A4 = 2 ** -0003 * 1.1111 1126 ddd8 6ed0 =~ 2/15 =~ 0.13
AS = -2 ** -oooa * 1.7a4a 86b7 ff7d 9cda =~ -1/693 =~ -0.0014

6/24/88 3:29 PM EXP E.TXT

A6 = 2 ** -0005 * 1.b174 1997 d7a4 3a80 =~ 2/39 0.053

After the input argument has been referenced,
save the sticky flags; save the trap enables;
lower the sticky inexact flag; leave the inexact trap as is;
disable all other traps.

X and x are different variables. In fact, X is half
X := X ;
X := X * (1/2) ;
xx := X * X . ,
cf := 6 / xx ;
cf := A(2)+A(3)/(A(4)+A(5)/(A(6)+cf)+cf)+cf ;
w := X - X I cf ;
exp(X, c)

:= -(-xX + (-c - X * (C + (x * w - (1 + x) I

Restore the saved flags or'ed with the sticky
inexact flag upon return; restore the trap enables.

cf)

X .

I (1 - w))))

Page 2

;

6/24/88 3:30 PM SINH.TXT

SIN H (X) := HYPERBOLIC SINE OF X
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

Page 1

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required functions:
copysign(x,y)
fabs(x)
exp(x)
expml(x) ... exp(x) - 1; abbreviated as E(x)

Method:
z := I X I ;
s := copysign(l,x) ... = +-1;

E (z)
sinh(x) := s * (E (z) + --------) I 2 if z < log(2A64+1)

1 + E (z)
else,

:= s * exp (z) I 2 provided exp (z) doesn't overflow.

To compute exp(z) / 2, even when
a special entry exp_r7 into the

exp(z) overflows,
exp code is used.

The entry permits k to be decremented by one prior
to the final scaling

exp(x) := 2 A k * (E(r) + 1)
occuring in exp.

Special cases:
sinh(non-finite) is that non-finite;
sinh(x) is exact only for x = O and non-finite x.

Accuracy:
SINH has not been proven monotonic; however, it is if expml is.
SINH obeys TRIGH(x) := trigh(x) nearly rounded;

In a test run with??? random arguments, the maximum observed
error was ???1.93 ulps.

References:
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley
On the Monotonicity of Some Computed Functions, w. Kahan.

Implementation:
LOG2 64 = 2 ** 05 * 1.62 e4 30 = float ceiling log(2A64+1)

halfs := copysign(0.5, x) ;
z := fabs (x) ;
sinh(x)

:= (expml(z) / (expml(z) + 1) +
if

:= 2 * (exp_r7(z, 1) * halfs) ;

expml(z)) * halfs
z NOT(?>=) LOG2 64, else

6/24/88 3:30 PM COSH.TXT

COS H (X) := HYPERBOLIC COSINE
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

Page 1

0 F X

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required functions:
fabs(x)
exp(x)

Method:
z :=IX I;

cosh(x) := 0.5 exp(z) + 0.25 / (0.5 exp(z)) ignoring underflow and
denormalized during the divide and add;

To compute 0.5 exp(z) , even when exp(z) overflows,
a special entry exp_r7 into the exp code is used.

The entry permits k to be decremented by one prior
to the final scaling

exp(x) := 2 "k * (E(r) + 1)
occuring in exp.

Special cases:
cosh(NaN)
cosh(INF)
cosh(x)

Accuracy:

is NaN;
is I INF I ;
is exact only for X = 0 and non-finite X •

COSH has not been proven monotonic; however, it is if exp is.
COSH obeys TRIGH(x) := trigh(x) nearly rounded;

In a test run with??? random arguments, the maximum observed
error was ???1.23 ulps.

References:
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley
On the Monotonicity of Some Computed Functions, W. Kahan.

Implementation:

z := fabs(x) ;
z := exp_r7(z, 1);

Prior to the next divide, save the sticky flags and trap enables;
lower the overflow and inexact sticky flags; leave their traps as is;
disable all other traps.

cosh (x) := (1/4) / z + z ;

Upon return, restore the saved flags or'ed with the overflow and
inexact sticky flags; restore the trap enables.

6/24/88 3:31 PM TANH.TXT

TANH (X) := HYPERBOLIC TANGENT OF X
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

Page 1

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required functions:
copysign(x,y)
fabs(x)
expml(x) exp(x) - 1

Method:
z :=IX I;
s := copysign(l,x) = +-1;

tanh(x) := -s * expml(-2z) / (2 + expml(-2z)) ignoring overflow.

Special cases:
tanh(NaN) is NaN;
tanh(x) is exact only for I x I = 0, INF.

Accuracy:
TANH has not been proven monotonic; however, it is if expml is.
TANH obeys TRIGH(x) := trigh(x) nearly rounded;

In a test run with??? random arguments, the maximum observed
error was ???2.22 ulps.

References:
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley
On the Monotonicity of Some Computed Functions, w. Kahan.

Implementation:

s := -copysign(l, x) ; ... single precision s

Prior to the next doubling, save the overflow sticky flag and trap;
disable the trap; perform the doubling; then restore the saved settings.

t := expml(-2*fabs(x)) ;
tanh(x) := s * t / (2 + t) ;

6/24/88 3:31 PM SIN.TXT

SIN (X) := THE SINE OF X
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

RADIANS

Page 1

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required functions:
frem(x,y)
fint(x) round to floating integer

Required kernel function:
tan_T(x) := 2 tan(x / 2) ... abbreviated as T(x)

Method:
1. theta:= x REM [pi/2] , where [pi/2] is pi/2 rounded to 64 bits;

n := the least significant two bits of the quotient, signed.

2. Sine or cosine of theta
fairly accurately for all
following procedure:

can be calculated from t := T(theta)
theta I =< pi/4 by using the

t := T(theta); q := t * t; sin(theta) := t - t /(1+4/q);
if q =< 4/15

then cos(theta) .- 1 - 2/(1+4/q);
else cos(theta) := 3/4 + ((1-2q) + q/4)/(4+q);

3. Using (1) and (2), sine or cosine of x is computed by:

n

n = -3
n = -2
n = -1
n = 0

or 1
or 2
or 3

sin(x)

cos(theta)
-sin(theta)
-cos(theta)

sin(theta)

cos(x)

-sin(theta)
-cos(theta)

sin(theta)
cos(theta)

provided just prior to executing "q := t * t" you

(i) Save the sticky flags; save the trap enables;
lower the sticky inexact flag; leave the inexact
trap as is; disable all other traps.

and you

(ii) Restore the saved flags or'ed with the sticky
inexact flag; restore the trap enables.

upon return.

Special cases:
sin(INF) is NaN and invalid exception;
sin(NaN) is NaN;
sin(x) is exact only for representable multiples of [pi]/4,

i.e. I x I = 2**n * [pi]/ 4 & 0 .

6/24/88 3:31 PM SIN.TXT

Accuracy:
SIN(x) returns sin(x) to within 1.9 ulps according to a test run

with 320,000 random arguments.
SIN(x) is provably monotonic.
SIN(x) obeys TRIG(x) .- trig(x*pi/[pi]) nearly rounded,

where pi= 2 ** 2 * .c90f daa2 2168 c234 c4c6 628b
[pi]= 2 ** 2 * .c90f daa2 2168 c235 .

References:
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley
On the Monotonicity of Some Computed Functions, w. Kahan.

Implementation:
TWOPI = 2 **
HALFPI = 2 **

0002 * 1.921f b544 42dl 846a = 2[pi]
0000 * 1.921f b544 42dl 846a = [pi)/2

Since it is implementation dependent how the remainder operation
returns the least significant few bits of the quotient, the double
REM trick from the August 1984 issue of IEEE Micro, p.92, is used to
obtain t := x REM [pi/2) ,

Page 2

and q := the least significant two bits of the quotient, signed.
q .- frem(x, TWOPI) ;
t := frem(q, HALFPI) ;
q := fint((q - t) / HALFPI) ;

t := tan_T(t) ;

Save the sticky flags; save the trap enables;
lower the sticky inexact flag; leave the inexact
trap as is; disable all other traps.

n := q truncated to an integer ;
q := t * t ;
sin(x) := 1 - 2 I (1 + 4 I q) if n = -3 or

:= 3/4 + ((1 - 2*q) + q/4) I (4 + q)
:= t I (1 + 4 I q) - t if n = -2 or
:= 2 I (1 + 4 I q) - 1 if n = -1 or

1
if
2
3

:= -(3/4 + ((1 - 2*q) + q/4) I (4 + q))
:= t - t I (1 + 4 I q) if n = 0 . ,

,

Upon return, restore the saved flags or'ed with the
sticky inexact flag; restore the trap enables.

and q <= 4/15 , else
n = -3 or 1 , else

else
and q <= 4/15 , else
if n = -1 or 3 , else

6/24/88 3:31 PM COS.TXT

COS (X) := THE COSINE OF
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

X

Page 1

RADIANS

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required functions:
frem(x,y)
fint(x) round to floating integer

Required kernel function:
tan_T(x) := 2 tan(x / 2) ... abbreviated as T(x)

Method:
1. theta:= x REM [pi/2) , where [pi/2) is pi/2 rounded to 64 bits;

n := the least significant two bits of the quotient, signed.

2. Sine or cosine of theta
fairly accurately for all
following procedure:

can be calculated from t := T(theta)
I theta I =< pi/4 by using the

t := T(theta); q := t * t; sin(theta) := t - t /(1+4/q);
if q =< 4/15

then cos(theta) .- 1 - 2/(1+4/q);
else cos(theta) .- 3/4 + ((1-2q) + q/4)/(4+q);

3. Using (1) and (2), sine or cosine of x is computed by:

n

n = -3
n = -2
n = -1
n = 0

or 1
or 2
or 3

sin(x)

cos(theta)
-sin(theta)
-cos(theta)

sin(theta)

cos(x)

-sin(theta)
-cos(theta)

sin(theta)
cos(theta)

provided just prior to executing "q := t * t" you

(i) Save the sticky flags; save the trap enables;
lower the sticky inexact flag; leave the inexact
trap as is; disable all other traps.

and you

(ii) Restore the saved flags or'ed with the sticky
inexact flag; restore the trap enables.

upon return.

Special cases:
cos(INF) is NaN and invalid exception;
cos(NaN) is NaN;
cos(x) is exact only for representable multiples of [pi)/4,

i.e. I x I = 2**n * [pi] / 4 & 0 .

6/24/88 3:31 PM COS.TXT

Accuracy:
COS(x) returns cos(x) to within 1.9 ulps according to a test run

with 320,000 random arguments.
COS(x) is provably monotonic.
COS{x) obeys TRIG(x) := trig(x*pi/[pi]) nearly rounded,

where pi= 2 ** 2 * .c90f daa2 2168 c234 c4c6 628b
[pi]= 2 ** 2 * .c90f daa2 2168 c235.

References:
Elementary Functions from Kernels, Prof. W. Kahan, U.C.Berkeley
On the Monotonicity of Some Computed Functions, w. Kahan.

Implementation:
TWOPI = 2 **
HALFPI = 2 **

0002 * 1.921f b544 42dl 846a = 2[pi]
0000 * 1.921f b544 42dl 846a = [pi]/2

Since it is implementation dependent how the remainder operation
returns the least significant few bits of the quotient, the double
REM trick from the August 1984 issue of IEEE Micro, p.92, is used to
obtain t := x REM [pi/2] ,

Page 2

and q := the least significant two bits of the quotient, signed.
q := frem(x, TWOPI) ;
t := frem(q, HALFPI) ;
q := fint((q - t) / HALFPI) ;

t := tan_T {t) ;

Save the sticky flags; save the trap enables;
lower the sticky inexact flag; leave the inexact
trap as is; disable all other traps.

n := q truncated to an integer . ,
q := t * t ;
cos{x) := t I (1 + 4 I q) - t if n = -3 or 1

:= 2 I {1 + 4 I q) - 1 if n = -2 or 2
:= -(3/4 + ((1 - 2*q) + q/4) I (4 + q))
:= t - t I (1 + 4 I q) if n = -1 or 3

I else
and q <= 4/15 ,
if n = -2 or 2

, else
:= 1 - 2 I (1 + 4 I q) if n = 0 and q <= 4/15 , else
:= 3/4 + ((1 - 2*q) + q/4) I (4 + q) if

Upon return, restore the saved flags or'ed with the
sticky inexact flag; restore the trap enables.

n = 0 ;

else
, else

6/24/88 3:31 PM TAN.TXT

TAN (X) := THE TANGENT OF
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

X

Page 1

RADIANS

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required functions:
frem(x,y) x REM y

Required kernel function:
tan_T(x) := 2 tan(x / 2) ... abbreviated as T(x)

Method:
1. h := x REM [pi] , where [pi] is pi rounded to 64 bits.

2. If

If

Special cases:
tan (inf)

h I < [pi] /8
then return tan

h >= 3[pi]/8
then return tan
else

t := T(2 I
return tan

is NaN with invalid flag raised;
invalid trap taken, if enabled;
is NaN;

:= T(2h)/2 ;

:= 2/T([pi]sign(h)-2h)

h I - [pi)/2) ;
.- sign (h) (2+t) / (2-t)

tan(NaN)
tan(x) is exact only for representable multiples of [pi)/4,

i.e. I x I = 2**n * [pi]/ 4 & O •

Accuracy:
TAN(x) returns tan(x) to within ???1.5 ulps.
TAN(x) is provably monotonic.
TAN(x) obeys TRIG(x) := trig(x*pi/[pi]) nearly rounded,

where pi= 2 ** 2 * .c90f daa2 2168 c234 c4c6 628b
[pi]= 2 ** 2 * .c90f daa2 2168 c235 .

Tests:
TAN's worst observed error on -[pi]/2 to [pi)/2 was??? ulps
for??? random arguments.

References:
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley
On the Monotonicity of Some computed Functions, w. Kahan.

Implementation:
PI = 2 **
PIOVER2 = 2 **
PIOVER8 = .2 **

0001 * 1.921f b544 42dl 846a
0000 * 1.921f b544 42dl 846a

-0002 * 1.921f b544 42dl 846a

t := frem(x, PI) ;

=
[pi]
[pi)/2
[pi]/8

.

Save the sticky flags and trap enables just prior to the divide,
then disable the integer overflow trap and the underflow trap, then

6/24/88 3:31 PM TAN.TXT

restore the flags and traps immediately after the convert to integer.

n := t / PIOVER8 truncated to an integer;

tan(x) := 2 / tan T(-(PI+2*t)) if n = -4 or -3, else
:= -(2 + tan_T(-2*t-PIOVER2)) / (2 - tan T(-2*t-PIOVER2))

if n = -2 or -1, else
:= (2 + tan T(2*t-PIOVER2)) / (2 - tan T(2*t-PIOVER2))

- if n = 2 or 1, else
:= tan T(2*t) * 0.5 if n = O, else
:= 2 /tan_T(PI-2*t) if n = 3 or 4;

Page 2

6/24/88 3:32 PM TAN T.TXT

TAN T (X) := 2 TAN (X / 2)
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

, where

Page 1

lxl =< [pi]/4 .

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Method:
1. Save the sticky flags; save the trap enables;

lower the sticky inexact flag; leave the inexact
trap as is; disable all other traps.

2
2. Z := a / X

1
X

3. tan_T(x) := x +
a

3
z + a + ---------------

2 a
5

z + a + ------
4 z + a

6

4. Restore the saved flags or'ed with the sticky inexact flag;
restore the trap enables.

Accuracy:
Assuming no rounding error, the maximum magnitude of the
approximation error (absolute) is 2**(-66.14) .
tan_T(x) is provably monotonic.
tan_T(x) obeys TRIG(x) := trig(x*pi/[pi]) nearly rounded,

where pi= 2 ** 2 * .c90f daa2 2168 c234 c4c6 628b ...
[pi]= 2 ** 2 * .c90f daa2 2168 c235 .

References:
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley
On the Monotonicity of Some Computed Functions, w. Kahan.

Implementation:
A(1) = 2 ** 0003 * 1. 8000 0000 0000 021a =- 12 =- 12.
A(2) = -2 ** 0000 * 1. 3333 3333 3334 7090 =- -6/5 =- -1.2
A(3) = -2 ** -0006 * 1.18de 5ab2 5d5b e362 =- -3/175 =- -0.017
A(4) = -2 ** -0003 * 1.1111 112f 8c57 78dc =- -2/15 =- -0.13
A(5) = -2 ** -oooa * 1. 7a45 0166 8187 fdfa =~ -1/693 =- -0.0014
A(6) = -2 ** -0005 * l.a501 80bf 4236 08c2 =- -2/39 =- -0.051

Save the sticky flags; save the trap enables;
lower the sticky inexact flag; leave the inexact trap as is;
disable all other traps.

z := A(l) / (x*x) ;

Restore the saved flags or'ed with the sticky

6/24/88 3:32 PM TAN T.TXT Page 2

inexact flag upon return; restore the trap enables.

tan_T(x) := x + x / (A(2)+A(3) / (A(4)+A(5) / (A(6)+z)+z)+z) ;

6/24/88 3:32 PM ASIN.TXT

AS IN (X) := ARC SINE OF
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

X

Page 1

RADIANS.

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required functions:
atan(x)
fabs(x)
sqrt(x)

Method: 2
If I X I ?<= 1 / 2 then

else {
r := 1 - x ... ignoring underflow
y := 1 - Ix I ... exactly;
r := 2y - yA2 };

asin(x) := atan(x / \/~ ignoring divide-by-zero.

Special cases:
asin(x) is NaN with invalid exception for Ix I > 1.

Accuracy:
ASIN has not been proven monotonic; however, it is if ATAN is.
ASIN obeys ARCTRIG(x) := [pi]/pi*arctrig(x) nearly rounded,

where pi= 2 ** 2 * .c90f daa2 2168 c234 c4c6 628b ...
[pi]= 2 ** 2 * .c90f daa2 2168 c235.

In a test run with??? random arguments, the maximum observed
error was ???2.06 ulps.

References:
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley
On the Monotonicity of Some Computed Functions, w. Kahan.

Implementation:
After the input argument has been referenced,
save the sticky flags; save the trap enables;
lower the inexact and invalid sticky flags;
leave the inexact and invalid traps as is; disable all other traps.

asin(x) := atan(x / sqrt(l - x * x)) if
:= atan(x / sqrt(2 * y - y * y))

fabs(x) ?<= 1/2, else
where y := 1 - fabs(x) ;

Before calling atan, restore the trap enables and restore the
saved flags or'ed with the inexact and invalid sticky flags.

6/24/88 3:33 PM ACOS.TXT

AC OS (X) := ARC COSINE OF
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

Page 1

X R A D I A N S .

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required functions:
atan(x)
sqrt(x)

Method:

/ 1 - X
acos(x) := 2 atan(/ --------

\/ 1 + X

Special cases:

ignoring divide-by-zero.

acos(x) is NaN with invalid exception for Ix I > 1.

Accuracy:
ACOS has not been proven monotonic; however, it is if ATAN is.
ACOS obeys ARCTRIG(x) := [pi]/pi*arctrig(x) nearly rounded,

where pi= 2 ** 2 * .c90f daa2 2168 c234 c4c6 628b ...
[pi]= 2 ** 2 * .c90f daa2 2168 c235.

In a test run with??? random arguments, the maximum observed
error was ???2.07 ulps.

References:
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley
On the Monotonicity of Some Computed Functions, w. Kahan.

Implementation:
After the input argument has been referenced,
save the sticky flags; save the trap enables;
lower the inexact and invalid sticky flags;
leave the inexact and invalid traps as is; disable all other traps.

acos(x) :=2atan(sqrt((l-x) / (l+x)));

Before calling atan, restore the trap enables and restore the
saved flags or'ed with the inexact and invalid sticky flags.

6/24/88 3:33 PM ATAN.TXT

AT AN (X) := ARC TANGENT OF
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

Page 1

X RADIANS.

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required functions:
copysign(x,y)
fabs(x)

Method: (Due to Dr. K.C. Ng, U.C.Berkeley)

1. Reduce x to the positive case by atan(-x) = -atan(x)

2. According to the truncated integer 4(x+l/16) select one
of the following intervals and evaluate atan(x) using
the corresponding formula.

[0,7/16] atan(x) = x-x/(a2+a3/(a4+a5/(a6+a7/(a8+a9/(al0+z)
where z = al/xA2 +z)+z)+z)+z)

= atan(l/2) + atan((x-1/2)/(l+x/2))
= atan(1) + atan((x- 1)/(l+x))

[7/16,11/16] atan(x)
[11/16,19/16] atan(x)
[19/16,39/16] atan(x)
[39/16,INF] atan(x)

= atan(3/2) + atan((x-3/2)/(1+3x/2))
= atan(INF) + atan(-1/x)

Special cases:
atan(NaN) is NaN;
atan(-0) is -0;
atan(x) is exact only for

Accuracy:

x I = 0,1,INF.

ATAN returns atan(x) to within better than 0.89 ulps,
according to an error analysis done by Dr. Ng;

ATAN has not been proved monotonic;
ATAN obeys ARCTRIG(x) := [pi]/pi*arctrig(x) nearly rounded,

where pi= 2 ** 2 * .c90f daa2 2168 c234 c4c6 628b ...
[pi]= 2 ** 2 * .c90f daa2 2168 c235.

Tests:
ATAN's worst error on -524,297 to 524,297 was 0.86 ulps for
1,312,000 random arguments. No monotonicity failures occured.

References:
ATAN (for computers that conform to IEEE standard 754)
by Dr. K.C. Ng, U.C. Berkeley.

Implementation:
Al = 2 ** 0001 * 1. 8000 0000 0000 021c =- 3
A2 = 2 ** 0000 * 1.cccc cccc ceca 81f6 =- 9/5
A3 = -2 ** -0001 * 1.3bfa 2608 c357 bSf0 =- -108/175
A4 = 2 ** 0000 * 1.8888 8887 4061 cld0 =- 23/15
AS = -2 ** -0001 * 1. 2786 d4d4 f5e8 7498 =- -400/693
A6 = 2 ** 0000 * 1. 8348 la77 d068 6434 =- 59/39
A7 = -2 ** -0001 * 1. 237a 8123 9828 9f48 =- -5292/9295

=-
=-
=- -
=~
=~ -
=~
=~ -

3.00
1.80

.617
1.53

.577
1.51

.569

6/24/88 3:33 PM ATAN.TXT

A8 = 2 ** 0000 * 1.815e 503c 6b5b 4810 =~ 333/221
A9 = -2 ** -0001 * 1.1982 5c9a 5461 7902 =~ -15552/27455
Al0 = 2 ** 0000 * 1.4ed9 f09c 4ceb 3d8e =~
ATAN12HI = 2 ** -0002 * 1. dac6 7056 lbb4 f68c
ATAN12LO = -2 ** -0043 * 1.28bb 83f3 597a 57ec
PIOVER4 = 2 ** -0001 * 1.921f b544 42dl 846a
ATAN32HI = 2 ** -0001 * 1.f730 bd28 lf69 b202
ATAN32LO = -2 ** -0043 * 1.eae0 d654 3812 74c0
PIOVER2 = 2 ** 0000 * 1.921f b544 42dl 846a

<hex> <-------hex------->

After the input argument has been referenced,
save the sticky flags; save the trap enables;

179/119
= [pi] /pi
= [pi]/pi
= [pi]/4
= [pi]/pi
= [pi] /pi
= [pi]/2

1. 51
=~ - .566
=~ 1.50

atan(l/2)
atan(l/2)

atan(3/2)
atan(3/2)

lower the sticky inexact flag; leave the inexact trap as is;
disable all other traps.

sign:= copysign(l,x) ;
y := fabs (x) ;

Page 2

hi part
lo part

hi part
lo part

(head,tail,y) := (PIOVER2, 0 , -1/y if
:= (0 , 0 , y) if
:= (ATAN12HI,ATAN12LO, (y-1/2)/(l+y/2)) if
:= (PIOVER4, 0 , (y- 1)/(1+ y)) if
:= (ATAN32HI,ATAN32LO, (y-3/2)/(1+3/2*y)) ,

y>=39/16,else
n = 0,1, else
n = 2, else
n = 3,4, else

where n := 4 * (y + 1/16) truncated to an integer;

atan(x) :=sign* (head+ (y + (tail - y / cf(Al/yA2)))) , where
cf(z) := A2+A3/(A4+A5/(A6+A7/(A8+A9/(A10+z)+z)+z)+z)+z;

Restore the saved flags or'ed with the sticky
inexact flag upon return; restore the trap enables.

Note: If truncation to an integer can signal inexact on your system,
disable the inexact trap just prior to the conversion;
immediately afterwards, clear the sticky inexact flag and
restore the inexact trap to its previous setting.

6/24/88 3:33 PM ATAN2.TXT

AT AN 2 (Y, X) := AR G X + I Y)
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

Page 1

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required system supported functions:
copysign(x,y)
scalb(x,n)
logb(x)

(Due to K.C. Ng, U.C.Berkeley) Method:
1.
2.

Reduce y to positive case by atan2(y,x) = -atan2(-y,x) .
Reduce x to positive case by

ARG (x+iy) = arctan(y/x)
ARG (x+iy) = pi - arctan[y/(-x)]

provided x and y are unexceptional.

if X > 0,
if X < 0,

3. According to the truncated integer 4(x+l/16) select one
of the following intervals and evaluate atan(x) using

the corresponding formula.

[0,7/16) atan(y/x) = x-x/(a2+a3/(a4+a5/(a6+a7/(a8+a9/(a10
where z = al/x"'2 +z)+z)+z)+z)+z)

[7 /16, 11/16] atan(y/x) = atan(l/2) + atan((y-x/2)/(x+y/2))
[11/16, 19/16) atan(y/x) = atan(1) + atan((y-x)/(x+y))
[19/16, 39/16] atan(y/x) :;:: atan(3/2) + atan((y-1.Sx)/(x+l.Sy)
[39/16,INF] atan(y/x) = atan(INF) + atan(-x/y)

Special cases:
Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y).

ARG(NaN, (anything)) is NaN;
ARG((anything), NaN) is NaN;
ARG(+(anything but NaN), +-0) is +-0 ;
ARG(-(anything but NaN), +-0) is +-PI;
ARG(0, +-(anything but O and NaN)) is +-PI/2;
ARG(+INF,+-(anything but INF and NaN)) is +-0;
ARG(-INF,+-(anything but INF and NaN)) is +-PI;
ARG(+INF,+-INF) is +-PI/4;
ARG(-INF,+-INF) is +-3PI/4;
ARG((anything but,0,NaN, and INF),+-INF) is +-PI/2;

Accuracy:
ATAN2 has not been proved monotonic;
ATAN2 obeys ARCTRIG(y,x) := [pi]/pi*arctrig(y,x) nearly rounded,

where pi= 2 ** 2 * .c90f daa2 2168 c234 c4c6 628b ...
[pi]= 2 ** 2 * .c90f daa2 2168 c235 .

In a test run with??? random arguments on [-1,1) x [-1,1] ,
the maximum observed error was ??? ulps.

References:
ATAN (for computers that conform to IEEE standard 754)
by Dr. K.C. Ng, U.C. Berkeley.

6/24/88 3:33 PM ATAN2.TXT

Implementation:
Al = 2 ** 0001 * 1. 8000 0000 0000 021c =~ 3
A2 = 2 ** 0000 * 1.cccc cccc ceca 81f6 =~ 9/5
A3 = -2 ** -0001 * 1. 3bfa 2608 c357 bSf0 =~ -108/175
A4 = 2 ** 0000 * 1. 8888 8887 4061 cld0 =~ 23/15
AS = -2 ** -0001 * 1. 2786 d4d4 f5e8 7498 =~ -400/693
A6 = 2 ** 0000 * 1. 8348 la77 d068 6434 =~ 59/39
A7 = -2 ** -0001 * 1. 237a 8123 9828 9f48 =~ -5292/9295
A8 = 2 ** 0000 * 1. 815e 503c 6b5b 4810 =~ 333/221
A9 = -2 ** -0001 * 1.1982 5c9a 5461 7902 =~ -15552/27455
Al0 = 2 ** 0000 * 1.4ed9 f09c 4ceb 3d8e =~ 179/119
ATAN12HI = 2 ** -0002 * 1.dac6 7056 lbb4 f68c = [pi]/pi
ATAN12LO = -2 ** -0043 * 1.28bb 83f3 597a 57ec = [pi]/pi
PIOVER4 = 2 ** -0001 * 1.921f b544 42dl 846a = [pi]/4
ATAN32HI = 2 ** -0001 * 1. f7 30 bd28 lf69 b202 = [pi]/pi
ATAN32LO = -2 ** -0043 * 1.eae0 d654 3812 74c0 = [pi]/pi
PIOVER2 = 2 ** 0000 * 1.921f b544 42dl 846a = [pi]/2
PI = 2 ** 0001 * 1.921f b544 42dl 846a = [pi]

<hex> <-------hex------->

After the input argument has been referenced,
save the sticky flags; save the trap enables;
leave the inexact trap as is; disable all other traps.

signy := copysign(l, Y) ;
signx := copysign(l, X) ;
X := fabs (X) ;
y := fabs (Y) ;
t := y / X;

Re-save the sticky inexact flag and lower it.

=~ 3.00
=~ 1. 80
=- - .617
=~ 1. 53
=~ - .577
=~ 1. 51
=~ - .569
=~ 1.51
=~ - .566
=~ 1.50

atan(l/2) hi
atan(l/2) lo

atan(3/2) hi
atan(3/2) lo

if t != t then ... x & y are both infinite (or 0) or one is NaN
if x = y then ... neither is NaN

if x != 0 then ... both are infinite
atan2(Y,X) := signy * PIOVER4 if signx > 0, else

:= signy * 3 * PIOVER4;
else ... both are 0

t : = 0 ;
else x or y is NaN

atan2(Y,X) := t;

Page 2

part
part

part
part

Rescale y/x to prevent loss of precision near under/overflow threshold.
We assume the integer k can never represent INF or NaN
in the scalb call. Other implementations beware!

k := logb(y) ;
y := scalb(y, -k) ;
x := scalb(x, -k) ;

(head,tail,t) := (PIOVER2, 0 , -x/y if
:= (0 , 0 , t) if
:= (ATAN12HI,ATAN12LO, (2*y-x)/(2*x+y)) if
: = (PIOVER4 , 0 , (y - x) / (x + y)) if
:= (ATAN32HI,ATAN32LO, (2*y-3*x)/(2*x+3*y)) ,

where n := 4 * (t + 1/16) truncated to an integer;

atan2(Y,X)

t>=39/16,else
n = 0,1, else
n = 2, else
n = 3,4, else

:= signy * (head+ (t + (tail - t / cf(Al/tA2)))) if signx>0, else
:= signy * (PI - (head+ (t + (tail - t / cf(Al/tA2))))) ,

where
cf(z) := A2+A3/(A4+A5/(A6+A7/(A8+A9/(A10+z)+z)+z)+z)+z;

6/24/88 3:33 PM ATAN2.TXT

Restore the saved flags or'ed with the sticky
inexact flag upon return; restore the trap enables.

Note: If truncation to an integer can signal inexact on your system,
disable the inexact trap just prior to the conversion;
immediately afterwards, clear the sticky inexact flag and
restore the inexact trap to its previous setting.

Page 3

6/24/88 3:34 PM POW.TXT

POW (X, Y) := X RAISED TO THE
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

Page 1

y POWER

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required system supported
scalb(x,n)
logb(x)
copysign(x,y)
finite(x)
frem(x,y)

functions:

floating absolute value fabs(x)
fint(x)
fscalb(x,an)

round to nearest floating integer
scalb for floating integers an

Required kernel functions:
exp E(a,c) return exp(a+c) - 1 - a*a/2
log-L(x) return
pow_p(x,y) ... return

(log(l+x) - 2s)/s, s=x/(2+x)
+(anything)A(finite non zero)

Method (Due to Dr. K.C. Ng, UCB)
1. Compute and return log(x) in three pieces:

log x = n log 2 +hi+ lo,
where n is an integer.

2. Perform y log(x) by simulating multi-precision arithmetic;
return the answer in three pieces:

y log x = m log 2 +hi+ lo,
where m is an integer.

3. Return xAy = exp(y log x)
= 2Am * exp(hi + lo) .

Special cases (in decreasing order of precedence):
xA0 is 1;
xAl is X ;
xAy is NaN for X or y NaN;
INF is an even integer;
-0 is a negative integer;
x"'y is NaN with invalid exception for

I X I = 1 and y infinite , OR
X infinite or negative and y not an integer;

XA-y has 1 / XAY 's exceptions.

Accuracy:
pow(x,y) returns xAy nearly rounded. In particular,

pow(integer,integer)
always returns the correct integer provided it is representable.
In a test run with??? random arguments from 0 < x,y < 20.0,
the maximum observed error was ???1.79 ulps.

Implementation:
LOG2HI = 2 **
LOG2LO = -2 **
SQRT2 = 2 **

<---------- hex --------->
-0001 * 1.62e4 2fef a3a0 0000
-0031 * l.0ca8 6c38 98cf f81a

0000 * l.6a09 e667 f3bc c908

=
=
=

hi part log 2
low part log 2
sqrt 2

6/24/88 3:34 PM POW.TXT Page 2

pow(x, y)

x"'O is 1 .
:= 1 if y = 0 , else

x"'y is X for y = 1 or X = NaN
:= X if y = 1 or X != X , else

x"'NaN is NaN .
:= y if y != y , else

x"'y is NaN with invalid exception for
:= 0/0 if not finite(y) and

I x I = 1
fabs(x) = 1

and y infinite;
, else

x"'INF

x"'INF

x"'2 = X

x"'-1 =

is +INF or
:= y
:= 0

+O for positive or negative INF and
if not finite(y) and fabs(x) > 1 and
if not finite(y) and fabs(x) > 1 and

is +0 or +INF for positive or negative INF and
:= 0 if not finite(y) and fabs(x) < 1 and
:= -y if not finite(y) and fabs(x) < 1 and

* X
:= X * X if y = 2 , else

1 / X .
:= 1 / X if y = -1 , else

x"'y = pow_p(x, y) , if the sign of x is'+'.
:= pow_p(x, y) if copysign(l, x) > 0, else

I X I

I

y > 0
y < 0

X I
y > 0
y < 0

> 1 ;
, else
, else

< 1
, else
, else

x"'y = pow_p(-x, y) , if the sign of x is'-' and y is an even integer.
:= pow_p(-x, y) if frem(y, 2) = 0, else

x"'y = -pow_p(-x, y), if the sign of
:= -pow_p(-x, y) if

x is,_, and
fabs(frem(y, 2))

y is an odd integer.
= 1, else

(-O)"'y = +0 or +INF, if finite
:= -x if X = 0
:= 1/-x if X = Q

y isn't an integer.
and y > 0, else
and y < 0, else

x"'y = NaN with invalid exception, if the sign of non-zero x is'-' and
finite y isn't an integer.

:= 0/0;

pow_p(x,y) returns x"'y where the sign of x is pos. and y is finite.

x"'y = +O or +INF if x is +INF or +O and y is finite.

if x = 0 or not finite(x) then
{

}

pow_p(x, y) := x if y > O, else
:= 1 / X;

Reduce x to z in [sqrt(l/2)-1, sqrt(2)-1] .

n := logb(x) ; where n is a 32-bit integer
z := scalb(x, -n) ;

6/24/88 3:34 PM

Handle subnormal numbers.

if n <= -16383 then
{

POW.TXT

m : = 1 ogb (z) ;
n := n + m;

where m is a 32-bit integer

z := scalb(z,-m) ;
}

Finish reducing to the desired range.

if z >= SQRT2 then
{

n := n + 1;
z := z * 0.5 ;

}
z := z - 1 ;

Log x = n log 2 + log{l+z) ~= n log 2 + t + tx.

t := z / (TWO+ z) ;
C := Z * Z * 0.5;
tx := t * {c + log L(t)) ;
t := z - (c - tx);
tx := tx + ((z - t) - c) ;

Page 3

If y log x is neither too big nor too small, do the usual processing.

Save the sticky flags and trap enables before the second logb() call;
disable int overflow and /0 traps; restore everything after the convert.

xAy overflows for the first time (with no possibility
of exponent wrap-around) when

y 1.25 * 2**(exponent field width)
X >= 2

Since m = logb(y) + logb(n+t) approximates
log2(y log x) , the test m < (exponent field width) + 1 + 1
is used, where an extra one is added for good measure.

m := logb(y) + logb(n + t) ;
if m < 17 then

xAy rounds to one if
m >-(precision+ 4)

y log x < 2**(-precision) ; therefore, the test
is used, with 4 being added for good measure.

if m > -68 then
{

Compute y log x ~= m log 2 + t + c.

m := fint(y * (n + t / LOG2)) ;

if y = fint(y) then y is
{

exactly an

sx := t ; sx is single precision
tx := tx + (t - sx) ;
k := m - y * n ;

}
else y isn't an integer
{

tx := tx + n * LOG2LO;
c := n * LOG2HI;

integer

6/24/88 3:34 PM POW.TXT

SX := C + t;
tx := tx + ((c - sx) + t) ;
k := m;

}

Represent y as sy + ty.

sy .- y; sy is single precision
ty .- y - sy;

Compute t = (sy + ty) * (sx + tx) - k log 2 carefully.

The product sx * sy
instead, compute as

mustn't be computed in single precision;
single x single= double (or extended)

s := sx * sy - k * LOG2HI; ... compute sx * sy exactly
z := tx * ty - k * LOG2LO;
tx := tx * sy;
ty := ty * sx;
t := ((ty + z) + tx) + s;

Finally, return exp(y log x) .

pow_p(x, y) :=

Page 4

fscalb(l + (t + exp_E(t, -((((t - s) - tx) - ty) - z))), m) ;

}

else ... log2(y log x) =< -68; hence return x~y = 1 inexactly.
{

}

1 + LOG2LO;
pow_p(x, y) :=

... set inexact
1; ... and return

else ... log2(y log x) >= 17; hence xAy under or overflows to O or INF.
pow_p(x, y)

:= fscalb(l,-50000) if copysign(l,y) * (n + t / LOG2) < O, else
:= fscalb(l, 50000) ;

6/24/88 3:35 PM HYPOT.TXT

HYPO T (RE AL, IM AG) := sqrt(real A 2 + imag A 2) .
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

Page 1

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required system supported functions :
fabs (x)
finite(x)
scalb(x,N)
sqrt(x)

Method (Due to Prof. Kahan and Dr. K.C. Ng, UCB):
1. Replace real by I real I and imag by I imag I , and swap

real and imag if imag > real (hence real is never smaller
than imag) .

2. Let X = real and Y = imag; hypot(X,Y) is computed by:

Case I, X / Y > 2

y

hypot = X + -----------------------------

sqrt

Case II, X / Y =< 2

hypot = X +

2
1 + [X/Y] + X/Y

y

2
[X/Y] 2

(sqrt(2)+1) + (X-Y)/Y +
2

sqrt (1 + [X/Y] + sqrt (2)

Special cases:
hypot(x,y) is INF if x or y is +INF or -INF; else
hypot(x,y) is NAN if x or y is NAN.

Accuracy:
Hypot(x,y) returns sqrt(xA2+yA2) with error less than 1 ulp,
see Kahan's "Interval Arithmetic Options in the Proposed IEEE
Floating Point Arithmetic Standard 11

, Interval Mathematics 1980,
Edited by Karl L.E. Nickel, pp 99-128. In a test run with???
random arguments, the maximum observed error was ???.959 ulps.

Implementation:
R2P1HI = 2 **
R2PlLO = 2 **
SQRT2 = 2 **
SMALL = 2 **
IBIG = 32

<---------hex------------>
0001 * 1.3504 f333 f9de 6484

-0041 * 1.65f6 26cd d52a fa7c
0000 * 1.6a09 e667 f3bc c908

-40 * 1.00 00 00 = 2A-64
... fl(l + 2 A -(2 IBIG)) = 1

if finite(Real) then
if finite(Imag) then

= hi part l+sqrt2
= low part l+sqrt2
= sqrt 2
fl(l +SMALL)= 1

6/24/88 3:35 PM

{

HYPOT.TXT

(real, imag) := (fabs(Real), fabs(Imag)) ;
if (imag > real)

(real, imag) := (imag, real) ;
hypot(Real, Imag)

:= 0 if real= 0, else
:= real if imag = 0, else

Page 2

:= real & "raise inexact" if logb(real)-logb(imag) > IBIG, else
:=real+ imag / r, where r is given below;

}
else ... Imag is NaN or INF

hypot(Real, Imag)
:= fabs(Imag) if Imag = Imag, else
:= Imag; Imag is NaN

else ... Real is NaN or INF
hypot(Real, Imag)

:= fabs(Real) if Real= Real, else
:= Real if finite(Imag) , else
:= Imag if Image!= Imag, else
: = fabs (Imag) ;

Compute r as follows:

r :=
if r
{

}
else
{

}

r
r

r
t

real - imag;
> imag then

:= real I imag;

real/imag > 2

:= r + sqrt(l + r * r) ;

... 1 =< real/imag =< 2

:= r / imag;
: = r * (r + 2) ;

r := ((r + t / (SQRT2 + sqrt(2 + t))) + R2P1LO) + R2P1HI;

6/24/88 3:35 PM FSCALB.TXT

F SC ALB (X, FN) := x * 2 A fn for floating integers fn.
IEEE double extended precision (64 bits)
Copyright (C) 1985 Stuart Ian McDonald

WORK IN PROGRESS

Page 1

Written by Stuart Ian McDonald under direction of Professor William Kahan.
The author's current electronic mail address as of December 1985:
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald"

Use of this code is granted with the understanding that all recipients
should regard themselves as participants in an ongoing research project and
hence should feel obligated to report their experiences (good or bad) with
these elementary functions to the author.

Required functions:
fabs(x)
scalb(x,n)
copysign(x,y)
finite(x)

Method:

for 16-bit integers n

1. If the floating point integer fn can be represented as a
sixteen bit integer, then an integer scalb is used; otherwise,
a flush to tiny* tiny or huge/ tiny is performed,
respectively, for underflow or overflow and the sign of x is
affixed.

Special cases:
fscalb(x,NaN) is
fscalb(x,+INF) is
fscalb(x,-INF) is

NaN;
x * +INF
X * +Q

Comments:
Ideally, if x * 2 A fn can be delivered to the under/overflow trap
handler without more than one re-biasing of its exponent range, you
should deliver the result; otherwise, you should deliver infinity
or zero to the trap handler, as appropriate, with the correct sign.

Since the delivery of non-standard (i.e. user supplied) values to
the floating point trap handlers is implementation dependent,
flushing to tiny* tiny or huge/ tiny is used instead.
This has two defects, as discussed below.

First, values of x * 2 A fn deliverable with a single
exponent re-biasing but not generatable with a multiply or divide
instruction are prematurely flushed to tiny* tiny or huge/ tiny.

Second, values of x * 2 A fn not deliverable with a single
exponent re-biasing are indistinguishable from the values delivered
for tiny* tiny and huge/ tiny. Hence the suggestion to
deliver zero and infinity instead.

On Zilog•s Z8070 floating point processor, for example, the systems
people shall provide a system call for delivery of non-standard values
thus:

First, disable master interrupts by writing to the privileged
MIE bit in the Z8070's system configuration register. Second,
cause the user requested exception to occur. Third, replace
FOPl with the user's supplied value. Fourth, re-enable master
interrupts, causing the CPU to service the interrupt.

6/24/88 3:35 PM FSCALB.TXT

Every implementation shall provide a similar mechanism since the
IEEE floating point standard 754 requires the delivery of a
non-standard value, a NaN, to the under/overflow trap handler
when one bias adjustment is not enough during decimal-to-binary
conversion; the proposed radix- and word-length-independent
standard IEEE P854, furthermore, allows zero or infinity to be
delivered instead of NaN.

In short, treat trapped under/overflow during scaling just like
trapped under/overflow during decimal-to-binary conversion.

Implementation:
TINY= 2 ** -3fff * 1.0000 0000 0000 0000 = smallest positive normal
HUGE= 2 ** 3fff * 1.ffff ffff ffff fffe = largest finite

fscalb(x, fn)
:= scalb(x, (int)fn) if fabs(fn) NOT(?>=) 2A15, else

Page 2

:=TINY* copysign(TINY,x) if finite(x) & finite(fn) & fn < 0, else
:= copysign(HUGE,x) / TINY if finite(x) & finite(fn) & fn >= 0, else
:= x * 0 if fn =-INFINITY, else
:= x * fabs(fn) ;

