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LOG ( X) := THE LOGARITHM OF 
IEEE double extended precision (64 bits) 
Copyright (C) 1985 Stuart Ian McDonald 

WORK IN PROGRESS 
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X ( BA S E E ) 

Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required system supported functions: 
scalb(x,n) 
copysign(x,y) 
logb(x) 
finite(x) 

Required kernel function: 
log_L (s) 

Method (Due to Dr. K.C. Ng, UCB) : 
1. Argument Reduction: find k and f such that 

x = 2Ak * (l+f), 
where sqrt(2)/2 < l+f < sqrt(2) . 

2. Lets= f/(2+f) ; based on log(l+f) = log(l+s) - log(l-s) 
= 2s + 2/3 s**3 + 2/5 s**5 + ..... , 

log(l+f) is computed by 

log(l+f) = 2s + s*log_L(s) 
where 

log_L(s) appoximates (log(l+f)-2s)/s. 

3. Finally, log(x) = k*log2 + log(l+f). (k*log2 will be stored 
stored in two floating point number: k * log2hi + k * log2lo, 

k * log2hi is exact since the last 17 bits of log2hi are 0.) 

Special cases: 
log(x) is NAN with signal if x < 0 {including -INF) ; 
log(+INF) is +INF; log(0) is -INF with signal; 
log(NAN) is that NAN with no signal. 

Accuracy: 
log(x) returns the exact log(x) nearly rounded. In a test run with 
288,000 random arguments, the maximum observed error was 0.82 ulps. 

Implementation: 
LOG2HI = 2 ** 
LOG2LO = -2 ** 
SQRT2 = 2 ** 

<---------- hex ---------> 
-0001 * l.62e4 2fef a3a0 0000 
-0031 * l.0ca8 6c38 98cf f81a 

0000 * l.6a09 e667 f3bc c908 

if finite(X) then 
{ 

if X > 0 
{ 

then 

Perform the argument reduction. 

k := logb (X) ; 

= 

= 

hi part log 2 
low part log 2 
sqrt 2 
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X := scalb(X, -k) ; 
if k = -16383 then ... Xis subnormal 
{ 

} 

n := logb(x) ; 
x := scalb(x,-n) : 
k := k + n; 

if x >= SQRT2 then 
{ 

k := k + 1; 
X := X * 0.5; 

} 
X := X - 1; 

Compute log(l+x) and return. 

S := X / (2 + X) ; 
t := X * X * 0.5; 
z := k * LOG2LO + s * (t + log_L(s)); 
log(X) := 
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k * LOG2HI + (x + (k * LOG2LO + s * (t + log_L(s)) - t)) ; 
} 

else ... Xis finite but non-positive 
log(X) := -1 / 0 if x = 0, else 

:= 0 IO; ... NaN with invalid signal for X < 0 

else ... xis NaN or INF 
log(X) := 0 / 0 if X NOT(?>=) 0, else 

:= X; ... +INF or NaN 



6/24/88 3:18 PM LOGlP.TXT 

LOG 1 P ( X) := THE LOGARITHM OF 
IEEE double extended precision (64 bits) 
Copyright (C) 1985 Stuart Ian McDonald 

WORK IN PROGRESS 
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1 + x (base e) 

Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required system supported functions: 
scalb(x,n) 
copysign(x,y) 
logb(x) 
finite(x) 

Required kernel function: 
log_L (s) 

Method (due to Dr. K.C. Ng, UCB) 

1. Argument Reduction: find k and f such that 
1 + x = 2 A k * (l+f), 

where 0.5 sqrt 2 < l+f < sqrt 2. See remarks (i & iii). 

2. Let s = f /(2+f) ; based on log(l+f) = log(l+s) - log(l-s) 
= 2s + 2/3 s**3 + 2/5 s**5 + ... , 

log(l+f) is computed by 

log(l+f) = 2s + s*log_L(s) 
where 

log_L(s) approximates (log(l+f)-2s)/s. 

3. Finally, log(l+x) = k * log 2 + log(l+f). See remark (ii). 

Remarks 
(i) 

(ii) 

(iii) 

f may not be representable. A correction term c for 
f is computed. It follows that the correction term for 
f - t, the leading term of log(l+f) , is c - c * x. We 
add this correction term to k * (low part of log 2) to 
compensate the error. 

k * log 2 will be represented as the sum of two floating 
point numbers 

k * (high part of log 2) + k * (low part of log 2) , 
where (high part of log 2) is chosen with enough trailing 
zeros (bits) so that 

k * (hi part of log 2) 
is exactly representable; for compatibility with other ar
chitectures, at least two more than the width of the widest 
exponent field is used for the number of trailing zeros. 

To compute loglp(2x) , even when 2x overflows, a special 
entry loglp_r7 into the the loglp code is used. The entry 
permits k to be incremented by one after the argument 
reduction. 

Special cases: 
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loglp(x) is NaN with signal if x < -1; loglp(NaN) is NaN; 
loglp(INF) is +INF; loglp(-1) is -INF with signal; 
only loglp(0)=0 is exact for finite arguments. 

Accuracy: 
loglp(x) returns the exact log(l+x) nearly rounded. In a test run 
with 288K random arguments, the max. observed error was 0.82 ulps. 

Implementation: 
LOG2HI = 2 ** 
LOG2LO = -2 ** 
SQRT2 = 2 ** 

<---------- hex ---------> 
-0001 * 1.62e4 2fef a3a0 0000 
-0031 * 1.0ca8 6c38 98cf f81a 

0000 * 1.6a09 e667 f3bc c908 

if finite(X) then 
{ 

if X > -1 then 
{ 

Perform the argument reduction. 

Save the sticky flags; save the trap enables; 

hi part log 2 
low part log 2 
sqrt 2 

lower the sticky inexact flag; leave the inexact trap as is; 
disable all other traps. 

k := logb(l + X) ; 
z := scalb(X, -k) ; 
t := scalb(l, -k) ; 
if z + t >= SQRT2 then 
{ 

k 
z 
t 

} 

:= 
:= 
:= 

k + 1 ; 
z * 0.5; 
t * 0.5; 

At this point, modify the assembly code so that k is 
incremented by one if the entry is by loglp_r7. 

t := t - 1; 
X := Z + t; 

Compute the correction term for x. 

z : = z + (t - x) ; 

Return log(l + X) . 

S := X / (2 + X) i 
t := X * X * 0.5 i 
z := s * (t + log_L(s)) + (z + (k * LOG2LO - z * x)) 

Restore the saved flags or'ed with the sticky 
inexact flag upon return; restore the trap enables. 

loglp(X) := k * LOG2HI + (x + (z - t)) ; 

} ... end of X > -1 

else ... finite(X) and X =< -1 
loglp(X) := -1/0 if X = -1, else 

:= 0/0 
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} ... end of finite(X) 

else ... Xis NaN or INF 

LOGlP.TXT 

loglp(X) := 0/0 if X NOT(?>=) 0, else 
:= X; ... +INF or NaN 
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LOG L ( s) returns (log(l+x)-2s)/s, 
IEEE double extended precision (64 bits) 
Copyright (C) 1985 Stuart Ian McDonald 

WORK IN PROGRESS 

where s = x/(2+x) and 
lxl =< sqrt(2) - 1. 

Page 1 

Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Method: 
1. Save the divide-by-zero's sticky flag and trap status; 

disable its trap. 

2. Using a continued fraction approximation based on 

log(l+x) = 2 atanh s, where s = x / (2+x), 

(log(l+x)-2s)/s is approximated by 

2 

a 
3 

z + a + ---------------------
2 a 

5 
z + a + --------------

4 a 
7 

z + a + ------
2 6 z + a 

where z = 3 / s 8 

3. Restore the divide-by-zero's sticky flag and trap status. 

Accuracy: 
Assuming no rounding error, the maximum magnitude of the approximation 
error (absolute) is 2**(-79.32) . 

Implementation: 
A( 2) = -2 ** 0000 * 1.cccc cccc cccc cd98 =- -9/5 =- -1.8 
A( 3) = -2 ** -0001 * 1.3bfa 2608 c6e8 0050 =~ -108/175 =~ -0.62 
A( 4) = -2 ** 0000 * 1.8888 8888 9f56 de96 =~ -23/15 =- -1.5 
A( 5) = -2 ** -0001 * 1. 2786 d548 7541 7322 =- -400/693 =~ -0.58 
A( 6) = -2 ** 0000 * 1.8348 Saea 5e37 05e8 =~ -59/39 =~ -1.5 
A( 7) = -2 ** -0001 * 1. 2360 4356 c206 lf38 =- -5292/9295=~ -0.56 
A( 8) = -2 ** 0000 * 1.87f6 19f9 e8a2 8cd8 =- -333/221 =~ -1.5 

Save the divide-by-zero's sticky flag and trap status; disable the trap. 

Z := 3 / (S * S) ; 

Restore the divide-by-zero's sticky flag and trap status upon return. 

log_L(s) := 2 / (A(2)+A(3)/(A(4)+A(5)/(A(6)+A(7)/(A(8)+z)+z)+z)+z) ; 
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LOG 1 0 ( X) := THE LOGARITHM OF 
IEEE double extended precision (64 bits) 
Copyright (C) 1985 Stuart Ian McDonald 

WORK IN PROGRESS 
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X ( B A S E 1 0 ) 

Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required kernel function: 
log(x) 

Method: 
log x 

logl0(x) = -----
log 10 

Note: 
[log(l0)] rounded to 64 bits has error 1/16 ulps, 
[1/log(l0)] rounded to 64 bits has error 3/16 ulps; 
therefore, for better accuracy, division is preferred 
over multiplication. 

Special cases: 
logl0(x) is NAN with signal if x < 0; 
logl0(+INF) is +INF with no signal; logl0(0) is -INF with signal; 
logl0(NAN) is that NAN with no signal. 

Accuracy: 
logl0(x) returns the exact logl0(x) nearly rounded. In a test run 
with??? random arguments, the maximum observed error was??? ulps. 

Implementation: 
LOGl0 = 2 ** 0001 * 1.26bb lbbb 5551 582e = log 10 

logl0(x) := log(x) / LOGl0; 
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AS IN H ( X) := ARC HYPERBOLIC SINE OF X 
IEEE double extended precision (64 bits) 
Copyright (C) 1985 Stuart Ian McDonald 

WORK IN PROGRESS 
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Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required functions: 
copysign(x,y) 
fabs(x) 
sqrt(x) 
loglp(x) ... log(l+x) 

Method: 
s := copysign(l,x); 
z := IX I; 
t := 1/z + \/1 + (1/z)A2 ignoring under/overflow and /0; 

asinh(x) := s * loglp(2z) if t = 1, else 
:= s * loglp(z + z / t) ignoring underflow. 

To compute loglp(2z) , even when 2z overflows, 
a special entry loglp_r7 into the loglp code is used. 

The entry permits k to be incremented by one 
after the argument reduction 

1 + z = 2 A k * (l+f) , where \/1/2 < l+f < \/2, 
occurs in loglp. 

Special cases: 
asinh(x) is NaN with invalid exception for x < 1; 
asinh(NaN) is NaN. 

Accuracy: 
ASINH has not been proven monotonic; however, it is if loglp is. 
ASINH obeys ATRIGH(x) := atrigh(x) nearly rounded; 

In a test run with??? random arguments, the maximum observed 
error was ???1.58 ulps. 

References: 
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley 
On the Monotonicity of Some Computed Functions, w. Kahan. 

Implementation: 
After the input argument has been referenced, 
save the sticky flags; save the trap enables; 
lower the sticky inexact flag; leave the inexact trap as is; 
disable all other traps. 

s .- copysign(l,x) ; 
z := fabs(x) ; 
t := 1/z + sqrt(l + (1/z) A2) . , 

asinh(x) := s * loglp r7(z,1) if t = 1 else , 
.- s * loglp(z + z / t) ; 

Before calling loglp or loglp_r7, restore the saved flags or'ed with 
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the sticky inexact flag; restore the trap enables. 
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AC OS H ( X) := ARC HYPERBOLIC COSINE OF X 
IEEE double extended precision (64 bits) 
Copyright (C) 1985 Stuart Ian McDonald 

WORK IN PROGRESS 
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Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required functions: 
sqrt(x) 
loglp(x) 

Method: 

log(l+x) 

acosh(x) := +loglp(2x) if x - 1 == x, else 

:= +loglp(\/x - 1 * (\/x - 1 + \/x + 1)) 
To compute loglp(2x) , even when 2x overflows, 
a special entry loglp_r7 into the loglp code is used. 

The entry permits k to be incremented by one 
after the argument reduction 

1 + x = 2 A k * (l+f) , where \/1/2 < l+f < \/2, 
occurs in loglp. 

Special cases: 
acosh(x) is NaN with invalid exception for x < 1; 
acosh(NaN) is NaN. 

Accuracy: 
ACOSH has not been proven monotonic; however, it is if loglp is. 
ACOSH obeys ATRIGH(x) := atrigh(x) nearly rounded; 

In a test run with??? random arguments, the maximum observed 
error was ???3.20 ulps. 

References: 
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley 
On the Monotonicity of Some Computed Functions, w. Kahan. 

Implementation: 

acosh(x) := loglp r7(x,1) if x - 1 = x, else 
:= loglp(sqrt(x - 1) * (sqrt(x - 1) + sqrt(x + 1))) ; 
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AT ANH ( X) := ARC HYPERBOLIC TANGENT OF X 
IEEE double extended precision (64 bits) 
Copyright (C) 1985 Stuart Ian McDonald 

WORK IN PROGRESS 
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Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required functions: 
copysign(x,y) 
fabs(x) 
loglp(x) log(l + x) 

Method: 
z := I XI; 
s := copysign(l,x) = +-1; 

atanh(x) := s * loglp(2 * z / (1 - z)) / 2. 

Special cases: 
atanh(x) is NaN with invalid exception for I x I > 1; 
atanh(NaN) is NaN; 
atanh(+-1) is +-INF with /0 exception. 

Accuracy: 
ATANH has not been proven monotonic; however, it is if loglp is. 
ATANH obeys ATRIGH(x) := atrigh(x) nearly rounded; 

In a test run with??? random arguments, the maximum observed 
error was ???1.45 ulps. 

References: 
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley 
On the Monotonicity of Some Computed Functions, w. Kahan. 

Implementation: 
s := copysign(l/2, x) ; 
z := fabs (x) ; 
atanh(x) := s * loglp((z / (1- z)) * 2); 

Make sure the division occurs before the doubling to prevent 
a spurious overflow when twice z would otherwise overflow. 
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EXP ( X) := THE EXPONENTIAL OF X 
IEEE double extended precision (64 bits) 
Copyright (C) 1985 Stuart Ian McDonald 

WORK IN PROGRESS 
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Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required system supported functions: 
fabs(x) 
fscalb(x,an) 
finite(x) 
fint(x) 
frem(x,y) 

Kernel function: 

scalb for floating integers 

round to floating integer 
x REM y 

an 

exp_E(z,c) ... exp(r) - 1 - r, where r = z + c 

Method: 
1. Argument Reduction: given the input x, find r and integer k 

such that 
x = k log 2 + r, 

r will be represented by z + c 

2. Compute E(r) = exp(r) - 1 by 

I r I<= 0.5 log 2. 
for better accuracy. 

E(r=z+c) := z + exp_E(z,c) 

3. exp (x) : = 2 "' k * (E (r) + 1) 

Remark 
(i) To compute exp(x) / 2, even when exp(x) overflows, a special 

entry exp r7 into the the exp code is used. The entry per
mits k to be decremented by one prior to the final scaling. 

Special cases: 
exp(INF) is INF, exp(NAN) is NAN; 
exp(-INF) = 0; 
for finite arguments, only exp(0) = 1 is exact. 

Accuracy: 
exp(x) returns the exponential of x nearly rounded. In a test run 
with??? random arguments, the maximum observed error was??? ulps. 

Implementation: 
LOG2HI = 2 ** 
LOG2LO = -2 ** 
LOGHUGE = 2 ** 

<---------hex------------> 
-0001 * 1.62e4 2fef a3a0 0000 = hi part log 2 
-0031 * 1.0ca8 6c38 98cf f81a = low part log 2 

0e * 1.bb a0 02 = (1 + 5 * 2"' (exp. width - 2)) log 2 

if fabs(x) NOT(?>=) LOGHUGE then 
{ 

Argument reduction: z + c := x REM (LOG2HI + LOG2LO) 
hi := frem(x, LOG2HI) ; 
k := fint((x - hi) / LOG2HI) ; ... keep k in floating point 
c := k * LOG2LO; 
z : = hi - c ; 
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C := (hi - z) - C; 

Prior to the next addition, save the sticky flags and trap enables, 
then disable the underflow and denormalized traps, perform the addition, 
then restore the flags and traps to their previous settings. 

z := z + exp E(z, c) ; 
z := z + 1 ;-

At this point, modify the assembly code so that k is 
decremented by 1.0 when the entry is via exp_r7 . 

exp (x) : = fscalb (z, k) ; return 2Ak (E(x) + 1) . 
} 

then return 2 Ax. 
x) ; 

else if not finite(x) 
exp(x) := fscalb(l, 

else ... return INF (or 
{ 

0) and signal overflow (or underflow) & inexact 

} 

z := fint(LOGHUGE / LOG2) ; 
exp(x) := fscalb(l, z) if x > 0, else 

: = f s calb ( 1, - z ) ; 
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EXP M 1 ( X) := THE EXPONENTIAL OF X , MINUS ONE 
IEEE double extended precision (64 bits) 
Copyright (C) 1985 Stuart Ian McDonald 

WORK IN PROGRESS 

Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required system supported functions: 
scalb(x,n) 
fscalb(x,an) ... scalb for floating integers an 
finite(x) 
frem(x,y) 
fint(x) ... round to floating integer 
fabs(x) 

Kernel function: 
exp_E(z,c) ... exp(r) - 1 - r, where r = z + c 

Method: (Due to Dr. K.C. Ng, UCB) 
1. Argument Reduction: given the input x, find r and 

integer k such that 

x = k log 2 + r, I r =< 0.5 log 2. 

r will be represented by z + c for better accuracy. 

2. Compute expml(r) := exp(r) - 1 by 
expml(z + c) := z + exp E(z, c) . 

k -k-
3. expml (x) . - 2 (expml (r) + 1 - 2 ) . 

Remarks: 
1. When k = 1 and z < -0.25, use the formula 

expml(x) = 2 ((z + 1/2) + exp_E(z, c)) 
for better accuracy. 

-k 
2. To avoid a rounding error in 1 - 2 when k is large, 

use k -k 
expml(x) = 2 ((z + (exp_E(z,c) - 2 )) + 1) 

when k > 64 . 

Special cases: 
expml(+INF) is +INF; 
expml(-INF) is -1; 
expml(NAN) is NAN; 
for finite arguments, only expml(0) = 0 is exact. 

Accuracy: 
expml(x) returns the exact exp(x) - 1 nearly rounded. 
In a test run with 144,000 random arguments, the maximum 
observed error was 0.769 ulps. 

Implementation: 
LOG2HI = 2 ** 
LOG2LO = -2 ** 

<-----------hex------------> 
-0001 * 1.62e4 2fef a3a0 0000 
-0031 * 1.0ca8 6c38 98cf f81a 

= hi part log 2 
= low part log 2 
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LOGHUGE = 2 ** 0e * l.bb 9d 3c = 5 * 2~(exp. width - 2) log 2 

if fabs(x) NOT(?>=) LOGHUGE then 
{ 

Argument Reduction: z '+' c := x REM (LOG2HI '+' LOG2LO) , 

Page 2 

and k := nearest f.p. integer to x / LOG2HI. 
z := frem(x, LOG2HI) ; 
c := fint((z - x) / LOG2HI) ; 
k := -c; ... keep as a floating point integer. 
c := c * LOG2LO; 
t 
z 
C 

.-

.-

.-
z 
z 
C 

; 
+ C ; 
+ (t - z) ; 

Prior to the addition in the k = 0 case, 
save the sticky flags and trap enables, then 
disable the underflow and denormalized traps, perform the addition, 
then restore the flags and traps to their previous settings. 

expml(x) 
:= z + exp_E (z, c) if k = 0 , else 
:= 2 * ((z + 1/2) + exp_E(z, c)) if k=l & z < -1/4, 
:= 2 * ( (z + exp_E (z, c)) + 1/2) if k=l & z >= -1/4, 
:= fscalb( (1 - scalb(l,-k)) + (z + exp_E (z, c) ) , k ) 

if fabs (k) <= 64 , 
: = fscalb ( ( (exp_E (z, C) - scalb(l,-k)) + z) + 1 , k ) 

if fabs(k) < 200, 

else 
else 

else 

else 
: = fscalb ( (exp_E (z, c) + z) + 1 , k ) if k > 0 , else 
:= -1 + LOG2LO; ... return -1 and signal inexact 

} 
else ... Ix I >= LOGHUGE 
{ 

expml(x) 
:= fscalb(l, x) - 1 if not finite(x) , else 
:= -1 + LOG2LO if x < 0, else ... overflow to INF inexactly 
:= fscalb(l, fint(LOGHUGE / LOG2HI)) ; 

The constants 64 and 200 are, respectively, the precision and 
thrice the precision plus slop. 
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EXP E ( X, C returns exp(x + c) - 1 - x, 
where lxl < 0.5 log 2 and lcl < 0.5 ulp of x, 
ignoring all exceptions except INEXACT. 

IEEE double extended precision (64 bits) 
Copyright (C) 1985 Stuart Ian McDonald 

WORK IN PROGRESS 
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Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Method: 

1. Save the sticky flags; save the trap enables; 
lower the sticky inexact flag; leave the inexact 
trap as is; disable all other traps. 

2. Using a continued fraction approximation based on 

and 
exp(x) - 1 = 2 / (coth(x/2) - 1) 

tanh(x/2) = x/2 - (x/2) / CF(l2/xA2) , 

exp(x+c)-1-x is computed by 

(x/2)W - (l+x/2)/CF 
x*x/2 + (c + x (c + -------------------)) , 

1 - W 

where W = (x/2) - (x/2) /CF= tanh(x/2) . 

The continued fraction CF is approximated by 

a 
3 

z + a + ---------------
2 a 

5 
z + a + ------

4 z + a 
2 6 

where z = 12 / x 

3. Restore the saved flags or'ed with the sticky inexact flag; 
restore the trap enables. 

Approximation error: 

I exp(x) - 1 
I ------------ (exp_E(x,0)+x)/x <= 2**(-74), (IEEE extended) 
1 X 

Implementation: 
A2 = 2 ** 0000 * 1.3333 3333 3333 37be =~ 6/5 =~ 1.2 
A3 = -2 ** -0006 * 1.18de 5ab2 7bl7 54e6 =~ -3/175 =~ -0.017 
A4 = 2 ** -0003 * 1.1111 1126 ddd8 6ed0 =~ 2/15 =~ 0.13 
AS = -2 ** -oooa * 1.7a4a 86b7 ff7d 9cda =~ -1/693 =~ -0.0014 
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A6 = 2 ** -0005 * 1.b174 1997 d7a4 3a80 =~ 2/39 0.053 

After the input argument has been referenced, 
save the sticky flags; save the trap enables; 
lower the sticky inexact flag; leave the inexact trap as is; 
disable all other traps. 

X and x are different variables. In fact, X is half 
X := X ; 
X := X * (1/2) ; 
xx := X * X . , 
cf := 6 / xx ; 
cf := A(2)+A(3)/(A(4)+A(5)/(A(6)+cf)+cf)+cf ; 
w := X - X I cf ; 
exp(X, c) 

:= -(-xX + (-c - X * (C + (x * w - (1 + x) I 

Restore the saved flags or'ed with the sticky 
inexact flag upon return; restore the trap enables. 

cf) 

X . 

I (1 - w) ) ) ) 
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; 
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SIN H ( X) := HYPERBOLIC SINE OF X 
IEEE double extended precision (64 bits) 
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Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required functions: 
copysign(x,y) 
fabs(x) 
exp(x) 
expml(x) ... exp(x) - 1; abbreviated as E(x) 

Method: 
z := I X I ; 
s := copysign(l,x) ... = +-1; 

E (z) 
sinh(x) := s * (E (z) + --------) I 2 if z < log(2A64+1) 

1 + E (z) 
else, 

:= s * exp (z) I 2 provided exp (z) doesn't overflow. 

To compute exp(z) / 2, even when 
a special entry exp_r7 into the 

exp(z) overflows, 
exp code is used. 

The entry permits k to be decremented by one prior 
to the final scaling 

exp(x) := 2 A k * (E(r) + 1) 
occuring in exp. 

Special cases: 
sinh(non-finite) is that non-finite; 
sinh(x) is exact only for x = O and non-finite x. 

Accuracy: 
SINH has not been proven monotonic; however, it is if expml is. 
SINH obeys TRIGH(x) := trigh(x) nearly rounded; 

In a test run with??? random arguments, the maximum observed 
error was ???1.93 ulps. 

References: 
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley 
On the Monotonicity of Some Computed Functions, w. Kahan. 

Implementation: 
LOG2 64 = 2 ** 05 * 1.62 e4 30 = float ceiling log(2A64+1) 

halfs := copysign(0.5, x) ; 
z := fabs (x) ; 
sinh(x) 

:= (expml(z) / (expml(z) + 1) + 
if 

:= 2 * (exp_r7(z, 1) * halfs) ; 

expml(z)) * halfs 
z NOT(?>=) LOG2 64, else 
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Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required functions: 
fabs(x) 
exp(x) 

Method: 
z :=IX I; 

cosh(x) := 0.5 exp(z) + 0.25 / (0.5 exp(z)) ignoring underflow and 
denormalized during the divide and add; 

To compute 0.5 exp(z) , even when exp(z) overflows, 
a special entry exp_r7 into the exp code is used. 

The entry permits k to be decremented by one prior 
to the final scaling 

exp(x) := 2 "k * (E(r) + 1) 
occuring in exp. 

Special cases: 
cosh(NaN) 
cosh(INF) 
cosh(x) 

Accuracy: 

is NaN; 
is I INF I ; 
is exact only for X = 0 and non-finite X • 

COSH has not been proven monotonic; however, it is if exp is. 
COSH obeys TRIGH(x) := trigh(x) nearly rounded; 

In a test run with??? random arguments, the maximum observed 
error was ???1.23 ulps. 

References: 
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley 
On the Monotonicity of Some Computed Functions, W. Kahan. 

Implementation: 

z := fabs(x) ; 
z := exp_r7(z, 1); 

Prior to the next divide, save the sticky flags and trap enables; 
lower the overflow and inexact sticky flags; leave their traps as is; 
disable all other traps. 

cosh (x) := (1/4) / z + z ; 

Upon return, restore the saved flags or'ed with the overflow and 
inexact sticky flags; restore the trap enables. 
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Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required functions: 
copysign(x,y) 
fabs(x) 
expml(x) exp(x) - 1 

Method: 
z :=IX I; 
s := copysign(l,x) = +-1; 

tanh(x) := -s * expml(-2z) / (2 + expml(-2z)) ignoring overflow. 

Special cases: 
tanh(NaN) is NaN; 
tanh(x) is exact only for I x I = 0, INF. 

Accuracy: 
TANH has not been proven monotonic; however, it is if expml is. 
TANH obeys TRIGH(x) := trigh(x) nearly rounded; 

In a test run with??? random arguments, the maximum observed 
error was ???2.22 ulps. 

References: 
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley 
On the Monotonicity of Some Computed Functions, w. Kahan. 

Implementation: 

s := -copysign(l, x) ; ... single precision s 

Prior to the next doubling, save the overflow sticky flag and trap; 
disable the trap; perform the doubling; then restore the saved settings. 

t := expml(-2*fabs(x)) ; 
tanh(x) := s * t / (2 + t) ; 
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Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required functions: 
frem(x,y) 
fint(x) round to floating integer 

Required kernel function: 
tan_T(x) := 2 tan(x / 2) ... abbreviated as T(x) 

Method: 
1. theta:= x REM [pi/2] , where [pi/2] is pi/2 rounded to 64 bits; 

n := the least significant two bits of the quotient, signed. 

2. Sine or cosine of theta 
fairly accurately for all 
following procedure: 

can be calculated from t := T(theta) 
theta I =< pi/4 by using the 

t := T(theta); q := t * t; sin(theta) := t - t /(1+4/q); 
if q =< 4/15 

then cos(theta) .- 1 - 2/(1+4/q); 
else cos(theta) := 3/4 + ((1-2q) + q/4)/(4+q); 

3. Using (1) and (2), sine or cosine of x is computed by: 

n 

n = -3 
n = -2 
n = -1 
n = 0 

or 1 
or 2 
or 3 

sin(x) 

cos(theta) 
-sin(theta) 
-cos(theta) 

sin(theta) 

cos(x) 

-sin(theta) 
-cos(theta) 

sin(theta) 
cos(theta) 

provided just prior to executing "q := t * t" you 

(i) Save the sticky flags; save the trap enables; 
lower the sticky inexact flag; leave the inexact 
trap as is; disable all other traps. 

and you 

(ii) Restore the saved flags or'ed with the sticky 
inexact flag; restore the trap enables. 

upon return. 

Special cases: 
sin(INF) is NaN and invalid exception; 
sin(NaN) is NaN; 
sin(x) is exact only for representable multiples of [pi]/4, 

i.e. I x I = 2**n * [pi]/ 4 & 0 . 
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Accuracy: 
SIN(x) returns sin(x) to within 1.9 ulps according to a test run 

with 320,000 random arguments. 
SIN(x) is provably monotonic. 
SIN(x) obeys TRIG(x) .- trig(x*pi/[pi]) nearly rounded, 

where pi= 2 ** 2 * .c90f daa2 2168 c234 c4c6 628b 
[pi]= 2 ** 2 * .c90f daa2 2168 c235 . 

References: 
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley 
On the Monotonicity of Some Computed Functions, w. Kahan. 

Implementation: 
TWOPI = 2 ** 
HALFPI = 2 ** 

0002 * 1.921f b544 42dl 846a = 2[pi] 
0000 * 1.921f b544 42dl 846a = [pi)/2 

Since it is implementation dependent how the remainder operation 
returns the least significant few bits of the quotient, the double 
REM trick from the August 1984 issue of IEEE Micro, p.92, is used to 
obtain t := x REM [pi/2) , 
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and q := the least significant two bits of the quotient, signed. 
q .- frem(x, TWOPI) ; 
t := frem(q, HALFPI) ; 
q := fint((q - t) / HALFPI) ; 

t := tan_T(t) ; 

Save the sticky flags; save the trap enables; 
lower the sticky inexact flag; leave the inexact 
trap as is; disable all other traps. 

n := q truncated to an integer ; 
q := t * t ; 
sin(x) := 1 - 2 I (1 + 4 I q) if n = -3 or 

:= 3/4 + ((1 - 2*q) + q/4) I (4 + q) 
:= t I (1 + 4 I q) - t if n = -2 or 
:= 2 I (1 + 4 I q) - 1 if n = -1 or 

1 
if 
2 
3 

:= -(3/4 + ((1 - 2*q) + q/4) I ( 4 + q)) 
:= t - t I (1 + 4 I q) if n = 0 . , 

, 

Upon return, restore the saved flags or'ed with the 
sticky inexact flag; restore the trap enables. 

and q <= 4/15 , else 
n = -3 or 1 , else 

else 
and q <= 4/15 , else 
if n = -1 or 3 , else 
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COS ( X) := THE COSINE OF 
IEEE double extended precision (64 bits) 
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Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required functions: 
frem(x,y) 
fint(x) round to floating integer 

Required kernel function: 
tan_T(x) := 2 tan(x / 2) ... abbreviated as T(x) 

Method: 
1. theta:= x REM [pi/2) , where [pi/2) is pi/2 rounded to 64 bits; 

n := the least significant two bits of the quotient, signed. 

2. Sine or cosine of theta 
fairly accurately for all 
following procedure: 

can be calculated from t := T(theta) 
I theta I =< pi/4 by using the 

t := T(theta); q := t * t; sin(theta) := t - t /(1+4/q); 
if q =< 4/15 

then cos(theta) .- 1 - 2/(1+4/q); 
else cos(theta) .- 3/4 + ((1-2q) + q/4)/(4+q); 

3. Using (1) and (2), sine or cosine of x is computed by: 

n 

n = -3 
n = -2 
n = -1 
n = 0 

or 1 
or 2 
or 3 

sin(x) 

cos(theta) 
-sin(theta) 
-cos(theta) 

sin(theta) 

cos(x) 

-sin(theta) 
-cos(theta) 

sin(theta) 
cos(theta) 

provided just prior to executing "q := t * t" you 

(i) Save the sticky flags; save the trap enables; 
lower the sticky inexact flag; leave the inexact 
trap as is; disable all other traps. 

and you 

(ii) Restore the saved flags or'ed with the sticky 
inexact flag; restore the trap enables. 

upon return. 

Special cases: 
cos(INF) is NaN and invalid exception; 
cos(NaN) is NaN; 
cos(x) is exact only for representable multiples of [pi)/4, 

i.e. I x I = 2**n * [pi] / 4 & 0 . 
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Accuracy: 
COS(x) returns cos(x) to within 1.9 ulps according to a test run 

with 320,000 random arguments. 
COS(x) is provably monotonic. 
COS{x) obeys TRIG(x) := trig(x*pi/[pi]) nearly rounded, 

where pi= 2 ** 2 * .c90f daa2 2168 c234 c4c6 628b 
[pi]= 2 ** 2 * .c90f daa2 2168 c235. 

References: 
Elementary Functions from Kernels, Prof. W. Kahan, U.C.Berkeley 
On the Monotonicity of Some Computed Functions, w. Kahan. 

Implementation: 
TWOPI = 2 ** 
HALFPI = 2 ** 

0002 * 1.921f b544 42dl 846a = 2[pi] 
0000 * 1.921f b544 42dl 846a = [pi]/2 

Since it is implementation dependent how the remainder operation 
returns the least significant few bits of the quotient, the double 
REM trick from the August 1984 issue of IEEE Micro, p.92, is used to 
obtain t := x REM [pi/2] , 
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and q := the least significant two bits of the quotient, signed. 
q := frem(x, TWOPI) ; 
t := frem(q, HALFPI) ; 
q := fint((q - t) / HALFPI) ; 

t := tan_T {t) ; 

Save the sticky flags; save the trap enables; 
lower the sticky inexact flag; leave the inexact 
trap as is; disable all other traps. 

n := q truncated to an integer . , 
q := t * t ; 
cos{x) := t I (1 + 4 I q) - t if n = -3 or 1 

:= 2 I {1 + 4 I q) - 1 if n = -2 or 2 
:= -(3/4 + ((1 - 2*q) + q/4) I ( 4 + q)) 
:= t - t I (1 + 4 I q) if n = -1 or 3 

I else 
and q <= 4/15 , 
if n = -2 or 2 

, else 
:= 1 - 2 I (1 + 4 I q) if n = 0 and q <= 4/15 , else 
:= 3/4 + ((1 - 2*q) + q/4) I (4 + q) if 

Upon return, restore the saved flags or'ed with the 
sticky inexact flag; restore the trap enables. 

n = 0 ; 

else 
, else 
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TAN ( X) := THE TANGENT OF 
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Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required functions: 
frem(x,y) x REM y 

Required kernel function: 
tan_T(x) := 2 tan(x / 2) ... abbreviated as T(x) 

Method: 
1. h := x REM [pi] , where [pi] is pi rounded to 64 bits. 

2. If 

If 

Special cases: 
tan (inf) 

h I < [pi] /8 
then return tan 

h >= 3[pi]/8 
then return tan 
else 

t := T(2 I 
return tan 

is NaN with invalid flag raised; 
invalid trap taken, if enabled; 
is NaN; 

:= T(2h)/2 ; 

:= 2/T([pi]sign(h)-2h) 

h I - [pi)/2) ; 
.- sign (h) (2+t) / ( 2-t) 

tan(NaN) 
tan(x) is exact only for representable multiples of [pi)/4, 

i.e. I x I = 2**n * [pi]/ 4 & O • 

Accuracy: 
TAN(x) returns tan(x) to within ???1.5 ulps. 
TAN(x) is provably monotonic. 
TAN(x) obeys TRIG(x) := trig(x*pi/[pi]) nearly rounded, 

where pi= 2 ** 2 * .c90f daa2 2168 c234 c4c6 628b 
[pi]= 2 ** 2 * .c90f daa2 2168 c235 . 

Tests: 
TAN's worst observed error on -[pi]/2 to [pi)/2 was??? ulps 
for??? random arguments. 

References: 
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley 
On the Monotonicity of Some computed Functions, w. Kahan. 

Implementation: 
PI = 2 ** 
PIOVER2 = 2 ** 
PIOVER8 = .2 ** 

0001 * 1.921f b544 42dl 846a 
0000 * 1.921f b544 42dl 846a 

-0002 * 1.921f b544 42dl 846a 

t := frem(x, PI) ; 

= 
[pi] 
[pi)/2 
[pi]/8 

. 

Save the sticky flags and trap enables just prior to the divide, 
then disable the integer overflow trap and the underflow trap, then 
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restore the flags and traps immediately after the convert to integer. 

n := t / PIOVER8 truncated to an integer; 

tan(x) := 2 / tan T(-(PI+2*t)) if n = -4 or -3, else 
:= -(2 + tan_T(-2*t-PIOVER2)) / (2 - tan T(-2*t-PIOVER2)) 

if n = -2 or -1, else 
:= (2 + tan T(2*t-PIOVER2)) / (2 - tan T(2*t-PIOVER2)) 

- if n = 2 or 1, else 
:= tan T(2*t) * 0.5 if n = O, else 
:= 2 /tan_T(PI-2*t) if n = 3 or 4; 

Page 2 
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TAN T ( X) := 2 TAN ( X / 2) 
IEEE double extended precision (64 bits) 
Copyright (C) 1985 Stuart Ian McDonald 
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lxl =< [pi]/4 . 

Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Method: 
1. Save the sticky flags; save the trap enables; 

lower the sticky inexact flag; leave the inexact 
trap as is; disable all other traps. 

2 
2. Z := a / X 

1 
X 

3. tan_T(x) := x + 
a 

3 
z + a + ---------------

2 a 
5 

z + a + ------
4 z + a 

6 

4. Restore the saved flags or'ed with the sticky inexact flag; 
restore the trap enables. 

Accuracy: 
Assuming no rounding error, the maximum magnitude of the 
approximation error (absolute) is 2**(-66.14) . 
tan_T(x) is provably monotonic. 
tan_T(x) obeys TRIG(x) := trig(x*pi/[pi]) nearly rounded, 

where pi= 2 ** 2 * .c90f daa2 2168 c234 c4c6 628b ... 
[pi]= 2 ** 2 * .c90f daa2 2168 c235 . 

References: 
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley 
On the Monotonicity of Some Computed Functions, w. Kahan. 

Implementation: 
A( 1) = 2 ** 0003 * 1. 8000 0000 0000 021a =- 12 =- 12. 
A( 2) = -2 ** 0000 * 1. 3333 3333 3334 7090 =- -6/5 =- -1.2 
A( 3) = -2 ** -0006 * 1.18de 5ab2 5d5b e362 =- -3/175 =- -0.017 
A( 4) = -2 ** -0003 * 1.1111 112f 8c57 78dc =- -2/15 =- -0.13 
A( 5) = -2 ** -oooa * 1. 7a45 0166 8187 fdfa =~ -1/693 =- -0.0014 
A( 6) = -2 ** -0005 * l.a501 80bf 4236 08c2 =- -2/39 =- -0.051 

Save the sticky flags; save the trap enables; 
lower the sticky inexact flag; leave the inexact trap as is; 
disable all other traps. 

z := A(l) / (x*x) ; 

Restore the saved flags or'ed with the sticky 
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inexact flag upon return; restore the trap enables. 

tan_T(x) := x + x / (A(2)+A(3) / (A(4)+A(5) / (A(6)+z)+z)+z) ; 
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Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required functions: 
atan(x) 
fabs(x) 
sqrt(x) 

Method: 2 
If I X I ?<= 1 / 2 then 

else { 
r := 1 - x ... ignoring underflow 
y := 1 - Ix I ... exactly; 
r := 2y - yA2 }; 

asin(x) := atan( x / \/~ ignoring divide-by-zero. 

Special cases: 
asin(x) is NaN with invalid exception for Ix I > 1. 

Accuracy: 
ASIN has not been proven monotonic; however, it is if ATAN is. 
ASIN obeys ARCTRIG(x) := [pi]/pi*arctrig(x) nearly rounded, 

where pi= 2 ** 2 * .c90f daa2 2168 c234 c4c6 628b ... 
[pi]= 2 ** 2 * .c90f daa2 2168 c235. 

In a test run with??? random arguments, the maximum observed 
error was ???2.06 ulps. 

References: 
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley 
On the Monotonicity of Some Computed Functions, w. Kahan. 

Implementation: 
After the input argument has been referenced, 
save the sticky flags; save the trap enables; 
lower the inexact and invalid sticky flags; 
leave the inexact and invalid traps as is; disable all other traps. 

asin(x) := atan(x / sqrt(l - x * x)) if 
:= atan(x / sqrt(2 * y - y * y)) 

fabs(x) ?<= 1/2, else 
where y := 1 - fabs(x) ; 

Before calling atan, restore the trap enables and restore the 
saved flags or'ed with the inexact and invalid sticky flags. 
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Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required functions: 
atan(x) 
sqrt(x) 

Method: 

/ 1 - X 
acos(x) := 2 atan( / --------

\/ 1 + X 

Special cases: 

ignoring divide-by-zero. 

acos(x) is NaN with invalid exception for Ix I > 1. 

Accuracy: 
ACOS has not been proven monotonic; however, it is if ATAN is. 
ACOS obeys ARCTRIG(x) := [pi]/pi*arctrig(x) nearly rounded, 

where pi= 2 ** 2 * .c90f daa2 2168 c234 c4c6 628b ... 
[pi]= 2 ** 2 * .c90f daa2 2168 c235. 

In a test run with??? random arguments, the maximum observed 
error was ???2.07 ulps. 

References: 
Elementary Functions from Kernels, Prof. w. Kahan, U.C.Berkeley 
On the Monotonicity of Some Computed Functions, w. Kahan. 

Implementation: 
After the input argument has been referenced, 
save the sticky flags; save the trap enables; 
lower the inexact and invalid sticky flags; 
leave the inexact and invalid traps as is; disable all other traps. 

acos(x) :=2atan(sqrt((l-x) / (l+x))); 

Before calling atan, restore the trap enables and restore the 
saved flags or'ed with the inexact and invalid sticky flags. 
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AT AN ( X) := ARC TANGENT OF 
IEEE double extended precision (64 bits) 
Copyright (C) 1985 Stuart Ian McDonald 

WORK IN PROGRESS 
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X RADIANS. 

Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required functions: 
copysign(x,y) 
fabs(x) 

Method: (Due to Dr. K.C. Ng, U.C.Berkeley) 

1. Reduce x to the positive case by atan(-x) = -atan(x) 

2. According to the truncated integer 4(x+l/16) select one 
of the following intervals and evaluate atan(x) using 
the corresponding formula. 

[0,7/16] atan(x) = x-x/(a2+a3/(a4+a5/(a6+a7/(a8+a9/(al0+z) 
where z = al/xA2 +z)+z)+z)+z) 

= atan(l/2) + atan((x-1/2)/(l+x/2)) 
= atan( 1) + atan((x- 1 )/(l+x )) 

[7/16,11/16] atan(x) 
[11/16,19/16] atan(x) 
[19/16,39/16] atan(x) 
[39/16,INF] atan(x) 

= atan(3/2) + atan((x-3/2)/(1+3x/2)) 
= atan(INF) + atan(-1/x) 

Special cases: 
atan(NaN) is NaN; 
atan(-0) is -0; 
atan(x) is exact only for 

Accuracy: 

x I = 0,1,INF. 

ATAN returns atan(x) to within better than 0.89 ulps, 
according to an error analysis done by Dr. Ng; 

ATAN has not been proved monotonic; 
ATAN obeys ARCTRIG(x) := [pi]/pi*arctrig(x) nearly rounded, 

where pi= 2 ** 2 * .c90f daa2 2168 c234 c4c6 628b ... 
[pi]= 2 ** 2 * .c90f daa2 2168 c235. 

Tests: 
ATAN's worst error on -524,297 to 524,297 was 0.86 ulps for 
1,312,000 random arguments. No monotonicity failures occured. 

References: 
ATAN (for computers that conform to IEEE standard 754) 
by Dr. K.C. Ng, U.C. Berkeley. 

Implementation: 
Al = 2 ** 0001 * 1. 8000 0000 0000 021c =- 3 
A2 = 2 ** 0000 * 1.cccc cccc ceca 81f6 =- 9/5 
A3 = -2 ** -0001 * 1.3bfa 2608 c357 bSf0 =- -108/175 
A4 = 2 ** 0000 * 1.8888 8887 4061 cld0 =- 23/15 
AS = -2 ** -0001 * 1. 2786 d4d4 f5e8 7498 =- -400/693 
A6 = 2 ** 0000 * 1. 8348 la77 d068 6434 =- 59/39 
A7 = -2 ** -0001 * 1. 237a 8123 9828 9f48 =- -5292/9295 

=-
=-
=- -
=~ 
=~ -
=~ 
=~ -

3.00 
1.80 

.617 
1.53 

.577 
1.51 

.569 
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A8 = 2 ** 0000 * 1.815e 503c 6b5b 4810 =~ 333/221 
A9 = -2 ** -0001 * 1.1982 5c9a 5461 7902 =~ -15552/27455 
Al0 = 2 ** 0000 * 1.4ed9 f09c 4ceb 3d8e =~ 
ATAN12HI = 2 ** -0002 * 1. dac6 7056 lbb4 f68c 
ATAN12LO = -2 ** -0043 * 1.28bb 83f3 597a 57ec 
PIOVER4 = 2 ** -0001 * 1.921f b544 42dl 846a 
ATAN32HI = 2 ** -0001 * 1.f730 bd28 lf69 b202 
ATAN32LO = -2 ** -0043 * 1.eae0 d654 3812 74c0 
PIOVER2 = 2 ** 0000 * 1.921f b544 42dl 846a 

<hex> <-------hex-------> 

After the input argument has been referenced, 
save the sticky flags; save the trap enables; 

179/119 
= [pi] /pi 
= [pi]/pi 
= [pi]/4 
= [pi]/pi 
= [pi] /pi 
= [pi]/2 

1. 51 
=~ - .566 
=~ 1.50 

atan(l/2) 
atan(l/2) 

atan(3/2) 
atan(3/2) 

lower the sticky inexact flag; leave the inexact trap as is; 
disable all other traps. 

sign:= copysign(l,x) ; 
y := fabs (x) ; 
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hi part 
lo part 

hi part 
lo part 

(head,tail,y) := (PIOVER2, 0 , -1/y if 
:= ( 0 , 0 , y ) if 
:= (ATAN12HI,ATAN12LO, (y-1/2)/(l+y/2)) if 
:= (PIOVER4, 0 , (y- 1 )/(1+ y )) if 
:= (ATAN32HI,ATAN32LO, (y-3/2)/(1+3/2*y)) , 

y>=39/16,else 
n = 0,1, else 
n = 2, else 
n = 3,4, else 

where n := 4 * (y + 1/16) truncated to an integer; 

atan(x) :=sign* (head+ (y + (tail - y / cf(Al/yA2)))) , where 
cf(z) := A2+A3/(A4+A5/(A6+A7/(A8+A9/(A10+z)+z)+z)+z)+z; 

Restore the saved flags or'ed with the sticky 
inexact flag upon return; restore the trap enables. 

Note: If truncation to an integer can signal inexact on your system, 
disable the inexact trap just prior to the conversion; 
immediately afterwards, clear the sticky inexact flag and 
restore the inexact trap to its previous setting. 
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AT AN 2 ( Y, X) := AR G X + I Y) 
IEEE double extended precision (64 bits) 
Copyright (C) 1985 Stuart Ian McDonald 

WORK IN PROGRESS 

Page 1 

Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required system supported functions: 
copysign(x,y) 
scalb(x,n) 
logb(x) 

(Due to K.C. Ng, U.C.Berkeley) Method: 
1. 
2. 

Reduce y to positive case by atan2(y,x) = -atan2(-y,x) . 
Reduce x to positive case by 

ARG (x+iy) = arctan(y/x) 
ARG (x+iy) = pi - arctan[y/(-x)] 

provided x and y are unexceptional. 

if X > 0, 
if X < 0, 

3. According to the truncated integer 4(x+l/16) select one 
of the following intervals and evaluate atan(x) using 

the corresponding formula. 

[0,7/16) atan(y/x) = x-x/(a2+a3/(a4+a5/(a6+a7/(a8+a9/(a10 
where z = al/x"'2 +z)+z)+z)+z)+z) 

[7 /16, 11/16] atan(y/x) = atan(l/2) + atan( (y-x/2)/(x+y/2) ) 
[11/16, 19/16) atan(y/x) = atan( 1) + atan( (y-x)/(x+y) ) 
[19/16, 39/16] atan(y/x) :;:: atan(3/2) + atan( (y-1.Sx)/(x+l.Sy) 
[39/16,INF] atan(y/x) = atan(INF) + atan( -x/y) 

Special cases: 
Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y). 

ARG( NaN, (anything) ) is NaN; 
ARG( (anything), NaN) is NaN; 
ARG(+(anything but NaN), +-0) is +-0 ; 
ARG(-(anything but NaN), +-0) is +-PI; 
ARG( 0, +-(anything but O and NaN) ) is +-PI/2; 
ARG( +INF,+-(anything but INF and NaN) ) is +-0; 
ARG( -INF,+-(anything but INF and NaN) ) is +-PI; 
ARG( +INF,+-INF) is +-PI/4; 
ARG( -INF,+-INF) is +-3PI/4; 
ARG( (anything but,0,NaN, and INF),+-INF) is +-PI/2; 

Accuracy: 
ATAN2 has not been proved monotonic; 
ATAN2 obeys ARCTRIG(y,x) := [pi]/pi*arctrig(y,x) nearly rounded, 

where pi= 2 ** 2 * .c90f daa2 2168 c234 c4c6 628b ... 
[pi]= 2 ** 2 * .c90f daa2 2168 c235 . 

In a test run with??? random arguments on [-1,1) x [-1,1] , 
the maximum observed error was ??? ulps. 

References: 
ATAN (for computers that conform to IEEE standard 754) 
by Dr. K.C. Ng, U.C. Berkeley. 
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Implementation: 
Al = 2 ** 0001 * 1. 8000 0000 0000 021c =~ 3 
A2 = 2 ** 0000 * 1.cccc cccc ceca 81f6 =~ 9/5 
A3 = -2 ** -0001 * 1. 3bfa 2608 c357 bSf0 =~ -108/175 
A4 = 2 ** 0000 * 1. 8888 8887 4061 cld0 =~ 23/15 
AS = -2 ** -0001 * 1. 2786 d4d4 f5e8 7498 =~ -400/693 
A6 = 2 ** 0000 * 1. 8348 la77 d068 6434 =~ 59/39 
A7 = -2 ** -0001 * 1. 237a 8123 9828 9f48 =~ -5292/9295 
A8 = 2 ** 0000 * 1. 815e 503c 6b5b 4810 =~ 333/221 
A9 = -2 ** -0001 * 1.1982 5c9a 5461 7902 =~ -15552/27455 
Al0 = 2 ** 0000 * 1.4ed9 f09c 4ceb 3d8e =~ 179/119 
ATAN12HI = 2 ** -0002 * 1.dac6 7056 lbb4 f68c = [pi]/pi 
ATAN12LO = -2 ** -0043 * 1.28bb 83f3 597a 57ec = [pi]/pi 
PIOVER4 = 2 ** -0001 * 1.921f b544 42dl 846a = [pi]/4 
ATAN32HI = 2 ** -0001 * 1. f7 30 bd28 lf69 b202 = [pi]/pi 
ATAN32LO = -2 ** -0043 * 1.eae0 d654 3812 74c0 = [pi]/pi 
PIOVER2 = 2 ** 0000 * 1.921f b544 42dl 846a = [pi]/2 
PI = 2 ** 0001 * 1.921f b544 42dl 846a = [pi] 

<hex> <-------hex-------> 

After the input argument has been referenced, 
save the sticky flags; save the trap enables; 
leave the inexact trap as is; disable all other traps. 

signy := copysign(l, Y) ; 
signx := copysign(l, X) ; 
X := fabs (X) ; 
y := fabs (Y) ; 
t := y / X; 

Re-save the sticky inexact flag and lower it. 

=~ 3.00 
=~ 1. 80 
=- - .617 
=~ 1. 53 
=~ - .577 
=~ 1. 51 
=~ - .569 
=~ 1.51 
=~ - .566 
=~ 1.50 

atan(l/2) hi 
atan(l/2) lo 

atan(3/2) hi 
atan(3/2) lo 

if t != t then ... x & y are both infinite (or 0) or one is NaN 
if x = y then ... neither is NaN 

if x != 0 then ... both are infinite 
atan2(Y,X) := signy * PIOVER4 if signx > 0, else 

:= signy * 3 * PIOVER4; 
else ... both are 0 

t : = 0 ; 
else x or y is NaN 

atan2(Y,X) := t; 
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part 
part 

part 
part 

Rescale y/x to prevent loss of precision near under/overflow threshold. 
We assume the integer k can never represent INF or NaN 
in the scalb call. Other implementations beware! 

k := logb(y) ; 
y := scalb(y, -k) ; 
x := scalb(x, -k) ; 

(head,tail,t) := (PIOVER2, 0 , -x/y if 
:= ( 0 , 0 , t ) if 
:= (ATAN12HI,ATAN12LO, (2*y-x)/(2*x+y)) if 
: = (PIOVER4 , 0 , (y - x) / (x + y) ) if 
:= (ATAN32HI,ATAN32LO, (2*y-3*x)/(2*x+3*y)) , 

where n := 4 * (t + 1/16) truncated to an integer; 

atan2(Y,X) 

t>=39/16,else 
n = 0,1, else 
n = 2, else 
n = 3,4, else 

:= signy * (head+ (t + (tail - t / cf(Al/tA2)))) if signx>0, else 
:= signy * (PI - (head+ (t + (tail - t / cf(Al/tA2))))) , 

where 
cf(z) := A2+A3/(A4+A5/(A6+A7/(A8+A9/(A10+z)+z)+z)+z)+z; 
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Restore the saved flags or'ed with the sticky 
inexact flag upon return; restore the trap enables. 

Note: If truncation to an integer can signal inexact on your system, 
disable the inexact trap just prior to the conversion; 
immediately afterwards, clear the sticky inexact flag and 
restore the inexact trap to its previous setting. 

Page 3 
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POW ( X, Y) := X RAISED TO THE 
IEEE double extended precision (64 bits) 
Copyright (C) 1985 Stuart Ian McDonald 

WORK IN PROGRESS 
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y POWER 

Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required system supported 
scalb(x,n) 
logb(x) 
copysign(x,y) 
finite(x) 
frem(x,y) 

functions: 

floating absolute value fabs(x) 
fint(x) 
fscalb(x,an) 

round to nearest floating integer 
scalb for floating integers an 

Required kernel functions: 
exp E(a,c) return exp(a+c) - 1 - a*a/2 
log-L(x) return 
pow_p(x,y) ... return 

(log(l+x) - 2s)/s, s=x/(2+x) 
+(anything)A(finite non zero) 

Method (Due to Dr. K.C. Ng, UCB) 
1. Compute and return log(x) in three pieces: 

log x = n log 2 +hi+ lo, 
where n is an integer. 

2. Perform y log(x) by simulating multi-precision arithmetic; 
return the answer in three pieces: 

y log x = m log 2 +hi+ lo, 
where m is an integer. 

3. Return xAy = exp(y log x) 
= 2Am * exp(hi + lo) . 

Special cases (in decreasing order of precedence): 
xA0 is 1; 
xAl is X ; 
xAy is NaN for X or y NaN; 
INF is an even integer; 
-0 is a negative integer; 
x"'y is NaN with invalid exception for 

I X I = 1 and y infinite , OR 
X infinite or negative and y not an integer; 

XA-y has 1 / XAY 's exceptions. 

Accuracy: 
pow(x,y) returns xAy nearly rounded. In particular, 

pow(integer,integer) 
always returns the correct integer provided it is representable. 
In a test run with??? random arguments from 0 < x,y < 20.0, 
the maximum observed error was ???1.79 ulps. 

Implementation: 
LOG2HI = 2 ** 
LOG2LO = -2 ** 
SQRT2 = 2 ** 

<---------- hex ---------> 
-0001 * 1.62e4 2fef a3a0 0000 
-0031 * l.0ca8 6c38 98cf f81a 

0000 * l.6a09 e667 f3bc c908 

= 
= 
= 

hi part log 2 
low part log 2 
sqrt 2 
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pow(x, y) 

x"'O is 1 . 
:= 1 if y = 0 , else 

x"'y is X for y = 1 or X = NaN 
:= X if y = 1 or X != X , else 

x"'NaN is NaN . 
:= y if y != y , else 

x"'y is NaN with invalid exception for 
:= 0/0 if not finite(y) and 

I x I = 1 
fabs(x) = 1 

and y infinite; 
, else 

x"'INF 

x"'INF 

x"'2 = X 

x"'-1 = 

is +INF or 
:= y 
:= 0 

+O for positive or negative INF and 
if not finite(y) and fabs(x) > 1 and 
if not finite(y) and fabs(x) > 1 and 

is +0 or +INF for positive or negative INF and 
:= 0 if not finite(y) and fabs(x) < 1 and 
:= -y if not finite(y) and fabs(x) < 1 and 

* X 
:= X * X if y = 2 , else 

1 / X . 
:= 1 / X if y = -1 , else 

x"'y = pow_p(x, y) , if the sign of x is'+'. 
:= pow_p(x, y) if copysign(l, x) > 0, else 

I X I 

I 

y > 0 
y < 0 

X I 
y > 0 
y < 0 

> 1 ; 
, else 
, else 

< 1 
, else 
, else 

x"'y = pow_p(-x, y) , if the sign of x is'-' and y is an even integer. 
:= pow_p(-x, y) if frem(y, 2) = 0, else 

x"'y = -pow_p(-x, y), if the sign of 
:= -pow_p(-x, y) if 

x is,_, and 
fabs(frem(y, 2)) 

y is an odd integer. 
= 1, else 

(-O)"'y = +0 or +INF, if finite 
:= -x if X = 0 
:= 1/-x if X = Q 

y isn't an integer. 
and y > 0, else 
and y < 0, else 

x"'y = NaN with invalid exception, if the sign of non-zero x is'-' and 
finite y isn't an integer. 

:= 0/0; 

pow_p(x,y) returns x"'y where the sign of x is pos. and y is finite. 

x"'y = +O or +INF if x is +INF or +O and y is finite. 

if x = 0 or not finite(x) then 
{ 

} 

pow_p(x, y) := x if y > O, else 
:= 1 / X; 

Reduce x to z in [sqrt(l/2)-1, sqrt(2)-1] . 

n := logb(x) ; where n is a 32-bit integer 
z := scalb(x, -n) ; 
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Handle subnormal numbers. 

if n <= -16383 then 
{ 

POW.TXT 

m : = 1 ogb ( z ) ; 
n := n + m; 

where m is a 32-bit integer 

z := scalb(z,-m) ; 
} 

Finish reducing to the desired range. 

if z >= SQRT2 then 
{ 

n := n + 1; 
z := z * 0.5 ; 

} 
z := z - 1 ; 

Log x = n log 2 + log{l+z) ~= n log 2 + t + tx. 

t := z / (TWO+ z) ; 
C := Z * Z * 0.5; 
tx := t * {c + log L(t)) ; 
t := z - (c - tx); 
tx := tx + ((z - t) - c) ; 
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If y log x is neither too big nor too small, do the usual processing. 

Save the sticky flags and trap enables before the second logb() call; 
disable int overflow and /0 traps; restore everything after the convert. 

xAy overflows for the first time (with no possibility 
of exponent wrap-around) when 

y 1.25 * 2**(exponent field width) 
X >= 2 

Since m = logb(y) + logb(n+t) approximates 
log2(y log x) , the test m < (exponent field width) + 1 + 1 
is used, where an extra one is added for good measure. 

m := logb(y) + logb(n + t) ; 
if m < 17 then 

xAy rounds to one if 
m >-(precision+ 4) 

y log x < 2**(-precision) ; therefore, the test 
is used, with 4 being added for good measure. 

if m > -68 then 
{ 

Compute y log x ~= m log 2 + t + c. 

m := fint(y * (n + t / LOG2)) ; 

if y = fint(y) then y is 
{ 

exactly an 

sx := t ; sx is single precision 
tx := tx + (t - sx) ; 
k := m - y * n ; 

} 
else y isn't an integer 
{ 

tx := tx + n * LOG2LO; 
c := n * LOG2HI; 

integer 
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SX := C + t; 
tx := tx + ((c - sx) + t) ; 
k := m; 

} 

Represent y as sy + ty. 

sy .- y; sy is single precision 
ty .- y - sy; 

Compute t = (sy + ty) * (sx + tx) - k log 2 carefully. 

The product sx * sy 
instead, compute as 

mustn't be computed in single precision; 
single x single= double (or extended) 

s := sx * sy - k * LOG2HI; ... compute sx * sy exactly 
z := tx * ty - k * LOG2LO; 
tx := tx * sy; 
ty := ty * sx; 
t := ((ty + z) + tx) + s; 

Finally, return exp(y log x) . 

pow_p(x, y) := 
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fscalb(l + (t + exp_E(t, -((((t - s) - tx) - ty) - z))), m) ; 

} 

else ... log2(y log x) =< -68; hence return x~y = 1 inexactly. 
{ 

} 

1 + LOG2LO; 
pow_p(x, y) := 

... set inexact 
1; ... and return 

else ... log2(y log x) >= 17; hence xAy under or overflows to O or INF. 
pow_p(x, y) 

:= fscalb(l,-50000) if copysign(l,y) * (n + t / LOG2) < O, else 
:= fscalb(l, 50000) ; 
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HYPO T (RE AL, IM AG) := sqrt(real A 2 + imag A 2) . 
IEEE double extended precision (64 bits) 
Copyright (C) 1985 Stuart Ian McDonald 

WORK IN PROGRESS 
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Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required system supported functions : 
fabs (x) 
finite(x) 
scalb(x,N) 
sqrt(x) 

Method (Due to Prof. Kahan and Dr. K.C. Ng, UCB): 
1. Replace real by I real I and imag by I imag I , and swap 

real and imag if imag > real (hence real is never smaller 
than imag ) . 

2. Let X = real and Y = imag; hypot(X,Y) is computed by: 

Case I, X / Y > 2 

y 

hypot = X + -----------------------------

sqrt 

Case II, X / Y =< 2 

hypot = X + 

2 
1 + [X/Y] + X/Y 

y 

2 
[X/Y] 2 

(sqrt(2)+1) + (X-Y)/Y + 
2 

sqrt ( 1 + [X/Y] + sqrt (2) 

Special cases: 
hypot(x,y) is INF if x or y is +INF or -INF; else 
hypot(x,y) is NAN if x or y is NAN. 

Accuracy: 
Hypot(x,y) returns sqrt(xA2+yA2) with error less than 1 ulp, 
see Kahan's "Interval Arithmetic Options in the Proposed IEEE 
Floating Point Arithmetic Standard 11

, Interval Mathematics 1980, 
Edited by Karl L.E. Nickel, pp 99-128. In a test run with??? 
random arguments, the maximum observed error was ???.959 ulps. 

Implementation: 
R2P1HI = 2 ** 
R2PlLO = 2 ** 
SQRT2 = 2 ** 
SMALL = 2 ** 
IBIG = 32 

<---------hex------------> 
0001 * 1.3504 f333 f9de 6484 

-0041 * 1.65f6 26cd d52a fa7c 
0000 * 1.6a09 e667 f3bc c908 

-40 * 1.00 00 00 = 2A-64 
... fl(l + 2 A -(2 IBIG)) = 1 

if finite(Real) then 
if finite(Imag) then 

= hi part l+sqrt2 
= low part l+sqrt2 
= sqrt 2 
fl(l +SMALL)= 1 
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{ 

HYPOT.TXT 

(real, imag) := (fabs(Real), fabs(Imag)) ; 
if (imag > real) 

(real, imag) := (imag, real) ; 
hypot(Real, Imag) 

:= 0 if real= 0, else 
:= real if imag = 0, else 
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:= real & "raise inexact" if logb(real)-logb(imag) > IBIG, else 
:=real+ imag / r, where r is given below; 

} 
else ... Imag is NaN or INF 

hypot(Real, Imag) 
:= fabs(Imag) if Imag = Imag, else 
:= Imag; Imag is NaN 

else ... Real is NaN or INF 
hypot(Real, Imag) 

:= fabs(Real) if Real= Real, else 
:= Real if finite(Imag) , else 
:= Imag if Image!= Imag, else 
: = fabs (Imag) ; 

Compute r as follows: 

r := 
if r 
{ 

} 
else 
{ 

} 

r 
r 

r 
t 

real - imag; 
> imag then 

:= real I imag; 

real/imag > 2 

:= r + sqrt(l + r * r) ; 

... 1 =< real/imag =< 2 

:= r / imag; 
: = r * (r + 2) ; 

r := ((r + t / (SQRT2 + sqrt(2 + t))) + R2P1LO) + R2P1HI; 
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F SC ALB ( X, FN) := x * 2 A fn for floating integers fn. 
IEEE double extended precision (64 bits) 
Copyright (C) 1985 Stuart Ian McDonald 

WORK IN PROGRESS 
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Written by Stuart Ian McDonald under direction of Professor William Kahan. 
The author's current electronic mail address as of December 1985: 
Domain: "mcdonald@renoir.Berkeley.EDU" Path: "ucbvax!renoir!mcdonald" 

Use of this code is granted with the understanding that all recipients 
should regard themselves as participants in an ongoing research project and 
hence should feel obligated to report their experiences (good or bad) with 
these elementary functions to the author. 

Required functions: 
fabs(x) 
scalb(x,n) 
copysign(x,y) 
finite(x) 

Method: 

for 16-bit integers n 

1. If the floating point integer fn can be represented as a 
sixteen bit integer, then an integer scalb is used; otherwise, 
a flush to tiny* tiny or huge/ tiny is performed, 
respectively, for underflow or overflow and the sign of x is 
affixed. 

Special cases: 
fscalb(x,NaN) is 
fscalb(x,+INF) is 
fscalb(x,-INF) is 

NaN; 
x * +INF 
X * +Q 

Comments: 
Ideally, if x * 2 A fn can be delivered to the under/overflow trap 
handler without more than one re-biasing of its exponent range, you 
should deliver the result; otherwise, you should deliver infinity 
or zero to the trap handler, as appropriate, with the correct sign. 

Since the delivery of non-standard (i.e. user supplied) values to 
the floating point trap handlers is implementation dependent, 
flushing to tiny* tiny or huge/ tiny is used instead. 
This has two defects, as discussed below. 

First, values of x * 2 A fn deliverable with a single 
exponent re-biasing but not generatable with a multiply or divide 
instruction are prematurely flushed to tiny* tiny or huge/ tiny. 

Second, values of x * 2 A fn not deliverable with a single 
exponent re-biasing are indistinguishable from the values delivered 
for tiny* tiny and huge/ tiny. Hence the suggestion to 
deliver zero and infinity instead. 

On Zilog•s Z8070 floating point processor, for example, the systems 
people shall provide a system call for delivery of non-standard values 
thus: 

First, disable master interrupts by writing to the privileged 
MIE bit in the Z8070's system configuration register. Second, 
cause the user requested exception to occur. Third, replace 
FOPl with the user's supplied value. Fourth, re-enable master 
interrupts, causing the CPU to service the interrupt. 
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Every implementation shall provide a similar mechanism since the 
IEEE floating point standard 754 requires the delivery of a 
non-standard value, a NaN, to the under/overflow trap handler 
when one bias adjustment is not enough during decimal-to-binary 
conversion; the proposed radix- and word-length-independent 
standard IEEE P854, furthermore, allows zero or infinity to be 
delivered instead of NaN. 

In short, treat trapped under/overflow during scaling just like 
trapped under/overflow during decimal-to-binary conversion. 

Implementation: 
TINY= 2 ** -3fff * 1.0000 0000 0000 0000 = smallest positive normal 
HUGE= 2 ** 3fff * 1.ffff ffff ffff fffe = largest finite 

fscalb(x, fn) 
:= scalb(x, (int)fn) if fabs(fn) NOT(?>=) 2A15, else 
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:=TINY* copysign(TINY,x) if finite(x) & finite(fn) & fn < 0, else 
:= copysign(HUGE,x) / TINY if finite(x) & finite(fn) & fn >= 0, else 
:= x * 0 if fn =-INFINITY, else 
:= x * fabs(fn) ; 


