
,.,
' i

f!!ll
I i

I

~ , I
I

r-,
I

I I

r-,'!
(I
' I

7

P-!!!1

: I
I

FPV

a Floating-Pain~ Validation package

Release 1

USER'S GUIDE

Nume.rical Algorithms Group NP1201

-
-
-
-
-
-·

-
-
-
..
-
-
-
...

-
-
-

Correspondence between the files you have have received and the programs
described in the FPV installation note.

You have received the FPV package in one of five formats. These are:

A - Unlabelled fixed block tape. 9 track, phase encoded, 1600 bits per
inch .. Recorded at 80 bytes per record, 4000 bytes per block, ASCII.

B - Unlabelled fixed block tape. 9 track, phase encoded, 1600 bits per
inch. Recorded at 80 bytes per record, 4000 bytes per block, EBCDIC.

C - ANSI standard labelled tape. 9 track, phase encoded, 1600 bits per inch.

D - Unix 'tar' format with all files in a tree under a single directory.
9 track, phase encoded, 1600 bits per inch.

E - IBM PC DOS 5.25 inch diskettes, single sided, double density.

All the programs and data files described in the installation note
have been supplied to you in both Fortran-77 and ISO standard Pascal
versions. Please go to the appropriate section below.

A - Unlabelled ASCII.
The files are written on the tape in the order specified in the

installation note, first the seven Fortran versions, then the seven
Pascal. It may be convenient for you to name them as in section C.

B - Unlabelled EBCDIC.
The files are written on the tape in the order specified in the

installation note, first the seven Fortran versions, then the seven
Pascal. It may be convenient for you to name them as in section C .

C - ANSI standard labelled.
The supplied tape contains fourteen files, which correspond to.those

described in the FPV Installation Note in the following way:

Installation Note desc~iption

file 1: source-text of FPVGEN
file 2: source-text of FPVTGT
file 3: source-text of FPVPAR
file 4: sample driving file for
file 5: sample test-set file
file 6: sample driving file for
file 7: sample report file

D - Unix 'tar' format.

FPVGEN

FPVTGT

Tape files

FPVGEN.FOR, FPVGEN.PAS
FPVTGT.FOR, FPVTGT.PAS
FPVPAR.FOR, FPVPAR.PAS
GENDRIVE.FOR, GENDRIVE.PAS
TESTSET.FOR, TESTSET.PAS
TGTDRIVE.FOR, TGTDRIVE.PAS
REPORT.FOR, REPORT.PAS

The supplied tape contains fourteen files, which are named as in
section C.

E - PC DOS diskettes.
You have received four single sided discs. Discs 1 and 2 contain

the Fortran version of FPV, discs 3 and 4 the Pascal version.
On the Fortran discs one file, FPVGEN.FOR, is too large to fit

on one disc. It has therefore been split into two files, FPVGENl.FOR,
which takes up the whole of disc 1, and FPVGEN2.FOR, which consists
of just two subroutines and is placed on disc 2. It will be more
convenient if you merge these two files into one file called
FPVGEN.FOR. All the other files, Fortran and Pascal, are named as
in section c.

-
-
-
,..

-
-
-
-
-

-
-
-
--

-
-

FPV Release 1 - User's Guide

e The Numerical Algorithms Group Limited 1986

All rights reserved. No part of this manual may be reproduced,
transcribed, stored in a retrieval system, translated into any
language or computer language or transmitted in any form or by any
means, electronic, mechanical, photocopied recording or otherwise,
without the prior written permission of the copyright owner.

The copyright owner gives no warranties and makes no representations
about the contents of this manual and specifically disclaims any
implied warranties of merchantability or fitness for any purpose.

The copyright owner reserves the right to revise this manual and to
make changes from time to time in its contents without notifying any
person of such revisions or changes.

NAG and Numerical Algorithms Group are business names of
The Numerical Algorithms Group Limited and
The Numerical Algorithms Group (USA) Incorporated.

Printed and produced by the Numerical Algorithms Group
1st Edition May 1986.

ISBN 1-85206-30-1

Numerical Algorithms Group Ltd
NAG Central Office
Mayfield House
256 Banbury Road
Oxford
United Kingdom OX2 7DE

Tel: National (0865) 511245
International +44 865 511245

Telex: 83354 NAG UK G

In Australasia:

Siromath Sydney Pty
Level 3, St Martin's Tower
31 Market Street
Sydney .NSW 2000
Australia

Tel: National (02) 29 5352
International +61 2 29 5352

Telex: AA 26 282

In North America:

Numerical Algorithms Group Inc
1101 31st Street, Suite 100
Downers Grove, IL 60515-1263
USA

Tel: National (312) 971 2337
International +312 971 2337

Telex: 704743 NUMALGGRP UD

-
-
-
-

-

-
,..

-
-
-
-

-

FPV User's Guide

Contents

1. Introduction
1.1 Summary of Features of FPV
1.2 Advice to Readers

2. Why Test Floating-Point Arithmetic?

3. A Model of Floating-Point Arithmetic
3.1 Representable Floating-Point Numbers
3.2 Rounding Rules for Arithmetic Operations
3.3 Brown Model Bounds: Strongly Supported Operators
3.4 Brown Model Bounds: Weakly Supported Operators
3.5 Overflow and Underflow

4. Testing Strategy
4.1 Mantissa Patterns
4.2 Selection of Mantissae
4.3 Selection of Exponent Values
4.4 Selection of Sign Combinations
4.5 Summary of Internal Working of FPV
4.6 Reliability and Robustness of FPV

5. Approach to Testing
5.1 All-In-One or Two-Phase Testing?
5.2 Trial Runs
5.3 Production Runs

6. How to Run FPVGEN
6.1 Files Used by FPVGEN
6.2 Driving FPVGEN Interactively
6.3 Format of Output to Report File
6.4 Driving FPVGEN from a Data File

7. How to Run FPVTGT
7.1 Files Used by FPVTGT
7.2 Driving FPVTGT

8. Interpretation of Results

9. Modifying FPV
9.1 Encoding and Decoding Floating-Point Values
9.2 Trapping Overflow and Underflow

10. Translating FPVTGT into Other Languages
10.1 Format of the Test-Set File
10.2 Structure of FPVTGT

-
-
-
-

-
-
,..

-

-

FPV User's Guide

Acknowledgements

FPV was developed by N.A.G. Ltd in collaboration with Dr.
B.A. Wichmann of the National Physical Laboratory, under a
contract jointly funded by N.A.G. Ltd and the Department of
Trade and Industry. FPV is based on ideas contained in a
program FPTST, which was developed by Dr. N.L. Schryer of
AT&T Bell Laboratories. We are grateful to AT&T Bell
Laboratories for permission to use these ideas, and to Dr.
Schryer for his advice and encouragement. We are also
grateful for the comments of Professor W. Kahan.

References

Brown w.s. (1981). A simple but realistic model of
floating-point computation. ACM Trans. Math. Software 7,
pp.445-480.

Cody W.J. and Waite w. (1980). Software Manual for the
Elementary Functions. Prentice Hall, Englewood Cliffs.

Coonen J.T. (1984). A compact test suite for P754 arithmetic
- Version 2.0. Chapter 10 of Ph.D. Thesis, University of
California, Berkeley.

IEEE (1985). Standard for Binary Floating-point Arithmetic.
ANSI/IEEE Std 754-1985.

Karpinski R. (1985). Paranoia: a floating-point benchmark.
Byte 10, No. 2, pp.223-235.

Schryer N.L. (1981).·A test of a computer's floating-point
unit. Computer Science Technical Report No. 89. AT&T Bell
Laboratories, Murray Hill, N.J.

Schryer N.L. (1986). A case study in testing: floating-point
arithmetic. To be submitted to Comm. ACM.

Sterbenz P.H. (1974). Floating-point Computation. Prentice
Hall, Eng_lewood Cliffs.

-
....

-
-
-
-
-
-
-
-
-
-

-
-

-
-

FPV User's Guide Section 1 Page 1

1. Introduction

1.1 Summary of Features of FPV

FPV is a software package for validating an implementation
of floating-point arithmetic. It is primarily intended to
check for design errors in floating-point-arithmetic, but
may also be used to check for intermittent errors (caused by
a transient malfunction in the hardware).

By 'validation' we mean simply an experimental verification
that floating-point arithmetic has been correctly .
implemented according to its specification. FPV must be
supplied with the essential parameters of the specification
- base, precision, exponent range, and rounding ru~e - and
then attempts to verify that the arithmetic conforms to
these parameters by probing for errors as best we know how.
FPV does not attempt to judge the quality of the design of
an implementation of floating-point arithmetic. Almost any
implementation can satisfy the tests performed by FPV if the
criteria for acceptance are suitably relaxed. The 'best'
implementations satisfy the most stringent criteria.

On many systems, application of FPV need only involve
running a single program, FPVGEN. This program can generate
operands, perform the floating-point operations and check
the.results, all on the machine to be tested. However, in
order to facilitate testing in as wide a variety of
environments as possible, FPV allows t~e testing procedure
to be split into two phases. In 'two-phase' mode, the
program FPVGEN generates a file of test data; a second
program FPVTGT, usually running on a different machine,
reads the file and performs the tests.

Machine A

FPVGEN -+-Data-+­
file

Machine B

FPVTGT

The program FPVTGT is considerably shorter than FPVGEN, and
is much easier to adapt to different environments (even if
this involves translating it into a different language). The
programs FPVGEN and FPVTGT are currently written in both
standard Fortran 77 and ISO standard Pascal, level 1. They
therefore require a suitable compiler to be available and
they test the arithmetic as 'seen' through those languages.
A few machine-specific modifications may be needed to make
the programs completely robust. In order to test arithmetic
on machines which do not have a Fortran or Pascal compiler,
or to test arithmetic as seen through a different language
(e.g. Basic, Ada), it is necessary to translate all or part
of the program FPVTGT into a suitable language.

-

-
-
-
-

-
-
-
-
-
-
-
-
..

FPV User's Guide Section 1 Page 2

FPV allows arbitrary values for the base, precision and
range of floating-point numbers (though currently the base
must not exceed 16). FPV can test the following
floating-point operators:

addition and subtraction
multiplication
division
negation
absolute value
square root.
comparisons

(x+y, x-y)
(x*y)
(x/y)

~,~l,
<Ix>
(x=y, x;y, x<y, x>y, x~y, x~y)

Square root is included because it is sometimes provided as
a basic hardware instruction; exponentiation is not included
because in most cases it involves calls to the exp and log
functions. FPV does not test mixed-precision operations, nor
does it test conversion between floating-point numbers and
integers or decimal strings. FPV tests arithmetic on
operands stored in memory. On some systems registers are
provided with extended precision and range. In principle, it
should be possible to modify FPV to test the full scope of
register-arithmetic, but the details must depend on what
language facilities are available to access such registers.

FPV can either test that the results are correct according
to one of a choice of commonly used rounding rules; or, if
the rounding rule is unknown or not one of those provided,
it can test that ·the results lie within the narrow bounds
defined in the model of floating-point arithmetic developed
by w.s. Brown (the 'Brown model'). FPV can also be used to
test whether the overflow and underflow flags are set
correctly, though for this purpose machine-specific
modifications must be made to the programs.

Because the number of combinations of floating-point
operands on any realistic computer is enormous (e.g. of the
order of 10 18 or more), any testing must be extremely
selective. The selection strategy used by FPV has been
demonstrated to be effective in practice, but there is no
guarantee that errors might not exist which cannot be
detected by FPV. Moreover the stringency of the testing
performed by FPV is under the control of the user. A user
can select a subset of the tests of which FPV is capable;
indeed he will normally wish to do so to ensure that the
tests can be completed in a reasonable length of time, or
sometimes to focus attention on a particular feature that is
suspect. Effective use of FPV is the user's responsibility
and requires a reasonable degree of understanding. The FPV
User's Guide aims to explain the necessary background and to
give suitable advice.

1.2 Advice to Readers

Sections 3 and 4 of this guide present the theoretical basis
of FPV, and must be understood by anyone who wishes to
undertake serious testing. Users who wish to gain quick

FPV User's Guide Section 1 Page 3

experience of using FPV may proceed to Sections 5 and 6,
referring back to Sections 3 and 4 as necessary, but this
approach is suitable only for initial familiarisation.
Section 7 is relevant only if FPV is being used in two-phase
mode; Section 8 gives additional guidance that can be
referred to if needed; Section 9 gives detailed advice on
modifications to FPV that may be necessary (the reasons for
making them are explained in subsections 4.6 and 3.5);
-Section 10 9ives advice on translating FPV into other
languages. .,

~
I

....

1111111

i i.

...

-
-
-

-
-
-

-

-
-

-
-

-

FPV User's Guide Section 2 Page 1

2. Why Test Floating-Point Arithmetic?

The question may be asked, 'Why do we need to test computer
arithmetic? Surely the computer manufacturers test their
machines thoroughly; errors in arithmetic on production
machines are very rare; if their effects are serious, they
will quickly be noticed; if not (e.g. if they only affect
the less significant digits), are they all that important?'

There are s~~eraJ answers to this question:-

(1) Unfortunately not all manufacturers do test their
machines thoroughly - partly because it is a non-trivial
task. The number of possible floating-point numbers that
can be stored in a computer word is so large that to
.test every. :possible combination of two numbers under

·addition, subtraction, multiplication and division might
require thousands or millions of years of processor
time. Any test of the arithmetic therefore must be very
selective, and if the wrong choices are made, errors may

.be missed. ·1t is not enough to take a million pairs of
real numbers at random, and check that results of
operations on them are correct .. Errors are likely to
arise in rather special circumstances, for example near
the ends of the range of valid floating-point numbers,
and a·random search for them is unlikely to be
·eff·ective. Schryer (1981, 1986) developed a ~program
FPTST for testing floating-point arithmetic which
discovered erro-rs--in 14 out of·the first 21111achines on
which it was run.

{2) On many machines floating-point arithmetic is
implemented in software. This is especially so o~
·microcomputers4 but also true on larger machines where
·.double or quadruple precision arithmetic may be
performed by software, although single precision is
implemented in hardware. It seems to be a fact of life
that errors occur more frequently in software
implementations than in hardware, perhaps because errois
are more easily corrected in software, or because the
writers of the software do not ·know enough about the
underlying hardware. Preli111inary.versions of FPV have
.revealed errors ·on 5 different machines~ 4 of which were
errors in software.

(-3) .Many new machines are produced by relatively small
companies who·may be unwilling or unable to invest
heavily in rigorous testing of computer arithmetic.

(4) Manufacturers often provide incomplete or inaccurate
documentation of their floating-point arithmetic, for
example of the method of rounding, or of the thresholds
for overflow and underflow. It is important to be able
to diagnose the precise behaviour of the arithmetic on a
computer, even though discrepancies from the expected
behaviour may only occur in the least significant bits.
(Such information is needed by NAG, for example, in

FPV User's Guide Section 2 Page 2

order to assign with confidence correct values for the
machine-dependent constants in the X02 chapter of the
NAG Library, upon which many other Library routines
depend.)

(5) It is true that errors in arithmetic on production
machines are rare - so rare that users naturally trust
the arithmetic and tend to blame suspect results on
their own (or other people's) programs. It is only when
they are led to investigate further, investing large
amounts of time~ that the computer may be proved to be
at fault. It is also true that such errors as do occur
are often not gross errors, but constitute an occasional
loss of accuracy. For example occasional double
precision results may only be accurate to single
precision; but such a phenomenon undermines the validity
of using double precision computation as a check on the
accuracy of single precision results. More generally,
while an occasional inaccurate result may be compensated
for by subsequent computation and pass unnoticed, it is
also possible for _its effect to be critical, e.g. it may
prevent convergence to the expected accuracy ..

(6) At the neart of the matter, however, lies the drive for
correctness-and r~1iabi1ity in numerica~ computing. Any
success in proving the correctness of numerical
algorithms is invalidated if the underlying arithmetic
is incorrect. Before testing any complex piece of
numerical software, it makes sense to check the

-fundamental components of·th~ computing environment such
as the f1oating-point arithmetic and .the elementary
functions. (For testing the latter, programs have been
provided by Cody and Waite (1980).)

Two recent developments have highlighted the importance of
validating floating-point arithmetic.

The first is the IEEE standard for binary floating-point
arithmetic (IEEE, 1985). This is an excellent design and may
well lead to a greater uniformity in the specification of
floating-point arithmetic on different machines.- However. a
standard is incomplete unless there is.some means of
~heck.i.ng-~onformity with the standard. The IEEE standard is
complex and provides among other things for: extended
precision and range, different rounding modes, gradual
underflow, and-exception handling. To validate .a fu1.l
impl~mentation of the standard requires a very elaborate
test package; many existing implementations are in fact
partial and here again manufacturers• information can be
misleading, so it is important to be able to check which
features of the standard have been implemented and which
have not. FPV can test all the arithmetic operations
specified in the standard except: remainderr round to
integer, conversion between floating-point formats, and
binary-decimal conversion. It can test all of the specified
rounding modes. It cannot test operations on denormalised
numbersr nor the full range of exception-handling

...
I I
i

~
I

-

-
...

-
..

-
-
-
-
-

-
,..

-
-
-
-
-
..

FPV User's Guide Section 2 Page 3

facilities. FPV would normally test arithmetic on numbers in
either of the basic formats, assuming that these are the
only formats in which numbers are stored in memory; however
it should not be difficult to modify FPV, using non-standard
language facilities or machine language, so that it can test
arithmetic on numbers in an extended format. Coonen (1984)
has developed a test suite specifically for the IEEE
standard.

The second development is the programming language Ada whose
definition includes a detailed specification of
floating-point arithmetic. A complete validation.-of an Ada
compiler should therefore include a validation of
floating-point arithmetic (as 'seen' by an Ada program). An
Ada version of the program FPVTGT meets this requirement.

FPV User's Guide Section 3 Page 1

3. A Model of Floating-Point Arithmetic

Floating-point arithmetic is available in a wide variety of
computing environments. It may be implemented in hardware,
firmware or software, and different implementations may
co-exist on one machine (e.g. single precision and double
precision, binary and decimal). In this· Guide the terms
•arithmetic' or 'an arithmetic' are used for short to denote
'·an implementation of floating-point arithmetic'.

In order to deal with the wide variety of arithmetics that
have been implemented, FPV needs a generally. applicable
model of floating-point arithmetic. We have followed Schryer
(1981) in using the model developed by w.s. Brown (1981)
(sometimes referred to as 'the Brown model') as our starting
point, but have made some variations and extensions. (Brown
developed his model as a framework for portable numerical
computing, rather than for testing, so our requirements are
somewhat different.) The model provides:

- a simple characterisation of an implementation of
floating-point arithmetic in terms of four parameters;

- a generally applicable criterion for the correctness of
floating-point arithmetic operations.

'?he.model is an idealisation and simplification of the
actual behaviour of floating-point arithmetics, but it
provides a sufficiently close description for the practical
requirements of testing. •

Schryer's program FPTST tests specifically-whether or not
arithmetic conforms to the Brown model with given values of
the parameters. FPV is not so closely tied to the Brown
model, but can:

either test whether arithmetic is exactly correct
according to one of a limited choice of rounding rules;

- or test whether arithmetic conforms to the criteria of
the Brown model.

~he latter is a less stringent test, but one that is more
generally applicable.

When FPV is testing arithmetic according to a specific
rounding rule, it simply requires a convenient means of
describing which numbers are representable in the
arithmetic. We discuss this aspect separatelyr before we
consider the rules for the performance of basic arithmetic
operations.

(For more extensive b'ackground .reading on floating-point
arithmetic we suggest the book by Sterbenz (1974).)

~

r

...

-

-

-
-
-
-

-
-
,..

..

-
-

FPV User's Guide Section 3 Page 2

3.1 Representab1e Floating-Point Numbers

To describe (as closely as possible) the set of
floating-point numbers which are representable in an
arithmetic, FPV uses the same four integer parameters as are
used by Brown. They are:

- the base, B;
- the precision, P;
- the minimum allowed exponent, EMIN;

the-maximum allowed exponent, EMAX.

~he set of representable numbers defined by these parameters
is assumed to consist of:

zero

and numbers of the form:

where:

- the integer exponent, e, satisfies EMIN ~ e ~ EMAX;

the £ractionr or ·mantissa, f, is a base-B fraction of P
digits such that 1/B ~ f < 1, i.e .

• fp

with 1 ~ f 1 < B, and O ~ fi < B for i > 1. The fi are the
base-B digits of the fraction.

We shall refer to the values of B, e and fas the model
representation of a representable floating-point-number. The
way in which numbers are represented in the machine may be
different (for example, the exponent may be-biassed, the
point may be shifted, and so on), but that is irrelevant to
FPV. FPV is only concerned with the values of the
representable numbers, not with how they are stored.

In many arithmetics the set of representable numbers can be
precisely described by suitable values of the parameters B,
P~ EMIN and EMAX: for example, in DEC VAX 11/780 single
precision hardware B = 2, P = 24, EMIN = -127 and
EMAX = 127. There are, however, some exceptions:

machines which use a 2's-complement representation of
negative numbers and may allow numbers which cannot be
negated. Typically

+aEMIN-l is representable, but not -aEMIN-l

-BEMAX is representable, but not +sEMAX

- machines which allow gradually underflowed numbers
between± aEMIN-l and zero, as are defined, for example,

FPV User's Guide Section 3 Page 3

in the IEEE standard (IEEE, 1985);

- machines which would require a non-integer value of P
(the only such machine of which we have definite
knowledge is the Telefunken TR440: it would require
B = 16 and P = 9½);

- machines which do not have a clear-cut set of
representable floating-point numbers: some bit-patterns
may be accepted as legitimate floating-point operands by
one floating-point operator but not by another (for
example CDC 7600 machines and Cray machines do not •have a
single underflow threshold that applies to all
operators).

On such machines values for the parameters must be chosen
which define the largest possible subset of the
representable numbers. FPV will regard the subset so defined
as its 'domain': it will test floating-point operations
whose operands belong to the defined subset. In this case,
then, there will be a small 'fringe' of possible operands
which will not be tested by FPV. An alternative approach,
which requires greater care, is to choose values of the
parameters which define a larger set of values, including
some non-representable numbers: the effects of .including
non-representable numbers (e.g. overflow or spurious invalid
results) must then be discounted.

Henceforth we shall assume, for simplicity in the
discussion, that the set of representable numbers is
precisely defined by suitable values of the parameters.
Values of B, P, EMIN and EMAX which are being used to define
the set of representable numbers, will be referred to as
machine-parameters, and the set of numbers so defined as
machine-numbers.

The largest positive machine-number is:

Any number whose magnitude is larger than this is said to
overflow the range of the machine (or, for short, to
overflow the machine). l is the overflow threshold. The
smallest positive machine-number is:

a = aEMIN-1

Any number whose magnitude lies between a and zero is said
to underflow the range of the machine (or to underflow the
machine). a is the underflow threshold.

In passing, we define here the term ulp (= 'unit in the last
place'). Relative to a given non-zero machine-number, 1 ulp
is the value of a digit 1 in the least significant
digit-position of the fraction; it is the difference between
the given number and the next largest machine-number (in
magnitude). In terms of the model representation, relative

....

,..,

...,

!111111
, I,

....

....

-
..
...

-
-
-

-
-
-

-
-
-

FPV User's Guide

to a given number± aef:

1 ulp = ae-P

3.2 Rounding Rules for Arithmetic Operations

Section 3 Page 4

FPV provides a limited number of rounding rules according to
which the correct computed result of an operation can be
determined unambiguously. The available rules all have the
following properties:

- if the exact (mathematical) result of an operation is a
machine-number, then this must be the computed result;

- otherwise the exact result lies in an interval between
two machi~e-numbers, and the computed result must be one
of these two machine-numbers: the rounding rule
determines which.

The available rules are:

- round to nearest, with½ ulp rounded to either of the
nearest machine numbers (this rule allows either
possibility for rounding½ ulp, in case neither of the
following two rules applies);

- round to nearest, with½ ulp rounded away from zero (this
is the conventional rule taught in school, which is used
on many machines, e.g.· the DEC VAX machines);

- round to nearest, with½ ulp rounded to nearest even,
that is, to the adjacent machine-number whose least
significant fraction-digit is even (this is the unbiassed
default rule defined in the IEEE standard);

- round toward zero (often called truncation or chopping);

- round toward minus-infinity:

- round toward plus-infinity:

The last four rules are those specified in the IEEE standard
(IEEE, 1985).

When testing according to a specific rounding rule,
comparisons are required always to yield the correct result:
they are not affected by the differences between the rules.

The rules must be qualified if there is a possibility of
overflow or underflow: this is discussed in subsection 3.5.

All of the above rounding rules are consistent with the
weaker criteria of the Brown model, which are described in
the next two subsections.

FPV User's Guide Section 3 Page 5

3.3 Brown Mode1 Bounds: Strongly Supported Operators

This subsection and the next may be omitted at first reading
by users who are confident that the arithmetic being tested
conforms to one of the rounding rules provided by FPV. If
the arithmetic being tested does not use one of those rules,
then FPV must check correctness according to the ru1es of
the Brown model; these yield tight bounds on the computed
result.

This subsection describes the rules for.what Brown calls
strongly supported operators. A less stringent set of rules
for weakly supported operators is described in the next
subsection.

Brown uses values of the four parameters B, P, EMIN and EMAX
to define a set of model-numbers. The model-numbers may be a
subset of the machine-numbers. We refer to the parameter
values which define the set of model-numbers as
model-parameters .. We derive from them values for the model
overflow threshold (sometimes called model-A) and the model
underflow threshold (sometimes called model-a), just as in
subsection 3. 1.

Model-numbers must satisfy the following rules for the
. result of a basic arithmetic operat~on:

- if the exact result is also a model-number, then this
must be the computed result;

- otherwise the exact result lies in an interval bounded by
two model-numbers, and the computed result must then lie
in the same interval (as shown in Fig. 3.1);

Model
numbers

-Opl-

-Op2-

Model
numbers

--UB- +)
Exact result+) Bounds on

--LB-+) result

Fig. 3.1

- comparisons between any two model-numbers must always
yield the correct result.

If all machine-numbers conform to the rules of the model,

r

,...

-

-

-
-
-
-

-

-

FPV User's Guide Section 3 Page 6

then the rules imply that the computed result must be one of
the machine-numbers on either side of the exact result {but
may be either). Arithmetic with these properties is
sometimes called 'faithful'. The rounding error is less than
1 ulp.

The rules still apply if the exact result underflows the
model, i.e. lies between zero and± model-a: the computed
result must lie in the same interval. It is assumed that
underflow does not halt the program. However if the exact
result overflows the model, the rules cease to apply.
Overflow and underflow are discussed further in subsection
3.5.

In some arithmetics the complete system of machine-numbers
conforms to the rules of the model with a suitable choice of
parameters; for example single precision numbers on IBM 370
machines, with B = 16, P = 6, EMIN = -64, EMAX = 63. In
other arithmetics it is only a large subset of the
machine-numbers which conforms to the model, because of
anomalous behaviour at the limits of precision and range.
For example, on CDC Cyber 170 series machines, the single
precision machine-numbers can be described by the parameters
B = 2, P = 48, EMIN = -974, EMAX = 1070; however, to conform
to the rules for arithmetic operations and comparisons, the
set of model numbers must be restricted by setting P = 47
and EMIN = -929. (The reasons are that normalisation is
performed after rounding in addition/subtraction; and
comparisons are performed via subtraction which gives
incorrect.results if the difference underflows.) In
Schryer's words, penalties must be imposed to make the model
fit the arithmetic.

Thus for some arithmetics we need two sets of values of the
parameters B, P, EMIN and EMAX:

- a set of machine-parameters to define (as closely as
possible) the set of represent~ble numbers;

- a set of model-parameters to define the largest possible
subset of the representable numbers which conforms to the
Brown model.

(In fact FPV requires B to have the same value in both sets
of parameters.)

If the model parameters are not equal to the machine
parameters, then there exist machine-numbers which are not
model-numbers. They may be either extra-precise numbers (if
the model-Pis less than the machine-P); or out-of-range
numbers, overflowing or underflowing, (if the model values
of EMIN and EMAX lie inside the machine va_lues).

The Brown model requires that arithmetic on extra-precise
numbers must be consistent with arithmetic on model-numbers
according to the following rule: replace each machine-number
by the smallest model-interval in which it lies, perform the

FPV User's Guide Section 3 Page 7

operation on these intervals (in the usual sense of interval
arithmetic) and widen the resulting interval to the smallest
model-interval which contains it; this model-interval must
contain the computed result (see Fig. 3.2).

Machine Model Model
numbers numbers numbers

----- ----- -----

----- ----- +) ---
-Opl-) Interval
----- ----- +) operand l --OB- +)
----- (+)
----- ----- Exact (-----) Bounds
----- interval () on
----- ----- +) result (-----) result
-Op2-) Interval (+)
----- ----- +) operand 2 --LB- +)

----- ----- -----

Fig. 3.2

Comp~risons on extra-precise numbers x and y may yield the
same result as the exact comparison of any two numbers x and
y which lie in the smallest model-intervals containing x and
y, but may not yield any other result. Hence if there are no
model-numbers between the machine-numbers x and y, x<y, x=y,
and x>y are all permissible results; if there is just one
model-number between x and a larger machine-number y, x<y
and x=y are permissible, but x>y is not.

FPV can test the correctness of arithmetic on extra-precise
numbers according to these criteria. Since the criterion for
correct comparisons is slack enough to permit anomalous
combinations of results, FPV also tests whether the results
of comparisons are consistent with one another (i.e. it
reports an inconsistent comparison if, say, x<y and x>y both
yield the result 'true').

Arithmetic on out-of-range numbers is discussed in
subsection 3.5.

3.4 Brown Model Bounds: Weakly Supported Operators

Any arithmetic operator which conforms to the rules of
subsection 3.3, is said by Brown to be strongly supported.

A less stringent set of rules is allowed by Brown for
so-called weakly supported operators. For these, the
model-interval within which the result must lie, is extended
to the next model-number on either side, as illustrated in
Fig. 3.3:

....

~

~

...

,...

ii-"

-

-

-
-
-

-
-

-

-
-

FPV User's Guide

Model
numbers

--UB'- +)

bounds for (+--us--
strongly supported (

operator (+--LB--

--LB'-+

Fig. 3.3

)
)
)
)
)
)

Section 3 Page 8

bounds for
weakly supported

operator

(However if either UB or LB is zero, so is OB' or LB'
respectively: the interval is not extended beyond zero.)
Even if UB and LB are equal (i.e. an exact result is
expected from a strongly supported operator), UB' and LB'
remain defined as above (i.e. the result of a weakly
suppor_ted operator is never required to be exact).

The concept of a weakly supported operator is useful, for
example, when modelling an arithmetic in which division is
implemented·as a composite operator (reciprocation followed
by multiplication), because then the result is subject to
more than one rounding error. It may also be needed when
double precision arithmetic is implemented in software,
using single precision floating-point hardware.

The criterion for checking the comparisons is the same in
either case since Brown does not define weakly supported
comparisons.

FPV allows the criterion of either strong support or weak
support according to the Brown model, to be applied
independently to each of the basic arithmetic operators.
Normally one should attempt to find reasonable values of the
model parameters according to which most operators are
strongly supported, but possibly one or two (most likely
division or square-root) are only weakly supported; the two
sets of operators would have to be tested in separate runs
of FPV.

3.5 Overf1ow and Onderf1ow

Implementations of floating-point arithmetic display a
variety of behaviour with regard to overflow and underflow.
The overflow threshold may differ between different
floating-point operators, and may even differ depending on
the values of the operands. When overflow occurs, usually an
exception is signalled, but it may not be; and usually the
program halts, but it may continue with or without some
floating-point value being set as the result of the
operation. When underflow occurs, it is more usual for an

FPV User 1 s Guide Section 3 Page 9

exception not to be signalled, but it may be; and usually
the program sets the result to zero or to some very small
value and continues, but it may halt.

To cope with this variety, FPV offers three different modes
of testing with regard to overflow, and, independently,
three modes with regard to underflow. We describe the
details first for the case where the arithmetic is being
checked according to the rules of the Brown model, having in
mind the possibility that the model-EMAX and the model-EMIN
may differ from the machine-EMAX and the machine-EMIN: thus
there may exist machine-numbers which are out-of-range in
terms of the model-parameters. We_distinguish between the
machine-A (the largest positive machine-number defined using
the machine-EMAX as in subsection 3.1) and the model-1
(defined similarly, but using the model-EMAX); likewise,
between the machine-a and the model-a. Although we describe
overflow and underflow in parallel, it is not necessary to
select the same mode for testing with regard to both
overflow and underflow.

Mode 1:

This is the normal mode of testing. FPV aims to test the
arithmetic within the safe bounds set by the
model-parameters.

Overflow: If either of the bounds on the result of an
operation would overflow the model, that operation is
skipped. Thus if the model-parameters have been set
correctly, overflow should not occur.

Underf1ow: Operations whose results are expected to
underflow the model, are still performed, and the results
checked against the appropriate model bounds involving
zero and± model-a. It is assumed that underflow does not
interrupt the flow of the program.

Mode 2:

For this mode FPV must be modified to trap any overflow
or underflow exceptions that may be signalled (see
subsection 9.2). FPV aims to test the arithmetic up to
the limits at which machine overflow or machine underflow
occurs, and to check that overflow or underflow
exceptions are signalled correctly.

We define an extension of the Brown model in which bounds
on the resul-t are defined exactly as in subsections 3. 3
or 3.4, but ignoring the limits imposed by the model-EMAX
and the model-EMIN. Either the computed results must
satisfy the bounds or an exception must be signalled, but
an exception may not be signalled if both bounds are
within the range of the model. In practice the bounds can
only be applied if they lie within the range of the
machine, and an.exception must be signalled if both
bounds lie outside the range of the machine.

1111111!

~

..,
i I

,...
: i

....
I

,..,

1111111! ! •

,...

...

!11111

I
I

-

..

-
-
...

-

-
-
-

-
-
-
-

FPV User's Guide Section 3 Page 10

Overflow: All operations are performed regardless of
whether or not the result is expected to overflow the
model .

- if both bounds overflow the range of the machine, then
overflow must be signalled;

- if both bounds lie within the range of the model, then
overflow must not be signalled:

- if at least one bound lies within the range of the
machine, and at least one bound overflows the range of
the model, then overflow may or may not be signalled;

- in every case if overflow is not signalled, the
computed result must satisfy any bounds which lie
within the range of the machine .

Onderf1ow: Mode 2 for underflow is exactly analogous to
Mode 2 for overflow, with 'underflow' replacing
'overflow' everywhere in the definition. This is only
applicable if underflow does signal an exception.

Mode 3:

This mode is provided for testing conformity with a
rigorous implementation of the Brown model in which an
exception must be signalled whenever the limits of the
model are exceeded. This might be required when testing
an implementation of Ada, but otherwise is unlikely to be
useful. The rules are the same as for Mode 2, except that
'the range of the model' replaces 'the range of the
machine' everywhere in the definition. If the model-EMAX
is equal to the machine-EMAX, Mode 3 for overflow is
identical to Mode 2: likewise for underflow.

Note that the rules for Mode 2 allow for a 'grey' area in
which overflow may or may not be sigifalled, thus tolerating
arithmetics in which there is no single overflow threshold
for all operations. Also the rules assume that the set of
representable numbers is precisely described by the
machine-parameters: if this is not so (see subsection 3.1),
the reports of 'invalid' results must be interpreted with
care.

Now we describe the effects of the different modes when
arithmetic is being tested according to a specific rounding
rule.

Here again, in order to tolerate arithmetics which do not
have a single overflow or underflow threshold, FPV allows
for a model-EMAX and model-EMIN different from the
machine-EMAX and machine-EMIN. The model-EMAX and model-EMIN
define safe limits within which overflow and underflow are
not expected to occur.

A variation to be accommodated is that overflow and

FPV User's Guide Section 3 Page 11

underflow may be detected either before or after rounding.
FPV therefore defines upper and lower bounds on the result
rather than an exact value in the following very special
cases:

- if the exact result strictly exceeds the model-A by less
than 1 ulp, then the lower bound is set to the model-A
and the upper bound to the next larger machine-number;

- if the exact result strictly exceeds the·machine-A by
less than 1 ulp, then the lower bound is set to the
machine-A and the upper bound overflows.

Analogous bounds are set if the exact result is slightly
less than the model-a or slightly less than the machine-o;
and also of course for the corresponding negative numbers.

With these preliminaries, the rules for modes 1, 2 and 3
carry over unchanged. Note that in Mode 1 for underflow, if
the exact result lies between zero and± model-a, then the
computed result is simply required to lie within the same
bounds. Thus gradually underflowed results (as defined, for
example, in the IEEE standard) cause no difficulty, although
they cannot be checked for precise accuracy.

lllllt

I I

,..

~
, _I

...

1111111

-

-
-
-

-
-
-
-

-

FPV User's Guide Section 4 Page 1

4. Testing Strategy

In order to test arithmetic effectively without using
exorbitant amounts of computer time, it is essential to
select operands which are particularly likely to reveal
errors. FPV follows the selection strategy of Schryer
(1981):

- first, the pattern of digits in the mantissae must
conform to one of a limited number of types;

- second, a subset of mantissae with these digit patterns
can be selected;

- third, independent of the selection of the mantissae, a
subset of exponent values can be selected.

The rationale behind Schryer's strategy is that - especially
in an implementation which is almost correct - errors are
most likely to occur as edge-effects, at or near some
discontinuity or boundary in the values of the operands or
some part of them.

Details of each aspect of operand specification are
described in the next four subsections, followed by a
summary of the internal working of FPV and a discussion of
its reliability as a validation tool.

4.1 Mantissa Patterns

• Schryer ·chose to use as operands for testing only those
numbers·whose mantissae f conformed to one of five types of
digit patterns. (If B = 2, these reduce to three.) In fact
in his experience of using FPTST, two types proved
sufficient to detect all the errors tha~ he has discovered
(or learnt of). FPV uses them also as basic mantissa
patterns. They are (Z denotes (B-1)):

(1) .100 ... 00100 ... 000

(2) .zzz ... zzzoo ... ooo
I

i th digit

Pattern 1 takes the values:

(Schryer's type 1)

(Schryer's type 4)

1/B (when i = 1), and 1/B + 1/Bi for 2 ~ i ~ P

Pattern 2 takes the values:

1 - 1/Bi for 1 ~ i ~ P

Thus the values are clustered near the limits of the range
[1/B,l) of values off, in accordance with the strategy of
looking for edge-effects.

FPV derives further mantissa patterns from these by adding

FPV User's Guide Section 4 Page 2

or subtracting 1/BP, giving the types

(3) .100 ... 00100 ... 001

(4) .100 ... ooozz ... zzz
(5) .zzz ... zzzoo ... 001

(6) .zzz ... zzyzz ... zzz
I

i th digit

(here Y = B-2). Thus each individual mantissa of patterns 1
or 2 can be extended to a cluster of 3 adjacent mantissa
values. In our experience types 3, 4, 5 and 6 have
occasionally revealed properties of the arithmetic that were
not shown up when using types 1-and 2 alon~~

On machines with B > 2, again following an idea of Schryer,
FPV allows· operands of similar pattern but with Z(= B-1)
replaced by 1, 1 replaced by z, and Y(= B-2) replaced by 2,
i.e.

(7) .zoo ... oozoo ... ooo (Schryer's type 5)
.. :1i.•

(8) .111 ... 11100 ... 000 (Schryer's type 2)

(9) .zoo ... oozoo ... ooz
(10) .zoo ... 00011 ... 111

(11) .111 ... 11100 ... ooz
(12) ~111 ... 11211 ... 111

I .
i th digit

It must be admitted·that there is no clear rationale for

.,
I

~
I

:i
i

..
I
I i

,...
I

I

these additional patterns. Indeed while on the one hand ,...
there is no great difficulty in adding additional operand
patterns to FPV, there is also no clear guidance as to which
patterns to add, and as yet no proven need to do so. Of
course an error which is revealed by testing operands of the
above patterns, will very likely also occur with many other
patterns of operand: FPV is designed to detect errors but
not to discover the complete range of situations in which 1111111!

they occur (see further in Section 8).

Finally, in order to test zero operands, we define type

(0) .000 000 (Schryer's type 3)

4.2 Selection of Mantissae

Even with the limited choice of mantissa patterns available
in FPV, further selectivity is desirable espe~ially for
short initial runs. This is achieved by selecting specific

~

...

-
-
-
-
111111111

-

-

-

FPV User's Guide Section 4 Page 3

values of i (i.e. the position of the i th digit). We refer
to i as the 'mantissa index'. Schryer's recommendation is to
concentrate on the ends of the range and also at
intermediate points that might coincide with byte- or
word-boundaries. Hence a useful initial set of values fqr i
might be:

1, P/2, P

and this can, and should, be extended by adding neighbouring
values, e.g.

l; 2, (P/2-1), P/2, (P/2+1), (P-1), P

(The input to FPV makes it easy to specify such clusters of
values, see Section 6). The clusters can be enlarged, and
new clusters added, centred for example around P/4 and 3P/4.

Note: for some individual mantissa types FPVGEN in fact
ignores certain mantissa index values near the limits of the
range l to P. This is to avoid unnecessary duplication: for
such values of the index different types of pattern may
yield the same mantissa. The range of values used for each
mantissa type is as follows (but normally users need not
bother about the details):

Type

1
2
3
4
5
6
7
8
9

10
11
12

B > 2

l .. P
l .. P
2 •• P
2 •• P-1
l .. P-1
l .. P
3 •• P
3 •• P
2 .. P
2 •• P-1
2 •• P-1
3~.P

4.3 Se1ection of Exponent Values

B = 2

l .. P
3 •• P
2 .. P-2
2 .. P-2
3 .. P-2
3 .. P-2

For selecting exponent values, a similar approach is
recommended, namely to concentrate on the ends of the range
of values and .at a few critical values in between. Thus an
initial set of values might be clustered around:

EMIN, O, EMAX

to which should be added values which differ from the above
by ±P or ±P/2, since special cases arise in addition and
subtraction when exponents differ by P, and sometimes also
when they differ by P/2 (e.g. when double precision
arithmetic is implemented in software).

FPV User's Guide Section 4 Page 4

4.4 Selection of Sign Combinations

After the mantissa a~d expone~t of each operand has been
selected, only the signs remain to be specified. Given a
pair of operands (assumed for the moment to be both
positive), FPV can with little extra work test a particular
binary operation on any of the sign combinations

++, +-, -+,

For example, given two operands Opland Op2, along with a
lower bound, LB, and an upper bound, UB, on their product
Opl*Op2, we know that the product (-Opl)*(-Op2) should also
be bounded below by LB and above by UB. Similarly,
(-Opl)*Op2 and Opl*(-Op2) both should be bounded below by
-UB and above by -LB.

The situation for addition and subtraction is slightly
different. Given Opland Op2, and knowing that

Opl + Op2 E [LB,UB]

we also know that

(-Opl) + (-Op2) E [-UB,-LB)

Opl - (-Op2) E [LB,UB)

(-Opl) - Op2 E [-UB,-LB]

Thus LB and OB can be used to bound the results of two
addition and two subtraction operations. This interaction
between addition and subtraction explains why FPV does not
allow them to be tested independently.· •

Note however that the above rules do not apply when testing
the rounding rules 'round to plus-infinity' or 'round to
minus-infinity'. For these rules, only one combination of
signs can be tested at a time. Otherwise it is usually
worthwhile to test all four combinations because little
extra work is involved.

Square root is tested only on positive operands.

4.5 Summary of Interna1 Working of FPV

We now summarise the internal working of FPV.

Pairs of operands are selected as described in the previous
subsections. For both operands, each specified mantissa
value is used in combination with each specified exponent
value; and each specified value of operand 1 is used in
combination with each specified value of operand 2. Each
operand is stored as a data structure consisting of sign,
exponent and mantissa; the mantissa itself is held as an
array of integers.

,..
; I

...

r

11!11

FPV User's Guide Section 4 Page 5

Each operator to be tested is performed on each pair of
operands by a set of subroutines which simulate interval
floating-point arithmetic with the specified base, precision
and range; these subroutines work entirely with integer
arithmetic and determine either the upper and lower bounds
on the correct result according to the Brown model, or the
exact expected result according to a specified rounding
rule. (In the latter case we may simply regard the upper and
lower bounds as being equal.) The bounds are held in the
same form of data structure as the operands. All the above
is performed by the program FPVGEN.

The actual testing of each operation is performed either by
FPVGEN or by FPVTGT, but in essentially the same way by both
programs. The only difference is that, if FPVTGT is being
used, the operands and bounds are written to a file by
FPVGEN and read back by FPVTGT; the representation of the
operands and bounds on the file is such that there is no
risk of conversion error.

In either FPVGEN or FPVTGT the operands are converted to
floating-point numbers in the machine's internal
representation; the specified operations are performed; the
computed results are converted back into the same data
structure as the bounds; and the results are then checked
against the bounds by subroutines that simulate
floating-point comparisons. Any results that violate the
bounds are reported.

4.6 Reliability and Robustness of FPV

Can FPV fail to detect errors in the arithmetic? Can FPV
report false 'errors'?

We emphasise that the answer to the first question is
certainly 'yes' - in principle - simply because FPV, even
when running its most exhaustive set of tests, only tests a
small sample of all possible pairs of operands. However to
test that small sample may take months or years of computer
time, so selectivity is unavoidable. In practice, the
grounds for confidence in the selection strategy used by FPV
(following Schryer) are very strong: we are not aware of any
design errors in completed implementations of floating-point
arithmetic which would not be detected by FPV, even with a
very restricted selection of mantissa and exponent values;
on the other hand Schryer's program FPTST, with a more
limited choice of operands than FPV, bas detected several
errors that had not been detected by other testing
procedures. (FPV will of course detect all the errors
reported by FPTST).

In practical runs lasting only a few hours or minutes, the
effectiveness of FPV is dependent in part on the users'
understanding of the testing strategy. It is the user's
responsibility to specify a reasonable sample of mantissa
types, mantissa index values and exponent values as
suggested in subsections 4.1 to 4.3 above, and to include

FPV User's Guide Section 4 Page 6

all operators and sign combinations that are required to be
tested.

It is also the users' responsibility to specify sufficiently
rigorous criteria for checking the correctness of the
arithmetic.

However it is still reasonable to ask whether FPV is
guaranteed to detect any error that occurs within the terms
of the specified test-set, or whether it may report false
'errors', and indeed there is one aspect of FPV which may
require care.

Ideally FPV should not use floating-point operations for any
purpose other than actually to compute the results which are
to be checked. However it does not seem possible to write a
portable program which satisfies this requirement. In the
supplied text of FPV, machine-independent code is provided
for converting a floating-point value from its
model-representation in an integer array to the machine's
internal floating-point representation; .and also for
converting from the internal floating-point representation
back to an integer array. This code is portable only if
certain floating-point operations are performed exactly,
specifically: multiplication by powers of the base;
negation; and certain additions (which should involve no
carries, shifts or- rounding); certain comparisons must also
be performed exactly. Many arithmetics meet these
requirements, but some do not, either because of an inferior
specification or because of errors in their implementation.
FPV endeavours to check that the conversions in question are
being performed correctly before embarking on the main
tests, but the checks themselves involve some use of
floating-point operations, so it is conceivable that
anomalies in the arithmetic could mask.errors in the
conversion.

To make FPV completely reliable and robust the code for
performing the conversions must be rewritten using
machine-specific bit-manipulation operations or other
non-standard facilities which certainly do not involve
floating-point arithmetic. Advice on how to do this is given
in subsection 9.1.

Of course, FPV assumes that integer arithmetic is performed
correctly in FPVGEN. If there are any errors in the integer
arithmetic, it is hard to conceive how errors in the
floating-point arithmetic might go undetected; instead it is
very likely that FPV will report spurious errors or exhibit
other kinds of weird behaviour.

In the last resort, any report of an invalid result from FPV
can easily be checked by hand, and the individual operation
re-tested independently of FPV as suggested in Section 8.

....

,...

r

-

-

-
-
-
-
-
-
-

-
-

-

FPV User's Guide Section 5 Page 1

5. Approach to Testing

5.1 A11-in-One or Two-phase Testing?

In al1-in-one mode the program FPVGEN generates and performs
a set of tests, all on one machine, in a single run. In
two-phase mode FPVGEN generates a set of tests but, instead
of performing them, writes details of·the operands and
expected results to a file; a second, simpler program FPVTGT
reads the file and performs the tests. Normally in two-phase
mode FPVGEN is run on a comparatively powerful machine and
FPVTGT is run on a different machine (the 'target' machine).
The file or files of data may be transferred to the target
machine by communication link or magnetic media.

You are recommended to use FPV in all-in-one mode if
possible. This requires a suitable compiler (Fortran or
Pascal) to be available on the machine to be tested, but,
~iven this, there is usually liitle reason not to use
all-in-one mode. The program FPVGEN is not particularly
large (for precise figures see the Installation Note) and
will fit into the memory of most modern computers. FPVGEN
does take longer to perform a given set of tests than
FPVTGT, but on most machines this is unlikely to be
inconvenient: initial trial runs should be short anyway, and
more extensive sets of tests can be set up to run unattended
or as background jobs.

In two-phase mode, transferring files of data (that might
range in size from 100 kilobytes to several megabytes) will
often be inconvenient or at least time-consuming. However,
in some circumstances two-phase mode is the only way to use
FPV. Such circumstances are:

- when there is no Fortran or Pascal compiler available on
the target machine;

- when there is a particular need to test the arithmetic
accessible via some language other than Fortran or Pascal
(e.g. Basic or Ada).

It will then be necessary to translate FPVTGT (or parts of
it) into some suitable language, possibly even into machine
language. The essential features of FPVTGT have been kept as
simple as possible, but in any case you are encouraged to
consult NAG before attempting a translation: it may be
possible to provide one for you - or at least the basis of
one. See also Section 10.

5.2 Trial Runs

Before you attempt to run FPV you should find out as much as
possible about the floating-point arithmetic to be tested,
normally from the manufacturer's or implementor's
documentation. In particular you will need to determine
suitable values of the machine-parameters B, P, EMIN and
EMAX, described in subsection 3.1. Ideally also you should

FPV User's Guide Section 5 Page 2

be able to find out details of rounding, but in any case you
are advised initially to test simply for conformity with the
Brown model.

Also included on the tape with FPV is a short program FPVPAR
which attempts to determine the machine-parameters
automatically, but is not foolproof. The values which it
gives, should always be checked to see if they are sensible.
If there are errors in the arithmetic, the values may be
quite wrong .. (FPVPAR uses ideas from programs by Cody and
Waite (1980) and Kahan (Karpinski, 1985).)

Having decided on values for the machine-parameters, try
some initial runs with small samples of operands. Detailed
instructions on how to drive FPV are given in Sections 6 and
7. Interactive running is recommended for initial runs in
all-in-one mode.

The aims of trial runs should be

- to ensure that floating-point values are being correctly
converted from one representation to another, as
discussed in subsection 4.6;

- to determine the best set of values for the machine and
model paramete·rs, and the appropriate rounding rule;

- to gauge how much computer time is required to test a
sample of a given size.

You are strongly advised to keep your initial samples of
operands small. Otherwise you may be swamped by a deluge of
invalid results which may be hard or at least tiresome to
analyse. The following points should help:

- throughout all your initial runs use only operand types 1
and 2: almost all known errors and anomalies could be
detected by these types alone;

- test each of your initial samples first on positive
operands only, and then, if no invalid results have so
far been reported, test all possible sign combinations:
many errors and anomalies (though certainly not all) are
independent of the signs of the operands;

- look first for invalid results which depend primarily on
mantissa values only: exponent values can be restricted
at first to O and 1, while mantissa index values can be
clustered round 1, P/2 and P; if no invalid results are
found, enlarge the samples by letting the mantissa index
take all values from 1 to P; and then add the exponent
values 2, P, P+l;

- then look for invalid results which depend primarily on
exponent values only: mantissa index values can be
restricted to 1 and 2 .(using operand types 1 and 2),
while exponent values should be clustered round EMIN, O

,.,
I

,..

....
i i

,..

-
-
-

..

-

-
-

-
-
-
-

FPV User's Guide Section 5 Page 3

and EMAX; if no invalid results are found, add the
mantissa index values P-1 and P, and the exponent values
EMIN + P and EMAX - P; then some mantissa index values
clustered around P/2, and the exponent values EMIN + P/2
and EMAX - P/2;

- if invalid results are detected with one particular
operator, test that operator separately.

Invalid results may occur either because the arithmetic does
not behave in accordance with its specification, or because
you have assigned unsuitable values for some of the
parameters or the rounding rule. Section 8 gives further
advice on analysing invalid results that are reported by
FPV.

The values given for the parameters and rounding rule should
be regarded as a hypothesis about the performance of the
arithmetic which FPV tests by trying to find results which
violate the hypothesis (invalid results).- The larger the
samples which FPV uses without finding any invalid results,
the greater our confidence that the arithmetic conforms to
the given parameter values.

It remains the user's responsibility to establish whether or
not the arithmetic also conforms to a stronger hypothesis,
such as a larger value for the model-precision, or an exact
rounding rule.

5.3 Production Runs

Once you are reasonably confident that you have determined
the most suitable values for the parameters and rounding
rule, you should consider much more extensive tests, using:
all possible operand types; a large number of mantissa index
values, or even all possible values; and a larger selection
of exponent values. Such tests can be regarded as
'production' runs.

We envisage two categories of production runs. In both cases
it is likely to be more convenient to drive FPV with a data
file.

The first category is exhaustive testing for design faults,
using the largest test-set which FPV can generate within the
constraints of the amount of computer-time and real-time
available. To test an arithmetic with the same parameters as
IEEE standard single precision format, for example, FPV can
generate about 1,000,000,000 different pairs of operands
(not counting different sign combinations), and for most
other arithmetics many more pairs can be generated.
Therefore in most circumstances some subset of operand pairs
must still be selected. The least important aspect to test
comprehensively is the complete range of exponent values.
Another way to cut down the size of the samples without
diminishing their effectiveness too much is to use small~r
sample sizes for operand 2 than for operand 1.

FPV User's Guide Section 5 Page 4

The second category of production run involves using FPV
regularly to test for intermittent faults due to temporary
malfunctions in the hardware. A possible procedure is to run
a fairly short set of tests once a day, and a much longer
set once a week or once a month.

-
,..,

I

-
-
-

-

-
-

-
-

-
-
-
-
11111111

-

FPV User's Guide Section 6 Page 1

6. Bow to Run FPVGEN

6.1 Piles Used by PPVGEN

FPVGEN uses one input file and up to three output files.

The input file, referred to as the driving file (unit 5 in
Fortran, INPUT in Pascal), is used for specifying the
details of the tests to be performed. It may be a data file,
or it may represent input from a terminal when FPVGEN is
being driven interactively.

One output file (unit 6 in Fortran, OUTPUT in Pascal) is
referred to as the standard output file: it is used either
for issuing prompts when FPVGEN is being driven
interactively, or for recording details of the tests when it
is being driven from a data file.

A second output file is referred to as the report file: it
is used for reporting any invalid results (or optionally all
results). In Fortran it may be the same as the standard
ou~put file, or else its name must.be specified by the user.
In Pascal it may be the standard output file or else its
name must be ERROUT (or a file logically equivalent to
ERROUT).

The third output file is only used when FPVGEN is being used
in two-phase mode. It is referred to as the test-set file
and holds the test data for subsequent input to FPVTGT. In
Fortran its name must be specified by the user. In Pascal
its name must be BOUNDS (or a file logically equivalent to
BOUNDS). •

File-names specified by the user may be up to 32 characters
long (subject to the limits imposed by the host system).

6.2 Driving FPVGEN Interactively

The user is presented with a series of questions, the
answers to which specify the basic parameters of the machine
being tested, and the set of tests to be performed. Many of
the questions have default answers supplied in square
brackets []: pressing the RETURN key gives the default
reply. During the interactive dialogue, FPVGEN makes some
checks on the data being entered, and may display warning
messages, or even halt execution, if it thinks that
incorrect data has been entered.

We now present the output from a sample run of FPVGEN
testing a small set of operands, suitable for an initial
trial run as suggested in subsection 5.2, along with
annotation discussing the effects of answering the questions
in different ways. User replies to prompts from FPVGEN are
shown in ITALICS. Replies to yes/no questions should be Y or
N. Lower-case replies are also accepted.

FPV User's Guide Section 6 Page 2

Are you running interactively (Y / N) ? [Y]
y

If the reply is Y, then prompts for further input
are written to the screen (or default output
device). If the reply is N, then FPVGEN assumes
that data is being read from a file and so will not
issue prompts (see subsection 6.4).

Input a comment line []
Test

The input text is reproduced at the head of the
output file and may be used to identify it.

Input name of test-file to be generated
NONE

[NONE]

Input
2
Input
24
Input
-127
Input
127

Fortran Version:
For an all-in-one test the reply must be NONE. If
some other file name is given, FPVGEN will generate
a file of test data for subsequent input to FPVTGT
in a two-phase test.

Pascal Version:
In the Pascal version of FPVGEN, a different
question is asked - "Generate test file BOUNDS (G)
or perform all-in-one test (A)? [A]". The user
is given no option on what the test-set file will
be called, and should reply with C or A.

base (B)

machine precision (machine P)

machine EMIN

machine EMAX

These are the four basic machine-parameters
described in subsection 3.1. For assistance in
determining the correct values, refer to the
provisional values given for some arithmetics in
the appendix to the Installation Note; if the
required values are not given there, try running
the program FPVPAR mentioned in subsection 5.2. If
an all-in-one test has been requested, FPVGEN tests
whether floating-point operands with the specified
precision and exponent range can be reliably
generated; if not, the program issues an error
message and halts, or an overflow or underflow
exception may occur: this means either that the
machine-parameters are wrong, or that the program
must be modified as described in subsection 9.1.

'·
Input model precision (model P)
24
Input model EMIN
-127

~
I

...

..,
I

,...
I

I I

111111

,..

-
-

-
-

-

-
-
-
-
-
-
..
-

FPV User's Guide Section 6 Page 3

Input model EMAX
127

Input
0 =
1 =
2 =
3 =
4 =
5 =
6 =
7 =

1

These are the model-parameters described in
subsection 3.3. For an initial run they will
usually be the same as the machine-parameters. If
it is found that the machine does not conform to
the model with those parameters, then the
model-parameters may need to be adjusted in some
way on subsequent runs. If a specific rounding rule
is to be tested (see next questlon), then the
model-P must be the same as the machine-P.

rounding rule... [1]
BROWN MODEL, weakly supported
BROWN MODEL, strongly supported
ROUND TO NEAREST (-0. 5 ulp rounded away from zero)
ROUND TOWARD ZERO (i.e. truncation)
ROUND TO NEAREST (0.5 ulp rounded to nearest even)
ROUND TOWARD - INFINITY
ROUND TOWARD+ INFINITY
ROUND TO NEAREST (0.5 ulp rounded either way)

If in any doubt about the rounding rule in the
arithmetic being tested, specify rule 1: this tests
for conformity with the Brown model as described in
subsection 3.3. Rule O is intended to be used for
operations (most likely division or square root)
which are implemented as composite operations; the
rule is described in subsection 3.4.

Test Add/Subtract ? [Y]
y
Test
y
Test
y
Test
N
Test
y
Test
y
Test
y

Multiplication? [Y]

Division ? [Y]

Square Root ? [NJ

Unary Minus ? [Y]

Absolute Value? [Y]

Comparisons ? [Y]

These questions allow individual operations to be
selected for testing. Square root is not usually
one of the basic floating-point operations, so is
not selected by default. The unary operations
(square root, unary minus and absolute value) are
tested only on operand 1, and only once for each
value of operand 1.

How many different mantissa types do you want to test? (2]
2
Input the 2 type numbers
1 2

The mantissa types and their numbers are described

FPV User's Guide Section 6 Page 4

in subsection 4.1. Types 1 and 2 are recommended
for initial runs.

Input no. of basic mantissa index values for operand 1
3
Input array of basic mantissa index values
1 12 24
Input array of variance parameters
1 1 1
Operand 1 mantissa index values tested will be:-

1
2

11
12
13
23
24

Are these satisfactory? [Y]
y

These questions allow the user to specify, for the
first operand, the values to be used for the
mantissa index i as defined in subsection 4.2.
Rather than asking the user to specify a simple
array of values of i, FPVGEN asks first for an
array of 'basic' values, and then for each basic
value a 'variance parameter' which defines a
cluster of values centred on the basic value. If
the basic value ism and.the variance parameter is
v, then the values in the cluster are

m-v, m-v+l, ... , m-1, m, m+l, ... , m+v-1, m+v

If the variance parameter is o, the cluster
consists of just the basic value m. The basic
values must lie in the range 1 to P (i.e. the
machine parameter P), and the variance parameters
must not be negative. At most 20 basic values may
be input. If any of the values between m-v and m+v
fall outside the range 1 to P, they are simply
ignored. Duplicate values in overlapping clusters
are not allowed. FPVGEN displays the array of
mantissa index values that will actually be used
and asks for confirmation before proceeding. If the
reply to the last question is N, the set of
questions will be repeated.

Input no. of basic mantissa index values for operand 2
3
Input array of basic mantissa index values
1 12 24
Input array of variance parameters
0 0 0
Operand 2 mantissa index values tested will be:-

1
12
24

Are these satisfactory? [Y]

~
I

I

...,

-I I

,1111111!

-

-
-
-
..

-
-
-
-

-
-
-

FPV User's Guide Section 6 Page 5

y
This is a similar set of questions about the
mantissa index values of operand 2. The array of
values for operand 2 need not be the same as that
for operand 1, and it could reasonably be much
smaller.

Input no. of basic exponent values for operand 1
2
Input array of basic exponent values
0 1
Input array of variance parameters
0 0
Operand 1 exponent values tested will be:-

0
1

Are these satisfactory? [Y]
y

These questions allow the user to specify the
exponent values for operand 1 in the same way as
the mantissa index values. The basic exponent
values must lie in the range EMIN to EMAX (machine
parameters). At most 20 basic values may be input.

Input no. of basic exponent values for operand 2
1
Input array of basic exponent values
0
Input array of variance parameters
0
Operand 2 exponent values tested will be ·-.

0
Are these
y

satisfactory? [Y]

This is a similar set of questions about the
exponent values for operand 2. Again the·array of
values for operand 2 could reasonably be smaller
than that for operand 1.

Input sign of operand 1 (+or -) [+]
+
Input sign of operand 2 (+or -) [+]
+

These questions ask for the signs to be given to
the generated operands. Usually it will be
convenient to generate operands with+ signs, and
to use the following set of questions to specify
the testing of other combinations of signs at
little extra cost. However when using rounding rule
5 or 6, or when investigating an error, it may be
necessary to specify either or both of the operands
to be generated with a - sign.

If FPVGEN is generating a test-set file, then no
further details need be specified to FPVGEN. In
this case FPVGEN skips to the final question
'PROCEED?'. The questions which have been skipped

FPV User's Guide Section 6 Page 6

are asked by FPVTGT, as described in subsection
7.2.

Which sign combinations of operands are to be tested?
Plus o Plus? [Y]

y
Plus o Minus? [N]

N
Minus o Plus? [N]

N

N
Minus o Minus? [N]

These questions allow the user to specify that
various combinations of the signs of the operands
are to be tested, at little extra cost, as
described in subsection 4.4.

Which mode for testing overflow? [l]
l
Which mode for testing underflow? [1]
l

The replies to these questions must be 1 unless
FPVGEN has been modified as described in subsection
9.2. The three possible modes for testing overflow
and underflow are described in subsection 3.5.

Input name of report file
NONE

[NONE] (= standard output file)

Fortran Version:
FPVGEN will write details of any invalid results to
the named file. If the reply is NONE, the details
will be written to the standard output unit (i.e.
the terminal when running interactively).

Pascal .Version:
The question asked by the Pascal version of FPVGEN
is slightly different - "Error output to standard
output unit (S) or file ERROUT (E)? [S]". The
user is given no choice for the name of the report
file, and should reply with Sor E.

Output of all results, right or wrong, to report file?
N

[N]

If the reply is Y, details of a11 results, whether
right or wrong, this is time-consuming and produces
large volumes of output except on small test-sets:
it should only be requested on short initial runs,
or when investigating invalid or suspect results.

Model format output of numbers to report file? (Y]
y
Input an Edit Descriptor for output of numbers [N] (=no output)
N
Selection parameters of operands to report file? [N]
N

These questions are concerned with the format of
output to the report file, which is illustrated and

...

,.

...

-

-
-

..
-

-
-
-

-
-
-
-

FPV User's Guide Section 6 Page 7

discussed in the next subsection. The reply to the.
second question, in the Fortran version, can be a
character string specifying a machine-specific
format (e.g. Z20) or an asterisk(*) specifying the
standard list-directed output for floating-point
values, or N for no output. The Pascal version
instead asks the question "Machine format output of
numbers to report file? [N]", to which the answer
must be Y or N.

Stop after how many invalid results? (20]
20

This reply can prevent FPVGEN ·producing an
excessively large report file.

FPV will test 7 operator(s) on

y
120 operand pairs. PROCEED? [Y]

An estimate is supplied of the number of operand
pairs to be tested. After every 500 operand pairs
tested, a message is written to the screen or
default output file to enable the user to judge the
rate of progress of FPVGEN.

Execution proceeds ...
End of run ...

600 binary operations were tested.
48 unary operations were tested.

0 invalid results were detected.

In the count o~ operations tested, each set of six
comparisons counts as one operation. Note that some
specified operations are omitted and are not
included in the count: e.g. division when operand 2
is zero, square root when operand 1 is negative, or
any operation whose result would overflow the model
when using Mode 1 for overflow (see subsection
3.5).

When FPVGEN is generating a test-set file, it
reports instead the number of records written to
that file.

6.3 Format of Output to Report File

Figure 6.1 illustrates the different formats in which
details of invalid results are written to the report file.
Similar formats are used for valid results if output of all
results has been requested.

FPV User's Guide Section 6 Page 8

)))))) Invalid Result in+ ((((((
Opl: + e(0) 100000000000000000000011

= 0.5000002
[Type= 4, Mant= 22, Exp= 0]

Op2: + e(-127) 100000000000000000000011
= 2.9387369E-39

[Type= 4, Mant= 22, Exp= -127]
Up Bnd: + e(0) 100000000000000000000100

= 0.5000002
Mc Res: + e(0) 100000000000000000000010

= 0.5000001
Lw Bnd: + e(0) 100000000000000000000011

= 0.5000002

)))))) Invalid .EQ. comparison ((((((
Opl: + e(0) 100000000000000000000011

= 0.5000002
[Type= 4, Mant= 22, Exp= 0]

Op2: + e(-1) 100000000000000000000011
= 0.2500001

[Type= 4, Mant= 22, Exp= -1]
Comparison gets T instead of F.

Fig. 6.1

Note
(1)
(2)
(3)
(4)

(5)

(6)

Notes:

(1) The operator is defined by a code:
+ for addition
- for subtraction
* for multiplication
I for division
s for square root
u for unary minus
A for absolute value

or the name of a comparison operator.

(2) Operand 1 is here displayed in a 'model format' that
corresponds to the model representation described in
subsection 3.1, consisting of sign, exponent and
mantissa. The exponent is given as a decimal integer in
parentheses. The mantissa is displayed in base·B
notation, with the implied point to the left. The
conventional hexadecimal notation is used to represent
each digit by a single character (FPV assumes B ~ 16).
Note: this format may be unreliable unless FPVGEN has
been modified as described in subsection 9.1.

(3) This line, which is optional, gives operand 1 in an
alternative user-specified 'machine format'. In this
example the format is the standard list-directed output
format for floating-point values. This may be useful to
give an idea of the numerical values of the operands and
result, but should not be relied on for accurate
analysis of the results, because of the problems of base
conversion. Instead it is usually preferable to specify

..
I

~

....

~

~

~

....

...

-
-

...

-

-
-

-
-

- •

-
-

-
-
-
-

FPV User's Guide Section 6 Page 9

a non-standard machine-specific hexadecimal or octal
format, so that the machine-representation of the
operands can be seen.

(4) This line, which is optional, gives the 'selection
parameters' of the operand, as described in Section 4,
i.e. the values of the mantissa type [TYPE], the
mantissa index [MANT], and exponent [EXP] which caused
it to be generated.

(5) The upper bound on the result is displayed first
according to the model representation, and then in
'machine format'. Following this, the computed machine
result- and the lower bound are displayed in the same
format(s). If the upper bound and the lower bound are
equal, then the value is only printed once, with the
prefix 'Ex Res'.

(6) For an invalid comparison, the two operands are
displayed in the same formats as above, followed by a
line defining the error. If subs·equent comparisons on
the same two operands are also wrong, the display of the
operands is not repeated.

Users can specify that values are to be displayed in either
model format or machine format or both (as in this example);
at least one of the two must be specified.

6.4 Driving FPVGEN from a Data Fi1e

FPVGEN may also be driven by a data file, in which each
record must contain one line of the user's replies as
described in subsection 6.2. The only exception is that no
reply must be supplied for the questions 'Are these
satisfactory?' after each sample of mantissa index or
exponent .values has been display~d; when driving FPVGEN with
a data file, the ... user is not given the opportunity to reject
these values and supply them again. Nor is a reply required
to the final question 'PROCEED?' A sample driving file is
supplied with the FPV package, and it may be edited to
specify the desired information in the correct format. No
prompts are issued, but details of the input are written to
the standard output file.

FPV User's Guide Section 7 Page 1

7. How to Run PPV'l'GT

This section may be omitted if FPV is not being used in
two-phase mode.

7.1 Fi1es used by FPV'l'GT

FPVTGT uses two input files and one or two output files.

The principal input file, referred to as the test-set file,
must contain test data generated by FPVGEN. In Fortran its
name must be specified by the user (defaulting to BOUNDS):
In Pascal its name must be BOUNDS, or a file logically
equivalent to BOUNDS. Its format is described in subsection
10.1, but the details are not important unless FPVTGT is
being translated into another language. A driving file is
used exactly as in FPVGEN to supply additional details about
the tests to be performed.

The output files are a standard output fi1e and a report
fi1e, used exactly as in FPVGEN.

7.2 Driving FPV'l'GT

Some of the information required by FPVTGT is independent of
the contents of the test-set file, and must be supplied
separately at run-time, either interactively from a terminal
or from a driving file. •

Below is shown a sample terminal session running FPVTGT.
Again replies to prompts from FPVTGT are shown in ITALICS.
Most of the quest-ions asked by FPVTGT are similar to the
last few questions asked by FPVGEN when running an
all-in-one test. The annotation in subsection 6.2 applies
here also.

Are you running interactively (Y / N) ? [Y]
y
Input comment line · [1
Test
Input name of test-set file
BOUNDS

[BOUNDS]

(Note that the Pascal version of FPVTGT does not
ask this question - it is always assumed that the
test-set file is called BOUNDS.)

FPVTGT then reads the first 5 records from the
test-set file (see the previous subsection),
performs the same checks that FPVGEN performs in an
all-in-one test, and displays some of the details
before asking any further questions:

base = 2
machine precision = 24

machine emin = -127
machine emax = 127

model precision = 24

~

~
I

!

""1

I

~

~

,..,

111111

...

..

-
-

-
-

-

-

-

-

FPV User's Guide

model emin
model emax

rounding rule

=
=
=

Operators tested will be +-*/SUAC

-127
127

1

Section 7 Page 2

Which sign combinations of operands are to be tested?
Plus o Plus? [Y]

y
Plus o Minus? [NJ

N
Minus o Plus? [NJ

N
Minus o Minus? [NJ

N
Which mode for testing overflow? [1]
1
Which mode for .testing underflow? [l]
1
Input name of report file [NONE] (= standard output file)
NONE
Output of all results, right or wrong, to report file? [NJ
N
Model format output of numbers to report file? (Y]
y
Input an Edit Descriptor for output of numbers [N] (=no output)
N
Stop after how many invalid results? (20]
20

Execution proceeds ...
End of run ...

600 binary operations were tested.
48 unary operations were tested.

O invalid results were detected.

FPV User's Guide Section 8 Page 1

8. Interpretation of Results

This section gives some advice on what to do if FPV reports
a result that is invalid according to the specified criteria
(i.e. the parameters of the model and the rounding rule).
Such results may be due to a definite error in the
arithmetic, but in practice it is just as likely that they
result from an incorrect setting of the machine or model
parameters or the rounding rule. There may also be quite
reasonable differences in point of view: designers and
implementors of floating-point arithmetic may, indeed
should, regard any deviation from the specification by even
a single bit as an error; but users may be content with a
clean statement that the arithmetic conforms to the Brown
model with specified parameters, even if this involves
slight penalties.

The advice given here is tentative and may be refined in the
light of experience; please assist this process by reporting
details of your experience of FPV, using the FPV Report
Form.

FPV writes details of each invalid result to the report file
in a choice of formats described in subsection 6.3. The term
•error in the result' is used here to denote the amount by
which the machine result violates one of its bounds or
deviates from the exact result. This error is conveniently
measured. in 'ulps' (defined in subsection 3.1).

Step 1 Is the error in the result more than just a few ulps? If
so, go to Step 9 (where examples of this kind of error are
illustrated).

Step 2 You have found at least one result which is in error by
just a few ulps, very likely by only one ulp, as in Figure
6.1. Are there several results that are also in error by
just a few ulps? This is a vague question since the meaning
of 'several' depends on the size and nature of the samples
of operands. The intention is to form an initial impression
as to whether the invalid.results should be regarded as due
to incorrect settings of the parameters and rounding rule,
or as due to errors in the arithm~tic. (There may in fact be
no hard and fast answer to that, if the specification of the
arithmetic is vague.) If at this stage you feel fairly
confident that your settings of the parameters and rounding
rule are correct and you have found a comparatively small
proportion of invalid results, go to Step 8.

Step 3 You have found several results which show a sl~ght
error. If the errors occur with rounding rule 1 {try this if
you have not already done so), then go to Step 5.

Step 4 You have found several slight errors when using a
specific rounding rule, but none when using rounding rule 1.
This suggests that your assumption of a particular rounding
rule was incorrect. Possibly one of the other rounding rules
available in FPV will prove suitable. Otherwise the rounding

..,
l

~

I I

~
I

~

,...

~
I ;
; i

-

...

-

-

-
-
-
-
-

-
-
-

..
-

FPV User's Guide Section 8 Page 2

rule as implemented is not one of the very limited set
available in FPV; it may or may not be the designer's
intention that this be so. You may choose to investigate in
more detail: are the deviations from the assumed rounding
rule confined to one operation, or to particular types of
operand or' result? Alternatively you may be quite satisfied
with having shown that the arithmetic passes the tests with
rounding rule 1, i.e. that it conforms to the Brown model
(strongly supported). Go to Step 11.

Step 5 You have found several results which show a slight error
when using rounding rule 1. Consider changing the values of
one or more of the parameters. Do the invalid results only
occur when the exponent values (in either the operands or
the results) are close to EMIN or EMAX? If so, go to ~tep 7.

-Step 6 You have found several results which show a slight error
according to rounding rule land in which the operands have
exponent values in the middle of the range. Consider
reducing the mod.el precision. Alternatively try rounding
rule O (Brown model weakly supported), especially if the
invalid results are confined to division and square root
which may be implemented as composite operations. If the
invalid results disappear, then go to Step 11. If, however,
you continue to get several invalid results after more than
one or two reductions· of· the model precision, then either
there are some gross errors in the arithmetic (which may
merit investigation-as suggested under Step 9), or the
arithmetic behaves in some way which violates the underlying
assumptions of FPV: consult NAG. Go to Step 11.

Step 7 You have found several results which show a slight error
when using rounding rule 1, but only when the exponent
values are near EMIN or EMAX. Consider modifying EMIN and/or
EMAX to reduce the exponent range of the model; it may be
that the arithmetic behaves poorly near the ends of the
range. This is particularly likely near EMIN; for example if
double precision operands are represented by a pair-ef
single precision numbers, then when the exponent·of the
upper half is sqfficiently close to EMIN, the exponent of
the lower half is less than EMIN, i.e. the lower half
underflows, causing a loss of significance. Also, if
floating-point comparisons are performed via a subtraction,
then for exponent values close to EMIN, the difference
between the operands underflows and all comparisons report
equality.

By the assumption at the begiµni~g of this step, you will
eventually be able to restrict the exponent range so that
invalid results are no longer reported. If the restriction
seems unreasonable, consult NAG. Go to Step 11.

Step 8 You have found occasional results which are slightly in
error, and you believe that your settings of the parameters
and the rounding rule are correct. How to proceed may depend
on your point of view. You may prefer (perhaps as a user) to
see if slight changes to the parameters or rounding rule

,
FPV User's Guide Section 8 Page 3

will make results valid (e.g. if occasional invalid results
are reported with a specific rounding rule, do they
disappear if the rounding mode is changed to l?); in this
case, proceed as if there were several such results and go ~
to Step 5. Alternatively you may choose {perhaps as a
designer) to regard the slight errors as serious and proceed
to investigate them in the same manner as grosser errors. ~

Step 9 You have found a result that is grossly in error, such
as the following:

))))))
Opl:
Op2:

Up Bnd:
Mc Res:
Lw Bnd:

Invalid
+ e(
+ e(
+ e(
+ e(
+ e(

)))))) Invalid
Opl: • + e(
Op2: + e(

Up Bnd: + e(

Result in/ ((((((
0) 100000000000000000000000000000000010
0) 100000000000000000000000000010000000
0) 111111111111111111111111111100000101
0) 111111000000000011111111111100000101
0) 111111111111111111111111111100000100-

Pig. 8.l.

Result in* ((((((
0) 100000000000000000000000000000000010
0) 100000000000000000000000000010000000

-1) 100000000000000000000000000010000011
Mc Res:+ e(-63) 100000000000000000000000000010000010
Lw Bnd: + e(-1) 100000000000000000000000000010000010

Pig. 8.2

Ia Fig. 8.1, there is a long string of incorrect bits in the
mantissa; in Fig. 8.2, although the mantissa is correct, the
exponent is totally wrong.

Step l.O Having detected a gross error in the arithmetic, you
will usually want to investigate under what conditions it
_gccurs. Does the error depend only on the mantissa values of

• the operands, possibly also on the exponent difference
(independent of the actual values of the exponents)? or does
it depend only on the exponent values (independent of the
mantissas)? For most errors, the answer to one of these
questions is likely to be 'yes'. If the error depends on the
mantissa values, which of the mantissa patterns used by FPV
and which mantissa index values trigger the error? If the
error depends on the exponent values, which values trigger
the error? It is possible to use FPV to answer these
questions, by selecting a very specific set of tests, for
example: a single operation, a single mantissa type, a
single exponent value and a range of mantissa index values
(or alternatively a single mantissa index value and a range
of exponent values). For example, to investigate the error
in Fig. 8.1, try selecting: division, operand type 2,
exponent value 0 and mantissa index range 1 to 53 for each
operand. This might show that the error occurred when
32 ~ i(2) < i(l) ~ 53 where i(l) and i(2) are the mantissa
index values for operands 1 and 2 respectively. Such
information would almost certainly be helpful to the

-
1111111
I

-

-
...

-

-
-
-
-
-
-
-

FPV User's Guide Section 8 Page 4

designer or implementor of the arithmetic in tracing the
cause of the error.

At this stage, if not earlier, it is likely to be more
convenient to write specia1 small programs for diagnostic
testing rather than use FPV which may be comparatively
cumbersome for this purpose, and does not output large
numbers of results in an easily digestible form. Care must
be observed when writing such diagnostic programs. In
particular, if operands of the form 1 ± B-i are generated by
program, always check that the desired values are obtained,
by printing out the numeric values in binary, octal or
hexadecimal format (as the system allows) so that the
precise bit pattern can be observed. Rounding errors in
computing the operands may confuse the issue, and more
elaborate code may be required to generate the desired
values.

Step 11 This concludes the suggested line of investigation. But
be warned that the suggestions are fairly crude. You may
have encountered more than one category of invalid results
which will require independent paths of investigation.
Continue testing with larger and larger samples of operands:
this may throw up new errors. Consult RAG if in doubt or
difficulty.

FPV User's Guide Section 9 Page 1

9. Modifying FPV

In this section we give details of the various modifications
to the code of FPV that may be required either to make it
completely reliable and robust (as discussed in subsection
4.6) or to enable overflow or underflow exceptions to be
trapped and arithmetic to be tested right up to the limits
set by the overflow and underflow thresholds (see subsection
3.5).

The modifications all affect the execution phase of the
tests (performed by FPVTGT or FPVGEN) and not the generation
phase. The modifications to FPVGEN and FPVTGT are identical.
We describe in detail the modifications to the Fortran
versions; the Pascal modifications are very similar. We
give, purely for illustration, examples of how the
modifications might be coded for a DEC VAX-11 under VMS.

9.1 Encoding and Decoding P1oating-Point Va1ues

To convert an operand from its model-representation in an
integer array to the machine's floating-point
representation, FPV calls a function MCITOF. Likewise, to
convert the result of a floating-point operation from the
machine's floating-point representation back to an integer
array, it calls a subroutine MCFTOI. The supplied versions
of MCITOF and MCFTOI use floating-point operations and are
liable to work incorrectly either if the arithmetic is
incorrectly implemented, or if it is simply insufficiently
accurate. In particular, errors may occur in the least
significant digits of the mantissa, or at extremes of the
exponent range, where overflow or underflow may interfere.

MCITOF and MCFTOI can be written much more reliably (and
often more efficiently) using machine-specific
bit-manipulation operations. Of course this requires precise
knowledge of how floating-point numbers are stored in the
machine, and the code will be machine-specific.

The internal format used by FPV to store floating-point
numbers is defined by the integer variables BASE, MANTIS,
RADIGS, RADIX and PLACES, which are passed as arguments to
both MCITOF and MCFTOI.

BASE is the base B of the arithmetic;

MANTIS is the number of base-B digits in the mantissa of
a floating-point number(= the machine-parameter P).

Instead of simply storing each base-B digit in a separate
integer array-element, FPV may group the digits together if
Bis small.

RADIGS is the number of base-B digits stored in a single
array-element;

RADIX= BASE**RADIGS;

fill!

..,
I ;

7

1-1
I I

~

: (

-

-
-
-
-
-
.-ii

-
-
-
-

-

-
...

FPV User's Guide Section 9 Page 2

PLACES is the number of array-elements required
(= MANTIS/RADIGS rounded up to an integer).

• Each array-element holds one digit to the base RADIX. The
mantissa is padded out with zeros if necessary, to make the
number of base-B digits an integer multiple of RADIGS. For
example, if BASE= 2, MANTIS= 23 and RADIGS = 4, then
RADIX= 16 arid PLACES= 6; and the mantissa

.11010001010000111110001

is stored· as the successive array-elements

13, 1, 4, 3, 14, 2 .

In Fortran each floating-point number is stored in an
integer array of length (PLACES+2):

elements (1) to (PLACES) hold the mantissa as just
described;

element (PLACES+l) holds the sign: O for positive,
negative;

element (PLACES+2) holds the exponent.

1 for

Zero is represented by an array with element (1) set to
zero, regardless of the values of the other elements.

In Pascal each number is stored as a record with the
following type declaration:

type· BOUND= record
POSITIVE: boolean;
EXPONENT: integer;

SIGNIFICAND: array (1 .. 36] of integer
end;

where only the first PLACES elements of SIGNIFICAND are used.

The specification of MCITOF is:

REAL FUNCTION MCITOF(X, BASE, RADIGS, RADIX, PLACES, MANTIS)
INTEGER BASE, RADIGS, RADIX, PLACES, MANTIS, X (PLACES+ 2)

On entry, X contains a floating-point number in FPV
internal format.

On exit, MCITOF must return the same number stored as a
real variable, through the function name.

The specification of MCFTOI is:

SUBROUTINE MCFTOI(F, BASE, RADIGS, RADIX, PLACES, MANTIS, X, NAN)
REAL F, TX

FPV User's Guide Section 9 Page 3

INTEGER BASE, RADIGS, RADIX, PLACES, MANTIS, X (PLACES+ 2)
LOGICAL NAN

On entry, F contains a real variable.

On exit, if F contains a valid representation of a
floating-point number, then NAN must be set to .FALSE. and
X must contain the same number stored in FPV internal
format; otherwise NAN must be set to .TRUE. and no
assignments need be made to X.

The arguments BASE, RADIGS, RADIX, PLACES and MANTIS are set to
the values described above, on entry to both MCITOF and MCFTOI,
and must not be changed by them.

Example versions of MCITOF and MCFTOI are:

*
* ••

*
*

*
*

*

*
*

*

*
*

*

10

REAL FUNCTION MCITOF(X, BASE, RADIGS, RADIX, PLACES, MANTIS)
INTEGER BASE, RADIGS, RADIX, PLACES, MANTIS, X (PLACES+ 2)

converts from FPV internal format to REAL
example coding for DEC VAX-11/VMS Fortran
uses subroutine MVBITS to transfer a bit field
and intrinsic function ISHFTC to rotate a word
REAL operand must first be equivalenced to INTEGER

INTEGER I, INPOS
REAL TX
INTEGER IX
EQUIVALENCE (TX, IX)
IX= 0
IF (X (1) ·.NE. 0) THEN
the number is non-ze·ro

CALL MVBITS (X (PLACES+ 1), 0, 1, IX, 31)
insert sign into first bit of IX

CALL MVBITS (X (PLACES+ 2) + 128, O, 8, IX, 23)
bias exponent and insert after sign

CALL MVBITS (X (1) - RADIX/ BASE, O, RADIGS - 1,
* IX, 24 - RADIGS)

remove ffrst bit of X (1) (stored implicitly by VAX) and
insert after exponent

*

INPOS = 24 - RADIGS * 2
DO 10 I= 2, PLACES - 1

CALL MVBITS (X (I), 0, RADIGS, IX, INPOS)
insert X (2) ... X (PLACES - 1) into IX in logical order

INPOS = INPOS - RADIGS
CONTINUE
CALL MVBITS (X (PLACES)/ BASE** (- INPOS), 0,

RADIGS + INPOS, IX, 0)
X (PLACES) may hold less than RADIGS bits, so remove
trailing zeros by division and insert into end of IX

IX= ISHFTC (IX, 16, 32)
rotate IX to get bits in correct order
END IF
MCITOF = TX
RETURN
END

' i

..
-

...

-

-

-
-

-
-
-
-
-

,.,,

-
-

-
-

FPV Oser's Guide Section 9 Page 4

SUBROOTINE MCFTOI (F, BASE, RADIGS, RADIX, PLACES, MANTIS,
* X, NAN)
REAL F, TX
INTEGER BASE, RADIGS, RADIX, PLACES, MANTIS, X (PLACES+ 2)
LOGICAL NAN

* converts from REAL to FPV internal format
* example coding for DEC VAX-11/VMS Fortran
* uses intrinsic function IBITS to extract a bit field
* and intrinsic function ISHFTC to rotate a word
* REAL operand must first be equivalenced to integer

INTEGER I, IX, INPOS
EQUIVALENCE (TX, IX)
NAN= .FALSE.
TX= F
IX= ISHFTC (IX, 16, 32)

* rotate IX to get bits in order sign, exponent, mantissa
X (PLACES+ 1) = IBITS (IX, 31, 1)

* get the sign
X (PLACES+ 2) = IBITS (IX, 23, 8) - 128

* extract exponent and remove bias
IF (X (PLACES+ 2) .EQ. - 128) THEN

* if Fis zero, assign X all zeros and return
NAN= X (PLACES+ 1) .EQ. 1

* if negative sign and zero exponent, F· is a floating
* reserved operand

DO 10 I= 1, PLACES·+ 2
X (I)= 0

10 CONTINUE
RETURN

END IF
X (1) = IBITS (IX, 24 - RADIGS, RADIGS - 1) +RADIX/ BASE

* extract X (1) and add back the implicit bit

*

20

*
*

INPOS = 24 - RADIGS * 2
DO 20 I= 2, PLACES - 1

X (I)= IBITS (IX, INPOS, RADIGS)
extract X (2) ••• X (PLACES - 1)

INPO~ = INPOS - RADIGS
CONTINUE
X (PLACES)= IBITS (IX, 0, RADIGS + INPOS) * BASE**(- INPOS)

X (PLACES) may hold less than RADIGS bits so multiply to
fill with zeros

RETURN
END

9.2 Trapping 0Verf1ow and Underf1ow

Before using Modes 2 ·or 3 for testing overflow or- underflow
(see subsection 3.5), it is essential to modify FPV so that
any overflow or underflow exceptions are trapped by the
program. Trapping these exceptions is an advantage even when
using Mode 1, in case any unexpected overflows or underflows
occur. No trapping facilities are available in standard
Fortran or Pascal, and the actual facilities available vary
a lot from system to system (on some systems no trapping
facilities may be provided).

FPV User's Guide Section 9 Page 5

The essential features of the modifications are:

- to establish a trap handling subprogram, which should
ideally be global to the entire program;

- to provide a suitable trap-handling procedure, here
called MCTRAP: if overflow or underflow is signalled,
MCTRAP must set a logical variable MACOVR or MACUND to
.TRUE. (in Fortran MACOVR and MACUND are in a common
block /MACOV/, in Pascal they are global variables);

- to modify the subroutines SETOVM and SETUNM so that they
immediately return, thereby permitting Modes 2 or 3 to be
used.

The system may require MCTRAP to be either a subroutine or a
function. It may expect MCTRAP to return a result to be used
in place of the overflowing or underflowing value, but FPV
does not require this. Overflows or underflows in the tests
may occur either in the subroutine STORE or, if in a
comparison, in one of the functions FPVEQ, FPVNE, FPVLT,
FPVLE, FPVGT or FPVGE. FPV expects control to be returned
either to the immediately following instruction in those
subprograms, or to the instruction following the calls to
those subprograms. Overflows and underflows may also occur
in the subroutine TESTSC.-which tests·MCITOF and MCFTOI, or
in the supplied versions of MCITOF and MCFTOI themselves.
Ideally the trap-handling subprogram should be established
once at the start of the main program, but the system may
require it to be established within each subprogram in which
overflows or underflows are expected.

Rote: in some systems overflow or underflow exceptions are
not signalled immediately when overflowing or underflQwing
values are generated, but only when an attempt is made to
use the value in a subsequent floating-point operation. For
such systems the subroutine STORE must be modified by
inserting a suitable subsequent floating-point operation
(possibly, addition of zero), to ensure that the exception
is signalled in that subroutine.

Although we have described trapping both overflow and
underflow together, it is perfectly possible to trap just
one of them. Note also that it may be necessary to use some
particular compile-time option or call to a system
subroutine to ensure that overflow or underflow
(particularly underflow) will cause an exception.

Division by zero, and taking the square root of a negative
number are not expected to occur within FPV, and no
provision need be made for trapping them.

Examples of statements to be inserted into the main program
are:

EXTERNAL MCTRAP
* establish trap handler for DEC YAX-11/VMS Fortran

-

-
-
-

-

-
-

-

-
-
-
-
-
-

FPV User's Guide Section 9 Page 6

CALL LIB$ESTABLISH (MCTRAP)

An example of a trap handler is:

*
*
*

*
*

*
*
*

*

*

*

*
*

INTEGER FUNCTION MCTRAP (SIGARGS, MECHARGS)
INTEGER SIGARGS(*), MECHARGS(4)

trap handler for floating-point overflow and underflow
example coding for DEC VAX-11/VMS Fortran
uses symbolic names defined via INCLUDE statement

LOGICAL MACOVR, MACOND
COMMON /MACOV/ MACOVR, MACOND
INCLUDE '($SSDEF)·'

determine if condition code in SIGARGS(2) matches code for
overflow or underflow

I= LIB$MATCHCOND (SIGARGS(2), SS$FLTOVFF, SS$FLTONDF,
* SS$FLTOVF , SS$FLTUND)

IF (I.GT.0) THEN
if match found
ensure that control will return to instruction following
that which caused exception

CALL LIB$SIMTRAP (SIGARGS, MECHARGS)
IF. (I.EQ.1 .OR. I.EQ.3) THEN

if overflow
• MACOVR = .TRUE.

ELSE
if underflow ·

MACUND = .TRUE.
ENDIF

control is to be returned to program
MCTRAP·= SS$CONTINUE.

ELSE-
if not overflow or underflow
control is to be returned to system

MCTRAP = SS$RESIGNAL
ENDIF
RETURN
END

The coding of the above trap-handler is very
system-specific: however the comments suggest at least some
of the points which need to be taken care of.

FPV User's Guide Section 10 Page 1

10. Translating FPVTGT into Other Languages

If FPVTGT has to be re-written in another programming
language (possibly machine language), it is not essential,
and may not be desirable, to attempt an exact translation of
the Fortran or Pascal version. The supplied versions of
FPVTGT mimic as closely as possible those features of FPVGEN
which are concerned with the execution of the tests as
opposed to their generation. Some of those features (e.g.
the interactive dialogue prompting the user to specify
options, or the choice of formats to display invalid
results) may be regarded as frills; also it may be known in
advance that some of the options (e.g. modes 2 or 3 for
testing overflow or underflow) will not be required.

Before undertaking a translation, consult NAG: NAG may be
able to provide a translation for you - or at least the
basis of one.

10.l Pormat of the Test-Set File

In order to understand some of the details of FPVTGT, it is
necessary to know the details of-the format of the test-set
file.

Figure 10.1 shows a typical example of the beginning of a
test-set file. The first five records constitute a header.

2 24 -127 127
24 -127 127

4 6
1

+-*/SUAC
+ -127 8 0 0 0 0 2 + -127 8 0 0 0 0 2
+ -126 8 0 0 0 0 2=
+ 0 0 0 0 0 0 O=

U+ =
+ 1 8 0 0 0 0 O=
+ -63 8 0 0 0 0 0 + -63 8 0 0 0 0 1
- -127 8 0 0 0 0 2=
+ -127 8 0 0 0 0 2=

TFFTTFFTFFTTFTTTFFTFFTTF
+ 0 8 0 0 0 0 2 +
+ 0 8 0 0 0 0 2 +
+ 0 8 0 0 0 0 1 +

U+ =
V+ =

+ 011 5 0 415 4 +
0 8 0 0 0 0 2=

+ 0 8 0 0 0 0 2=
FTFFTTFTFFTTFTTTFFFTTTFF

-127 8 0 0 0 0 2
0 8 0 0 0 0 3
0 8 0 0 0 0 2

011 5 0 415 5

Fig. 10.1

Note
(1)
(2)
(3)
(4)
(5)
(6)
(7)

(8)
(9)

~
i

flal!

~

11111!

I I

~
i i

~

~

I I

~
I !

!'-I

~
I

"""·

...
I

I i

I I

-
-
-
-
..
-
-
-
.......

-
-

-

-

-
-
..

FPV User's Guide Section 10 Page 2

Notes:

(1) The machine-parameters B, P, EMIN, EMAX of the target
machine.

(2) The model-parameters P, EMIN and EMAX of the target
machine.

(3) The parameters PLACES and RADIGS which specify the
internal format used by FPV to store floating-point
numbers with the given values of Band P (see subsection
9.1).

(4) The rounding rule number, as specified to FPVGEN.

(5) The operators that will ·be tested by the target program,
denoted by the same codes as are used in the report file
(see subsection 6.3).

(6) A pair of floating-point numbers, Opland Op2, that will
be tested with each of the ~pecified operators.

(7) The lower and upper bounds on the result of applying the
first specified operator (in this case+) to Opland
Op2 .

In the following records come the bounds on the results
of each of the other specified operators. If a pair of
bounds is replaced entirely by the single character 'N',
this implies that the·operation is a unary operation
that has previously been tested, and so need not be
tested again.

(8) The results of comparing Opl with Op2 are stored as a
string of 24 characters, each either 'T', 'F' or 'X' -
true, false or undecidable. The first six characters
define the result of performing the comparisons=, r, <,
~,~,>on Opl with Op2. The second six define the
results of the same comparisons of Opl with (-Op2). Then
come the results of comparing (-Opl) with Op2, and
finally of (-Opl) with (-Op2).

(9) The next pair of operands to be tested, and so on.

Each floating-point number in the test-set file is
represented by a character-string of which the first
character is a key. The possible keys are:

' ' - the remainder of the character-string represents a
number within machine-range;

'V' - the number overflows the range of the machine, with
the next character giving its sign;

'U' - the number underflows the range of the machine, with
the next character giving its sign;

FPV User's Guide Section 10 Page 3

'=' - (only used for the second number in a record) the
number is equal to the first number in the record.

Numbers within machine range (with key• ') are represented
in a form which corresponds closely to the internal format
used by FPV, described in subsection 9.1. The first
character holds the sign (as '+' or '-'); the next six
characters hold the exponent (as a decimal integer, i.e. in
Fortran I6 format); the remaining characters hold the
mantissa, each of· the first PLACES elements of the integer
array being stored as a 2-digit decimal integer (i.e. in
Fortran I2 format).

Note that the bounds written to the test-set file are the
same regardless of which mode is to be used in testing
overflow or underflow; they are in fact the bounds defined
for·Mode 2. FPVTGT· checks whether these bounds overflow or
underflow the range of the model and modifies them if
necessary.

10.2 Structure of PPVTGT

We describe here the structure of FPVTGT and comment on
which features are essential, and wrrich might be omitted
from a translation. The description is based on the Fortran
version of FPVTGT, but the Pascal version is very similar.
Where Pascal routine names differ from the Fortran names,
they are given in the call tree at the end of this section.
More detailed information is given in comments in the
source-text.

Main Program: This has the structure:

*

*

read heading of test-set file and initialise variables
CALL START (OPERS, NUM, PR)

prompt user for specification of options
CALL PROMPT

* execute tests
100 CONTINUE

* read next pair of operands into FPV internal format
CALL READOP (OPl, OP2, .TRUE., SKIP)

* create their negatives in NEGOPl and NEGOP2
*
*

*

convert from FPV internal format to floating-point numbers
Xl = MCITOF(OPl, ...)
X2 = MCITOF(OP2, ...)
NEGXl = MCITOF(NEGOPl, ...)
NEGX2 = MCITOF(NEGOP2, ...)
DO 110 I= 1, NUM

test I(th) operator on current pair of operands
CALL CHECK.(OPERS(I), Xl, X2, NEGXl, NEGX2,

* OPl, OP2, NEGOPl, NEGOP2)
110 CONTINUE

GO TO 100

The program stops either when the end of the test-set file

!1111111

1111111

-

....

...

-
-
-
-
,..

-
-
-
-

-

-

-

-

FPV User's Guide Section 10 Page 4

is detected {by READOP), or when the limit on the number of
errors has been reached. Here NUM is the number of operators
to be tested; OPERS is a CHARACTER*l array containing the
operator codes read from the test-set file {see subsection
10.1); OPl, OP2, NEGOPl and NEGOP2 are integer arrays
holding floating-point values in FPV internal format; and
Xl, X2, NEGXl and NEGX2 are the corresponding real
variables.

Subroutine START: opens the test-set file, reads the first 5
records {see subsection 10.1), and initialises internal
variables and arrays, most of which are held in common in
Fortran or as global variables in Pascal. START calls
subroutine TESTSC to test that the function MCITOF and
subroutine MCFTOI (described in subsection 9.1) can reliably
handle floating-point.numbers with the specified precision
and exponent range .. This test could be performed separately
rather than as part of FPVTGT. •

Subroutine PROMPT: conducts the interactive dialogue described
in subsection 7.2. If it is known in advance what options
will be required, then PROMPT need simply set the relevant
internal variables to their required values. PROMPT opens
the named report file if one is specified.

Subroutine READOP: reads in a string of characters from a
single record in the test-set file. If the string consists
of a single 'N', then READOP sets the logical variable SKIP
to TRUE and exits immediately: the string corresponds to a
unary.operation which has already been tested, so should be
skipped .. Otherwise READOP converts the string into a pair of

.numbers, which is assumed to be either a pair of operands or
a pair of bounds, according as the logical parameter OPERND
is TRUE or FALSE respectively. READOP calls subroutine
DECODE {see below) to convert each number to FPV internal
format. If the end of the test-set file is reached, READOP
stops the program.

Subroutine CHECK: if CHECK has been called to test the
comparison operators, then it reads from the test-set file
the 24-character record defining the correct results, and
calls subroutine TSTCOM to perform the tests; otherwise it
calls subroutine READOP to read the bounds on the result and
calls the subroutine TSTOPS to perform the tests.

Subroutine DECODE: converts a string of characters (which have
been read from the test-set file) to a floating-point value
in FPV internal format. The format of the character string
is described in subsection 10.1.

If the key is '=', DECODE must si.mply set the flag EQBNDS to
TRUE, otherwise it must set EQBNDS to FALSE.

If the key is 'V', DECODE must read the next character (the
sign), and then set MCOFLG to +l if positive or -1 if
negative; otherwise it must set MCOFLG to·o.

FPV User's Guide Section 10 Page 5

If the key is 'U', DECODE must read the next character (the
sign), and then set MCUFLG to +l if positive or -1 if
negative; otherwise it must set MCUFLG to 0.

If the key is' ', DECODE must convert the sign, exponent
and mantissa and store them in the integer array VALUE (the
record VALUE in Pascal) according to the specification in
subsections 9.1 and 10.1. Also, DECODE must set the flags
MOOFLG and MOUFLG to +l, 0 or -1 to indicate whether or not
the number overflows or underflows the model (the values
have analogous meanings to those of MCOFLG and MCUFLG).

Subroutine TSTCOM: for each specified combination of signs,
tests all six .comparison operato~~,-on the supplied pair of
operands, writing details to the· report file of any invalid
results. The format and content of such reports can be
adapted to particular circumstances.

Subroutine TS'J.'OPS: for each specified non-comparison operator
and each specified combination of signs, calls subroutine
ERRTES (see below).

Subroutine ERRTES: calls subroutine STORE (see below) to apply
the specified (non-comparison) operator to the supplied
operands, and then checks the result against the supplied
bounds, writing details to the report file of any invalid
results. ERRTES could be considerably simplified if no
provision were made for modes 2 or 3 for overflow or
underflow; also the format and content of the report file
could be adapted.

Subroutine STORE: performs a (non-comparison) operation,
ensuring that the result is stored in memory, except that in
Mode 1 for overflow the operation is skipped if either of
the bounds on the result would overflow the range of the
model; this is to avoid the possibility of an overflow
exception. In the supplied version of STORE the operation is
performed in a vectorisable loop, so that vector arithmetic
instructions can be tested; this refinement may well not be
re~uired.

Subroutine PRTRES: is called by TSTCOM and ERRTES to write a
floating-point value to the report file in either
'model-format' or 'machine-format' or both. PRTRES calls
subroutine BINOUT to convert a floating-point value to the
'model-format' representation. The details of both PRTRES
and BINOUT can be adapted to particular requirements;
'model-format' (and hence BINOUT) could be dispensed with
entirely.

Function LWLESS: compares two floating-point numbers that are
held in FPV internal format, and returns TRUE if the first
is less than the second; otherwise FALSE. This is used for
checking that a result obtained by the machine lies within
the two bounds on the correct answer.

Function MCITOF: described in subsection 9.1.

11111111
I

-
-

-
-

-
-

-
-
-

-

-
...

FPV User's Guide Section 10 Page 6

Subroutine MCFTOI: described in subsection 9.1.

The other subprograms in FPVTGT have very simple functions
which should be obvious from the comments in the source text.

FPV User's Guide Section 10 Page 7

The complete call-tree of the supplied version of FPVTGT is as
follows (Pascal routine-names are given in brackets where they
differ):

FPVTGT
ASSIGN
CHECK

EXINFO
REAOOP (READOPERAND)

ASSIGN
DECODE
EXINFO

TSTCOM (TESTCOMP)
ASSIGN
FPVEQ
FPVGE
FPVGT
FPVLE
FPVLT
FPVNE
PRTRES

BINOUT
TSTOPS (TESTOPS)

ASSIGN
ERRTES (ERRORTEST)

CHSIGN
LWLESS
MCFTOI
MCITOF
PRTRES

BINOUT
STORE

MCITOF
PROMPT

NO
SETOVM
SETUNM
YES

READOP (READOPERAND)
ASSIGN
DECODE
EXINFO

START
TESTSC

CHFTOI
CRETST
MCFTOI
MCITOF

YES

-i
I I

,..,
I

1111111!

-
-
-

-

-

-
-
-
-

FPV Installation Note Page 1

FPV Installation Note

1. Software Supplied

The following files of software are supplied with the FPV
package {Fortran or Pascal version)

number of records

Fortran Pascal

file 1: source-text of FPVGEN 5183 4539

file 2: source-text of FPVTGT 2154 1859

file 3: source-text of FPVPAR 214 191

file 4: sample driving file for FPVGEN 46 46

file 5: sample test-set file 653 653

file 6: sample driving file for FPVTGT 14 13

file 7: sample report file 3526 3526

In all of these files the records are at most 80 characters
long.

The programs {files 1 to 3) conform either to standard
Fortran 77 or to ISO standard Pascal, level 1.

2. Modifications to the programs

The programs FPVGEN and FPVTGT are intended as far as
possible to be portable, and on many systems they will in
fact run correctly without change. However before attempting
to compile and run them, you should consider making the
following modifications to them:

- in the Fortran version of FPVGEN, increase the value of
the integer BIGINT {currently set to 32767) to the
largest possible integer value: this will make the
subroutines for simulating floating-point arithmetic more
efficient;

- in FPVGEN {if running in all-in-one mode) or in FPVTGT
{if running in two-phase mode) rewrite the subprograms or
procedures MCITOF and MCFTOI which convert floating-point
values between the program's model-representation in an
integer array and the machine's internal floating-point
representation. The reasons for doing this are discussed
in subsection 4.6 of the User's Guide, and advice on how
to do it is given in subsection 9.1. The supplied text of
MCITOF and MCFTOI cannot be expected to work correctly in
the face of certain errors or anomalies in the arithmetic
being tested; it is also likely to be comparatively
inefficient.

FPV Installation Note Page 2

If you wish to test the setting of the overflow or underflow
flags, you will need to make the modifications described in
subsection 9.2, but we suggest that you do not do this for
your first attempts to run the programs.

3. Precision conversion

The supplied Fortran version of the programs is in single
precision, and the supplied Pascal version uses the single
standard Pascal real data type. If you wish to test any
other floating-point data type (whether standard or
non-standard), simply change all REAL type declarations to
the desired type (e.g. DOUBLE PRECISION or REAL*l6). In the
supplied Fortran text, the k~yword REAL is always followed
by at least 12 spaces, .SO that the keyword DOUBLE PRECISION
can be substituted without increasing the line-length.

4. Compile-time or run-time options

Take care to set suitable compile-time or run-time options
to specify, for example:

- whether results of arithmetic operations should be
rounded directly to the precision of floating-point
numbers stored in memory (rather than to the extended
precision of registers) (this is important when testing
implementations of the IEEE standard).

- whether vector-arithmetic instructions are to be
compiled. The tests of the all operators in FPV are coded
in. simple vector loops which should be vectorised by any
vectorising compiler, thus enabling vector-arithmetic
operations to be tested, if available.

- whether overflow or underflow (particularly underflow)
should signal an exception.

On a DEC VAX-11/785 the compiled code for FPVGEN occupies
about 73,000 bytes, and that for FPVTGT occupies about
33,000 bytes.

5. Installation test

For a quick (but not exhaustive) check that the programs
have not been corrupted and that they can be compiled
without errors, the following procedure is recommended:

(1) Compile the programs FPVGEN and FPVTGT.

(2) Run FPVGEN using file 4 as the driving file: the report
file produced should be the same as file 7.

(3) Edit the third line of file 4 to direct FPVGEN to
generate a test-set file and run FPVGEN using the
modified driving file: the test-set file produced should
be the same as file 5.

....

11111111

-
-
-

-

-

-

-

FPV Installation Note Page 3

(4) Run FPVTGT using file 6 as the driving file and file 5
as the test-set file: the report file produced should be
the same as file 7.

Note: the test runs described in steps 2, 3 and 4 above use
a trivial model of floatiqg-point arithmetic (B = 2, P = s,
EMIN = -1, EMAX = 2). This model should be admissible on any
realistic machine, provided that the base is a multiple of 2
and that arithmetic with powers of 2 is performed exactly;
and the output should ~e identical on all such machines.

6. Contact with RAG

If you have any queries concerning FPV, please write to NAG
at one of the addresses given on the inside front cover of
the User's Guide.

7. Document Reference

NP1203

FPV Installation Note Appendix Page 1

Appendix: Provisional Parameter Values

The following table gives (for initial guidance only)
provisional values for the machine and model parameters for
certain implementations of floating-point arithmetic. Values
of the model parameters are given in parentheses below the
corresponding machine parameters, if they differ. The values
quoted apply, in general, to all the operators tested by FPV
except square-root: an asterisk in the right hand column
indicates that they apply to square-root as well. Individual
operators in some arit;hmetics may satisfy tighter cr.iteria.
The values quoted do not take account of occasional gross
errors in the arithmetic, i.e. they are the values which it
is believed the arithmetic is intended to conform to if it
were correctly implemented. •

(s.p. = single precision, d.p. = double precision, h.p. =
half precision)

I I I
I I parameters I
I Arithmetic I rounding!
I 1--~--~------- I rule
I I B I p EMIN EMAX I
I ______ I_I __________ I_
I I
I CDC Cyber 205 h.p.l 2 23 -88
I I (22)
I s.p. 2 47 -28624
I

_J
(46)

d.p. 2 94 -28578
(91) (-28534)

CDC 7600

Cray-1

s.p. 2

d.p. 2

s.p. 2

d.p. 2

48
(47)
96

(95)

48
(47)
96

(95)

DEC VAX-11 s.p. 2 24
d.p. 2 56

g floating 2 53
h=floatingl 2 113

I
IBM s.p.l 16 6

d.p.l 16 14
I

IEEE s . p. I 2 2 4
d.p.l 2 53

-975
(-974)
-927

(-881)

-8192
(-8189)
-8192

(-8097)

-127
-127

-1023
-16383

-64
-64

-125
-1021

134

28718

28718

1070

1070
(1069)

8191
(8190)
8191

(8190)

127
127

1023
16383

63
63

128
1024

1 *

1 *

0

l

0

0

0

2
2
2
2

1
1

4
4

*

*
*

---------'-- --- ---- ---- ----

...

-
-
-

-
-

-
-

-

-

FPV Report Form P~ge 1

FPV Report Form

We invite you to use this form to report the details of any
testing which you have undertaken with FPV. Your replies
will help us to improve FPV, and to accumulate knowledge of
the properties and peculiarities of implementations of
flo~ting-point arithmetic. Any suspected errors in the
arithmetic should of course also be reported immediately to
the vendor of the hardware or software concerned.

Please return the completed form to: NAG Central Office, 256
Banbury Road, Oxford OX2 7DE, England, or, in North America,
to NAG Inc., 1101 31st Street, Suite 100, Downers Grove,
IL 60515-1263, USA. Thank you for your_co-operation.

Completed by (name):

(address):

(telephone number):

(date):

......................................

......................................

.

......................................

......................................
A. Brief description of the arithmetic which was tested (e.g.

"Cray-ls Fortran single precision arithmetic" or "DECMATH.LIB
with Microsoft Fortran V3.2 on IBM PC": please complete a
separate form for each arithmetic which was tested)

...

.
Describe (if known) how this arithmetic is implemented (i.e.
hardware/ microcode/ subroutine _library) and any other
special features:

...

.
B. Details of the computing environment in which the testing was

performed (if FPV was used in two-phase mode, give details of
the environment in which FPVTGT was run)

institution .. .

address ...
. -............................. .

machine and mode 1 no.

FPV Report Form Page 2

operating system name and version no

language (i.e. Fortran/ Pascal/ other)

compiler name and version no oa•

run-time library name and version no

floating-point format (e.g. single/ double/ quad precision)

...
was FPV used in all-in-one or two-phase mode?

c. Details of tests that were passed satisfactorily

machine parameters: b = ..• p =

model parameters
p emin emax

add/subtract

multiply

divide

.... emin =

rounding
rule

negation

abs. value

square root

Comparisons

.

.

emax = •••..

mode for
overflow

mode for
underflow

•• 0 •

0 •••

•• 0 •

....
If the model parameters satisfied by a particular operator are
not equal to the machine parameters, give reasons on a separate
sheet, possibly with examples of operations that fail to
satisfy more stringent· criteria.

D. Details of any errors detected (use separate sheet(s); try to
give a very simple example, or pattern of examples, that
typifies the error; state whether the error was already known,
whether it has been reported to the vendor, and what response
the vendor has given so far)

E. Any other comments (e.g. on the usefulness or convenience of
FPV, on modifications made to FPV, on peculiarities of the
arithmetic, on the vendor's documentation, and so on:· use
separate sheet)

NP1204

,,
I

....

11111

