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Correspondence between the files you have have received and the programs 
described in the FPV installation note. 

You have received the FPV package in one of five formats. These are: 

A - Unlabelled fixed block tape. 9 track, phase encoded, 1600 bits per 
inch .. Recorded at 80 bytes per record, 4000 bytes per block, ASCII. 

B - Unlabelled fixed block tape. 9 track, phase encoded, 1600 bits per 
inch. Recorded at 80 bytes per record, 4000 bytes per block, EBCDIC. 

C - ANSI standard labelled tape. 9 track, phase encoded, 1600 bits per inch. 

D - Unix 'tar' format with all files in a tree under a single directory. 
9 track, phase encoded, 1600 bits per inch. 

E - IBM PC DOS 5.25 inch diskettes, single sided, double density. 

All the programs and data files described in the installation note 
have been supplied to you in both Fortran-77 and ISO standard Pascal 
versions. Please go to the appropriate section below. 

A - Unlabelled ASCII. 
The files are written on the tape in the order specified in the 

installation note, first the seven Fortran versions, then the seven 
Pascal. It may be convenient for you to name them as in section C. 

B - Unlabelled EBCDIC. 
The files are written on the tape in the order specified in the 

installation note, first the seven Fortran versions, then the seven 
Pascal. It may be convenient for you to name them as in section C . 

C - ANSI standard labelled. 
The supplied tape contains fourteen files, which correspond to.those 

described in the FPV Installation Note in the following way: 

Installation Note desc~iption 

-----------------
file 1: source-text of FPVGEN 
file 2: source-text of FPVTGT 
file 3: source-text of FPVPAR 
file 4: sample driving file for 
file 5: sample test-set file 
file 6: sample driving file for 
file 7: sample report file 

D - Unix 'tar' format. 

FPVGEN 

FPVTGT 

Tape files 

FPVGEN.FOR, FPVGEN.PAS 
FPVTGT.FOR, FPVTGT.PAS 
FPVPAR.FOR, FPVPAR.PAS 
GENDRIVE.FOR, GENDRIVE.PAS 
TESTSET.FOR, TESTSET.PAS 
TGTDRIVE.FOR, TGTDRIVE.PAS 
REPORT.FOR, REPORT.PAS 

The supplied tape contains fourteen files, which are named as in 
section C. 

E - PC DOS diskettes. 
You have received four single sided discs. Discs 1 and 2 contain 

the Fortran version of FPV, discs 3 and 4 the Pascal version. 
On the Fortran discs one file, FPVGEN.FOR, is too large to fit 

on one disc. It has therefore been split into two files, FPVGENl.FOR, 
which takes up the whole of disc 1, and FPVGEN2.FOR, which consists 
of just two subroutines and is placed on disc 2. It will be more 
convenient if you merge these two files into one file called 
FPVGEN.FOR. All the other files, Fortran and Pascal, are named as 
in section c. 
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1. Introduction 

1.1 Summary of Features of FPV 

FPV is a software package for validating an implementation 
of floating-point arithmetic. It is primarily intended to 
check for design errors in floating-point-arithmetic, but 
may also be used to check for intermittent errors (caused by 
a transient malfunction in the hardware). 

By 'validation' we mean simply an experimental verification 
that floating-point arithmetic has been correctly . 
implemented according to its specification. FPV must be 
supplied with the essential parameters of the specification 
- base, precision, exponent range, and rounding ru~e - and 
then attempts to verify that the arithmetic conforms to 
these parameters by probing for errors as best we know how. 
FPV does not attempt to judge the quality of the design of 
an implementation of floating-point arithmetic. Almost any 
implementation can satisfy the tests performed by FPV if the 
criteria for acceptance are suitably relaxed. The 'best' 
implementations satisfy the most stringent criteria. 

On many systems, application of FPV need only involve 
running a single program, FPVGEN. This program can generate 
operands, perform the floating-point operations and check 
the.results, all on the machine to be tested. However, in 
order to facilitate testing in as wide a variety of 
environments as possible, FPV allows t~e testing procedure 
to be split into two phases. In 'two-phase' mode, the 
program FPVGEN generates a file of test data; a second 
program FPVTGT, usually running on a different machine, 
reads the file and performs the tests. 

Machine A 

FPVGEN -+-Data-+­
file 

Machine B 

FPVTGT 

The program FPVTGT is considerably shorter than FPVGEN, and 
is much easier to adapt to different environments (even if 
this involves translating it into a different language). The 
programs FPVGEN and FPVTGT are currently written in both 
standard Fortran 77 and ISO standard Pascal, level 1. They 
therefore require a suitable compiler to be available and 
they test the arithmetic as 'seen' through those languages. 
A few machine-specific modifications may be needed to make 
the programs completely robust. In order to test arithmetic 
on machines which do not have a Fortran or Pascal compiler, 
or to test arithmetic as seen through a different language 
(e.g. Basic, Ada), it is necessary to translate all or part 
of the program FPVTGT into a suitable language. 
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FPV allows arbitrary values for the base, precision and 
range of floating-point numbers (though currently the base 
must not exceed 16). FPV can test the following 
floating-point operators: 

addition and subtraction 
multiplication 
division 
negation 
absolute value 
square root. 
comparisons 

(x+y, x-y) 
(x*y) 
(x/y) 

~,~l, 
<Ix> 
(x=y, x;y, x<y, x>y, x~y, x~y) 

Square root is included because it is sometimes provided as 
a basic hardware instruction; exponentiation is not included 
because in most cases it involves calls to the exp and log 
functions. FPV does not test mixed-precision operations, nor 
does it test conversion between floating-point numbers and 
integers or decimal strings. FPV tests arithmetic on 
operands stored in memory. On some systems registers are 
provided with extended precision and range. In principle, it 
should be possible to modify FPV to test the full scope of 
register-arithmetic, but the details must depend on what 
language facilities are available to access such registers. 

FPV can either test that the results are correct according 
to one of a choice of commonly used rounding rules; or, if 
the rounding rule is unknown or not one of those provided, 
it can test that ·the results lie within the narrow bounds 
defined in the model of floating-point arithmetic developed 
by w.s. Brown (the 'Brown model'). FPV can also be used to 
test whether the overflow and underflow flags are set 
correctly, though for this purpose machine-specific 
modifications must be made to the programs. 

Because the number of combinations of floating-point 
operands on any realistic computer is enormous (e.g. of the 
order of 10 18 or more), any testing must be extremely 
selective. The selection strategy used by FPV has been 
demonstrated to be effective in practice, but there is no 
guarantee that errors might not exist which cannot be 
detected by FPV. Moreover the stringency of the testing 
performed by FPV is under the control of the user. A user 
can select a subset of the tests of which FPV is capable; 
indeed he will normally wish to do so to ensure that the 
tests can be completed in a reasonable length of time, or 
sometimes to focus attention on a particular feature that is 
suspect. Effective use of FPV is the user's responsibility 
and requires a reasonable degree of understanding. The FPV 
User's Guide aims to explain the necessary background and to 
give suitable advice. 

1.2 Advice to Readers 

Sections 3 and 4 of this guide present the theoretical basis 
of FPV, and must be understood by anyone who wishes to 
undertake serious testing. Users who wish to gain quick 
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experience of using FPV may proceed to Sections 5 and 6, 
referring back to Sections 3 and 4 as necessary, but this 
approach is suitable only for initial familiarisation. 
Section 7 is relevant only if FPV is being used in two-phase 
mode; Section 8 gives additional guidance that can be 
referred to if needed; Section 9 gives detailed advice on 
modifications to FPV that may be necessary (the reasons for 
making them are explained in subsections 4.6 and 3.5); 
-Section 10 9ives advice on translating FPV into other 
languages. ., 
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2. Why Test Floating-Point Arithmetic? 

The question may be asked, 'Why do we need to test computer 
arithmetic? Surely the computer manufacturers test their 
machines thoroughly; errors in arithmetic on production 
machines are very rare; if their effects are serious, they 
will quickly be noticed; if not (e.g. if they only affect 
the less significant digits), are they all that important?' 

There are s~~eraJ answers to this question:-

(1) Unfortunately not all manufacturers do test their 
machines thoroughly - partly because it is a non-trivial 
task. The number of possible floating-point numbers that 
can be stored in a computer word is so large that to 
.test every. :possible combination of two numbers under 

·addition, subtraction, multiplication and division might 
require thousands or millions of years of processor 
time. Any test of the arithmetic therefore must be very 
selective, and if the wrong choices are made, errors may 

.be missed. ·1t is not enough to take a million pairs of 
real numbers at random, and check that results of 
operations on them are correct .. Errors are likely to 
arise in rather special circumstances, for example near 
the ends of the range of valid floating-point numbers, 
and a·random search for them is unlikely to be 
·eff·ective. Schryer (1981, 1986) developed a ~program 
FPTST for testing floating-point arithmetic which 
discovered erro-rs--in 14 out of·the first 21111achines on 
which it was run. 

{2) On many machines floating-point arithmetic is 
implemented in software. This is especially so o~ 
·microcomputers4 but also true on larger machines where 
·.double or quadruple precision arithmetic may be 
performed by software, although single precision is 
implemented in hardware. It seems to be a fact of life 
that errors occur more frequently in software 
implementations than in hardware, perhaps because errois 
are more easily corrected in software, or because the 
writers of the software do not ·know enough about the 
underlying hardware. Preli111inary.versions of FPV have 
.revealed errors ·on 5 different machines~ 4 of which were 
errors in software. 

(-3) .Many new machines are produced by relatively small 
companies who·may be unwilling or unable to invest 
heavily in rigorous testing of computer arithmetic. 

(4) Manufacturers often provide incomplete or inaccurate 
documentation of their floating-point arithmetic, for 
example of the method of rounding, or of the thresholds 
for overflow and underflow. It is important to be able 
to diagnose the precise behaviour of the arithmetic on a 
computer, even though discrepancies from the expected 
behaviour may only occur in the least significant bits. 
(Such information is needed by NAG, for example, in 
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order to assign with confidence correct values for the 
machine-dependent constants in the X02 chapter of the 
NAG Library, upon which many other Library routines 
depend.) 

(5) It is true that errors in arithmetic on production 
machines are rare - so rare that users naturally trust 
the arithmetic and tend to blame suspect results on 
their own (or other people's) programs. It is only when 
they are led to investigate further, investing large 
amounts of time~ that the computer may be proved to be 
at fault. It is also true that such errors as do occur 
are often not gross errors, but constitute an occasional 
loss of accuracy. For example occasional double 
precision results may only be accurate to single 
precision; but such a phenomenon undermines the validity 
of using double precision computation as a check on the 
accuracy of single precision results. More generally, 
while an occasional inaccurate result may be compensated 
for by subsequent computation and pass unnoticed, it is 
also possible for _its effect to be critical, e.g. it may 
prevent convergence to the expected accuracy .. 

(6) At the neart of the matter, however, lies the drive for 
correctness-and r~1iabi1ity in numerica~ computing. Any 
success in proving the correctness of numerical 
algorithms is invalidated if the underlying arithmetic 
is incorrect. Before testing any complex piece of 
numerical software, it makes sense to check the 

-fundamental components of·th~ computing environment such 
as the f1oating-point arithmetic and .the elementary 
functions. (For testing the latter, programs have been 
provided by Cody and Waite (1980).) 

Two recent developments have highlighted the importance of 
validating floating-point arithmetic. 

The first is the IEEE standard for binary floating-point 
arithmetic (IEEE, 1985). This is an excellent design and may 
well lead to a greater uniformity in the specification of 
floating-point arithmetic on different machines.- However. a 
standard is incomplete unless there is.some means of 
~heck.i.ng-~onformity with the standard. The IEEE standard is 
complex and provides among other things for: extended 
precision and range, different rounding modes, gradual 
underflow, and-exception handling. To validate .a fu1.l 
impl~mentation of the standard requires a very elaborate 
test package; many existing implementations are in fact 
partial and here again manufacturers• information can be 
misleading, so it is important to be able to check which 
features of the standard have been implemented and which 
have not. FPV can test all the arithmetic operations 
specified in the standard except: remainderr round to 
integer, conversion between floating-point formats, and 
binary-decimal conversion. It can test all of the specified 
rounding modes. It cannot test operations on denormalised 
numbersr nor the full range of exception-handling 
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facilities. FPV would normally test arithmetic on numbers in 
either of the basic formats, assuming that these are the 
only formats in which numbers are stored in memory; however 
it should not be difficult to modify FPV, using non-standard 
language facilities or machine language, so that it can test 
arithmetic on numbers in an extended format. Coonen (1984) 
has developed a test suite specifically for the IEEE 
standard. 

The second development is the programming language Ada whose 
definition includes a detailed specification of 
floating-point arithmetic. A complete validation.-of an Ada 
compiler should therefore include a validation of 
floating-point arithmetic (as 'seen' by an Ada program). An 
Ada version of the program FPVTGT meets this requirement. 
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3. A Model of Floating-Point Arithmetic 

Floating-point arithmetic is available in a wide variety of 
computing environments. It may be implemented in hardware, 
firmware or software, and different implementations may 
co-exist on one machine (e.g. single precision and double 
precision, binary and decimal). In this· Guide the terms 
•arithmetic' or 'an arithmetic' are used for short to denote 
'·an implementation of floating-point arithmetic'. 

In order to deal with the wide variety of arithmetics that 
have been implemented, FPV needs a generally. applicable 
model of floating-point arithmetic. We have followed Schryer 
(1981) in using the model developed by w.s. Brown (1981) 
(sometimes referred to as 'the Brown model') as our starting 
point, but have made some variations and extensions. (Brown 
developed his model as a framework for portable numerical 
computing, rather than for testing, so our requirements are 
somewhat different.) The model provides: 

- a simple characterisation of an implementation of 
floating-point arithmetic in terms of four parameters; 

- a generally applicable criterion for the correctness of 
floating-point arithmetic operations. 

'?he.model is an idealisation and simplification of the 
actual behaviour of floating-point arithmetics, but it 
provides a sufficiently close description for the practical 
requirements of testing. • 

Schryer's program FPTST tests specifically-whether or not 
arithmetic conforms to the Brown model with given values of 
the parameters. FPV is not so closely tied to the Brown 
model, but can: 

either test whether arithmetic is exactly correct 
according to one of a limited choice of rounding rules; 

- or test whether arithmetic conforms to the criteria of 
the Brown model. 

~he latter is a less stringent test, but one that is more 
generally applicable. 

When FPV is testing arithmetic according to a specific 
rounding rule, it simply requires a convenient means of 
describing which numbers are representable in the 
arithmetic. We discuss this aspect separatelyr before we 
consider the rules for the performance of basic arithmetic 
operations. 

( For more extensive b'ackground .reading on floating-point 
arithmetic we suggest the book by Sterbenz (1974).) 
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3.1 Representab1e Floating-Point Numbers 

To describe (as closely as possible) the set of 
floating-point numbers which are representable in an 
arithmetic, FPV uses the same four integer parameters as are 
used by Brown. They are: 

- the base, B; 
- the precision, P; 
- the minimum allowed exponent, EMIN; 

the-maximum allowed exponent, EMAX. 

~he set of representable numbers defined by these parameters 
is assumed to consist of: 

zero 

and numbers of the form: 

where: 

- the integer exponent, e, satisfies EMIN ~ e ~ EMAX; 

the £ractionr or ·mantissa, f, is a base-B fraction of P 
digits such that 1/B ~ f < 1, i.e . 

• fp 

with 1 ~ f 1 < B, and O ~ fi < B for i > 1. The fi are the 
base-B digits of the fraction. 

We shall refer to the values of B, e and fas the model 
representation of a representable floating-point-number. The 
way in which numbers are represented in the machine may be 
different (for example, the exponent may be-biassed, the 
point may be shifted, and so on), but that is irrelevant to 
FPV. FPV is only concerned with the values of the 
representable numbers, not with how they are stored. 

In many arithmetics the set of representable numbers can be 
precisely described by suitable values of the parameters B, 
P~ EMIN and EMAX: for example, in DEC VAX 11/780 single 
precision hardware B = 2, P = 24, EMIN = -127 and 
EMAX = 127. There are, however, some exceptions: 

machines which use a 2's-complement representation of 
negative numbers and may allow numbers which cannot be 
negated. Typically 

+aEMIN-l is representable, but not -aEMIN-l 

-BEMAX is representable, but not +sEMAX 

- machines which allow gradually underflowed numbers 
between± aEMIN-l and zero, as are defined, for example, 
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in the IEEE standard (IEEE, 1985); 

- machines which would require a non-integer value of P 
(the only such machine of which we have definite 
knowledge is the Telefunken TR440: it would require 
B = 16 and P = 9½); 

- machines which do not have a clear-cut set of 
representable floating-point numbers: some bit-patterns 
may be accepted as legitimate floating-point operands by 
one floating-point operator but not by another (for 
example CDC 7600 machines and Cray machines do not •have a 
single underflow threshold that applies to all 
operators). 

On such machines values for the parameters must be chosen 
which define the largest possible subset of the 
representable numbers. FPV will regard the subset so defined 
as its 'domain': it will test floating-point operations 
whose operands belong to the defined subset. In this case, 
then, there will be a small 'fringe' of possible operands 
which will not be tested by FPV. An alternative approach, 
which requires greater care, is to choose values of the 
parameters which define a larger set of values, including 
some non-representable numbers: the effects of .including 
non-representable numbers (e.g. overflow or spurious invalid 
results) must then be discounted. 

Henceforth we shall assume, for simplicity in the 
discussion, that the set of representable numbers is 
precisely defined by suitable values of the parameters. 
Values of B, P, EMIN and EMAX which are being used to define 
the set of representable numbers, will be referred to as 
machine-parameters, and the set of numbers so defined as 
machine-numbers. 

The largest positive machine-number is: 

Any number whose magnitude is larger than this is said to 
overflow the range of the machine (or, for short, to 
overflow the machine). l is the overflow threshold. The 
smallest positive machine-number is: 

a = aEMIN-1 

Any number whose magnitude lies between a and zero is said 
to underflow the range of the machine (or to underflow the 
machine). a is the underflow threshold. 

In passing, we define here the term ulp (= 'unit in the last 
place'). Relative to a given non-zero machine-number, 1 ulp 
is the value of a digit 1 in the least significant 
digit-position of the fraction; it is the difference between 
the given number and the next largest machine-number (in 
magnitude). In terms of the model representation, relative 
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to a given number± aef: 

1 ulp = ae-P 

3.2 Rounding Rules for Arithmetic Operations 

Section 3 Page 4 

FPV provides a limited number of rounding rules according to 
which the correct computed result of an operation can be 
determined unambiguously. The available rules all have the 
following properties: 

- if the exact (mathematical) result of an operation is a 
machine-number, then this must be the computed result; 

- otherwise the exact result lies in an interval between 
two machi~e-numbers, and the computed result must be one 
of these two machine-numbers: the rounding rule 
determines which. 

The available rules are: 

- round to nearest, with½ ulp rounded to either of the 
nearest machine numbers (this rule allows either 
possibility for rounding½ ulp, in case neither of the 
following two rules applies); 

- round to nearest, with½ ulp rounded away from zero (this 
is the conventional rule taught in school, which is used 
on many machines, e.g.· the DEC VAX machines); 

- round to nearest, with½ ulp rounded to nearest even, 
that is, to the adjacent machine-number whose least 
significant fraction-digit is even (this is the unbiassed 
default rule defined in the IEEE standard); 

- round toward zero (often called truncation or chopping); 

- round toward minus-infinity: 

- round toward plus-infinity: 

The last four rules are those specified in the IEEE standard 
(IEEE, 1985). 

When testing according to a specific rounding rule, 
comparisons are required always to yield the correct result: 
they are not affected by the differences between the rules. 

The rules must be qualified if there is a possibility of 
overflow or underflow: this is discussed in subsection 3.5. 

All of the above rounding rules are consistent with the 
weaker criteria of the Brown model, which are described in 
the next two subsections. 
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3.3 Brown Mode1 Bounds: Strongly Supported Operators 

This subsection and the next may be omitted at first reading 
by users who are confident that the arithmetic being tested 
conforms to one of the rounding rules provided by FPV. If 
the arithmetic being tested does not use one of those rules, 
then FPV must check correctness according to the ru1es of 
the Brown model; these yield tight bounds on the computed 
result. 

This subsection describes the rules for.what Brown calls 
strongly supported operators. A less stringent set of rules 
for weakly supported operators is described in the next 
subsection. 

Brown uses values of the four parameters B, P, EMIN and EMAX 
to define a set of model-numbers. The model-numbers may be a 
subset of the machine-numbers. We refer to the parameter 
values which define the set of model-numbers as 
model-parameters .. We derive from them values for the model 
overflow threshold (sometimes called model-A) and the model 
underflow threshold (sometimes called model-a), just as in 
subsection 3. 1. 

Model-numbers must satisfy the following rules for the 
. result of a basic arithmetic operat~on: 

- if the exact result is also a model-number, then this 
must be the computed result; 

- otherwise the exact result lies in an interval bounded by 
two model-numbers, and the computed result must then lie 
in the same interval (as shown in Fig. 3.1); 

Model 
numbers 

-Opl-

-Op2-

Model 
numbers 

--UB- +) 
Exact result+ ) Bounds on 

--LB-+) result 

Fig. 3.1 

- comparisons between any two model-numbers must always 
yield the correct result. 

If all machine-numbers conform to the rules of the model, 
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then the rules imply that the computed result must be one of 
the machine-numbers on either side of the exact result {but 
may be either). Arithmetic with these properties is 
sometimes called 'faithful'. The rounding error is less than 
1 ulp. 

The rules still apply if the exact result underflows the 
model, i.e. lies between zero and± model-a: the computed 
result must lie in the same interval. It is assumed that 
underflow does not halt the program. However if the exact 
result overflows the model, the rules cease to apply. 
Overflow and underflow are discussed further in subsection 
3.5. 

In some arithmetics the complete system of machine-numbers 
conforms to the rules of the model with a suitable choice of 
parameters; for example single precision numbers on IBM 370 
machines, with B = 16, P = 6, EMIN = -64, EMAX = 63. In 
other arithmetics it is only a large subset of the 
machine-numbers which conforms to the model, because of 
anomalous behaviour at the limits of precision and range. 
For example, on CDC Cyber 170 series machines, the single 
precision machine-numbers can be described by the parameters 
B = 2, P = 48, EMIN = -974, EMAX = 1070; however, to conform 
to the rules for arithmetic operations and comparisons, the 
set of model numbers must be restricted by setting P = 47 
and EMIN = -929. (The reasons are that normalisation is 
performed after rounding in addition/subtraction; and 
comparisons are performed via subtraction which gives 
incorrect.results if the difference underflows.) In 
Schryer's words, penalties must be imposed to make the model 
fit the arithmetic. 

Thus for some arithmetics we need two sets of values of the 
parameters B, P, EMIN and EMAX: 

- a set of machine-parameters to define (as closely as 
possible) the set of represent~ble numbers; 

- a set of model-parameters to define the largest possible 
subset of the representable numbers which conforms to the 
Brown model. 

(In fact FPV requires B to have the same value in both sets 
of parameters.) 

If the model parameters are not equal to the machine 
parameters, then there exist machine-numbers which are not 
model-numbers. They may be either extra-precise numbers (if 
the model-Pis less than the machine-P); or out-of-range 
numbers, overflowing or underflowing, (if the model values 
of EMIN and EMAX lie inside the machine va_lues). 

The Brown model requires that arithmetic on extra-precise 
numbers must be consistent with arithmetic on model-numbers 
according to the following rule: replace each machine-number 
by the smallest model-interval in which it lies, perform the 



FPV User's Guide Section 3 Page 7 

operation on these intervals (in the usual sense of interval 
arithmetic) and widen the resulting interval to the smallest 
model-interval which contains it; this model-interval must 
contain the computed result (see Fig. 3.2). 

Machine Model Model 
numbers numbers numbers 

----- ----- -----
-----
----- ----- + ) ---
-Opl- ) Interval 
----- ----- + ) operand l --OB- + ) 
----- ( + ) 
----- ----- Exact ( ----- ) Bounds 
----- interval ( ) on 
----- ----- + ) result ( ----- ) result 
-Op2- ) Interval ( + ) 
----- ----- + ) operand 2 --LB- + ) 
-----
----- ----- -----

Fig. 3.2 

Comp~risons on extra-precise numbers x and y may yield the 
same result as the exact comparison of any two numbers x and 
y which lie in the smallest model-intervals containing x and 
y, but may not yield any other result. Hence if there are no 
model-numbers between the machine-numbers x and y, x<y, x=y, 
and x>y are all permissible results; if there is just one 
model-number between x and a larger machine-number y, x<y 
and x=y are permissible, but x>y is not. 

FPV can test the correctness of arithmetic on extra-precise 
numbers according to these criteria. Since the criterion for 
correct comparisons is slack enough to permit anomalous 
combinations of results, FPV also tests whether the results 
of comparisons are consistent with one another (i.e. it 
reports an inconsistent comparison if, say, x<y and x>y both 
yield the result 'true'). 

Arithmetic on out-of-range numbers is discussed in 
subsection 3.5. 

3.4 Brown Model Bounds: Weakly Supported Operators 

Any arithmetic operator which conforms to the rules of 
subsection 3.3, is said by Brown to be strongly supported. 

A less stringent set of rules is allowed by Brown for 
so-called weakly supported operators. For these, the 
model-interval within which the result must lie, is extended 
to the next model-number on either side, as illustrated in 
Fig. 3.3: 
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bounds for 
weakly supported 

operator 

(However if either UB or LB is zero, so is OB' or LB' 
respectively: the interval is not extended beyond zero.) 
Even if UB and LB are equal (i.e. an exact result is 
expected from a strongly supported operator), UB' and LB' 
remain defined as above (i.e. the result of a weakly 
suppor_ted operator is never required to be exact). 

The concept of a weakly supported operator is useful, for 
example, when modelling an arithmetic in which division is 
implemented·as a composite operator (reciprocation followed 
by multiplication), because then the result is subject to 
more than one rounding error. It may also be needed when 
double precision arithmetic is implemented in software, 
using single precision floating-point hardware. 

The criterion for checking the comparisons is the same in 
either case since Brown does not define weakly supported 
comparisons. 

FPV allows the criterion of either strong support or weak 
support according to the Brown model, to be applied 
independently to each of the basic arithmetic operators. 
Normally one should attempt to find reasonable values of the 
model parameters according to which most operators are 
strongly supported, but possibly one or two (most likely 
division or square-root) are only weakly supported; the two 
sets of operators would have to be tested in separate runs 
of FPV. 

3.5 Overf1ow and Onderf1ow 

Implementations of floating-point arithmetic display a 
variety of behaviour with regard to overflow and underflow. 
The overflow threshold may differ between different 
floating-point operators, and may even differ depending on 
the values of the operands. When overflow occurs, usually an 
exception is signalled, but it may not be; and usually the 
program halts, but it may continue with or without some 
floating-point value being set as the result of the 
operation. When underflow occurs, it is more usual for an 
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exception not to be signalled, but it may be; and usually 
the program sets the result to zero or to some very small 
value and continues, but it may halt. 

To cope with this variety, FPV offers three different modes 
of testing with regard to overflow, and, independently, 
three modes with regard to underflow. We describe the 
details first for the case where the arithmetic is being 
checked according to the rules of the Brown model, having in 
mind the possibility that the model-EMAX and the model-EMIN 
may differ from the machine-EMAX and the machine-EMIN: thus 
there may exist machine-numbers which are out-of-range in 
terms of the model-parameters. We_distinguish between the 
machine-A (the largest positive machine-number defined using 
the machine-EMAX as in subsection 3.1) and the model-1 
(defined similarly, but using the model-EMAX); likewise, 
between the machine-a and the model-a. Although we describe 
overflow and underflow in parallel, it is not necessary to 
select the same mode for testing with regard to both 
overflow and underflow. 

Mode 1: 

This is the normal mode of testing. FPV aims to test the 
arithmetic within the safe bounds set by the 
model-parameters. 

Overflow: If either of the bounds on the result of an 
operation would overflow the model, that operation is 
skipped. Thus if the model-parameters have been set 
correctly, overflow should not occur. 

Underf1ow: Operations whose results are expected to 
underflow the model, are still performed, and the results 
checked against the appropriate model bounds involving 
zero and± model-a. It is assumed that underflow does not 
interrupt the flow of the program. 

Mode 2: 

For this mode FPV must be modified to trap any overflow 
or underflow exceptions that may be signalled (see 
subsection 9.2). FPV aims to test the arithmetic up to 
the limits at which machine overflow or machine underflow 
occurs, and to check that overflow or underflow 
exceptions are signalled correctly. 

We define an extension of the Brown model in which bounds 
on the resul-t are defined exactly as in subsections 3. 3 
or 3.4, but ignoring the limits imposed by the model-EMAX 
and the model-EMIN. Either the computed results must 
satisfy the bounds or an exception must be signalled, but 
an exception may not be signalled if both bounds are 
within the range of the model. In practice the bounds can 
only be applied if they lie within the range of the 
machine, and an.exception must be signalled if both 
bounds lie outside the range of the machine. 
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Overflow: All operations are performed regardless of 
whether or not the result is expected to overflow the 
model . 

- if both bounds overflow the range of the machine, then 
overflow must be signalled; 

- if both bounds lie within the range of the model, then 
overflow must not be signalled: 

- if at least one bound lies within the range of the 
machine, and at least one bound overflows the range of 
the model, then overflow may or may not be signalled; 

- in every case if overflow is not signalled, the 
computed result must satisfy any bounds which lie 
within the range of the machine . 

Onderf1ow: Mode 2 for underflow is exactly analogous to 
Mode 2 for overflow, with 'underflow' replacing 
'overflow' everywhere in the definition. This is only 
applicable if underflow does signal an exception. 

Mode 3: 

This mode is provided for testing conformity with a 
rigorous implementation of the Brown model in which an 
exception must be signalled whenever the limits of the 
model are exceeded. This might be required when testing 
an implementation of Ada, but otherwise is unlikely to be 
useful. The rules are the same as for Mode 2, except that 
'the range of the model' replaces 'the range of the 
machine' everywhere in the definition. If the model-EMAX 
is equal to the machine-EMAX, Mode 3 for overflow is 
identical to Mode 2: likewise for underflow. 

Note that the rules for Mode 2 allow for a 'grey' area in 
which overflow may or may not be sigifalled, thus tolerating 
arithmetics in which there is no single overflow threshold 
for all operations. Also the rules assume that the set of 
representable numbers is precisely described by the 
machine-parameters: if this is not so (see subsection 3.1), 
the reports of 'invalid' results must be interpreted with 
care. 

Now we describe the effects of the different modes when 
arithmetic is being tested according to a specific rounding 
rule. 

Here again, in order to tolerate arithmetics which do not 
have a single overflow or underflow threshold, FPV allows 
for a model-EMAX and model-EMIN different from the 
machine-EMAX and machine-EMIN. The model-EMAX and model-EMIN 
define safe limits within which overflow and underflow are 
not expected to occur. 

A variation to be accommodated is that overflow and 
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underflow may be detected either before or after rounding. 
FPV therefore defines upper and lower bounds on the result 
rather than an exact value in the following very special 
cases: 

- if the exact result strictly exceeds the model-A by less 
than 1 ulp, then the lower bound is set to the model-A 
and the upper bound to the next larger machine-number; 

- if the exact result strictly exceeds the·machine-A by 
less than 1 ulp, then the lower bound is set to the 
machine-A and the upper bound overflows. 

Analogous bounds are set if the exact result is slightly 
less than the model-a or slightly less than the machine-o; 
and also of course for the corresponding negative numbers. 

With these preliminaries, the rules for modes 1, 2 and 3 
carry over unchanged. Note that in Mode 1 for underflow, if 
the exact result lies between zero and± model-a, then the 
computed result is simply required to lie within the same 
bounds. Thus gradually underflowed results (as defined, for 
example, in the IEEE standard) cause no difficulty, although 
they cannot be checked for precise accuracy. 
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4. Testing Strategy 

In order to test arithmetic effectively without using 
exorbitant amounts of computer time, it is essential to 
select operands which are particularly likely to reveal 
errors. FPV follows the selection strategy of Schryer 
(1981): 

- first, the pattern of digits in the mantissae must 
conform to one of a limited number of types; 

- second, a subset of mantissae with these digit patterns 
can be selected; 

- third, independent of the selection of the mantissae, a 
subset of exponent values can be selected. 

The rationale behind Schryer's strategy is that - especially 
in an implementation which is almost correct - errors are 
most likely to occur as edge-effects, at or near some 
discontinuity or boundary in the values of the operands or 
some part of them. 

Details of each aspect of operand specification are 
described in the next four subsections, followed by a 
summary of the internal working of FPV and a discussion of 
its reliability as a validation tool. 

4.1 Mantissa Patterns 

• Schryer ·chose to use as operands for testing only those 
numbers·whose mantissae f conformed to one of five types of 
digit patterns. (If B = 2, these reduce to three.) In fact 
in his experience of using FPTST, two types proved 
sufficient to detect all the errors tha~ he has discovered 
(or learnt of). FPV uses them also as basic mantissa 
patterns. They are (Z denotes (B-1)): 

(1) .100 ... 00100 ... 000 

(2) .zzz ... zzzoo ... ooo 
I 

i th digit 

Pattern 1 takes the values: 

(Schryer's type 1) 

(Schryer's type 4) 

1/B (when i = 1), and 1/B + 1/Bi for 2 ~ i ~ P 

Pattern 2 takes the values: 

1 - 1/Bi for 1 ~ i ~ P 

Thus the values are clustered near the limits of the range 
[1/B,l) of values off, in accordance with the strategy of 
looking for edge-effects. 

FPV derives further mantissa patterns from these by adding 
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or subtracting 1/BP, giving the types 

(3) .100 ... 00100 ... 001 

(4) .100 ... ooozz ... zzz 
(5) .zzz ... zzzoo ... 001 

(6) .zzz ... zzyzz ... zzz 
I 

i th digit 

(here Y = B-2). Thus each individual mantissa of patterns 1 
or 2 can be extended to a cluster of 3 adjacent mantissa 
values. In our experience types 3, 4, 5 and 6 have 
occasionally revealed properties of the arithmetic that were 
not shown up when using types 1-and 2 alon~~ 

On machines with B > 2, again following an idea of Schryer, 
FPV allows· operands of similar pattern but with Z(= B-1) 
replaced by 1, 1 replaced by z, and Y(= B-2) replaced by 2, 
i.e. 

(7) .zoo ... oozoo ... ooo (Schryer's type 5) 
.. :1i.• 

(8) .111 ... 11100 ... 000 (Schryer's type 2) 

(9) .zoo ... oozoo ... ooz 
(10) .zoo ... 00011 ... 111 

(11) .111 ... 11100 ... ooz 
(12) ~111 ... 11211 ... 111 

I . 
i th digit 

It must be admitted·that there is no clear rationale for 

., 
I 

~ 
I 

:i 
i 

.. 
I 
I i 
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I 

I 

these additional patterns. Indeed while on the one hand ,... 
there is no great difficulty in adding additional operand 
patterns to FPV, there is also no clear guidance as to which 
patterns to add, and as yet no proven need to do so. Of 
course an error which is revealed by testing operands of the 
above patterns, will very likely also occur with many other 
patterns of operand: FPV is designed to detect errors but 
not to discover the complete range of situations in which 1111111! 

they occur (see further in Section 8). 

Finally, in order to test zero operands, we define type 

(0) .000 ........... 000 (Schryer's type 3) 

4.2 Selection of Mantissae 

Even with the limited choice of mantissa patterns available 
in FPV, further selectivity is desirable espe~ially for 
short initial runs. This is achieved by selecting specific 
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values of i (i.e. the position of the i th digit). We refer 
to i as the 'mantissa index'. Schryer's recommendation is to 
concentrate on the ends of the range and also at 
intermediate points that might coincide with byte- or 
word-boundaries. Hence a useful initial set of values fqr i 
might be: 

1, P/2, P 

and this can, and should, be extended by adding neighbouring 
values, e.g. 

l; 2, (P/2-1), P/2, (P/2+1), (P-1), P 

(The input to FPV makes it easy to specify such clusters of 
values, see Section 6). The clusters can be enlarged, and 
new clusters added, centred for example around P/4 and 3P/4. 

Note: for some individual mantissa types FPVGEN in fact 
ignores certain mantissa index values near the limits of the 
range l to P. This is to avoid unnecessary duplication: for 
such values of the index different types of pattern may 
yield the same mantissa. The range of values used for each 
mantissa type is as follows (but normally users need not 
bother about the details): 

Type 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

B > 2 

l .. P 
l .. P 
2 •• P 
2 •• P-1 
l .. P-1 
l .. P 
3 •• P 
3 •• P 
2 .. P 
2 •• P-1 
2 •• P-1 
3~.P 

4.3 Se1ection of Exponent Values 

B = 2 

l .. P 
3 •• P 
2 .. P-2 
2 .. P-2 
3 .. P-2 
3 .. P-2 

For selecting exponent values, a similar approach is 
recommended, namely to concentrate on the ends of the range 
of values and .at a few critical values in between. Thus an 
initial set of values might be clustered around: 

EMIN, O, EMAX 

to which should be added values which differ from the above 
by ±P or ±P/2, since special cases arise in addition and 
subtraction when exponents differ by P, and sometimes also 
when they differ by P/2 (e.g. when double precision 
arithmetic is implemented in software). 
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4.4 Selection of Sign Combinations 

After the mantissa a~d expone~t of each operand has been 
selected, only the signs remain to be specified. Given a 
pair of operands (assumed for the moment to be both 
positive), FPV can with little extra work test a particular 
binary operation on any of the sign combinations 

++, +-, -+, 

For example, given two operands Opland Op2, along with a 
lower bound, LB, and an upper bound, UB, on their product 
Opl*Op2, we know that the product (-Opl)*(-Op2) should also 
be bounded below by LB and above by UB. Similarly, 
(-Opl)*Op2 and Opl*(-Op2) both should be bounded below by 
-UB and above by -LB. 

The situation for addition and subtraction is slightly 
different. Given Opland Op2, and knowing that 

Opl + Op2 E [LB,UB] 

we also know that 

(-Opl) + (-Op2) E [-UB,-LB) 

Opl - (-Op2) E [LB,UB) 

(-Opl) - Op2 E [-UB,-LB] 

Thus LB and OB can be used to bound the results of two 
addition and two subtraction operations. This interaction 
between addition and subtraction explains why FPV does not 
allow them to be tested independently.· • 

Note however that the above rules do not apply when testing 
the rounding rules 'round to plus-infinity' or 'round to 
minus-infinity'. For these rules, only one combination of 
signs can be tested at a time. Otherwise it is usually 
worthwhile to test all four combinations because little 
extra work is involved. 

Square root is tested only on positive operands. 

4.5 Summary of Interna1 Working of FPV 

We now summarise the internal working of FPV. 

Pairs of operands are selected as described in the previous 
subsections. For both operands, each specified mantissa 
value is used in combination with each specified exponent 
value; and each specified value of operand 1 is used in 
combination with each specified value of operand 2. Each 
operand is stored as a data structure consisting of sign, 
exponent and mantissa; the mantissa itself is held as an 
array of integers. 
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Each operator to be tested is performed on each pair of 
operands by a set of subroutines which simulate interval 
floating-point arithmetic with the specified base, precision 
and range; these subroutines work entirely with integer 
arithmetic and determine either the upper and lower bounds 
on the correct result according to the Brown model, or the 
exact expected result according to a specified rounding 
rule. (In the latter case we may simply regard the upper and 
lower bounds as being equal.) The bounds are held in the 
same form of data structure as the operands. All the above 
is performed by the program FPVGEN. 

The actual testing of each operation is performed either by 
FPVGEN or by FPVTGT, but in essentially the same way by both 
programs. The only difference is that, if FPVTGT is being 
used, the operands and bounds are written to a file by 
FPVGEN and read back by FPVTGT; the representation of the 
operands and bounds on the file is such that there is no 
risk of conversion error. 

In either FPVGEN or FPVTGT the operands are converted to 
floating-point numbers in the machine's internal 
representation; the specified operations are performed; the 
computed results are converted back into the same data 
structure as the bounds; and the results are then checked 
against the bounds by subroutines that simulate 
floating-point comparisons. Any results that violate the 
bounds are reported. 

4.6 Reliability and Robustness of FPV 

Can FPV fail to detect errors in the arithmetic? Can FPV 
report false 'errors'? 

We emphasise that the answer to the first question is 
certainly 'yes' - in principle - simply because FPV, even 
when running its most exhaustive set of tests, only tests a 
small sample of all possible pairs of operands. However to 
test that small sample may take months or years of computer 
time, so selectivity is unavoidable. In practice, the 
grounds for confidence in the selection strategy used by FPV 
(following Schryer) are very strong: we are not aware of any 
design errors in completed implementations of floating-point 
arithmetic which would not be detected by FPV, even with a 
very restricted selection of mantissa and exponent values; 
on the other hand Schryer's program FPTST, with a more 
limited choice of operands than FPV, bas detected several 
errors that had not been detected by other testing 
procedures. (FPV will of course detect all the errors 
reported by FPTST). 

In practical runs lasting only a few hours or minutes, the 
effectiveness of FPV is dependent in part on the users' 
understanding of the testing strategy. It is the user's 
responsibility to specify a reasonable sample of mantissa 
types, mantissa index values and exponent values as 
suggested in subsections 4.1 to 4.3 above, and to include 
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all operators and sign combinations that are required to be 
tested. 

It is also the users' responsibility to specify sufficiently 
rigorous criteria for checking the correctness of the 
arithmetic. 

However it is still reasonable to ask whether FPV is 
guaranteed to detect any error that occurs within the terms 
of the specified test-set, or whether it may report false 
'errors', and indeed there is one aspect of FPV which may 
require care. 

Ideally FPV should not use floating-point operations for any 
purpose other than actually to compute the results which are 
to be checked. However it does not seem possible to write a 
portable program which satisfies this requirement. In the 
supplied text of FPV, machine-independent code is provided 
for converting a floating-point value from its 
model-representation in an integer array to the machine's 
internal floating-point representation; .and also for 
converting from the internal floating-point representation 
back to an integer array. This code is portable only if 
certain floating-point operations are performed exactly, 
specifically: multiplication by powers of the base; 
negation; and certain additions (which should involve no 
carries, shifts or- rounding); certain comparisons must also 
be performed exactly. Many arithmetics meet these 
requirements, but some do not, either because of an inferior 
specification or because of errors in their implementation. 
FPV endeavours to check that the conversions in question are 
being performed correctly before embarking on the main 
tests, but the checks themselves involve some use of 
floating-point operations, so it is conceivable that 
anomalies in the arithmetic could mask.errors in the 
conversion. 

To make FPV completely reliable and robust the code for 
performing the conversions must be rewritten using 
machine-specific bit-manipulation operations or other 
non-standard facilities which certainly do not involve 
floating-point arithmetic. Advice on how to do this is given 
in subsection 9.1. 

Of course, FPV assumes that integer arithmetic is performed 
correctly in FPVGEN. If there are any errors in the integer 
arithmetic, it is hard to conceive how errors in the 
floating-point arithmetic might go undetected; instead it is 
very likely that FPV will report spurious errors or exhibit 
other kinds of weird behaviour. 

In the last resort, any report of an invalid result from FPV 
can easily be checked by hand, and the individual operation 
re-tested independently of FPV as suggested in Section 8. 
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5. Approach to Testing 

5.1 A11-in-One or Two-phase Testing? 

In al1-in-one mode the program FPVGEN generates and performs 
a set of tests, all on one machine, in a single run. In 
two-phase mode FPVGEN generates a set of tests but, instead 
of performing them, writes details of·the operands and 
expected results to a file; a second, simpler program FPVTGT 
reads the file and performs the tests. Normally in two-phase 
mode FPVGEN is run on a comparatively powerful machine and 
FPVTGT is run on a different machine (the 'target' machine). 
The file or files of data may be transferred to the target 
machine by communication link or magnetic media. 

You are recommended to use FPV in all-in-one mode if 
possible. This requires a suitable compiler (Fortran or 
Pascal) to be available on the machine to be tested, but, 
~iven this, there is usually liitle reason not to use 
all-in-one mode. The program FPVGEN is not particularly 
large (for precise figures see the Installation Note) and 
will fit into the memory of most modern computers. FPVGEN 
does take longer to perform a given set of tests than 
FPVTGT, but on most machines this is unlikely to be 
inconvenient: initial trial runs should be short anyway, and 
more extensive sets of tests can be set up to run unattended 
or as background jobs. 

In two-phase mode, transferring files of data (that might 
range in size from 100 kilobytes to several megabytes) will 
often be inconvenient or at least time-consuming. However, 
in some circumstances two-phase mode is the only way to use 
FPV. Such circumstances are: 

- when there is no Fortran or Pascal compiler available on 
the target machine; 

- when there is a particular need to test the arithmetic 
accessible via some language other than Fortran or Pascal 
(e.g. Basic or Ada). 

It will then be necessary to translate FPVTGT (or parts of 
it) into some suitable language, possibly even into machine 
language. The essential features of FPVTGT have been kept as 
simple as possible, but in any case you are encouraged to 
consult NAG before attempting a translation: it may be 
possible to provide one for you - or at least the basis of 
one. See also Section 10. 

5.2 Trial Runs 

Before you attempt to run FPV you should find out as much as 
possible about the floating-point arithmetic to be tested, 
normally from the manufacturer's or implementor's 
documentation. In particular you will need to determine 
suitable values of the machine-parameters B, P, EMIN and 
EMAX, described in subsection 3.1. Ideally also you should 
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be able to find out details of rounding, but in any case you 
are advised initially to test simply for conformity with the 
Brown model. 

Also included on the tape with FPV is a short program FPVPAR 
which attempts to determine the machine-parameters 
automatically, but is not foolproof. The values which it 
gives, should always be checked to see if they are sensible. 
If there are errors in the arithmetic, the values may be 
quite wrong .. (FPVPAR uses ideas from programs by Cody and 
Waite (1980) and Kahan (Karpinski, 1985).) 

Having decided on values for the machine-parameters, try 
some initial runs with small samples of operands. Detailed 
instructions on how to drive FPV are given in Sections 6 and 
7. Interactive running is recommended for initial runs in 
all-in-one mode. 

The aims of trial runs should be 

- to ensure that floating-point values are being correctly 
converted from one representation to another, as 
discussed in subsection 4.6; 

- to determine the best set of values for the machine and 
model paramete·rs, and the appropriate rounding rule; 

- to gauge how much computer time is required to test a 
sample of a given size. 

You are strongly advised to keep your initial samples of 
operands small. Otherwise you may be swamped by a deluge of 
invalid results which may be hard or at least tiresome to 
analyse. The following points should help: 

- throughout all your initial runs use only operand types 1 
and 2: almost all known errors and anomalies could be 
detected by these types alone; 

- test each of your initial samples first on positive 
operands only, and then, if no invalid results have so 
far been reported, test all possible sign combinations: 
many errors and anomalies (though certainly not all) are 
independent of the signs of the operands; 

- look first for invalid results which depend primarily on 
mantissa values only: exponent values can be restricted 
at first to O and 1, while mantissa index values can be 
clustered round 1, P/2 and P; if no invalid results are 
found, enlarge the samples by letting the mantissa index 
take all values from 1 to P; and then add the exponent 
values 2, P, P+l; 

- then look for invalid results which depend primarily on 
exponent values only: mantissa index values can be 
restricted to 1 and 2 .(using operand types 1 and 2), 
while exponent values should be clustered round EMIN, O 
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and EMAX; if no invalid results are found, add the 
mantissa index values P-1 and P, and the exponent values 
EMIN + P and EMAX - P; then some mantissa index values 
clustered around P/2, and the exponent values EMIN + P/2 
and EMAX - P/2; 

- if invalid results are detected with one particular 
operator, test that operator separately. 

Invalid results may occur either because the arithmetic does 
not behave in accordance with its specification, or because 
you have assigned unsuitable values for some of the 
parameters or the rounding rule. Section 8 gives further 
advice on analysing invalid results that are reported by 
FPV. 

The values given for the parameters and rounding rule should 
be regarded as a hypothesis about the performance of the 
arithmetic which FPV tests by trying to find results which 
violate the hypothesis (invalid results).- The larger the 
samples which FPV uses without finding any invalid results, 
the greater our confidence that the arithmetic conforms to 
the given parameter values. 

It remains the user's responsibility to establish whether or 
not the arithmetic also conforms to a stronger hypothesis, 
such as a larger value for the model-precision, or an exact 
rounding rule. 

5.3 Production Runs 

Once you are reasonably confident that you have determined 
the most suitable values for the parameters and rounding 
rule, you should consider much more extensive tests, using: 
all possible operand types; a large number of mantissa index 
values, or even all possible values; and a larger selection 
of exponent values. Such tests can be regarded as 
'production' runs. 

We envisage two categories of production runs. In both cases 
it is likely to be more convenient to drive FPV with a data 
file. 

The first category is exhaustive testing for design faults, 
using the largest test-set which FPV can generate within the 
constraints of the amount of computer-time and real-time 
available. To test an arithmetic with the same parameters as 
IEEE standard single precision format, for example, FPV can 
generate about 1,000,000,000 different pairs of operands 
(not counting different sign combinations), and for most 
other arithmetics many more pairs can be generated. 
Therefore in most circumstances some subset of operand pairs 
must still be selected. The least important aspect to test 
comprehensively is the complete range of exponent values. 
Another way to cut down the size of the samples without 
diminishing their effectiveness too much is to use small~r 
sample sizes for operand 2 than for operand 1. 
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The second category of production run involves using FPV 
regularly to test for intermittent faults due to temporary 
malfunctions in the hardware. A possible procedure is to run 
a fairly short set of tests once a day, and a much longer 
set once a week or once a month. 

-
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6. Bow to Run FPVGEN 

6.1 Piles Used by PPVGEN 

FPVGEN uses one input file and up to three output files. 

The input file, referred to as the driving file (unit 5 in 
Fortran, INPUT in Pascal), is used for specifying the 
details of the tests to be performed. It may be a data file, 
or it may represent input from a terminal when FPVGEN is 
being driven interactively. 

One output file (unit 6 in Fortran, OUTPUT in Pascal) is 
referred to as the standard output file: it is used either 
for issuing prompts when FPVGEN is being driven 
interactively, or for recording details of the tests when it 
is being driven from a data file. 

A second output file is referred to as the report file: it 
is used for reporting any invalid results (or optionally all 
results). In Fortran it may be the same as the standard 
ou~put file, or else its name must.be specified by the user. 
In Pascal it may be the standard output file or else its 
name must be ERROUT (or a file logically equivalent to 
ERROUT). 

The third output file is only used when FPVGEN is being used 
in two-phase mode. It is referred to as the test-set file 
and holds the test data for subsequent input to FPVTGT. In 
Fortran its name must be specified by the user. In Pascal 
its name must be BOUNDS (or a file logically equivalent to 
BOUNDS). • 

File-names specified by the user may be up to 32 characters 
long (subject to the limits imposed by the host system). 

6.2 Driving FPVGEN Interactively 

The user is presented with a series of questions, the 
answers to which specify the basic parameters of the machine 
being tested, and the set of tests to be performed. Many of 
the questions have default answers supplied in square 
brackets [ ]: pressing the RETURN key gives the default 
reply. During the interactive dialogue, FPVGEN makes some 
checks on the data being entered, and may display warning 
messages, or even halt execution, if it thinks that 
incorrect data has been entered. 

We now present the output from a sample run of FPVGEN 
testing a small set of operands, suitable for an initial 
trial run as suggested in subsection 5.2, along with 
annotation discussing the effects of answering the questions 
in different ways. User replies to prompts from FPVGEN are 
shown in ITALICS. Replies to yes/no questions should be Y or 
N. Lower-case replies are also accepted. 
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Are you running interactively (Y / N) ? [Y] 
y 

If the reply is Y, then prompts for further input 
are written to the screen (or default output 
device). If the reply is N, then FPVGEN assumes 
that data is being read from a file and so will not 
issue prompts (see subsection 6.4). 

Input a comment line [ ] 
Test 

The input text is reproduced at the head of the 
output file and may be used to identify it. 

Input name of test-file to be generated 
NONE 

[NONE] 

Input 
2 
Input 
24 
Input 
-127 
Input 
127 

Fortran Version: 
For an all-in-one test the reply must be NONE. If 
some other file name is given, FPVGEN will generate 
a file of test data for subsequent input to FPVTGT 
in a two-phase test. 

Pascal Version: 
In the Pascal version of FPVGEN, a different 
question is asked - "Generate test file BOUNDS (G) 
or perform all-in-one test (A)? [A]". The user 
is given no option on what the test-set file will 
be called, and should reply with C or A. 

base (B) 

machine precision (machine P) 

machine EMIN 

machine EMAX 

These are the four basic machine-parameters 
described in subsection 3.1. For assistance in 
determining the correct values, refer to the 
provisional values given for some arithmetics in 
the appendix to the Installation Note; if the 
required values are not given there, try running 
the program FPVPAR mentioned in subsection 5.2. If 
an all-in-one test has been requested, FPVGEN tests 
whether floating-point operands with the specified 
precision and exponent range can be reliably 
generated; if not, the program issues an error 
message and halts, or an overflow or underflow 
exception may occur: this means either that the 
machine-parameters are wrong, or that the program 
must be modified as described in subsection 9.1. 

'· 
Input model precision (model P) 
24 
Input model EMIN 
-127 

~ 
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Input model EMAX 
127 

Input 
0 = 
1 = 
2 = 
3 = 
4 = 
5 = 
6 = 
7 = 

1 

These are the model-parameters described in 
subsection 3.3. For an initial run they will 
usually be the same as the machine-parameters. If 
it is found that the machine does not conform to 
the model with those parameters, then the 
model-parameters may need to be adjusted in some 
way on subsequent runs. If a specific rounding rule 
is to be tested (see next questlon), then the 
model-P must be the same as the machine-P. 

rounding rule... [1] 
BROWN MODEL, weakly supported 
BROWN MODEL, strongly supported 
ROUND TO NEAREST (-0. 5 ulp rounded away from zero) 
ROUND TOWARD ZERO (i.e. truncation) 
ROUND TO NEAREST (0.5 ulp rounded to nearest even) 
ROUND TOWARD - INFINITY 
ROUND TOWARD+ INFINITY 
ROUND TO NEAREST (0.5 ulp rounded either way) 

If in any doubt about the rounding rule in the 
arithmetic being tested, specify rule 1: this tests 
for conformity with the Brown model as described in 
subsection 3.3. Rule O is intended to be used for 
operations (most likely division or square root) 
which are implemented as composite operations; the 
rule is described in subsection 3.4. 

Test Add/Subtract ? [ Y] 
y 
Test 
y 
Test 
y 
Test 
N 
Test 
y 
Test 
y 
Test 
y 

Multiplication? [Y] 

Division ? [Y] 

Square Root ? [NJ 

Unary Minus ? [Y] 

Absolute Value? [Y] 

Comparisons ? [Y] 

These questions allow individual operations to be 
selected for testing. Square root is not usually 
one of the basic floating-point operations, so is 
not selected by default. The unary operations 
(square root, unary minus and absolute value) are 
tested only on operand 1, and only once for each 
value of operand 1. 

How many different mantissa types do you want to test? (2] 
2 
Input the 2 type numbers 
1 2 

The mantissa types and their numbers are described 
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in subsection 4.1. Types 1 and 2 are recommended 
for initial runs. 

Input no. of basic mantissa index values for operand 1 
3 
Input array of basic mantissa index values 
1 12 24 
Input array of variance parameters 
1 1 1 
Operand 1 mantissa index values tested will be:-

1 
2 

11 
12 
13 
23 
24 

Are these satisfactory? [Y] 
y 

These questions allow the user to specify, for the 
first operand, the values to be used for the 
mantissa index i as defined in subsection 4.2. 
Rather than asking the user to specify a simple 
array of values of i, FPVGEN asks first for an 
array of 'basic' values, and then for each basic 
value a 'variance parameter' which defines a 
cluster of values centred on the basic value. If 
the basic value ism and.the variance parameter is 
v, then the values in the cluster are 

m-v, m-v+l, ... , m-1, m, m+l, ... , m+v-1, m+v 

If the variance parameter is o, the cluster 
consists of just the basic value m. The basic 
values must lie in the range 1 to P (i.e. the 
machine parameter P), and the variance parameters 
must not be negative. At most 20 basic values may 
be input. If any of the values between m-v and m+v 
fall outside the range 1 to P, they are simply 
ignored. Duplicate values in overlapping clusters 
are not allowed. FPVGEN displays the array of 
mantissa index values that will actually be used 
and asks for confirmation before proceeding. If the 
reply to the last question is N, the set of 
questions will be repeated. 

Input no. of basic mantissa index values for operand 2 
3 
Input array of basic mantissa index values 
1 12 24 
Input array of variance parameters 
0 0 0 
Operand 2 mantissa index values tested will be:-

1 
12 
24 

Are these satisfactory? [Y] 

~ 
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y 
This is a similar set of questions about the 
mantissa index values of operand 2. The array of 
values for operand 2 need not be the same as that 
for operand 1, and it could reasonably be much 
smaller. 

Input no. of basic exponent values for operand 1 
2 
Input array of basic exponent values 
0 1 
Input array of variance parameters 
0 0 
Operand 1 exponent values tested will be:-

0 
1 

Are these satisfactory? [Y] 
y 

These questions allow the user to specify the 
exponent values for operand 1 in the same way as 
the mantissa index values. The basic exponent 
values must lie in the range EMIN to EMAX (machine 
parameters). At most 20 basic values may be input. 

Input no. of basic exponent values for operand 2 
1 
Input array of basic exponent values 
0 
Input array of variance parameters 
0 
Operand 2 exponent values tested will be ·-. 

0 
Are these 
y 

satisfactory? [ Y] 

This is a similar set of questions about the 
exponent values for operand 2. Again the·array of 
values for operand 2 could reasonably be smaller 
than that for operand 1. 

Input sign of operand 1 (+or - ) [+] 
+ 
Input sign of operand 2 (+or - ) [+] 
+ 

These questions ask for the signs to be given to 
the generated operands. Usually it will be 
convenient to generate operands with+ signs, and 
to use the following set of questions to specify 
the testing of other combinations of signs at 
little extra cost. However when using rounding rule 
5 or 6, or when investigating an error, it may be 
necessary to specify either or both of the operands 
to be generated with a - sign. 

If FPVGEN is generating a test-set file, then no 
further details need be specified to FPVGEN. In 
this case FPVGEN skips to the final question 
'PROCEED?'. The questions which have been skipped 
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are asked by FPVTGT, as described in subsection 
7.2. 

Which sign combinations of operands are to be tested? 
Plus o Plus? [Y] 

y 
Plus o Minus? [N] 

N 
Minus o Plus? [N] 

N 

N 
Minus o Minus? [N] 

These questions allow the user to specify that 
various combinations of the signs of the operands 
are to be tested, at little extra cost, as 
described in subsection 4.4. 

Which mode for testing overflow? [l] 
l 
Which mode for testing underflow? [1] 
l 

The replies to these questions must be 1 unless 
FPVGEN has been modified as described in subsection 
9.2. The three possible modes for testing overflow 
and underflow are described in subsection 3.5. 

Input name of report file 
NONE 

[NONE] (= standard output file) 

Fortran Version: 
FPVGEN will write details of any invalid results to 
the named file. If the reply is NONE, the details 
will be written to the standard output unit (i.e. 
the terminal when running interactively). 

Pascal .Version: 
The question asked by the Pascal version of FPVGEN 
is slightly different - "Error output to standard 
output unit (S) or file ERROUT (E)? [S]". The 
user is given no choice for the name of the report 
file, and should reply with Sor E. 

Output of all results, right or wrong, to report file? 
N 

[N] 

If the reply is Y, details of a11 results, whether 
right or wrong, this is time-consuming and produces 
large volumes of output except on small test-sets: 
it should only be requested on short initial runs, 
or when investigating invalid or suspect results. 

Model format output of numbers to report file? (Y] 
y 
Input an Edit Descriptor for output of numbers [N] (=no output) 
N 
Selection parameters of operands to report file? [N] 
N 

These questions are concerned with the format of 
output to the report file, which is illustrated and 

... 
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discussed in the next subsection. The reply to the. 
second question, in the Fortran version, can be a 
character string specifying a machine-specific 
format (e.g. Z20) or an asterisk(*) specifying the 
standard list-directed output for floating-point 
values, or N for no output. The Pascal version 
instead asks the question "Machine format output of 
numbers to report file? [N]", to which the answer 
must be Y or N. 

Stop after how many invalid results? (20] 
20 

This reply can prevent FPVGEN ·producing an 
excessively large report file. 

FPV will test 7 operator(s) on 

y 
120 operand pairs. PROCEED? [Y] 

An estimate is supplied of the number of operand 
pairs to be tested. After every 500 operand pairs 
tested, a message is written to the screen or 
default output file to enable the user to judge the 
rate of progress of FPVGEN. 

Execution proceeds ... 
End of run ... 

600 binary operations were tested. 
48 unary operations were tested. 

0 invalid results were detected. 

In the count o~ operations tested, each set of six 
comparisons counts as one operation. Note that some 
specified operations are omitted and are not 
included in the count: e.g. division when operand 2 
is zero, square root when operand 1 is negative, or 
any operation whose result would overflow the model 
when using Mode 1 for overflow (see subsection 
3.5). 

When FPVGEN is generating a test-set file, it 
reports instead the number of records written to 
that file. 

6.3 Format of Output to Report File 

Figure 6.1 illustrates the different formats in which 
details of invalid results are written to the report file. 
Similar formats are used for valid results if output of all 
results has been requested. 
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)))))) Invalid Result in+ (((((( 
Opl: + e( 0) 100000000000000000000011 

= 0.5000002 
[ Type= 4, Mant= 22, Exp= 0 ] 

Op2: + e( -127) 100000000000000000000011 
= 2.9387369E-39 

[ Type= 4, Mant= 22, Exp= -127 ] 
Up Bnd: + e( 0) 100000000000000000000100 

= 0.5000002 
Mc Res: + e( 0) 100000000000000000000010 

= 0.5000001 
Lw Bnd: + e( 0) 100000000000000000000011 

= 0.5000002 

)))))) Invalid .EQ. comparison (((((( 
Opl: + e( 0) 100000000000000000000011 

= 0.5000002 
[ Type= 4, Mant= 22, Exp= 0 ] 

Op2: + e( -1) 100000000000000000000011 
= 0.2500001 

[ Type= 4, Mant= 22, Exp= -1] 
Comparison gets T instead of F. 

Fig. 6.1 

Note 
( 1) 
( 2) 
( 3) 
(4) 

(5) 

(6) 

Notes: 

(1) The operator is defined by a code: 
+ for addition 
- for subtraction 
* for multiplication 
I for division 
s for square root 
u for unary minus 
A for absolute value 

or the name of a comparison operator. 

(2) Operand 1 is here displayed in a 'model format' that 
corresponds to the model representation described in 
subsection 3.1, consisting of sign, exponent and 
mantissa. The exponent is given as a decimal integer in 
parentheses. The mantissa is displayed in base·B 
notation, with the implied point to the left. The 
conventional hexadecimal notation is used to represent 
each digit by a single character (FPV assumes B ~ 16). 
Note: this format may be unreliable unless FPVGEN has 
been modified as described in subsection 9.1. 

(3) This line, which is optional, gives operand 1 in an 
alternative user-specified 'machine format'. In this 
example the format is the standard list-directed output 
format for floating-point values. This may be useful to 
give an idea of the numerical values of the operands and 
result, but should not be relied on for accurate 
analysis of the results, because of the problems of base 
conversion. Instead it is usually preferable to specify 
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a non-standard machine-specific hexadecimal or octal 
format, so that the machine-representation of the 
operands can be seen. 

(4) This line, which is optional, gives the 'selection 
parameters' of the operand, as described in Section 4, 
i.e. the values of the mantissa type [TYPE], the 
mantissa index [MANT], and exponent [EXP] which caused 
it to be generated. 

(5) The upper bound on the result is displayed first 
according to the model representation, and then in 
'machine format'. Following this, the computed machine 
result- and the lower bound are displayed in the same 
format(s). If the upper bound and the lower bound are 
equal, then the value is only printed once, with the 
prefix 'Ex Res'. 

(6) For an invalid comparison, the two operands are 
displayed in the same formats as above, followed by a 
line defining the error. If subs·equent comparisons on 
the same two operands are also wrong, the display of the 
operands is not repeated. 

Users can specify that values are to be displayed in either 
model format or machine format or both (as in this example); 
at least one of the two must be specified. 

6.4 Driving FPVGEN from a Data Fi1e 

FPVGEN may also be driven by a data file, in which each 
record must contain one line of the user's replies as 
described in subsection 6.2. The only exception is that no 
reply must be supplied for the questions 'Are these 
satisfactory?' after each sample of mantissa index or 
exponent .values has been display~d; when driving FPVGEN with 
a data file, the ... user is not given the opportunity to reject 
these values and supply them again. Nor is a reply required 
to the final question 'PROCEED?' A sample driving file is 
supplied with the FPV package, and it may be edited to 
specify the desired information in the correct format. No 
prompts are issued, but details of the input are written to 
the standard output file. 



FPV User's Guide Section 7 Page 1 

7. How to Run PPV'l'GT 

This section may be omitted if FPV is not being used in 
two-phase mode. 

7.1 Fi1es used by FPV'l'GT 

FPVTGT uses two input files and one or two output files. 

The principal input file, referred to as the test-set file, 
must contain test data generated by FPVGEN. In Fortran its 
name must be specified by the user (defaulting to BOUNDS): 
In Pascal its name must be BOUNDS, or a file logically 
equivalent to BOUNDS. Its format is described in subsection 
10.1, but the details are not important unless FPVTGT is 
being translated into another language. A driving file is 
used exactly as in FPVGEN to supply additional details about 
the tests to be performed. 

The output files are a standard output fi1e and a report 
fi1e, used exactly as in FPVGEN. 

7.2 Driving FPV'l'GT 

Some of the information required by FPVTGT is independent of 
the contents of the test-set file, and must be supplied 
separately at run-time, either interactively from a terminal 
or from a driving file. • 

Below is shown a sample terminal session running FPVTGT. 
Again replies to prompts from FPVTGT are shown in ITALICS. 
Most of the quest-ions asked by FPVTGT are similar to the 
last few questions asked by FPVGEN when running an 
all-in-one test. The annotation in subsection 6.2 applies 
here also. 

Are you running interactively (Y / N) ? [Y] 
y 
Input comment line · [ 1 
Test 
Input name of test-set file 
BOUNDS 

[BOUNDS] 

(Note that the Pascal version of FPVTGT does not 
ask this question - it is always assumed that the 
test-set file is called BOUNDS.) 

FPVTGT then reads the first 5 records from the 
test-set file (see the previous subsection), 
performs the same checks that FPVGEN performs in an 
all-in-one test, and displays some of the details 
before asking any further questions: 

base = 2 
machine precision = 24 

machine emin = -127 
machine emax = 127 

model precision = 24 
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model emin 
model emax 

rounding rule 

= 
= 
= 

Operators tested will be +-*/SUAC 

-127 
127 

1 
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Which sign combinations of operands are to be tested? 
Plus o Plus? [Y] 

y 
Plus o Minus? [NJ 

N 
Minus o Plus? [NJ 

N 
Minus o Minus? [NJ 

N 
Which mode for testing overflow? [1] 
1 
Which mode for .testing underflow? [l] 
1 
Input name of report file [NONE] (= standard output file) 
NONE 
Output of all results, right or wrong, to report file? [NJ 
N 
Model format output of numbers to report file? (Y] 
y 
Input an Edit Descriptor for output of numbers [N] (=no output) 
N 
Stop after how many invalid results? (20] 
20 

Execution proceeds ... 
End of run ... 

600 binary operations were tested. 
48 unary operations were tested. 

O invalid results were detected. 
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8. Interpretation of Results 

This section gives some advice on what to do if FPV reports 
a result that is invalid according to the specified criteria 
(i.e. the parameters of the model and the rounding rule). 
Such results may be due to a definite error in the 
arithmetic, but in practice it is just as likely that they 
result from an incorrect setting of the machine or model 
parameters or the rounding rule. There may also be quite 
reasonable differences in point of view: designers and 
implementors of floating-point arithmetic may, indeed 
should, regard any deviation from the specification by even 
a single bit as an error; but users may be content with a 
clean statement that the arithmetic conforms to the Brown 
model with specified parameters, even if this involves 
slight penalties. 

The advice given here is tentative and may be refined in the 
light of experience; please assist this process by reporting 
details of your experience of FPV, using the FPV Report 
Form. 

FPV writes details of each invalid result to the report file 
in a choice of formats described in subsection 6.3. The term 
•error in the result' is used here to denote the amount by 
which the machine result violates one of its bounds or 
deviates from the exact result. This error is conveniently 
measured. in 'ulps' (defined in subsection 3.1). 

Step 1 Is the error in the result more than just a few ulps? If 
so, go to Step 9 (where examples of this kind of error are 
illustrated). 

Step 2 You have found at least one result which is in error by 
just a few ulps, very likely by only one ulp, as in Figure 
6.1. Are there several results that are also in error by 
just a few ulps? This is a vague question since the meaning 
of 'several' depends on the size and nature of the samples 
of operands. The intention is to form an initial impression 
as to whether the invalid.results should be regarded as due 
to incorrect settings of the parameters and rounding rule, 
or as due to errors in the arithm~tic. (There may in fact be 
no hard and fast answer to that, if the specification of the 
arithmetic is vague.) If at this stage you feel fairly 
confident that your settings of the parameters and rounding 
rule are correct and you have found a comparatively small 
proportion of invalid results, go to Step 8. 

Step 3 You have found several results which show a sl~ght 
error. If the errors occur with rounding rule 1 {try this if 
you have not already done so), then go to Step 5. 

Step 4 You have found several slight errors when using a 
specific rounding rule, but none when using rounding rule 1. 
This suggests that your assumption of a particular rounding 
rule was incorrect. Possibly one of the other rounding rules 
available in FPV will prove suitable. Otherwise the rounding 
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rule as implemented is not one of the very limited set 
available in FPV; it may or may not be the designer's 
intention that this be so. You may choose to investigate in 
more detail: are the deviations from the assumed rounding 
rule confined to one operation, or to particular types of 
operand or' result? Alternatively you may be quite satisfied 
with having shown that the arithmetic passes the tests with 
rounding rule 1, i.e. that it conforms to the Brown model 
(strongly supported). Go to Step 11. 

Step 5 You have found several results which show a slight error 
when using rounding rule 1. Consider changing the values of 
one or more of the parameters. Do the invalid results only 
occur when the exponent values (in either the operands or 
the results) are close to EMIN or EMAX? If so, go to ~tep 7. 

-Step 6 You have found several results which show a slight error 
according to rounding rule land in which the operands have 
exponent values in the middle of the range. Consider 
reducing the mod.el precision. Alternatively try rounding 
rule O (Brown model weakly supported), especially if the 
invalid results are confined to division and square root 
which may be implemented as composite operations. If the 
invalid results disappear, then go to Step 11. If, however, 
you continue to get several invalid results after more than 
one or two reductions· of· the model precision, then either 
there are some gross errors in the arithmetic (which may 
merit investigation-as suggested under Step 9), or the 
arithmetic behaves in some way which violates the underlying 
assumptions of FPV: consult NAG. Go to Step 11. 

Step 7 You have found several results which show a slight error 
when using rounding rule 1, but only when the exponent 
values are near EMIN or EMAX. Consider modifying EMIN and/or 
EMAX to reduce the exponent range of the model; it may be 
that the arithmetic behaves poorly near the ends of the 
range. This is particularly likely near EMIN; for example if 
double precision operands are represented by a pair-ef 
single precision numbers, then when the exponent·of the 
upper half is sqfficiently close to EMIN, the exponent of 
the lower half is less than EMIN, i.e. the lower half 
underflows, causing a loss of significance. Also, if 
floating-point comparisons are performed via a subtraction, 
then for exponent values close to EMIN, the difference 
between the operands underflows and all comparisons report 
equality. 

By the assumption at the begiµni~g of this step, you will 
eventually be able to restrict the exponent range so that 
invalid results are no longer reported. If the restriction 
seems unreasonable, consult NAG. Go to Step 11. 

Step 8 You have found occasional results which are slightly in 
error, and you believe that your settings of the parameters 
and the rounding rule are correct. How to proceed may depend 
on your point of view. You may prefer (perhaps as a user) to 
see if slight changes to the parameters or rounding rule 
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will make results valid (e.g. if occasional invalid results 
are reported with a specific rounding rule, do they 
disappear if the rounding mode is changed to l?); in this 
case, proceed as if there were several such results and go ~ 
to Step 5. Alternatively you may choose {perhaps as a 
designer) to regard the slight errors as serious and proceed 
to investigate them in the same manner as grosser errors. ~ 

Step 9 You have found a result that is grossly in error, such 
as the following: 

)))))) 
Opl: 
Op2: 

Up Bnd: 
Mc Res: 
Lw Bnd: 

Invalid 
+ e( 
+ e( 
+ e( 
+ e( 
+ e( 

) )) )) ) Invalid 
Opl: • + e( 
Op2: + e( 

Up Bnd: + e( 

Result in/ (((((( 
0) 100000000000000000000000000000000010 
0) 100000000000000000000000000010000000 
0) 111111111111111111111111111100000101 
0) 111111000000000011111111111100000101 
0) 111111111111111111111111111100000100-

Pig. 8.l. 

Result in* (((((( 
0) 100000000000000000000000000000000010 
0) 100000000000000000000000000010000000 

-1) 100000000000000000000000000010000011 
Mc Res:+ e( -63) 100000000000000000000000000010000010 
Lw Bnd: + e( -1) 100000000000000000000000000010000010 

Pig. 8.2 

Ia Fig. 8.1, there is a long string of incorrect bits in the 
mantissa; in Fig. 8.2, although the mantissa is correct, the 
exponent is totally wrong. 

Step l.O Having detected a gross error in the arithmetic, you 
will usually want to investigate under what conditions it 
_gccurs. Does the error depend only on the mantissa values of 

• the operands, possibly also on the exponent difference 
(independent of the actual values of the exponents)? or does 
it depend only on the exponent values (independent of the 
mantissas)? For most errors, the answer to one of these 
questions is likely to be 'yes'. If the error depends on the 
mantissa values, which of the mantissa patterns used by FPV 
and which mantissa index values trigger the error? If the 
error depends on the exponent values, which values trigger 
the error? It is possible to use FPV to answer these 
questions, by selecting a very specific set of tests, for 
example: a single operation, a single mantissa type, a 
single exponent value and a range of mantissa index values 
(or alternatively a single mantissa index value and a range 
of exponent values). For example, to investigate the error 
in Fig. 8.1, try selecting: division, operand type 2, 
exponent value 0 and mantissa index range 1 to 53 for each 
operand. This might show that the error occurred when 
32 ~ i(2) < i(l) ~ 53 where i(l) and i(2) are the mantissa 
index values for operands 1 and 2 respectively. Such 
information would almost certainly be helpful to the 

-
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designer or implementor of the arithmetic in tracing the 
cause of the error. 

At this stage, if not earlier, it is likely to be more 
convenient to write specia1 small programs for diagnostic 
testing rather than use FPV which may be comparatively 
cumbersome for this purpose, and does not output large 
numbers of results in an easily digestible form. Care must 
be observed when writing such diagnostic programs. In 
particular, if operands of the form 1 ± B-i are generated by 
program, always check that the desired values are obtained, 
by printing out the numeric values in binary, octal or 
hexadecimal format (as the system allows) so that the 
precise bit pattern can be observed. Rounding errors in 
computing the operands may confuse the issue, and more 
elaborate code may be required to generate the desired 
values. 

Step 11 This concludes the suggested line of investigation. But 
be warned that the suggestions are fairly crude. You may 
have encountered more than one category of invalid results 
which will require independent paths of investigation. 
Continue testing with larger and larger samples of operands: 
this may throw up new errors. Consult RAG if in doubt or 
difficulty. 
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9. Modifying FPV 

In this section we give details of the various modifications 
to the code of FPV that may be required either to make it 
completely reliable and robust (as discussed in subsection 
4.6) or to enable overflow or underflow exceptions to be 
trapped and arithmetic to be tested right up to the limits 
set by the overflow and underflow thresholds (see subsection 
3.5). 

The modifications all affect the execution phase of the 
tests (performed by FPVTGT or FPVGEN) and not the generation 
phase. The modifications to FPVGEN and FPVTGT are identical. 
We describe in detail the modifications to the Fortran 
versions; the Pascal modifications are very similar. We 
give, purely for illustration, examples of how the 
modifications might be coded for a DEC VAX-11 under VMS. 

9.1 Encoding and Decoding P1oating-Point Va1ues 

To convert an operand from its model-representation in an 
integer array to the machine's floating-point 
representation, FPV calls a function MCITOF. Likewise, to 
convert the result of a floating-point operation from the 
machine's floating-point representation back to an integer 
array, it calls a subroutine MCFTOI. The supplied versions 
of MCITOF and MCFTOI use floating-point operations and are 
liable to work incorrectly either if the arithmetic is 
incorrectly implemented, or if it is simply insufficiently 
accurate. In particular, errors may occur in the least 
significant digits of the mantissa, or at extremes of the 
exponent range, where overflow or underflow may interfere. 

MCITOF and MCFTOI can be written much more reliably (and 
often more efficiently) using machine-specific 
bit-manipulation operations. Of course this requires precise 
knowledge of how floating-point numbers are stored in the 
machine, and the code will be machine-specific. 

The internal format used by FPV to store floating-point 
numbers is defined by the integer variables BASE, MANTIS, 
RADIGS, RADIX and PLACES, which are passed as arguments to 
both MCITOF and MCFTOI. 

BASE is the base B of the arithmetic; 

MANTIS is the number of base-B digits in the mantissa of 
a floating-point number(= the machine-parameter P). 

Instead of simply storing each base-B digit in a separate 
integer array-element, FPV may group the digits together if 
Bis small. 

RADIGS is the number of base-B digits stored in a single 
array-element; 

RADIX= BASE**RADIGS; 
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PLACES is the number of array-elements required 
(= MANTIS/RADIGS rounded up to an integer). 

• Each array-element holds one digit to the base RADIX. The 
mantissa is padded out with zeros if necessary, to make the 
number of base-B digits an integer multiple of RADIGS. For 
example, if BASE= 2, MANTIS= 23 and RADIGS = 4, then 
RADIX= 16 arid PLACES= 6; and the mantissa 

.11010001010000111110001 

is stored· as the successive array-elements 

13, 1, 4, 3, 14, 2 . 

In Fortran each floating-point number is stored in an 
integer array of length (PLACES+2): 

elements (1) to (PLACES) hold the mantissa as just 
described; 

element (PLACES+l) holds the sign: O for positive, 
negative; 

element (PLACES+2) holds the exponent. 

1 for 

Zero is represented by an array with element (1) set to 
zero, regardless of the values of the other elements. 

In Pascal each number is stored as a record with the 
following type declaration: 

type· BOUND= record 
POSITIVE: boolean; 
EXPONENT: integer; 

SIGNIFICAND: array (1 .. 36] of integer 
end; 

where only the first PLACES elements of SIGNIFICAND are used. 

The specification of MCITOF is: 

REAL FUNCTION MCITOF(X, BASE, RADIGS, RADIX, PLACES, MANTIS) 
INTEGER BASE, RADIGS, RADIX, PLACES, MANTIS, X (PLACES+ 2) 

On entry, X contains a floating-point number in FPV 
internal format. 

On exit, MCITOF must return the same number stored as a 
real variable, through the function name. 

The specification of MCFTOI is: 

SUBROUTINE MCFTOI(F, BASE, RADIGS, RADIX, PLACES, MANTIS, X, NAN) 
REAL F, TX 
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INTEGER BASE, RADIGS, RADIX, PLACES, MANTIS, X (PLACES+ 2) 
LOGICAL NAN 

On entry, F contains a real variable. 

On exit, if F contains a valid representation of a 
floating-point number, then NAN must be set to .FALSE. and 
X must contain the same number stored in FPV internal 
format; otherwise NAN must be set to .TRUE. and no 
assignments need be made to X. 

The arguments BASE, RADIGS, RADIX, PLACES and MANTIS are set to 
the values described above, on entry to both MCITOF and MCFTOI, 
and must not be changed by them. 

Example versions of MCITOF and MCFTOI are: 

* 
* •• 

* 
* 

* 
* 

* 

* 
* 

* 

* 
* 

* 

10 

REAL FUNCTION MCITOF(X, BASE, RADIGS, RADIX, PLACES, MANTIS) 
INTEGER BASE, RADIGS, RADIX, PLACES, MANTIS, X (PLACES+ 2) 

converts from FPV internal format to REAL 
example coding for DEC VAX-11/VMS Fortran 
uses subroutine MVBITS to transfer a bit field 
and intrinsic function ISHFTC to rotate a word 
REAL operand must first be equivalenced to INTEGER 

INTEGER I, INPOS 
REAL TX 
INTEGER IX 
EQUIVALENCE (TX, IX) 
IX= 0 
IF (X (1) ·.NE. 0) THEN 
the number is non-ze·ro 

CALL MVBITS (X (PLACES+ 1), 0, 1, IX, 31) 
insert sign into first bit of IX 

CALL MVBITS (X (PLACES+ 2) + 128, O, 8, IX, 23) 
bias exponent and insert after sign 

CALL MVBITS (X (1) - RADIX/ BASE, O, RADIGS - 1, 
* IX, 24 - RADIGS) 

remove ffrst bit of X (1) (stored implicitly by VAX) and 
insert after exponent 

* 

INPOS = 24 - RADIGS * 2 
DO 10 I= 2, PLACES - 1 

CALL MVBITS (X (I), 0, RADIGS, IX, INPOS) 
insert X (2) ... X (PLACES - 1) into IX in logical order 

INPOS = INPOS - RADIGS 
CONTINUE 
CALL MVBITS (X (PLACES)/ BASE** (- INPOS), 0, 

RADIGS + INPOS, IX, 0) 
X (PLACES) may hold less than RADIGS bits, so remove 
trailing zeros by division and insert into end of IX 

IX= ISHFTC (IX, 16, 32) 
rotate IX to get bits in correct order 
END IF 
MCITOF = TX 
RETURN 
END 

' i 
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SUBROOTINE MCFTOI (F, BASE, RADIGS, RADIX, PLACES, MANTIS, 
* X, NAN) 
REAL F, TX 
INTEGER BASE, RADIGS, RADIX, PLACES, MANTIS, X (PLACES+ 2) 
LOGICAL NAN 

* converts from REAL to FPV internal format 
* example coding for DEC VAX-11/VMS Fortran 
* uses intrinsic function IBITS to extract a bit field 
* and intrinsic function ISHFTC to rotate a word 
* REAL operand must first be equivalenced to integer 

INTEGER I, IX, INPOS 
EQUIVALENCE (TX, IX) 
NAN= .FALSE. 
TX= F 
IX= ISHFTC (IX, 16, 32) 

* rotate IX to get bits in order sign, exponent, mantissa 
X (PLACES+ 1) = IBITS (IX, 31, 1) 

* get the sign 
X (PLACES+ 2) = IBITS (IX, 23, 8) - 128 

* extract exponent and remove bias 
IF (X (PLACES+ 2) .EQ. - 128) THEN 

* if Fis zero, assign X all zeros and return 
NAN= X (PLACES+ 1) .EQ. 1 

* if negative sign and zero exponent, F· is a floating 
* reserved operand 

DO 10 I= 1, PLACES·+ 2 
X (I)= 0 

10 CONTINUE 
RETURN 

END IF 
X (1) = IBITS (IX, 24 - RADIGS, RADIGS - 1) +RADIX/ BASE 

* extract X (1) and add back the implicit bit 

* 

20 

* 
* 

INPOS = 24 - RADIGS * 2 
DO 20 I= 2, PLACES - 1 

X (I)= IBITS (IX, INPOS, RADIGS) 
extract X (2) ••• X (PLACES - 1) 

INPO~ = INPOS - RADIGS 
CONTINUE 
X (PLACES)= IBITS (IX, 0, RADIGS + INPOS) * BASE**(- INPOS) 

X (PLACES) may hold less than RADIGS bits so multiply to 
fill with zeros 

RETURN 
END 

9.2 Trapping 0Verf1ow and Underf1ow 

Before using Modes 2 ·or 3 for testing overflow or- underflow 
(see subsection 3.5), it is essential to modify FPV so that 
any overflow or underflow exceptions are trapped by the 
program. Trapping these exceptions is an advantage even when 
using Mode 1, in case any unexpected overflows or underflows 
occur. No trapping facilities are available in standard 
Fortran or Pascal, and the actual facilities available vary 
a lot from system to system (on some systems no trapping 
facilities may be provided). 
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The essential features of the modifications are: 

- to establish a trap handling subprogram, which should 
ideally be global to the entire program; 

- to provide a suitable trap-handling procedure, here 
called MCTRAP: if overflow or underflow is signalled, 
MCTRAP must set a logical variable MACOVR or MACUND to 
.TRUE. (in Fortran MACOVR and MACUND are in a common 
block /MACOV/, in Pascal they are global variables); 

- to modify the subroutines SETOVM and SETUNM so that they 
immediately return, thereby permitting Modes 2 or 3 to be 
used. 

The system may require MCTRAP to be either a subroutine or a 
function. It may expect MCTRAP to return a result to be used 
in place of the overflowing or underflowing value, but FPV 
does not require this. Overflows or underflows in the tests 
may occur either in the subroutine STORE or, if in a 
comparison, in one of the functions FPVEQ, FPVNE, FPVLT, 
FPVLE, FPVGT or FPVGE. FPV expects control to be returned 
either to the immediately following instruction in those 
subprograms, or to the instruction following the calls to 
those subprograms. Overflows and underflows may also occur 
in the subroutine TESTSC.-which tests·MCITOF and MCFTOI, or 
in the supplied versions of MCITOF and MCFTOI themselves. 
Ideally the trap-handling subprogram should be established 
once at the start of the main program, but the system may 
require it to be established within each subprogram in which 
overflows or underflows are expected. 

Rote: in some systems overflow or underflow exceptions are 
not signalled immediately when overflowing or underflQwing 
values are generated, but only when an attempt is made to 
use the value in a subsequent floating-point operation. For 
such systems the subroutine STORE must be modified by 
inserting a suitable subsequent floating-point operation 
(possibly, addition of zero), to ensure that the exception 
is signalled in that subroutine. 

Although we have described trapping both overflow and 
underflow together, it is perfectly possible to trap just 
one of them. Note also that it may be necessary to use some 
particular compile-time option or call to a system 
subroutine to ensure that overflow or underflow 
(particularly underflow) will cause an exception. 

Division by zero, and taking the square root of a negative 
number are not expected to occur within FPV, and no 
provision need be made for trapping them. 

Examples of statements to be inserted into the main program 
are: 

EXTERNAL MCTRAP 
* establish trap handler for DEC YAX-11/VMS Fortran 

-

-
-
-
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CALL LIB$ESTABLISH (MCTRAP) 

An example of a trap handler is: 

* 
* 
* 

* 
* 

* 
* 
* 

* 

* 

* 

* 
* 

INTEGER FUNCTION MCTRAP (SIGARGS, MECHARGS) 
INTEGER SIGARGS(*), MECHARGS(4) 

trap handler for floating-point overflow and underflow 
example coding for DEC VAX-11/VMS Fortran 
uses symbolic names defined via INCLUDE statement 

LOGICAL MACOVR, MACOND 
COMMON /MACOV/ MACOVR, MACOND 
INCLUDE '($SSDEF)·' 

determine if condition code in SIGARGS(2) matches code for 
overflow or underflow 

I= LIB$MATCHCOND (SIGARGS(2), SS$FLTOVFF, SS$FLTONDF, 
* SS$FLTOVF , SS$FLTUND ) 

IF (I.GT.0) THEN 
if match found 
ensure that control will return to instruction following 
that which caused exception 

CALL LIB$SIMTRAP (SIGARGS, MECHARGS) 
IF. (I.EQ.1 .OR. I.EQ.3) THEN 

if overflow 
• MACOVR = .TRUE. 

ELSE 
if underflow · 

MACUND = .TRUE. 
ENDIF 

control is to be returned to program 
MCTRAP·= SS$CONTINUE. 

ELSE-
if not overflow or underflow 
control is to be returned to system 

MCTRAP = SS$RESIGNAL 
ENDIF 
RETURN 
END 

The coding of the above trap-handler is very 
system-specific: however the comments suggest at least some 
of the points which need to be taken care of. 
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10. Translating FPVTGT into Other Languages 

If FPVTGT has to be re-written in another programming 
language (possibly machine language), it is not essential, 
and may not be desirable, to attempt an exact translation of 
the Fortran or Pascal version. The supplied versions of 
FPVTGT mimic as closely as possible those features of FPVGEN 
which are concerned with the execution of the tests as 
opposed to their generation. Some of those features (e.g. 
the interactive dialogue prompting the user to specify 
options, or the choice of formats to display invalid 
results) may be regarded as frills; also it may be known in 
advance that some of the options (e.g. modes 2 or 3 for 
testing overflow or underflow) will not be required. 

Before undertaking a translation, consult NAG: NAG may be 
able to provide a translation for you - or at least the 
basis of one. 

10.l Pormat of the Test-Set File 

In order to understand some of the details of FPVTGT, it is 
necessary to know the details of-the format of the test-set 
file. 

Figure 10.1 shows a typical example of the beginning of a 
test-set file. The first five records constitute a header. 

2 24 -127 127 
24 -127 127 

4 6 
1 

+-*/SUAC 
+ -127 8 0 0 0 0 2 + -127 8 0 0 0 0 2 
+ -126 8 0 0 0 0 2= 
+ 0 0 0 0 0 0 O= 

U+ = 
+ 1 8 0 0 0 0 O= 
+ -63 8 0 0 0 0 0 + -63 8 0 0 0 0 1 
- -127 8 0 0 0 0 2= 
+ -127 8 0 0 0 0 2= 

TFFTTFFTFFTTFTTTFFTFFTTF 
+ 0 8 0 0 0 0 2 + 
+ 0 8 0 0 0 0 2 + 
+ 0 8 0 0 0 0 1 + 

U+ = 
V+ = 

+ 011 5 0 415 4 + 
0 8 0 0 0 0 2= 

+ 0 8 0 0 0 0 2= 
FTFFTTFTFFTTFTTTFFFTTTFF 

-127 8 0 0 0 0 2 
0 8 0 0 0 0 3 
0 8 0 0 0 0 2 

011 5 0 415 5 

Fig. 10.1 

Note 
(1) 
(2) 
(3) 
( 4) 
(5) 
(6) 
(7) 

(8) 
(9) 
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Notes: 

(1) The machine-parameters B, P, EMIN, EMAX of the target 
machine. 

(2) The model-parameters P, EMIN and EMAX of the target 
machine. 

(3) The parameters PLACES and RADIGS which specify the 
internal format used by FPV to store floating-point 
numbers with the given values of Band P (see subsection 
9.1). 

(4) The rounding rule number, as specified to FPVGEN. 

(5) The operators that will ·be tested by the target program, 
denoted by the same codes as are used in the report file 
(see subsection 6.3). 

(6) A pair of floating-point numbers, Opland Op2, that will 
be tested with each of the ~pecified operators. 

(7) The lower and upper bounds on the result of applying the 
first specified operator (in this case+) to Opland 
Op2 . 

In the following records come the bounds on the results 
of each of the other specified operators. If a pair of 
bounds is replaced entirely by the single character 'N', 
this implies that the·operation is a unary operation 
that has previously been tested, and so need not be 
tested again. 

(8) The results of comparing Opl with Op2 are stored as a 
string of 24 characters, each either 'T', 'F' or 'X' -
true, false or undecidable. The first six characters 
define the result of performing the comparisons=, r, <, 
~,~,>on Opl with Op2. The second six define the 
results of the same comparisons of Opl with (-Op2). Then 
come the results of comparing (-Opl) with Op2, and 
finally of (-Opl) with (-Op2). 

(9) The next pair of operands to be tested, and so on. 

Each floating-point number in the test-set file is 
represented by a character-string of which the first 
character is a key. The possible keys are: 

' ' - the remainder of the character-string represents a 
number within machine-range; 

'V' - the number overflows the range of the machine, with 
the next character giving its sign; 

'U' - the number underflows the range of the machine, with 
the next character giving its sign; 
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'=' - (only used for the second number in a record) the 
number is equal to the first number in the record. 

Numbers within machine range (with key• ') are represented 
in a form which corresponds closely to the internal format 
used by FPV, described in subsection 9.1. The first 
character holds the sign (as '+' or '-'); the next six 
characters hold the exponent (as a decimal integer, i.e. in 
Fortran I6 format); the remaining characters hold the 
mantissa, each of· the first PLACES elements of the integer 
array being stored as a 2-digit decimal integer (i.e. in 
Fortran I2 format). 

Note that the bounds written to the test-set file are the 
same regardless of which mode is to be used in testing 
overflow or underflow; they are in fact the bounds defined 
for·Mode 2. FPVTGT· checks whether these bounds overflow or 
underflow the range of the model and modifies them if 
necessary. 

10.2 Structure of PPVTGT 

We describe here the structure of FPVTGT and comment on 
which features are essential, and wrrich might be omitted 
from a translation. The description is based on the Fortran 
version of FPVTGT, but the Pascal version is very similar. 
Where Pascal routine names differ from the Fortran names, 
they are given in the call tree at the end of this section. 
More detailed information is given in comments in the 
source-text. 

Main Program: This has the structure: 

* 

* 

read heading of test-set file and initialise variables 
CALL START (OPERS, NUM, PR) 

prompt user for specification of options 
CALL PROMPT 

* execute tests 
100 CONTINUE 

* read next pair of operands into FPV internal format 
CALL READOP (OPl, OP2, .TRUE., SKIP) 

* create their negatives in NEGOPl and NEGOP2 
* 
* 

* 

convert from FPV internal format to floating-point numbers 
Xl = MCITOF(OPl, ... ) 
X2 = MCITOF(OP2, ... ) 
NEGXl = MCITOF(NEGOPl, ... ) 
NEGX2 = MCITOF(NEGOP2, ... ) 
DO 110 I= 1, NUM 

test I(th) operator on current pair of operands 
CALL CHECK.(OPERS(I), Xl, X2, NEGXl, NEGX2, 

* OPl, OP2, NEGOPl, NEGOP2) 
110 CONTINUE 

GO TO 100 

The program stops either when the end of the test-set file 

!1111111 
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is detected {by READOP), or when the limit on the number of 
errors has been reached. Here NUM is the number of operators 
to be tested; OPERS is a CHARACTER*l array containing the 
operator codes read from the test-set file {see subsection 
10.1); OPl, OP2, NEGOPl and NEGOP2 are integer arrays 
holding floating-point values in FPV internal format; and 
Xl, X2, NEGXl and NEGX2 are the corresponding real 
variables. 

Subroutine START: opens the test-set file, reads the first 5 
records {see subsection 10.1), and initialises internal 
variables and arrays, most of which are held in common in 
Fortran or as global variables in Pascal. START calls 
subroutine TESTSC to test that the function MCITOF and 
subroutine MCFTOI (described in subsection 9.1) can reliably 
handle floating-point.numbers with the specified precision 
and exponent range .. This test could be performed separately 
rather than as part of FPVTGT. • 

Subroutine PROMPT: conducts the interactive dialogue described 
in subsection 7.2. If it is known in advance what options 
will be required, then PROMPT need simply set the relevant 
internal variables to their required values. PROMPT opens 
the named report file if one is specified. 

Subroutine READOP: reads in a string of characters from a 
single record in the test-set file. If the string consists 
of a single 'N', then READOP sets the logical variable SKIP 
to TRUE and exits immediately: the string corresponds to a 
unary.operation which has already been tested, so should be 
skipped .. Otherwise READOP converts the string into a pair of 

.numbers, which is assumed to be either a pair of operands or 
a pair of bounds, according as the logical parameter OPERND 
is TRUE or FALSE respectively. READOP calls subroutine 
DECODE {see below) to convert each number to FPV internal 
format. If the end of the test-set file is reached, READOP 
stops the program. 

Subroutine CHECK: if CHECK has been called to test the 
comparison operators, then it reads from the test-set file 
the 24-character record defining the correct results, and 
calls subroutine TSTCOM to perform the tests; otherwise it 
calls subroutine READOP to read the bounds on the result and 
calls the subroutine TSTOPS to perform the tests. 

Subroutine DECODE: converts a string of characters (which have 
been read from the test-set file) to a floating-point value 
in FPV internal format. The format of the character string 
is described in subsection 10.1. 

If the key is '=', DECODE must si.mply set the flag EQBNDS to 
TRUE, otherwise it must set EQBNDS to FALSE. 

If the key is 'V', DECODE must read the next character (the 
sign), and then set MCOFLG to +l if positive or -1 if 
negative; otherwise it must set MCOFLG to·o. 



FPV User's Guide Section 10 Page 5 

If the key is 'U', DECODE must read the next character (the 
sign), and then set MCUFLG to +l if positive or -1 if 
negative; otherwise it must set MCUFLG to 0. 

If the key is' ', DECODE must convert the sign, exponent 
and mantissa and store them in the integer array VALUE (the 
record VALUE in Pascal) according to the specification in 
subsections 9.1 and 10.1. Also, DECODE must set the flags 
MOOFLG and MOUFLG to +l, 0 or -1 to indicate whether or not 
the number overflows or underflows the model (the values 
have analogous meanings to those of MCOFLG and MCUFLG). 

Subroutine TSTCOM: for each specified combination of signs, 
tests all six .comparison operato~~,-on the supplied pair of 
operands, writing details to the· report file of any invalid 
results. The format and content of such reports can be 
adapted to particular circumstances. 

Subroutine TS'J.'OPS: for each specified non-comparison operator 
and each specified combination of signs, calls subroutine 
ERRTES (see below). 

Subroutine ERRTES: calls subroutine STORE (see below) to apply 
the specified (non-comparison) operator to the supplied 
operands, and then checks the result against the supplied 
bounds, writing details to the report file of any invalid 
results. ERRTES could be considerably simplified if no 
provision were made for modes 2 or 3 for overflow or 
underflow; also the format and content of the report file 
could be adapted. 

Subroutine STORE: performs a (non-comparison) operation, 
ensuring that the result is stored in memory, except that in 
Mode 1 for overflow the operation is skipped if either of 
the bounds on the result would overflow the range of the 
model; this is to avoid the possibility of an overflow 
exception. In the supplied version of STORE the operation is 
performed in a vectorisable loop, so that vector arithmetic 
instructions can be tested; this refinement may well not be 
re~uired. 

Subroutine PRTRES: is called by TSTCOM and ERRTES to write a 
floating-point value to the report file in either 
'model-format' or 'machine-format' or both. PRTRES calls 
subroutine BINOUT to convert a floating-point value to the 
'model-format' representation. The details of both PRTRES 
and BINOUT can be adapted to particular requirements; 
'model-format' (and hence BINOUT) could be dispensed with 
entirely. 

Function LWLESS: compares two floating-point numbers that are 
held in FPV internal format, and returns TRUE if the first 
is less than the second; otherwise FALSE. This is used for 
checking that a result obtained by the machine lies within 
the two bounds on the correct answer. 

Function MCITOF: described in subsection 9.1. 

11111111 
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Subroutine MCFTOI: described in subsection 9.1. 

The other subprograms in FPVTGT have very simple functions 
which should be obvious from the comments in the source text. 
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The complete call-tree of the supplied version of FPVTGT is as 
follows (Pascal routine-names are given in brackets where they 
differ): 

FPVTGT 
ASSIGN 
CHECK 

EXINFO 
REAOOP (READOPERAND) 

ASSIGN 
DECODE 
EXINFO 

TSTCOM (TESTCOMP) 
ASSIGN 
FPVEQ 
FPVGE 
FPVGT 
FPVLE 
FPVLT 
FPVNE 
PRTRES 

BINOUT 
TSTOPS (TESTOPS) 

ASSIGN 
ERRTES (ERRORTEST) 

CHSIGN 
LWLESS 
MCFTOI 
MCITOF 
PRTRES 

BINOUT 
STORE 

MCITOF 
PROMPT 

NO 
SETOVM 
SETUNM 
YES 

READOP (READOPERAND) 
ASSIGN 
DECODE 
EXINFO 

START 
TESTSC 

CHFTOI 
CRETST 
MCFTOI 
MCITOF 

YES 

-i 
I I 

,.., 
I 
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FPV Installation Note 

1. Software Supplied 

The following files of software are supplied with the FPV 
package {Fortran or Pascal version) 

number of records 

Fortran Pascal 

file 1: source-text of FPVGEN 5183 4539 

file 2: source-text of FPVTGT 2154 1859 

file 3: source-text of FPVPAR 214 191 

file 4: sample driving file for FPVGEN 46 46 

file 5: sample test-set file 653 653 

file 6: sample driving file for FPVTGT 14 13 

file 7: sample report file 3526 3526 

In all of these files the records are at most 80 characters 
long. 

The programs {files 1 to 3) conform either to standard 
Fortran 77 or to ISO standard Pascal, level 1. 

2. Modifications to the programs 

The programs FPVGEN and FPVTGT are intended as far as 
possible to be portable, and on many systems they will in 
fact run correctly without change. However before attempting 
to compile and run them, you should consider making the 
following modifications to them: 

- in the Fortran version of FPVGEN, increase the value of 
the integer BIGINT {currently set to 32767) to the 
largest possible integer value: this will make the 
subroutines for simulating floating-point arithmetic more 
efficient; 

- in FPVGEN {if running in all-in-one mode) or in FPVTGT 
{if running in two-phase mode) rewrite the subprograms or 
procedures MCITOF and MCFTOI which convert floating-point 
values between the program's model-representation in an 
integer array and the machine's internal floating-point 
representation. The reasons for doing this are discussed 
in subsection 4.6 of the User's Guide, and advice on how 
to do it is given in subsection 9.1. The supplied text of 
MCITOF and MCFTOI cannot be expected to work correctly in 
the face of certain errors or anomalies in the arithmetic 
being tested; it is also likely to be comparatively 
inefficient. 
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If you wish to test the setting of the overflow or underflow 
flags, you will need to make the modifications described in 
subsection 9.2, but we suggest that you do not do this for 
your first attempts to run the programs. 

3. Precision conversion 

The supplied Fortran version of the programs is in single 
precision, and the supplied Pascal version uses the single 
standard Pascal real data type. If you wish to test any 
other floating-point data type (whether standard or 
non-standard), simply change all REAL type declarations to 
the desired type (e.g. DOUBLE PRECISION or REAL*l6). In the 
supplied Fortran text, the k~yword REAL is always followed 
by at least 12 spaces, .SO that the keyword DOUBLE PRECISION 
can be substituted without increasing the line-length. 

4. Compile-time or run-time options 

Take care to set suitable compile-time or run-time options 
to specify, for example: 

- whether results of arithmetic operations should be 
rounded directly to the precision of floating-point 
numbers stored in memory (rather than to the extended 
precision of registers) (this is important when testing 
implementations of the IEEE standard). 

- whether vector-arithmetic instructions are to be 
compiled. The tests of the all operators in FPV are coded 
in. simple vector loops which should be vectorised by any 
vectorising compiler, thus enabling vector-arithmetic 
operations to be tested, if available. 

- whether overflow or underflow (particularly underflow) 
should signal an exception. 

On a DEC VAX-11/785 the compiled code for FPVGEN occupies 
about 73,000 bytes, and that for FPVTGT occupies about 
33,000 bytes. 

5. Installation test 

For a quick (but not exhaustive) check that the programs 
have not been corrupted and that they can be compiled 
without errors, the following procedure is recommended: 

(1) Compile the programs FPVGEN and FPVTGT. 

(2) Run FPVGEN using file 4 as the driving file: the report 
file produced should be the same as file 7. 

(3) Edit the third line of file 4 to direct FPVGEN to 
generate a test-set file and run FPVGEN using the 
modified driving file: the test-set file produced should 
be the same as file 5. 

.... 

11111111 
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(4) Run FPVTGT using file 6 as the driving file and file 5 
as the test-set file: the report file produced should be 
the same as file 7. 

Note: the test runs described in steps 2, 3 and 4 above use 
a trivial model of floatiqg-point arithmetic (B = 2, P = s, 
EMIN = -1, EMAX = 2). This model should be admissible on any 
realistic machine, provided that the base is a multiple of 2 
and that arithmetic with powers of 2 is performed exactly; 
and the output should ~e identical on all such machines. 

6. Contact with RAG 

If you have any queries concerning FPV, please write to NAG 
at one of the addresses given on the inside front cover of 
the User's Guide. 

7. Document Reference 

NP1203 
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Appendix: Provisional Parameter Values 

The following table gives (for initial guidance only) 
provisional values for the machine and model parameters for 
certain implementations of floating-point arithmetic. Values 
of the model parameters are given in parentheses below the 
corresponding machine parameters, if they differ. The values 
quoted apply, in general, to all the operators tested by FPV 
except square-root: an asterisk in the right hand column 
indicates that they apply to square-root as well. Individual 
operators in some arit;hmetics may satisfy tighter cr.iteria. 
The values quoted do not take account of occasional gross 
errors in the arithmetic, i.e. they are the values which it 
is believed the arithmetic is intended to conform to if it 
were correctly implemented. • 

(s.p. = single precision, d.p. = double precision, h.p. = 
half precision) 

I I I 
I I parameters I 
I Arithmetic I rounding! 
I 1--~--~------- I rule 
I I B I p EMIN EMAX I 
I ______ I_I __________ I_ 
I I 
I CDC Cyber 205 h.p.l 2 23 -88 
I I (22) 
I s.p. 2 47 -28624 
I 

_J 
(46) 

d.p. 2 94 -28578 
(91) (-28534) 

CDC 7600 

Cray-1 

s.p. 2 

d.p. 2 

s.p. 2 

d.p. 2 

48 
(47) 
96 

(95) 

48 
(47) 
96 

(95) 

DEC VAX-11 s.p. 2 24 
d.p. 2 56 

g floating 2 53 
h=floatingl 2 113 

I 
IBM s.p.l 16 6 

d.p.l 16 14 
I 

IEEE s . p. I 2 2 4 
d.p.l 2 53 

-975 
(-974) 
-927 

(-881) 

-8192 
(-8189) 
-8192 

(-8097) 

-127 
-127 

-1023 
-16383 

-64 
-64 

-125 
-1021 

134 

28718 

28718 

1070 

1070 
(1069) 

8191 
(8190) 
8191 

(8190) 

127 
127 

1023 
16383 

63 
63 

128 
1024 

1 * 

1 * 

0 

l 

0 

0 

0 

2 
2 
2 
2 

1 
1 

4 
4 

* 

* 
* 

---------'-- --- ---- ---- ----
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FPV Report Form 

We invite you to use this form to report the details of any 
testing which you have undertaken with FPV. Your replies 
will help us to improve FPV, and to accumulate knowledge of 
the properties and peculiarities of implementations of 
flo~ting-point arithmetic. Any suspected errors in the 
arithmetic should of course also be reported immediately to 
the vendor of the hardware or software concerned. 

Please return the completed form to: NAG Central Office, 256 
Banbury Road, Oxford OX2 7DE, England, or, in North America, 
to NAG Inc., 1101 31st Street, Suite 100, Downers Grove, 
IL 60515-1263, USA. Thank you for your_co-operation. 

Completed by (name): ..................................... . 

(address): 

(telephone number): 

(date): 

...................................... 

...................................... 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

...................................... 

...................................... 
A. Brief description of the arithmetic which was tested (e.g. 

"Cray-ls Fortran single precision arithmetic" or "DECMATH.LIB 
with Microsoft Fortran V3.2 on IBM PC": please complete a 
separate form for each arithmetic which was tested) 

........................................................... 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Describe (if known) how this arithmetic is implemented (i.e. 
hardware/ microcode/ subroutine _library) and any other 
special features: 

........................................................... 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
B. Details of the computing environment in which the testing was 

performed (if FPV was used in two-phase mode, give details of 
the environment in which FPVTGT was run) 

institution .............................................. . 

address ................................................... 
. . . . . . . . . . . . . . . . . . . . -............................. . 

machine and mode 1 no. . ................................... . 
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operating system name and version no ..................... . 

language (i.e. Fortran/ Pascal/ other) ................ . 

compiler name and version no ........................... oa• 

run-time library name and version no ..................... . 

floating-point format (e.g. single/ double/ quad precision) 

........................................................... 
was FPV used in all-in-one or two-phase mode? ............ . 

c. Details of tests that were passed satisfactorily 

machine parameters: b = ..• p = 

model parameters 
p emin emax 

add/subtract 

multiply 

divide 

.... emin = 

rounding 
rule 

negation 

abs. value 

square root 

Comparisons 

. . . . . . . ..... 

. . . . . . 

emax = •••.. 

mode for 
overflow 

mode for 
underflow 

•• 0 • 

0 ••• 

•• 0 • 

.... 
If the model parameters satisfied by a particular operator are 
not equal to the machine parameters, give reasons on a separate 
sheet, possibly with examples of operations that fail to 
satisfy more stringent· criteria. 

D. Details of any errors detected (use separate sheet(s); try to 
give a very simple example, or pattern of examples, that 
typifies the error; state whether the error was already known, 
whether it has been reported to the vendor, and what response 
the vendor has given so far) 

E. Any other comments (e.g. on the usefulness or convenience of 
FPV, on modifications made to FPV, on peculiarities of the 
arithmetic, on the vendor's documentation, and so on:· use 
separate sheet) 

NP1204 
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