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Besides making the proposed IEEE 854 standard available for comment, this

article explains how to overcome some of its implementation problems.
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he Microprocessor Standards Committee of the IEEE
Computer Society sponsors two groups drafting pro-
posed standards for floating-point arithmetic. The first, Task
P754, reported Draft 10.0 of a Proposed Standard for Binary
Floating-point Arithmetic out of committee in December,
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1982.' That document is now a de facto standard? and is
progressing slowly through the approval process within the
IEEE Computer Society.

In August 1983, the second group, Task P854, com-
pleted Draft 1.0 of a Proposed Radix- and Word-length-
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independent Standard for Floating-point Arithmetic that
generalizes and is upward compatible with the IEEE Pro-
posed Standard for Binary Floating-point Arithmetic. This
article places their contents before the public for the first
time.

Text drawn from the P854 draft is set off from surround-
ing expository material by indentation from both margins.
The article also includes material that describes how deci-
sions were reached in preparing the P854 draft and explains
how to overcome some of the implementation problems.

We are publishing this material to invite comment on the
work of P854 prior to its submission to the IEEE Standards
Board for adoption as an IEEE standard. We intend that such
submission follow this publication by six months. We ask
that readers of this article direct any comments or criticisms,
in writing, to either of the following individuals:

W. J. Cody

MCS-221/1C223

Argonne National Laboratory
Argonne, IL 60439

R. Karpinski

U-76

University of California
San Francisco, CA 94143

In what follows. we refer to the P754 draft as the “draft
binary standard.” and the P854 draft as either the “draft
generalized standard™ or simply the “draft.”

Many individuals helped prepare these drafts. Each con-
tributed as an individual; no endorsement by an employer is
implied. The authors of this article were the voting members
of P854 when Draft 1.0 was adopted.

1. Scope
This draft has the same scope as the draft binary standard.

1.1. Implementation objectives. It is intended that an
implementation of a floating-point system conforminggo this
standard can be realized entirely in software, entirely in
hardware. or in any combination of software and hardware.
It is the environment the programmer or user of the system
sees that conforms or fails to conform to the draft standard.
Hardware components that require software support to con-
form shall not be said to conform apart from such software.

1.2. Inclusions. This standard specifies

(1) Constraints on parameters defining values of basic
and cxtended floating-point numbers;

(2) Add, subtract. multiply, divide, square root, remain-
der. and compare operations.

(3) Conversions between integers and floating-point
numbers;

(4) Conversions between different foating-point pre-
cisions;

(5) Conversion between basic precision floating-point
numbens and decimal strings: and

6) Flouting-point exceptions and their handling, includ-
ing non-numbers (NaNs).
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1.3. Exclusions. This standard does not specify

(1) Formats for internal storage of floating-point mumbers,

(2) Formats of decimal strings and integers,

(3) Interpretation of the sign and significand fields of
NaNs, or

(4) Conversion between extended precision (§3.2) float-
ing-point numbers and decimal strings.

2. Definitions

The following terms are defined for purposes of the draft
generalized standard:

Destination. Every unary or binary operation delivers its
result to a destination, either explicitly designated by the
user or implicitly supplied by the system (e.g., intermediate
results in subexpressions or arguments for procedures). Some
languages place the results of intermediate calculations in
destinations beyond the user's control. Nonetheless, this
standard defines the result of an operation in terms of that
destination’s precision as well as the operand’s values.

Exponent. The component of a floating-point number that
normally significs the integer power to which the radix is
raised in determining the value of the represented number.
Occasionaily the exponent is called the signed or unbiased
exponent.

This definition implies that the radix used for the represen-
tation of floating-point numbers is the same as the radix used
for scaling. For example, a decimal significand must be scaled
by a power of 10. Note, however, that the exponent is an
integer, and it need not be implemented as a string of base-
b digits.

Floating-point number. A digit-string characterized by three
components: a sign, a signed exponent, and a significand.
Its numerical value, if any, is the signed product of its sig-
nificand and the radix raised to the power of its exponent.
In this document a digit-string is not always distinguished
from a number it may represent.

Fraction. The component of the significand that lies to the
right of its implied radix point.

Mode. A variable that a user may set, sense, save, and
restore to control the execution of subsequent arithmetic
operations. The default mode is the mode that a program
can assume t0 be in effect unless an explicitly contrary state-
ment is included in either the program or its specification.

The following mode shall be implemented:
(1) Rounding, to control the direction of rounding ervors;
and, in certain implementations,

(2) Rounding precision. to shorten the precision of results.

The implementor may, at his option, implement the follow-
ing modes:

(3) Traps disabled/enabled, to handle exceptions.

87



88

NaN. Not a number; a symbolic entity encoded in floating-
point format. There are two types of NaNs (§6.2). Signaling
NaNs signal the invalid operation exception (§7.1) whenever
they appear as operands. Quiet NaNs propagate through almost

every arithmetic operation without signaling cxceptions.

A NaN is similar in some respects to the “indefinite™ on
CDC 7600 and Cyber systems, and to the “reserved oper-
and” in DEC PDP-11 and Vax.

Normal number. A nonzero number that is finite and not
subnormal.

Radix. The base for the representation of floating-point
numbers.

Result. The digit string (usually representing a number) that
is delivered to the destination.

Shall and should. In this standard the use of the woed *shall®
signifies that which is obligatory in any conforming imple-
mentation; the use of the word “should™ signifies that which
is strongly recommended as being in keeping with the intent
of the standard, although architectural or other constraints
beyond the scope of this standard may on occasion render
the recommendations impractical.

Significand. The component of a floating-point rumber that
consists of a leading digit to the left of its implied radix point
and a fraction field to the right.

In the familiar “scientific notation,” numbers are expressed
in a form like —1.2345X 10~ %" Here are the first * =" is
the algebraic sign, “1.2345" is the significand, “.2345" is
the fraction, “10” is the radix, and “ — 67" is the exponent.

Status flag. A variable that may take two states, set and
clear. A user may clear a flag, copy it. or restore it to a
previous state. When set, a status flag may contain additional
system-dependent information, possibly inaccessible to some
users. The operations of this standard may as a side effect
set some of the following flags: inexact result, underflow,
overflow, divide by zero and invalid operation.

Subnormal number. A nonzero floating-point mumber whose
exponent is the precision’s minimum and whose leading sig-
nificant digit is zero.

For example, calculators whose lowest exponent is —99
would admit subnormal numbers if they permitted numbers
like 00123 x 10~%°. Subnormal numbers used as arithmetic
operands do not behave exceptionally, but subnormal results,
sometimes accompanied by a signal, serve to make under-
flow gradual. Subnormal numbers correspond to the “denor-
malized numbers” in the draft binary standard.

User. Any person, hardware, or program not itself specified
by this standard, having access to and controlling those oper-
ations of the programming environment specified in this
standard.

The draft is dcliberately vague about the meaning of the
word “user” because it could refer to a human seeking results,
an applications program exploiting the arithmetic, or a com-
pilcr generating codc for the arithmetic system.

3. Precisions

The main characteristic of the draft binary standard is its
attention to detail. Because it is specific to 32-bit words, it
specifies even the bit-patterns representing floating-point
quantities in the basic formats. Similar detail is found in
other discussions, such as binarye+decimal string conver-
sion and the adjustment of overflowed exponents.

While the draft generalized standard also deals with detail,
it is best characterized by its parameterization of the arith-
metic. Because the draft generalized standard applies to
machines of arbitrary word length and to radices other than
binary, the representation of floating-point quantities is not
casily specified. Instead, the draft derives the set of values
that may be taken by’ floating-point quantities in each of the
supported precisions from a set of four integer parameters.
These parameters turn out to be fundamental to the whole
arithmetic system. They permit a level of detail comparable
to that in the draft binary standard while preserving essential
abstractness in discussing such things as floating-point
«> decimal string conversion and the adjustment of over-
flowed exponents.

This draft is a prescription for arithmetic which, given a
choice of the four integer parameters, defines the represent-
able values and the results of all operations precisely. In this
respect, the draft differs from descriptive models of arith-
metic, like Brown’s,> which derive some information from
similar parameters but cannot say exactly what arithmetic
results will be generated. We will see later that proper spec-
ification of the four integer parameters produces essentially
the arithmetic in the draft binary standard, an important
verification of the desired compatibility of the two proposals.

Section 3 of the draft generalized standard discusses the
precisions and their parameterization:

This standard defines four floating-point precisions in two

groups, basic and extended, each having two widths, single
¥and double. The standard levels of implementation are dis-

tinguished by the combinations of precisions supported.

3.1. Sets of values. The standard does not specify how to
encode numbers for internal storage. Four integer parame-
ters specify each precision:
b-the radix,
p—the number of base-b digits in the significand.
£ x—-the maximum exponent, and
E in—the minimum exponent.

The parameters are subject to the following constraints:

b shall be either 2 or 10 and shall be the same for all
supported precisions,

(Emas — Equs)/p shall exceed S and should exceed 10,
and "' = 10*.

The balance between the overflow threshold (b5mar * ') and
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the underflow threshold (bEmin) is characterized by their
product (65mss * Emin* 1) which should be the smallest inte-
gral power of b that is =4.

Because overflow is so much more serious a disaster than
gradual underflow, this constraint moves the overflow
threshold slightly further away from 1 (at the cost of bringing
the underflow threshold slightly closer). The intent is to
ensure that normal values can be reciprocated without awk-
ward exception; e.g., the inverse of the smallest positive
normal value (the underflow threshold) should not overflow,
and the inverses of the largest finite values (almost the over-
flow threshold) should suffer minimal loss of significance.

Each precision allows for the representation of just the fol-
lowing entities:

Numbers of the form
(- 1Y'6%(do.d\ds . . . d,_ ), where
s is an algebraic sign,

E is any integer between £, and £, ., inclusive,
and

each d, is a base-b digit (0<d,<b—1);
Two infinities, + = and —;
At least one sfgmling NaN; and
At least one quiet NaN.

The algebraic sign provides additional information about
any variable that has the value zero. Although all precisions
have distinct representations for +0, —0, -+, and — e,
the signs are significant in some circumstances, such as divi-
sion by zero, and not in others. In this standard, 0 and @
are written without a sign when the sign does not matter.
An implementation may find it helpful to provide additional
information about a variable which is NaN through an alge-
braic sign, but this standard does not interpret such extensions.

Note that §3.1 does not mention the representation of
numbers, only their values:

The foregoing description enumerates some values redun-
dantly, e.g.,

5%1-0) = '0-1) = b¥0-01) = . ..
but the standard does not distinguish them.

The standard allows an implementation to encode some values
redundantly provided that it does not distinguish redundant
encodings of nonzero values. An implementation may also
reserve some digit strings for purposes beyond the scope of
this standard.

Although the draft generalized standard is to be radix-
indcpendent, the committee could find no valid technical
argument for allowing radices other than 2 or 10. Radices
that are higher powers of 2 or 10 have disagreecable prop-
crtics. Nevertheless, the standard is drafted so that this par-
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ticular limitation is expressed only in §3.1 and §5.6; we
believe that were this limitation removed, only §5.6 would
have to be revised.

Constraints on the parameters were not imposed capri-
ciously. The lower limit of 5p for E..., — Emi 2ccommodates
instrumentation equipment where large exponent range is
not important, but some form of standardized floating-point
arithmetic is. The inequality b*~ '=10° permits implemen-
tation of 6-significant-decimal arithmetic in 32-bit words
without resorting to digit encoding more complicated than
BCD.

The subnormal numbers in this scheme are those nonzero
numbers with magnitudes less than 5°~. All bigger finite
numbers are normal. The natural way in which zero and
subnormal numbers occur is a consequence of focusing on
the values of the numbers rather than on their representation.
Representation of the other special operands, infinities, and
NaNs, requires that something special be done.

Examples:

(1) In the draft binary standard, the parameters for single
precision are b=2, p=24, E,,, =127, and
Ein= — 126. All of the special operands are accom-
modated by reserving extreme values of the exponent
uyond Ernu and Emin-

(2) The parameters for many hand calculators are b= 10,
p=10, Epn.y =99, and E,,;, = —99. However, none
of the special operands are accommodated.

With the establishment of the parameterization, it is pos-
sible to describe the various supported precisions and the
relations between them. Note that the terms “single preci-
sion” and “double precision” may be known by other names
in existing programming languages. For example, “single
precision” is called “real” in Pascal and Fortran.

3.2 Basic Precisions

3.2.1. Single. The narrowest precision supported shall be
called single precision. When necessary to distinguish from
other parameters, those defining single precision are denoted
thus:

E,,‘,,.E,.h. P
3.2.2. Double. When a second, wider basic precision is
supported, it shall be called double precision. When nec-

essary to distinguish from other parameters, those defining
double precision are denoted thus:

Eauv Emiuv Pa-
In addition to the requirements specified in §3.1, parameters
for double precision shall satisfy
b= 100>,
Eurs=8E,,, +7.
EinyS8Epin,

The condition ”* = 106™* provides that double precision
be at least one decimal-digit wider than twice single preci-
sion to protect the formation of inner products (vector dot
products) of single-precision data using double-precision
arithmetic. The consequence when b= 2 is that at least four
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additional bits more than twice single precision must be
provided in double precision. The draft binary standard pro-
vides five such bits. The constraints on E,.,,, and £, ensure
that products of up to eight factors (or powers up to the
cighth power) of normal single-precision values will neither
overflow nor underflow.

In addition to inner products, certain other commonly
occurring computations can be carried out more accurately
and naturally when the arithmetic used provides extra expo-
nent range and precision over that found in the data. We will
see in a moment that exponentiation and conversion between
floating-point representations and decimal strings are com-
putations of this type (there are many others).

If implemented, double-precision arithmetic provides the
desired support for single precision. But what supports sin-
gle precision when double precision is not implemented, and
what supports double precision? The draft standard provides
extended precisions for these purposes. Although extended
precisions afford almost full protection in many important
computations, they provide only partial protection for inner
products. In a first implementation of a system conforming
to this draft standard, supporting the few additional digits
in an extended precision may be easier, substantially more
economical, and almost as beneficial as supporting the next
higher basic precision with its more than doubling of the
digits. The issues to be considered when selecting between
implementation of an extended precision and implementa-
tion of the next higher basic precision are discussed further
by Coonen* and Kahan.*

3.3. Extended precisions. The two extended precisions,
single extended and double extended, are implementation-
dependent. When necessary to distinguish from other
parameters, those defining, for example, single-extended are
denoted thus:

Emau.n Eminu- Pses
Parameters for single-extended shall satisfy
Eﬂlllu = 8Emn +7,
and
Emin.' =8 Em'm.'

If b+ 10. p.. must be large enough to support conversion to
and from decimal strings (§5.6). Thus, for b=2, the con-
dition p,,2p, + [10822(E s, = Erin,) | shall be satisfied. For
all b, the condition p, .= 1.2p, shall be satisfied. In addition,

the following condition should be satisfied to protect against
error in the computation of y*:

In{3/n(b)E par + 11}

>
P>1+p, + n(b)

For =2, the condition
Pse = p, + rlogZ(Emu. - Emim)]

in §3.3 states that at least as many bits as are required for
representing a single-precision number (significand plus
exponent) shall be used for representing the single-extended
significand. Wider would be better, but might be uneconom-
ical because of architectural constraints such as bus widths.

Ideally p,. should be large enough to protect against error
in the computation of ¥*. even when the result is A, the
largest single precision floating-point quantity, or o. the

smallest normal positive floating-point quantity. Assuming
that

A = b5 b—b-p) = lig = b~ =,
we want to be able to compute /n(\) with absolute crror less

than b in single-cxtended precision. (If A < l/a. replace
Euut | with —E . and N with V/e in the analysis.) Let

y' = explxin(y)] =\ = bE™=(b—b~?).

Then the computed argument x /n(y) delivered to the expo-
nential routine is effectively

xin()(1 £ e),
where € = b' ~#. Here, the first two rounding errors come
from the computation of In(y) and the product x In(y), and
the third accounts for the error to be made in the argument

reduction in the exp routine. Computationally, to first order
terms in the errors,

exp|x In(v)] — explx in(y)(1 £ 3€)|(1 +m),
=(1+m) A exp[ £ in(\)3e],
= (1 +9) A1 = n(N)3€],

where 7 is a single-precision rounding error. Now the desire
is that

*3eln(A) = 3b' ~PuinlbEm=t ) < o1,

This simplifies to

In{3in(bYEpax + 11}
p’f > l +p8 + T
Because this ideal may not be practical, the condition on p,,
is recommended but not required. For example. it may not
be easy to allocate more space for the p,, digits than that
space normally allocated to the representation of a single-
precision floating-point number, i.e., the space normaily
used to represent two signs, the p, digits of the significand
and the largest exponent. E,,,,. say. In traditional floating-
point architectures this is exactly one or two word lengths.

Example:

(1) In the draft binary standard, the parameters are
Ean, = 127, Epa,,, = 1023 = 8E,,,, + 7. Ena,
= =120, Eqin, = — 1022 < 8Eq,. and p,, = 32
> p, + 7. This extended format falls 1 bit short of
what it ideally should be to support y*, owing to
practical considerations of wordlength.

Double-cxtended precision bears the same relation to double
precision as single-extended bears to single precision.

Note that double precision satisfies the requirements for sin-
gle-extended precision.

One of our principal objectives is to facilitate movement of
softwarc among machines that conform to the draft standard.
So that single-precision software supported by either single-
extended or double-precision arithmetic can be inscnsitive
to whichever of the two is actually used, both must treat
underflow in the same way. That is why single extended
includes subnormals.
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3.4 Combinations of precisions. All implementations con-
forming to this standard shall support single precision.
Implementations should support the extended precision cor-
responding to the widest basic precision supported, and need
not support any other extended precision.

Section 3.4 recognizes that double precision satisfies all of
the requirements for single extended. It would be wasteful
to provide both of these precisions unless complete upward
compatibility and speed were important issues.

Why did the authors of the draft standards not follow
Coonen* in specifying, besides single and double, a quad-
ruple-precision format? Presumably it is obvious that a
quadruple format should bear the same relation to double as
double bears to single. Less obvious is whether a family -of
intermediate precisions positioned between single and dou-
ble, and between double and quadruple, would be worth
implementing and supporting with appropriate language and
library facilities. Such a question has been considered by
T. E. Hull.® but the authors have chosen to say nothing more
about that question at this time.

4. Rounding

Rounding is one of the least understood and often one of
the most badly designed features in traditional arithmetic
systems. The draft standard specifies four different rounding
modes in §4. These include what we intuitively think of as
rounding, but done carefully; what is frequently called trun-
cation; and two directed rounding rmodes of use when imple-
menting interval arithmetic. The rounding modes are user-
selectable and apply to all pertinent operations, described in
§5, once selected.

Rounding takes a number regarded as infinitely precise and,
if necessary, modifies it to fit the destination’s precision while
signaling the inexact exception (§7.5). Except for conver-
sion between floating-point numbers and decimal strings
{whose weaker conditions are specified in §5.6), every oper-
ation specified in §5 shall be performed as if it first produced
an intermediate result correct to infinite precision and with
unbounded range, and then rounded that result according to
one of the modes in this section.

The rounding modes affect all arithmetic operations except
comparison and remainder. The rounding modes may affect
the signs of zero sums (§6.3), and do affect the thresholds
beyond which overflow (§7.3) and underflow (§7.4) may be
signaled.

4.1. Round to nearest. An implementation of this standard
shall provide round to nearest as the default rounding mode.
In this mode the representable value nearest to the infinitely
precise result shall be delivered; if the two nearest repre-
sentable values are equally near, the one with its least sig-
nificant digit even shall be delivered. However, an infinitcly
precise result with magnitude at least 55~(b — %4b" ~) shall
round to = with no change in sign; here E,,,, and p are
determined by the destination precision (§3) unless overrid-
den by a rounding precision mode (§4.3).

4.2. Directed roundings. An implementation shall also pro-

vide three user-selectable directed rounding modes: round
toward + %, round toward —, and round toward 0.
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When rounding toward +, the result shall be the preci-
sion's value (possibly +®) closest to and no less than the
infinitely precise result. When rounding toward —, the
result shall be the precision’s value (possibly —) closest
to and no greater than the infinitely precise resuit. When
rounding toward 0, the result shall be the precision’s value
closest to and no greater in magnitude than the infinitely
precise result.

Rounding toward zero provides a mode of arithmetic
capable of nearly mimicking features of certain widely used
machines and languages. First, rounding toward zero pre-
vents infinity from being created by overflow; this approx-
imates the situation on machines that, lacking infinity, replace
overflows by the biggest available finite magnitude with the
appropriate sign. Second, rounding toward zero is obliga-
tory in Fortran’s three conversions from floating point to
integer:

I=X .
LINT). . or L L UTFIXX) . . .,
.. .AINT(X). . . .

The draft standard’s default rounding mode in conversion to
integer nearly matches a construction common in Fortran,
namely,

... INT(X+0.5)... or ...AINT(X+0.5)...,

except when X is already a nonnegative even integer. Intel’s
Fortran 86 assigns the name RINT(X) to the draft binary
standard’s default rounding to nearest integer.

4.3. Rounding precision. Normally a result is rounded to
the precision of its destination. However, some systems deliver
results only to double or extended destinations. On such a
system the user, which may be a high-level language com-
piler, shall be able to specify that a result be rounded instead
to single precision, though it may be stored in double or
extended precision with its wider exponent range. Similarly,
a system that delivers results only to double extended des-
tinations shall permit the user to specify rounding to single
or double precision. Note that to meet the specifications in
§4.1, the result cannot suffer more than one rounding error.

Control of rounding precision is intended to allow sys-
tems whose destinations are always double or extended to
mimic, in the absence of overflow/underflow, the precisions
of systems with single and double destinations. Proper mim-
icking requires that such machines provide operations to
combine single operands, returning a single result with only
one rounding. An implementation should not provide oper-
ations that combine double or extended operands to produce
a single result, nor operations that combine double extended
operands to produce a double result, with just one rounding,
because using such operations would violate §5.1, below.

The precision to which anonymous variables (constants
and subcxpressions) shall be rounded is determined or left

- undetermined in a confusing way in most programming lan-

guages. For example, Fortran assigns a “type” called “Sin-
gle Precision” or *Double Precision” to every anonymous
real variable, but does not require that a subexpression be
rounded to the accuracy that matches its syntactic “type”;
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better accuracy is acceptabic and is provided on many
machines that antedate the draft standards. as well as on the
Intcl 8087 and the forthcoming Motorola 68881 and Zilog
Z8070. The language C cvaluates all real expressions to
double precision regardless of whcther they contain only
single-precision variables. This issue is discussed further by
Kahan and Coonen." and a recommendation aimed specifi-
cally at Fortran is provided by Corbett.’

5. Operations

Traditional arithmetic systems almost always distinguish
between arithmetic operations such as addition and multi-
plication, and ancillary operations such as conversions, and
sometimes even comparisons. The former are considered
part of the arithmetic system proper, while the latter are
usually left to the whims of a compiler or subroutine writer.
Consequently, the benefits of using even the best arithmetic
designs may be negated by the inability to properly convert
data to and from machine representation, or by spurious
branching based on faulty comparisons. Even data conver-
sion in such cases may vary, depending on whether it is done
by a compiler or at runtime.

Both the draft generalized standard and its companion
proposed binary standard include conversions and compar-

.- isons in the arithmetic system proper. (They also include the

square-root operation because known algorithms produce
speed and accuracy comparable to the other operations spec-
ified when implemented in hardware.) The difficulty of
specifying accurate conversion between floating-point and
decimal-string representations of data is indicated by the
complexity of §5.6. reproduced below.

All conforming implementations of this standard shall pro-
vide operations o add. subtract. multiply, divide, extract the
square root. find the remainder. round to a floating-point
integer, convert between different floating-point precisions,
convert between floating-point numbers and integers, con-
vert between internal floating-point representations and dec-
imal strings. and compare. Whether copying without change
of precision is considered an operation is an implementation
option. Except for conversion between internal floating-point
representations and decimal strings. each of the operations
shall be performed as if it first produced an intermediate
result correct to infinite precision and with unbounded range,
and then coerced this intermediate result to fit in the desti-
nation’s precision (§4 and §7). Section 6 augments the fol-
lowing specifications to cover 0. ==, and NaN: Section
7 enumerates exceptions caused by exceptional operands and
exceptional results.

S.1. Arithmetic. An implementation shall provide the add,
subtract, multiply. divide and remainder operations for any
two operands of the same precision, for cach supported pre-
cision: it should also provide the operations for operands of
differing precisions. The destination precision (regardless of
the rounding precision control of §4.3) shall be at least as
wide as the wider operand’s precision. All results shail be
rounded as specified in §4.

When v # 0. the remainder r = x REM y is defined regard-
less of the rounding mode by the mathematical relation
r = x = v X n, where n is the integer nearest the exact
value x/y; whenever |n — t/v| =4, then n is even. Thus. the

remainder is always exact. If r=0, its sign shall be that of
x. Precision control (§4.3) shall not apply to the remainder
operation.

REM is dcfined as it is, instead of matching the “mod™
function found in many programming languages. because
the latter can always be computed from the former, but the
converse is not always true. This is so because REM’s
remainder is the smallest possible remainder in magnitude,
and is always exact. Note in the definition of remainder that
the integer # may not be exactly representable in the preci-
sion of x, y. and r because of inadequate precision, exponent
range, or both. Nevertheless, r is exactly representable in

- the precision of x and y. For an extreme example, consider

b=10,p =7, Epin = =99, Equas = 99, x = 10, and
v =3 x 1077, Then n=| 173 x 10'*° | =333...33, a 150-
digit integer whose value lies above the overflow threshold.
Nevertheless, r = 10~ ", precisely satisfying the defining
relation x = n X v + r. If y is near the underflow threshold
(i.e.. [vJ<bf™**), it is possible that r = x REM y may be
subnormal.

Despite the fact that n may be too huge to represent
exactly, many implementations of the draft binary standard
return at least the least significant three or four bits of n. In
effect, besides delivering r=x REM y they deliver n mod b*
or n mod b*. This is convenient for calculating the reduced
argument of trigonometric and other periodic functions. The
extent of the convenience can be gauged from the following
program segment, which uses REM twice to provide the
equivalent results:

temp = x REM (b*X ) . . . this is exact.
r = temp REM y . . . this is also exact.

nmod b* = (temp —r)/y . . . rounded to nearest integer.

5.2. Square root. The square root operation shall be pro-
vided in 2ll supported precisions. The result is defined and
has positive sign for all operands = 0, except that V-0
shall be —0. The destination precision shall be at least as
wide as the operand’s. The result shall be rounded as spec-
ified in §4.

5.3. Floating-point precision conversions. It shall be pos-
sible to convert floating-point numbers between all sup-
ported precisions. If the conversion is to a narrower preci-
sion. the result shall be rounded as specified in §4. Conversion
to a wider precision is exact.

5.4. Conversion between floating point and integer. It
shall be possible to convert between all supported floating-
point precisions and all supported integer precisions. Con-
version to integer shall be effected by rounding as specified
in §4. Conversions between floating-point integers and inte-
ger precisions shall be exact unless an exception arises as
specified in §7.1.

Floating-point overflow never occurs during conversion
to an integer because conversion to a floating-point integer
(§5.5) cannot overflow. and conversion to a fixed-point inte-
ger (§5.4). if it overflowed, would have to signal cither
integer overflow, if available, or invalid (§7.1). Conversion
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of a nonintegral value to a floating-point integer (85.5) is
always inexact: conversion of a nonintegral value to a fixed-
point integer (§5.4) is inexact unless overflow forces invalid
1o be signaled (§7).

§.5. Round Roating-point number to integral value. It
shall be possible to round a floating-point number to an
integral valued Roating-point number in the same precision.
The rounding shall be as specified in §4, with the under-
standing that when rounding to nearest, if the difference
between the unrounded operand and the rounded result is
exactly one half, the rounded result is even.

The following section on conversions between floating-
point and decimal strings was the most technically difficult
section to draft. The properties specified in this section are
implied by error bounds that depend on the floating-point
precision and the number of digits in the decimal string; for
example, the 0.47 mentioned is a worst-case bound derived
for single precision on machines that conform to the draft
binary standard. For a detailed discussion of these error
bounds and economical conversion algorithms that exploit
the extended precision on such machines, see Coonen. '

5.6. Floating pointe+decimal string conversion. Conver-
sion between decimal strings in at least one format and float-
ing-point numbers in all supported basic precisions shall be
provided for numbers throughout the ranges specified in Table
1. The non-negative integers D and N in Tables 1 and 2
describe decimal strings having values =M x 10>V, where
0sM=<10°-1.

When there is more than one choice for M and N with
M=10°- |, then Table | and the following discussion apply
to the choice having the smallest value of N. (In effect,
trailing zeros are stripped from or appended to M, subject
to M < 10° -1, to minimize N.) When M lies beyond the
bound specified by Max D in Table 1, i.c., when
M = 10™** ©_ the implementor may, at his option, round
off all significant digits after the Max D-th to other decimal
digits, typically 0, and should signal inexact (§7.5) when
nonzero digits have been discarded. When the destination is
a decimal string, its least significant digit should be located
by format specifications for purposes of rounding. Note that
the largest possible value of N may be less than the boundary
specified in Table 1 when the destination is a decimal string. .

For b # 10, the bounds on Max D in Table 1 correspond
to conditions necessary for decimal strings to distinguish
floating-point numbers one from another. In some cases
slightly tighter bounds are possible. Coonen'® discusses these
matters in some detail for the draft binary standard.

The entry for Max N in Table ! is determined as follows.
Consider the following canonical form, the “scientific nota-
tion for floating-point numbers”™:

2(PXbd'"Pyxbt = =P, P, ..

where

P, % bF,

V'sp=sp-|
when the number is normal, and
O<Ps=sbH-1
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when the number is subnormal. Then (see Appendix)
nextafter(0,1) = (1 X b' ~?) x bFm== pfm=*1-7
is the smallest positive floating-point number, and
nextafter(=,1) = (b” = 1) X b* =P X bFre* = pFman ™!

is the largest finite floating-point number. Nonzero decimal
strings have the canonical form

2Mx 105N = =MoM, . . .M, x10=", g=D,
where M and N are chosen to minimize |N| subject to the
conditions | SM=<10” — | and [N|<Np,,. Let Decp,;, be the
smallest positive number to be converted from decimal to
floating point. Then

DeCoin < (10° = 1) X 10~ Y=< nextafter(0,1) = bE™*'-7,

Thus, Nppax = D + (p— 1| = Epin) X log,o(b). Similarly, let
Dec.,,, be the largest finite decimal number to be converted
to floating point. Then

Deca, = (1 X 10°- |) X [QNma ?nexlaﬂer(w.l)zb""“ '

Thus, Npaw = (1 —=D) + (Epax+ 1) Xl0go(b). The final
expression for Max N resuits from letting E,, denote the
lasger of these two bounds on N,,,, and assuming that Max
N has the form 10" - 1.

Conversions shall be correctly rounded as specified in §4
for operands lying within the ranges specified in Table 2.
Otherwise, for rounding to nearest and b=2, the error in
the converted result shall not exceed by more than e units
in the destination’s least significant digit the error that would
be incurred by the rounding specifications of §4, provided
that exponent overflow/underflow does not occur. Here €
must satisfy the condition €<0.5; €e=0.47 has been found
to be achievable. In the directed rounding modes for b=2
the error shall have the correct sign and shall not exceed
1 + € units in the last place.

Conversions shall be monotonic. That is, increasing the value
of a floating-point number shall not decrease its value when

Table 1.
Floating point—decimal string conversion ranges.
Max D Max N
[P logy(d)+17, b + 10 10LRosniEm )+ 1 _ 1
p. b=10
Note: here £, = max{D + (p— 1 = Eun) 10g10(D).
{Emax + 1)l0g40(0) + 1 - D}.
Table 2.
Correctly rounded conversion ranges.
b Max D Max ¥
2 [0 10gyo(2) + 17 Lpdogs(2) |
10 D 10U°9m|€n)_| L |

Note: here p, denotes the smallest precision permissible as extended support for

the basic precision p (§3.3), and

m = Max{D+ (p— 1 = Ea) 1010(b).
(Enax + 1) 10g40(b) + 1 - D}.
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converted to a decimal string; and increasing the value of a
decimal string shall not decrease its value when converted
(o a floating-point number.

When rounding to nearest, conversion from floating-point
to decimal string and back to floating-point shall be the
identity as long as the decimal string is carried to the max-
imum precision specified in Table 1, namely, Max D digits.

For b= 10, conversion should be correctly rounded for
all values specified in Table 1. For 5=2, the bounds on Max
D and Max N for correctly rounded results are determined
as follows. Let p, be the precision in which the conversion
is to be computed. Ordinarily p. will correspond to one of
the available extended precisions. Then the condition
10° < 2’ defines D such that D digit decimal integers can
be represented exactly in the conversion precision. Simi-
larly, the condition 5" < 2°¢ defines N such that 10" can be
represented exactly (further scaling of 5 by powers of 2 to
obtain 10" is exact in a binary system). Thus, numbers of
the form +Mx 10", where M<10°~1, can be repre-
sented in the conversion precision with, at most, one round-
ing error.

Example:

(1) In the draft binary standard the parameters for single
are b=2, p=24, and E,,,, = 127. The correspond-
ing parameters for binary single-precision floating
pointerdecimal string conversion are Max D = 9,
Max M = 10°—1, and Max N = 99 for conversion
to floating point and Max N = 53 for conversion to
decimal string. The rangé for correctly rounded con-
version is further restricted to Max N = 13.

When rounding to nearest, conversion from floating point
to decimal string and back to floating point will be the iden-
tity, provided that D is large enough to distinguish floating-
point numbers one from another (the conditions in Table 1)
and that, for b=2, p, is large enough to represent D digit
decimal integers exactly, i.e., provided

Lpdogio(2) J=D=[ p.logis(2) + 11,
or
Lplogio(2) = plogio2) +2 .
This is implied by the condition
Pc=p,+6.64 . ..
or, because p. and p, are integers,
P =p,+7.

This relation is automatically satisfied when p. is an extended
precision as defined in §3.3. For example, when p. = p,.,
P-=p, + r!OgI(Emn- mm)]

Noting that 27~ ' = 10°, we have

Ps 1=18.

22—
logo(2)
Because (Erax, = Emin,) > 5p; = 90, we finally have

P = Pa+[6-49-‘ =p,+7

If decimal string to floating point conversion overflows/
underflows, the response is as specified in §7. Overflow/
underflow and NaNs and infinities encountered during float-
ing point to decimal string conversion should be indicated
to the user by appropriate strings. The letters “NaN,” case
insensitive, optionally preceded by an algebraic sign, should
be the first characters of a string representing a NaN. The
remainder of the string may be used for system-dependent
information on output, and may be ignored on input. Unless
recognized as a quiet NaN oan input, an input NaN should
become a signaling NaN. The letters “infinity,” case insen-
sitive, optionally preceded by an algebraic sign, or the string
“1/0,” optionally_preceded by an algebraic sign, should be
the characters representing signed infinity. Either represen-
tation may be produced on output; both should be accepted
on input.

The default action for attempting to coavert an unrecogniz-
able input decimal string is to signal an invalid operation
exception.

To avoid inconsistencies, the procedures used for floating
pointerdecimal string conversion should give the same results
regardless of whether the conversion is performed during
language translation (interpretation, compilation, or assem-
bly) or during program execution (run-time and interactive
input/output).

There are two kinds of NaNs in the standard, signaling
and quiet, as explained in §6.2. The question now is why
should input NaNs be presumed by default to be signaling
NaNs? First, the input is not a NaN but a string presumably
intended to be converted into a NaN. It seems reasonable
further to presume that the intention was to introduce a sig-
naling NaN, since the standard provides no other way to
create such a thing. Should that presumption be wrong, little
harm is done because in the absence of a trap enabled to
handle signaling NaNs, they merely turn into quiet NaNs
with no further effect than to set the invalid operation flag.

The choice of strings to designate infinities is limited.
Note that “INF" is currently used in some implementations
of Basic to designate the largest finite number in the floating-
point system.

The standard does not discuss the problem of output-field
overflow, a problem that must be solved by language imple-
mentors. An attempt to output a string of characters too long
for the preallocated field width must somehow notify the
user that his implicit assertion about the size of his result
has failed. That notification need not disturb the format of
subsequent output. For instance, in the case of printing N
= —12345.6789 in a Fortran output field defined 10 be
F6.2, the expected line

## ### X nn.nNXXXXXXXXXX
might be replaced by two lines

#####-12345.68
XXXXXXXXXX

without disturbing the relationship of subsequent lines on
the page.

5.7. Comparison. It shall be possible to compare floating-
point rumbers in all supported precisions, even if the oper-
ands’ precisions differ. Comparisons are exact and never
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overflow nor underflow. Four mutually exclusive relations
are possible: “less than,” “equal,” “greater than,” and “unor-
dered.” The last case arises when at least one operand is
NaN. Every NaN shall compare “unordered™ with every-
thing, including itself. Comparisons shall ignore the sign of
zero (so, +0 = =0).

The result of a comparison shall be delivered in one of two
ways: cither as a condition code identifying one of the four
relations listed above, or as a true-false response (o0 a pred-
icate that names the specific comparison desired. In addition
to the true-false response, an invalid operation exception
(§7.1) shall be signaled when, as indicated in the last column
of Table 3, “unordered™ operands are compared using one
of the predicates involving “<" or *>" but not “?° (Here
the symbol =?" signifies “unordered.”)

Table 3 exhibits the twenty-six functionally distinct useful
predicates named, in the first column, using three notations:
ad hoc. Fortran-like, and mathematical. It shows how they
are obtained from the four condition codes and tells which
predicates cause an invalid operation exception when the
relation is “unordered.” The entries T and F indicate whether
the predicate is true or false when the respective relation
holds.

Note that predicates come in pairs, each a logical negation
of the other; applying a prefix like “NOT" to negate a pred-
icate in Table 3 reverses the true/false sense of its associated
entries but leaves the last column’s entry unchanged.

unplementations that provide predicates shall provide the
first six predicates in Table 3 and should provide the seventh,
as well as a means of logically negating predicates.

There may appear to be two ways to write the logical
negation of a predicate, one using “NOT" explicitly and the
other reversing the relational operator. For example, the log-
ical negation of (X = Y) may be written either NOT(X
= Y) or (X 7<> Y); in this case both expressions are
functionally equivalent to (X # Y). However, this coinci-
dence does not occur for the other predicates. For instance,
the logical negation of (X < Y) is just NOT(X < Y); the
reversed predicate (X 7> = Y) is different in that it does
not signal an invalid operation exception when X and Y are
“unordered.”

6. Infinity, NaNs, and signed zero

The special quantities infinity, NaNs, and signed zero
included in the draft generalized standard provide closure of
sorts to the arithmetic system and permit sensible responses
to the exceptional conditions to be discussed in §7. For
example, = provides a default result for overflow and divi-
sion by zero, while the sign on = indicates the direction of
the overflow. For mathematical consistency, and to aid in
implementing interval arithmetic, zero also carries a sign.

Table 3.
Predicates and relations.
Predicates Relations Exception
greater less invalid if
ad hoc Fortran math than than equal unordered unordered
= EQ. = F F T F No
<> .NE. + T T F T No
.GT. > T F F F Yes
>= .GE. = T F T F Yes
.LT. < F T F F Yes
<= .LE. = F T T F Yes
? unordered F F F T No
<> AG. T T F F Yes
<=> LEG. T T T F Yes
> AG. T F F T No
>= .UGE. T F T T No
< UL F T F T No
<= .ULE. F T T T No
?= .UE. F F T T No
NOT(>) F T T T Yes
NOT(> =) F T F T Yes
NOT(<) T F T T Yes
NOT(< =) T F F T Yes
NOT(?) T T T F No
NOT(<>) F F T T Yes
NOT(<=>) F F F T Yes
NOT(?>) f T T F No
NOT(?> =) F T F F No
NOT(?<) T F T F No
NOT(?< =) T F F F No
NOT(?=) T T F F No

August 1984

95



]

This may indicate the direction from which underflow
occurred, or it may indicate the sign on an < that has been
reciprocated. All of the arithmetic properties of the special
quantities have been similarly designed to emuliate their
mathematical propertics as nearly as possible.

The NaNs are special entitics introduced to handle other-
wise intractable situations, such as providing a defauit result
for 0/0. The fact that they propagate through a computation
suggests that they may also be used, with special program-
ming, to provide error traces of various sorts. They might
even be used to implement special arithmetics by taking
advantage of their triggering of arithmetic exceptions. How-
ever, none of these more esoteric applications are mentioned
in the draft standard.

6.1. Infinity arithmetic. Infinity arithmetic shall be con-
strued as the limiting case of real arithmetic with operands
of arbitrarily large magnirude, when such a limit exists.
Infinities shall be interpreted in the affine sense, that is,
—=< (every finite number) <+,

Arithmetic on @ is always exact and therefore shall signal
no exceptions, except for the invalid operations specified for
« in §7.1. The exceptions that do pertain to = are signaled
only when

(1) =is created from finite operands by overflow (§7.3)
or division by 2ero (§7.2), with the corresponding

quict NaN, which should be one of the input NaNs. Note
that precision conversions might be unable to deliver the
same NaN. Quict NaNs have effects similar to signaling
NaNs on operations that do not deliver a floating-point result;
these operations, namely, comparison and conversion to a
precision that has no NaNs, are discussed in §5.4, §5.6,
§5.7, and §7.1.

6.3. The algebraic sign. This standard says nothing about
the sign of a NaN. Otherwise the sign of a product or quo-
tient is the Exclusive Or of the operand’s signs: and the
sign of a sum, or of a difference x—y regarded as a sum
x + (—y), differs from at most one of the addend’s signs.
These rules shall apply even when operands or results are
zero or infinite.

When the sum of two operands with opposite signs (or the
difference of two operands with like signs) is exactly zero,
the sign of that sum (or difference) shall be “+" in all
rounding modes except round toward —<, in which mode
that sign shall be * —". However, x+x=x—(—x) retains
the same sign as x even when x is zero.

Except that v/ — 0 shall be — 0, every valid square root shall
have positive sign.

7. Exceptions

trap disabled, or
(2) = is an invalid operand (§7.1).

6.2. Operations with NaNs. Two different kinds of NaN,
signaling and quiet, shall be supported in all operations.
Signaling NaNs afford values for uninitialized variables and
arithmetic-like enhancements (such as complex-affine infin-
ities or extremely wide range) that are not the subject of the
standard. Quiet NaNs should, by means left to the imple-
mentor’s discretion, afford retrospective diagnostic infor-
mation inherited from invalid or unavailable data and results.
Propagation of the diagnostic information requires that
information contained in the NaNs be preserved through
arithmetic operations and basic precision conversions.

Signaling NaNs shall be reserved operands that signal the
invalid operation exception (§7.1) for every operation listed
in §5. Whether copying a signaling NaN without a change
of precision signals the invalid operation exception is the
implementor’s option.

One objective of the draft standard is to minimize for
users the complications arising from exceptional conditions.
The arithmetic system is intended to continue to function on
a computation as long as possible, handling unusual situa-
tions with reasonable default responses, including setting
appropriate flags. Because a user may want to override default
resuits and do something special in response to an exception.
the standard also accommodates user-supplied traps:

There are five types of exceptions that shall be signaled when
detected. The signal emtails setting a status flag, taking a
trap. or possibly doing both. With each exception should be
associated a trap under user control, as specified in §8. The
default response to an exception shall be to proceed without
atrap. This standard specifies results to be delivered in both
trapping and nontrapping situations. In some cases the result
is different if a trap is enabled.

For each type of exception the implementation shall provide
a status flag that shall be set on any occurrence of the cor-
responding exception when no corresponding trap occurs.
It shall be reset only at the user’s request. The user shall be

Signaling NaNs are closely analogous to the reserved

able to test and to alter the status flags individually, and

operands on the DEC PDP/11 and Vax, and to the indefinite
operand on the CDC 7600 and Cyber, in that they precip-
itate some signal when touched but not when created. Quiet
NaNs are similar to the reserved operand on the Vax in that
they result from an invalid operation, but differ in that they
generate no signal when encountered in subsequent operations:

should further be able to save and restore all five at one time.

The only exceptions that can coincide are inexact with over-
flow and inexact with underflow.

A flag records the occurrence of an exceptional event.
Resetting a flag clears it, and it stays clear until the first
subsequent event sets it again, or until it is restored by the
user to a previous state. Until reset by the user, the set state
of a flag perseveres, providing evidence of a past event: the
flag may in some implcmentations point to diagnostic infor-

Every operation involving a signaling NaN or invalid oper-
ation (§7.1) shall, if no trap occurs and if a floating-point
result is to be delivered. deliver a quiet NaN as its result.

Every operation involving one or two input NaNs, none of
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them signaling, shall signal no exception but, if a floating-
point result is to be delivered, shall deliver as its result a

mation about the location and nature of the event and/or,
perhaps, some subsequent ones.
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The crudest implementations will use just one bit for a
flag. Next better is to point to the last event since the user
altered the flag. Pointing to the first event after the flag was
reset is slightly better, and feasible for high-speed machines.
Much better, and much harder to implement, is to point to
the first and the last, and to keep count of how many occurred
in between.

In all cases, a human user should ideally be able to mon-
itor what is going on by means of some kind of annunciator,
perhaps a panel light or a blinking dot on the screen to signify
that certain (preselected) flags were set and are being or have
been dealt with by the program. Interrogating the annuncia-
tor should reveal which flags are set, and further interro-
gation should reveal why.

Because the flag is an object known to the operating
systcm, to alter a flag (to set or reset or restore it) may entail
a call to the operating system or to a runtime library pro-
cedure. But to sense whether a flag is clear, and perhaps to
save its value, may entail little more than a memory refer-
ence. Thus, alteration of a flag, including resetting it, may
be too slow for inclusion with other operations inside a loop,
while a true/false test of a flag should be fast enough for
that.

7.1. Invalid operation. The invalid operation exception is
signaled if an operand is invalid for the operation to be
performed. The floating-point result delivered when the
exception occurs without a trap shall be a quiet NaN (§6.2).
The invalid operations are

(1) Any operation on a signaling NaN (§6.2);

(2) Addition or subtraction: magnitude subtraction of
infinities like (+®) + (—);

(3) Multiplication: 0 X =;

(4) Division: 0/0 or %/,

(5) Remainder: x REM y, where y is zero or x is infinite;

(6) Square root if the operand is less than zero;

(7) Conversion of an internal floating-point number to
an integer or to a decimal string when overfliow,
infinity, or NaN precludes a faithful representation
in that format and this cannot otherwise be signaled;

(8) Conversion of an unrecognizable input stiing; and

(9) Comparison via predicates involving “<" or “>",
without *?°, when the operands are “unordered” (§5.7,
Table 3).

7.2. Division by zero. If the divisor is zero and the dividend
is a finite nonzero number, then the division by zero excep-
tion shall be signaled. The result, when no trap occurs, shall
be a correctly signed « (§6.3).

The exception called “Division by Zero™ is misnamed
for historical reasons. The division by zero flag, when set,
indicates precisely that an infinite result was delivered by
some previous floating-point operation on finite operands.
that the exact result is nor finite, and that no trap was taken
(whether not implemented. or implemented but not cnabled
by the user). For example, 3.0/0.0 = + ; similarly, /n(0)
= —oo, tan(90°) = —1an (—90°) = w, atanh(l) = +o,
. . . though these are not specified by the draft standards.
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A different exception, “Overflow,” is signaled when an
infinite result is produced inexactly from finite operands. No
exception is signaled when an infinite result is produced from
infinite operands, as in ®x o, ©/0, V+o, . .. and, pre-
sumably, exp( + ), In(+ =), sinh(=), . . . .

7.3. Overflow. The overflow exception shall be signaled
whenever the destination precision’s largest finite number is
exceeded in magnitude by what would have been the rounded
floating-point result (§4) were the exponent range unbounded.
The result, when no trap occurs, shall be determined by the
rounding mode and the sign of the intermediate result as
follows:

(a) Round to nearest carries all overflows to x with the
sign of the intermediate result.

(b) Round toward O carries all overflows to the preci-
sion’s largest finite number with the sign of the inter-
mediate result.

(c) Round toward — = carries positive overflows to the
precision’s Jargest finite number and carries negative
overflows to —<<.

(d) Round toward + = carries negative overflows (o the
precision’s most negative finite number and carries
positive overflows to +=.

Trapped overflows on all operations except conversions shall
deliver to the trap handler the result obtained by dividing
the infinitely precise result by b° and then rounding. The
exponent adjustment « for a precision shall be chosen to be
approximately 3 X (Ep,, ~Enia)4 for that precision, and
should be divisible by twelve. Trapped overflow on conver-
sion from a floating-point precision shall deliver to the trap
handler a result in that or a wider precision, possibly with
the exponent adjusted, but rounded to the destination’s pre-
cision. Trapped overflow on decimal string to floating point
conversion shall deliver to the trap handler a result in the
widest supported precision, possibly with the exponent
adjusted, but rounded to the destination’s precision; when
the result lies too far outside the range for the exponent 0
be adjusted, a quiet NaN shall be delivered instead.

The exponent adjustment of approximately 3
X (Emax —Emin)/4 is chosen to translate overfliowed/under-
flowed results as nearly as possible to the middle of the
exponent range so that, if desired, they can be used in sub-
sequent scaled operations with less risk of causing further
exceptions. The requirement for divisibility by 12 simplifies
the extraction of low order integer (square, cubic, and quar-
tic) roots.

Traditionally overflow has been associated with the pro-
duction of results whose magnitudes lie above a threshold
bf=*"! beyond which values cannot be represented. The
draft continues this tradition.

If the program will respond to overflow by aborting, then
a simple trap suffices. If instead it is desired to continue the
computation under circumstances that will not lead to mis-
leading results, some value must be delivered. Some systems
simply deliver the number of largest magnitude and correct
sign. Others deliver special values which behave approxi-
mately (but not exactly) like the % of this draft.

The draft standard prescribes a default infinite result and.,
in addition, a solid indication that this substitution has
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occurred—the overflow flag. The overflow flag, when set,
indicates precisely that an infinite result was delivered by
some previous floating-point operation on finite operands,
that the exact result is finite, and that no trap was taken
(whether not implemented. or implemented but not enabled
by the user). It is therefore also appropriately raised by such
things as attempts to compute exp(10%).

7.4. Underflow. Two correlated events contribute to under-
flow. One is the creation of a tiny nonzero result between
= b¥™= which, because it is so tiny, may cause some other
exception later such as overflow upon division. The other is
extraordinary loss of accuracy during the approximation of
such tiny numbers by subnormal cumbers. The implementor
may choose how these events are detected, but shall detect
these events in the same way for all operations. Tininess
may be detected either

(1) “after rounding™: when a nonzero result computed
as though the exponent range were unbounded would
lie strictly between = b5=;

or

(2) “before rounding™: when a nonzero result computed
as though both the exponent range and the precision
were unbounded would lie strictly between =55,

Loss of accuracy may be detected as either

(3) a denormalization loss: when the delivered result
differs from what would have been computed were
exponent range unbounded;

(4) an inexact result: when the delivered result differs
from what would have been computed were both
exponent range and precision unbounded. (This is
the condition called inexact in §7.5.)

When an underflow trap is not implemented or is not enabled
(the default case), underflow shall be signaled (via the
underfiow flag) only when both tininess and loss of accuracy
have been detected. The method for detecting tininess and
loss of accuracy does not affect the delivered result which
might be zero, subnormal, or =55, When an underflow
trap has been implemented and is enabled, underflow shall
be signaled when tininess is detected regardless of loss of
accuracy. Trapped underflows on all operations except con-
version shall deliver to the trap handler the result obtained
by multiplying the infinitely precise result by b® before
rounding, where the exponent adjustment a shall be the
same as in §7.3. Trapped underflows on conversion shall be
handled analogously to the handling of overflows on
conversion.

Note that a system whose underlying hardware always
traps on underflow, producing a rounded, exponent-adjusted
result, must indicate whether such a result is rounded up in
magnitude in order that the correct subnormal result may be
produced in system software when the user underflow trap
is disabled.

Floating-point formats which do not include subnormal
values naturally associate underflow with the corresponding

production of results whose magnitudes lic beneath the
threshold 5. In these cases, the value zero is clearly the
best approximation to an underflowed result when it is nec-
essary to deliver some numerical vaiue. This situation has
two potentially adverse consequences. First, the zero value
thus produced may precipitate a division by zero or other
uantoward event which would not have occurred absent the
underflow. Second, the rounding error which accompanies
the replacement of a nonzero result is substantially greater
than would have arisen had the exponent not been too small.

The presence of subnormal numbers in the draft allows
the effects of underflow to appear gradually. In particular,
the subtraction of nearly equal numbers each near 45 always
produces a subnormal value which can be represented exactly.
These tiny numbers may be more prone to precipitating over-
flows if reciprocated, but will not lead to division by zero
unless exactly equal numbers were subtracted. In the case
of multiplication and division, a zero approximation to an
underflowed result can still arise, but in any event the max-
imum error is reduced from 55= to 5™ ~*.

The significance of underflow varies according to appli-
cation and will often be concerned either with taking evasive
action where small (subnormal) values occur-or with obtain-
ing a diagnostic indication that approximation error in excess
of that attributable to rounding (signaled by inexact) has
occurred.

Thus, the definition of underflow differs, depending on
whether traps are to be taken. When an underflow trap is
implemented and enabled, the threshold test is appropriate
for all operations, independent of whether a rounding error
would arise in a subnormal approximation. This allows action
such as scaling to be taken upon the first production of a
value beneath the underflow threshold. When only the flag
is to be set, the indication is appropriate only in the presence
of a rounding error that may invalidate an a priori error
analysis. Thus, addition, subtraction, and remainder, whose
results are always exact when they lie beneath the underflow
threshold, cannot raise the underflow flag.

The denormalization loss test is preferable to the inexact
result test, which can occasionally deliver a slightly pessi-
mistic indication of lost accuracy. However, the denormal-
ization loss test may be substantially harder to implement,
in which case the inexact result test is an acceptable
compromise.

Implementations that always hold operands and deliver
results in double or extended format registers, shortening to
single or basic precision only upon storing (§4.3), may sig-
nal underflow during a copy operation if treated as an arith-
metic operation (which the draft standard permits) provided
the trap is enabled; however, when a trap is not present or
not enabled, the copy operation cannot raise the underflow
flag because it is an exact operation.

7.5. Inexact. If the rounded result of an operation is not
exact or if it overflows without an overflow trap, then the
inexact exception shall be signaled. The rounded or over-
flowed result shall be delivered to the destination or, if an
inexaclt trap occurs, to the trap handler.

Inexact applies only to valid operations. Inexact and
underflow flags are destined to be raised frequently, and then
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usually ignored. To describe a way to avoid unnecessarily
updating these flags, we must distinguish between hardware
flags (single bits in a processor’s state) and software flags
(pointers stored in memory), between hardware trap han-
dlers (part of the operating system) and software trap han-
dlers (subroutines preselected by a user), and between a
hardware trap-disable bit and a software-trap enable pointer
(to the software trap handler presclected by the user). The
scheme is fast because it identifies the hardware flag bit with
the hardware trap-disable bit.

In this scheme, the operating system will arrange that
cach hardware trap-disable bit (hardware flag bit) be on if
and only if its corresponding software flag is nonnull, so the
occurrence of underflows or inexact results will not be con-
cealed from the user. Assume that the hardware must pro-
duce an underflowed or inexact result.

In the usual case, the appropriate trap-disable bit is already
on, and the appropriate default result is delivered directly
with no further exceptional activity required of the proces-
sor. When the appropriate trap-disable bit is off, then that
bit should be turned on, and a rounded result, possibly
denormalized or with adjusted exponent, should be deliv-
ered to the hardware trap handler together with a bit of infor-
mation sufficient to compute a denormalized result from one
with adjusted exponent if necessary.

The hardware trap handler can tell what has just hap-
pened by comparing the present state of the hardware trap-
disable bits with the previous state. If an appropriate non-
default software trap handler has been enabled by the user,
the hardware trap handler resets the hardware trap-disable
bit, then invokes the software trap handler. Otherwise, the
hardware trap handler places a suitable nonnull pointer into
the proper software flag and delivers the appropriate default
result. Thus, if an event like inexact occurs many times
before its software flag is reset, only the first occurrence
delays computation to set the flag.

8. Traps

A user should be able to request a trap on any of the five
exceptions by specifying a handler for it. He should be able
to request that an existing handler be disabled, saved or
restored. He should also be able to determine whether a
specific trap handler for a designated exception has been
enabled. When an exception whose trap is disabled is sig-
naled, it shall be handled in the manner specified in §7.
When an exception whose trap is enabled is signaled, the
execution of the program in which the exception occurred
shall be suspended, the trap handler previously specified by
the user shall be activated, andammh. if specified in §7,
shall be delivered to it.

8.1. Trap handler. A trap handler should have the capabil-
ities of a subroutine that can return a value to be used in lieu
of the exceptional operation’s result; this result is undefined
uniess delivered by the trap handler. Similarly, the flag(s)
corresponding to the exceptions being signaled with their
associated traps enabled may be undefined unless set or reset
by the trap handler.

When a system traps, the trap handler should be able to
determine

(1) which exception(s) occurred on this operation;
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(2) the kind of operation that was being performed;

(3) the destination's precision;

(4) in overflow, underflow, and inexact exceptions, the
correctly rounded result, including information that
might not fit in the destination’s precision; and

(5) in invalid operation and divide by zero-exceptions,
the operand values.

8.2, Precedence. If enabled, the overflow and underflow
traps take precedence over a separate inexact trap.

Appendix: Recommended functions and
predicates®

The following functions and predicates are recommended
as aids to program portability across different systems, per-
haps performing arithmetic very differently. They are
described generically; that is, the types of the operands and
results are inherent in the operands. Languages that require
explicit typing will have corresponding families of functions
and predicates.

Some functions below, like the copy operation y := x
without change of precision, may at the implementor’s option
be treated as nonarithmetic operations which neither signal
underflow for subnormal operands nor signal the invalid
operation exception for signaling NaNs; the functions in
question are (1), (2), (6), and (7).

(1) copysign(x.y) returns x with the sign of y. Hence,
abs(x) := copysign(x,1.0), even if x is NaN.

(2) —xis x copied with its sign reversed, not 0—x; the
distinction is germane when x is =0 or NaN. Con-
sequently, it would be a mistake to use the algebraic
sign to distinguish signaling NaNs from quiet NaNs.

(3) scalb(x,N) returns x X &, forintegral values N without
computing b".

(4) logb(x) returns the exponent of x, a signed integer in
the precision of x, except that logb(NaN) is a NaN,
logh(=) is +=, and logb(0) is —= and signals the
division by zero exception. When x is positive and
finite, the expression scalb (x, — logb(x)) lies strictly
between O and b; it is less than 1 only when x is
subnormal.

Logb of a subnormal x is — E;,.

(5) nextafter(x,y) returns the next representable neighbor
of x in the direction toward y. The following special
cases arise: if x=y, then the result is x without any
exception being signaled; otherwise, if either x or y

*This appendix is not part of l.he proposcd 1EEE Standard 854 for Radix-
and Word-tength-indep 73 t Arithmetic, but is included
for information only.
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is a quiet NaN, then the result is one or the other of
the input NaNs. Overflow is signaled when x is finite
but nextafter(x,y) is infinite; underflow is signaled
when nextafter(x,y) lies strictly between = 5°==; in
both cases, inexact is signaled.

(6) finite(x) returns the value TRUE if —® < x < +0o,
and returns FALSE otherwise.

(7) isnan(x), or equivalently x +# x, returns the value TRUE
if x is a NaN, and returns FALSE otherwise.

(8) x<>y is TRUE oaly when x<y or x>y, and is dis-
tinct from x #y, which means NOT(x=y) (see again
Table 3).

(9) unordered(x,y), or x?y, returns the value TRUE if x
is unordered with y, and returns FALSE otherwise
(see again Table 3).

(10) class(x) tells which of the following ten classes x
falls into: signaling NaN, quiet NaN, — o, negative
normal, negative subnormal, —0, +0, positive sub-
normal, positive normal, and + <. This func-
tion is never exceptional, not even for signaling
NaNs. B
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