
reprinted from

,mM

A Proposed Radix- and
Word-length-independent
Standard for Floating-point

Arithmetic

W.J. Cody·
Argonne National Laboratory

J. T. Cooncnt
Apple Computer

D.M.Gay
AT&T Bell Laboratories

K.Hanson
Apple Computer

D. Hough
Apple Computer

w. Kahan··

University of California, Berkeley

R. Karpinski
University of California, San Francisco

J. Palmer
Intel

EN. Ris
mM

D. Stevenson
Zilog, Inc.

86

Besides making the proposed IEEE 854 standard available for comment, this

article explains how to overcome some of its implementation problems.

A Proposed Radix- and
Word-length-independent
Standard for Floating-point

Arithmetic

W.J. Cody·
Argonne National l:aboratory

J. T. Cooncnt
Apple Computer

D. M. Gay
AT&T Bell Laboratories

K.Hanson
Apple Computer

D. Hough
Apple Computer

T he Microprocessor Standards Committee of the IEEE
Computer Society sponsors two groups drafting pro

posed standards for floating-point arithmetic. The first, Task
P754, reported Draft l 0.0 of a Proposed Standard for Binary
Floating-point Arithmetic out of committee in December,

•Wort supponed by the Applied Mathematical Sciences Research Pro
gram (KC-04-02) of the Office of Energy Research of the US Department
of Energy under Contract W-31-109-Eng-38.

tWork supponed in pan at the University of California, Berkeley. by
an IBM predoctoral fellowship.

w. Kahan··
University of California, Berkeley

R. Karpinski
University of California, San Francisco

J. Palmer
Intel

F. N. Ris

IBM

D. Stevenson
Zilog, Inc.

1982. 1 That document is now a de facto standard2 and is
progressing slowly through the approval process within the
IEEE Computer Society.

In August 1983, the second group, Task P854, com
pleted Draft 1.0 of a Proposed Radix- and Word-length-

••Work supported in pan by research grants from 1hc Office of Naval
Research and the Depanmcna of Energy.

Note: In addition to 1he above, the following aulhors • employers sup
poned this effort: Apple Computer, AT&T Bell Laboratories, IBM. Intel,
UC San Francisco, and Zilog.

0272-1732184/0800·0086SOI.OO © 1984 IEE£ IEEE Micro

independent Standard for Aoating-point Arithmetic that
generaJizes and is upward compatible with the IEEE Pro
posed Standard for Binary Aoating-point Arithmetic. This
article places their contents before the public for the first
time.

Text drawn from the P854 draft is set off from surround
ing expository material by indentation from both margins.
The article also includes material that describes how deci
sions were reached in preparing the P854 draft and explains
how to overcome some of the implementation problems.

We are publishing this material to invite comment on the
work of P854 prior to its submission to the IEEE Standards
Board for adoption as an IEEE standard. We intend that such
submission follow this publication by six months. We ask
that readers of this article direct any comments or criticisms,
in writing. to either of the following individuals:

W. J. Cody
MCS-22l/C223
Argonne National Laboratory
Argonne. IL 60439

R. Karpinski
U-76
University of California
San Francisco, CA 94143

In what follows. we refer to the P754 draft as the .. draft
binary standard: and the P854 draft as either the '"draft
generalized standard• or simply the '"draft.•

Many individuals helped prepare these drafts. Each con
tributed as an individual; no endorsement by an employer is
implied. The authors of this article were the voting members
of P854 when Draft 1.0 was adopted.

1. Scope

This draft has the same scope as the draft binary standard.

1.1. Implementation objecthes. Ir is intended that an
implementation of a floating-point system conformins;o this
standard can be realized entirely in software, entirely in
hardware. or in any combination of softwan: and hardware.
It is the environment the programmer or user of the system
sees that conforms or fails to conform to ~ draft Slandard.
Hardware components that require software support to con
form shall noc be said to conform apan from such software.

1.2. Inclusions. This standard specifies

(l) Constraints on parameters defining values of basic
and extended floating-point oombers;

(2) Add. subtract. multiply, divide, square root. remain
der. and compare operations;

(3) Convcr.;ions between integers and floating-point
numbers:

(4) Conversions between different floating-point pre
cisions:

C.51 Conversion between basic precision floating-point
numhcrs and <lccimal strings: and

161 f-lo.uin~-point exceptions and their handling, includ
int: non-numbers (NaNs).

August 1984

1.3. Exclusions. This standard docs not specify

(I) Fonna1s for inremaJ storage of ftoaling-point raunbcrs.
(2) Formats of decimal strings and integers.
(3) lnterprctalion of the sign and significand fields of

NaNs. or
(4) Conversion between extended precision (§3.2) ftoat

ing-point numbers and decimal strings.

2. Definitions

The following terms are defined for purposes of the draft
generalized standard:

Destination. Every unary or binary operation delivers its
result to a destination. either explicidy designated by the
user or implicidy supplied by the system (e.g .. intermediate
results in subex~ions or arguments for procedures). Some
languages place the results of intermediate calculations in
destinations beyond the user's conuol. Nonetheless, this
standard defines the result of an operation in terms of that
destination's precision as well as the operand's values.

Exponent. The component of a floating-point number that
normally signifies the integer power to which the radix is
raised in determining the value of the represented number.
Occasionally the exponent is called the signed or unbiased
exponent.

This definition implies that the radix used for the represen
tation of floating-point numbers is the same as the radix used
for scaling. For example, a decimal significand nmst be scaled
by a power of 10. Note, however, that the exponent is an
integer. and it need not be implemented as a string of base
b digits.

Floating-point munber. A digit-string chancterim1 by three
components: a sign, a signed exponent. and a significand.
Its numerical value, if any. is the signed product of its sig
nificand and the radix raised to the power of its exponent.
In this document a digit-string is not always distinguished
from a m1mbcr it may represent.

Fraction. The component of the significand that lies to the
right of its implied radix point.

Made. A variable that a user may set, sense. save. and
n:storc to control the execution of subsequent arithmetic
o~ons. The default mode is the mode that a program
can assume to be in effect unless an explicitly contrary state
ment is included in either the program or its specification.

The following mode shall be implemented:

(I) Roundin~. to control the direction of rounding errors;
and. in certain implementations,

(2) Rounding prcxision. to shorten the precision of results.

The implementor may, at his option, implement the follow
ing modes:

(3) Traps disabled/enabled, to handle exceptions.

87

88

NaN. Not a number; a symbolic entity encoded in ftoating
point format. There are 1wo types of NaNs (§6.2). Signaling
NaNs signal the invalid operation exception (§7. I) whenever
they appear as operands. Quiet NaNs propagate lhrough almost
every arithmetic operation without signaling exceptions.

A NaN is similar in some respects to the .. indefinite.. on
CDC 7600 and Cyber systems. and to the •reserved oper
and" in DEC PDP- I I and Vax.

Normal number. A nonzero number that is finite and not
subnormal.

Radix. The base for the representation of floating-point
Dllmbers.

Result. The digit string (usually representing a number) that
is delivered to the destination.

Shall and should. In this standard the use of the word •shall•
signifies that which is obligatory in any conforming imple
mentation; the use of the word •should"' signifies that which
is strongly recommended as being in keeping with the intent
of the standard, although architectural or other constraints
be)'ond the scope of this standard may on occasion render
the recommendations impractical.

Significand. The component of a floating-point number that
consists of a leading digit to the left of its implied radix point
and a fraction field to the right.

In the familiar .. scientific notation," numbers arc expressed
in a form like -1.2345 x 10-61 . Here are the first• - "' is
the algebraic sign, '"I .2345" is the significand, ... 2345" is
the fraction, • t0"' is the radix, and .. -67" is the exponent.

Status flag. A variable that may take two states. set and
clear. A user may clear a flag, copy it. or restore it to a
previous state. When set. a status flag may contain additional
system-dependent information. possibly inaccessible to some
users. The operations of this standard may as a side effect
set some of the following flags: inexact result, underflow,
overflow, divide by zero and invalid operation.

Subnonnal number. A nonzero floating-point raunber whose
exponent is the pn:cision's minimum and whose leading sig
nificant digit is zero.

For example, calculators whose lowest exponent is - 99
would admit subnormal numbers if they permitted numbers
like 0~0123 x 10-99

• Subnormal numbers used as arithmetic
operands do not behave exceptionally, but subnormal n:sults,
sometimes accompanied by a signal, serve to make under
flow gradual. Subnormal numbers correspond to the .. denor
malized numbers" in the draft binary standard.

User. Any penon, hardware, or program noc itself specified
by this standard. having access to and controlling those oper
ations of the programming environment specified in this
standard.

The draft is deliberately vague about the meaning of the
word "user" because ir could refer to a human seeking results,
an applications program exploiting the arithmetic, or a com
piler generating code for the arithmetic system.

3. Precisions

The main characteristic of the draft binary standard is its
attention to detail. Because it is specific to 32-bit words. it
specifies even the bit-patterns representing floating-point
quantities in the basic formats. Similar detail is found in
other discussions, such as binary++decimal string conver
sion and the adjustment of overflowed exponents.

While lhe draft gcneralil.ed standard also deals with detail,
it is best ~haracteri7.ed by its parameterization of the arith
metic. Because the draft generalized standard applies to
machines of arbitrary word length and to radices other than
binary, the representation of floating-point quantities is not
easily specified. Instead, the draft derives the set of values
that may be taken by" floating-point quantities in each of the
supported precisions from a set of four integer parameters.
These parameters tum out to be fundamental to the whole
arithmetic system. They permit a level of detail comparable
to that in the draft binary standard while preserving essential
abstractness in discussing such things as floating-point
++ decimal string conversion and the adjustment of over
flowed exponents.

This draft is a prescription for arithmetic which, given a
choice of the four integer parameters, defines the represent
able values and the results of all operations precisely. In this
respect, the draft differs ~m descriptive models of arith
metic, like Brown's,3 which derive some information from
similar parameters but cannot say exactly what arithmetic
results will be generated. We will see later that proper spec
ification of the four integer parameters produces essentially
the arithmetic in the draft binary standard. an important
verification of the desired compatibility of the two proposals.

Section 3 of the draft generalized standard discusses the
precisions and their parameterization:

This standard defines four floating-point precisions in two
groups, basic and extended. each having two widths. single

"'and double. The standard levels of implementation are dis
tinguished by the combinations of precisions supponed.

J.I. Sets ol Yalues. The standard does not specify how to
encode numbers for internal storage. Four integer parame
ters specify each precision:

b-the radix,

p-the number of base-b digits in the significand.

Em .. -the maximum exponent, and

Emin -the mininmm exponent.

The parameters are subject to the following constraints:

b shall be either 2 or IO and shall be the same for all
supported precisions.

(£"' .. -Em,n)/p shall exceed 5 and should exceed 10,
and h"- 1 ;,- IOs.

The balance between the overflow threshold (bEmaa • 1) and

IEEE Micro

the underflow threshold (b£min) is charac1erized by their
producl (bEm.,. •Em;n• 1). which should be lhe smallest inte
gral power of b lhat is ~4.

Because overflow is so much more serious a disaster than
gradual underflow, this constraint moves the overflow
threshold slightly further away from l (at the cost of bringing
the underflow threshold slightly closer). The intent is to
ensure that normal values can be reciprocated without awk
ward exception; e.g .. the inverse of the smallest positive
normal value (the underflow threshold) should not overflow,
and the inverses of the largest finite values (almost the over
flow threshold) should suffer minimal loss of significance.

Each precision aJlows for lhe representation of just the fol
lowing entities:

Numbers of lhe form

(- l)'b£(dc,.d1d2 ••. dp- 1), where

s is an algebraic sign.

Eis any integer between Eman and£,..,..., inclusive,
and

each d; is a base-b digit (O~d,~b-1);

Two infinities, + oc and - oc;

At least one signaling NaN; and

At least one quiet NaN.

The aJgebraic sign provides additional information about
any variable lhat has lhe value zero. Although aJI precisions
have distinct representations for +0, -0, +co, and -co.
lhe signs are significant in some circumstances, such as divi
sion by zero, and not in olhers. In this standard, O and co
are written without a sign when lhe sign does DOI matter.
An implementation may find it helpful to provide additiooaJ
information about a variable which is NaN through an alge
braic sign, but this standard does not imerprer such eittensioos.

Note that §3.1 does not mention the representation of
numbers, only their values:

The foregoing description enumerates some values redun
dantly, e.g.,

6°(1 •O) = b 1(0• I)= b2cO·Ol) = ...

but the standard docs DOI distinguish them.

The Slandard allows an implemenwion co encode some values
redundantly provided thal it does DOI distinguish redundanl
encodings of nonzero values. An implementation may aJso
reserve some digil strings for purposes beyond the scope of
lhis slandard.

Although the draft generalized standard is to be radix
indcpendcnt, the committee could find no vaJid technical
argument for allowing radices other than 2 or JO. Radices
that are higher powers of 2 or IO have disagreeable prop
cnics. Nevcnheless, the standard is drafted so that this par-

August 1984

ticular limitation is expressed only in §3.1 and §5.6; we
believe that were this limitation removed, only §5.6 would
have to be revised.

Constraints on the parameters were not imposed capri
ciously. The lower limit of Sp for Em ... - Emin accommodates
instrumentation equipment where large exponent range is
not imponant, but some form of standardized floating-point
arithmetic is. The inequality b"- 1;;,i 105 permits implemen
tation of ~significant-decimal arithmetic in 32-bit words
without resorting to digit encoding more complicated than
BCD.

The subnormal numbers in this scheme arc those nonzero
m1mbers with magnitudes less than 1r-. All bigger finite
numbers are normal. The natural way in which zero and
subnormal numbers occur is a consequence of focusing on
the values of the numbers rather than on their representation.
Representation of the other special operands, infinities, and
NaNs, requires that something special be done.

Examples:

(I) In the ~t binary standard, the parameters for single
precision arc b=2, p=24, Em ... = 127, and
Emin = - 126. All of the special operands are accom
modated by reserving extreme values of the exponent
beyond Em ... and Emin•

(2) The parameters for many hand calculators are b = l 0,
p = l 0, Emaa = 99, and Errain = - 99. However, none
of the special operands arc accommodated.

With the establishment of the parameterization, it is pos
sible to describe the various supported precisions and the
relations between them. Note that the terms •single preci
sion" and •double precision" may be known by other names
in existing programming languages. For example, "single
precision" is called "real" in Pascal and Fortran.

3.2 Basic Precisioas

3.2.1. Sing/~. 1be narrowest precision supported shall be
called sing/~ pncision. When necessary to distinguish from
other parameters, those defining single pn:cision are denoted
thus:

E_,,E...,.p •.

3.2.2. Doub/~. When a second. wider basic precision is
supported, it shall be called dollbl~ pncision. When nec
essary to distinguish from other paramelerS, those defining
double precision are dcnoced thus:

E~Em;,v,Pt1·

In addition to the n:qu~ments specified in §3.1, parameters
for double precision shall satisfy

/1'-';3, IOb:?p',
E--.,~ 8£....,,., +7.

£fftffl4 ~ 8 £min,·

The condition v- :::1: I Ob2p, provides that double precision
be at least one decimal-digit wider than twice single preci
sion to protect the formation of inner products (vector dor
products) of single-precision data using double-precision
arithmetic. The consequence when b = 2 is that at least four

89

90

additional bits more than twice single precision must be
provided in double precision. The draft binary standard pro
vides five such bits. The constraints on £~ and £mini ensure
that products of up to eight factors (or powers up to the
eighth power) of normal single-precision values will neither
overflow nor underflow.

In addition to inner products. certain other commonly
occurring computations can be earned out more accurately
and naturally when the arithmetic used provides extra expo
nent range and precision over that found in the data. We will
see in a moment that exponentiation and conversion between
ftoating-point repraentations and decimal strings are com
putations of this type (there are many others).

If i~plemented. double-precision arithmetic provi_dcs the
desired suppon for single precision. But what supports sin
gle precision when double precision is not implemented. and
what supports double precision? The draft standard provides
extended precisions for these purposes. Although extended
precisions afford almost full protection in many important
computations. they provide only partial protection for inner
products. In a first implementation of a system conforming
to this draft s1andard. supporting the few additional digits
in an extended precision may be easier. substantially more
economical. and almost as beneficial as supporting the next
higher basic precision with its more than doubling of the
digits. The issues to be considered when selecting between
implementation of an extended precision and implementa
tion of the next higher basic precision are discussed further
by Coonen' and Kahan.'

3.3. Extencled precisions. The two extended precisions.
single CJttended and double extended. are implementation
dependent. When necessary to distinguish from other
parameters, those defining. for example. single-CJttended are
denoted thus:

Parameters for single-ex1ended shall sa1isf y

E,~8Emn, +7,

and

If b :t- I 0. P-.c must be large enough lo supporl conversion to
and from decimal s1ring.s (§5.6). Thus. for b= 2, the con
dition p, .. ~P • + r&og~E , - £..,,n,> 1 shall be satisfied. For
all b. 1he c:onditionp ... ~ l.2p, shall be satisfied. In addition,
lite following condition should be satisfied to protect agains1
error in lite computation of y.c:

ln{3/n(b)(Emaa + I)}
p..,> I +p, + /n(b) •

For b = 2. the condition

p., ;is p, + r log2(Emu, - Emin,) 1
in §3.3 states that at least as many bits as are required for
representing a single-precision number (significand plus
exponent) shall be used for representing the single-extended
significand. Wider would be better. but might be uneconom
ical because of architectural constraints such as bus widths.

Ideally p ... should be large enough to protect against error
in the computation of y 1• even when the result is X, the
largest single precision floating-point quantity. or a. the

smallest normal positive floating-point quantity. Assuming
that

). = bli-"(b-b-P);.: Ila= b-1-:-.

we want to be able to compute /n(X) with absolute error less
than b-P, in single-extended precision. (If X < Ila. replace
E1naa. + I with -Emin and A with I/a in the analysis.) Let

y' = exp(x/n(y)) ==). = bE-'(b-b-P•).

Then the computed argument x ln(y) delivered to the expo
nential routine is effectively

x /n(y)(I :t E)\

where E = b1
-P". Here. the first two rounding errors come

from the computation of /n(y) and the product x /n(y). and
the third accounts for the error to be made in the argument
reduction in the exp routine. Computationally. to first order
terms in the errors.

t-xp(x /n(.v))-+ t-.rp[x /n(y)(I :t 3E))(I + 11).
== (I +11)). exp[:t /n().)3E].
== (I + 11)). [I :t /n().)3E],

where 11 is a single-precision rounding error. Now the desire
is that

This simplifies to

ln{3/n(b)[Emu + I]}
p., > I +p, + /n(b)

Because this ideal may not be practical. the condition on Pu
is recommended but not required. For example. it may not
be easy to allocate more space for the p,, digits than that
space normally allocated to the representation of a single
precision floating-point number, i.e .. the space normally
used to represent two signs. the Ps digits of the significand
and the largest exponent. Ema.,• say. In traditional floating
point architectures this is exactly one or two word lengths.

Example:

(I) In the draft binary standard, the parameters are
£,naa, = 127, Emu., ;.: I 023 = 8Emaa, + 7. £m,n,

= - 126, Emin., :5:: - 1022 < 8Emin,, and p,., ;.: 32
> p s + 7. This extended format falls I bit short of
what it ideally should be to support _v '. owing to

practical considerations of wordlength.

Double-extended precision bears the same rela1ion 10 double
J)fCCision as single-exiended bears to single precision.

Note lhat double precision satisfies lhe requirements for sin
gle-exlended precision.

One of our principal objectives is to facilitate movement of
software among machines that conform to the draft standard.
So that single-precision software supported by either single•
extended or double-precision arithmetic can be insensitive
to whichever of the two is actually used. both must treat
underflow in the same way. Thal is why single extended
includes subnormals.

IEEE Micro

3.4 Combinations of predsioas. All implementations con
forming to this scandard shall suppon single psuision.
Implementations should suppon the extended precision cor
responding to the widest basic precision supported. and need
not support any Olhcr extended precision.

Section 3.4 recognizes that double precision satisfies all of
the requirements for single ex.tended. It would be wasteful
to provide both of these precisions unless complete upward
compatibility and speed were imponant issues.

Why did the authors of the draft standards not follow
Coonen4 in specifying. besides single and double. a quad
ruple-precision f onnat? Presumably it is obvious that a
quadruple fonnat should bear the same relation to double as
double bears to single. Less obvious is whether a family-of
intermediate precisions positioned between single and dou
ble. and between double and quadruple. would be worth
implementing and supporting with appropriate language and
library facilities. Such a question has been considered by
T. E. Hull. 6 but the authors have chosen to say nothing more
about that question at this time.

4. Rounding

Rounding is one of the least understood and often one of
the most badly designed features in traditional arithmetic
systems. The draft standard specifies four different rounding
modes in §4. These include what we intuitively think of as
rounding. but done carefully; what is frequently called trun
cation; and two directed rounding modes of use when imple
menting interval arithmetic. The rounding modes are user
selectable and apply to all pertinent operations. described in
§5. once selected.

Rounding takes a number regarded as infinitely precise and.
if ncccssary, modifies it to fit the dcstinalioo's precision while
signaling the inexact exception (§7.S). Exc:epc for conver
sion between floating-point numbers and decimal sttings
(whose weaker conditions arc specified in §5.6). every oper
ation specified in §S shall be performed as if it first produced
an intermediate result correct to infinite precision and with
unbounded range, and then rounded that result according to
one of the modes in this section.

The rounding modes affect all arithmetic opcra!ions exccpc
comparison and remainder. The rounding modes may affect
the signs of zero sums (§6.3), and do affect the thresholds
beyond which overflow (§7.3) and undcrftow (§7.4) may be
signaled.

4.1. Round to nearest. An implementation of this standard
shall provide round to nearest as the default rounding mode.
In this mode the repn:scntable value nearest to the infinitely
precise result shall be delivered; if the two nearest n:prc•
sen1able values arc equally near, the one with ils least sig•
nificant digit even shall be delivered. However. an infinitely
precise result with magnitude al least 1r-cb- ½b1 -"> shall
round 10 cc with no change in sign; here Em.. and p arc
determined by the destination precision (§3) unless overrid
den by a rounding precision mode (§4.3).

4.2. Directed roundings. An implcmentalion shall also pro.
vide three user-selectable directed rounding modes: round
toward +oc, round lowani -cc, and round toward 0.

August 1984

When rounding toward +CD, the result shall be the preci
sion's value (possibly +111) closest to and no less than the
infinitely precise result. When rounding toward - CD, the
result sball be the precision's value (possibly -CD) closest
to and no greater than the infinitely pn:cisc result. When
rounding toward o. the result sball be the precision's value
closest to and no greater iD magnitude than the infinitely
precise result.

Rounding toward zero provides a mode of arithmetic
capable of nearly mimicking features of certain widely used
machines and languages. Fust, rounding toward zao pre
vents infinity from being created by overflow; this approx
imates the situation OD machines that, Jacking infinity, replace
overflows by the biggest available finite magnitude with the
appropriate sign. Second. rounding toward zero is obliga
tory in Fonran•s three conversions from floating point to
integer:

I= X
. . . INT(X) . . . or . . . IFIX(X) . . . ,
... AINT(X) ...

The draft standard's default rounding mode in conversion to
integer nearly matches a construction common in Fortran.
namely,

... lNT(X +0.5) . . . or ... AINT(X +0.5) ...•

except when X is already a nonnegative even integer. Intel's
Fortran 867 assigns the name RINT(X) to the draft binary
standard"s default rounding to nearest integer.

4.3. Rounding precision. Normally a result is rounded to
the pm:ision of its destination. However. some systems deliver
results only to double or exccndcd destinations. On such a
system the user, which may be a high-level language com
piler. shall be able to specify that a result be rounded instead
10 single precision. though it may be stoled in double or
extended precision with its wider exponent nnge. Similarly,
a system that delivers results only to double extended des
tinations shall permit the user to specify rounding to single
or double precision. Nore that to meet the specifications in
§4. I. the result cannot suffer more thin one rounding error.

Conttol of rounding precision is intended to allow sys
tems whose destinations are always double or extended to
mimic, in the absence of overflow/underflow, the precisions
of systems with single and double destinations. Proper mim
icking requires that such machines provide operations to
combine single operands. returning a single result with only
one rounding. Ao implementation should not provide oper
ations that combine double or extended operands to produce
a single result. nor operations that combine double extended
operands to produce a double result. with just one rounding,
because using such operations would violate §5. l. below.

The precision to which anonymous variables (constants
and subexpressions) shall be rounded is determined or lefl

. undetermined in a confusing way in most programming lan
guages. For example, Fonran assigns a .. type• called '"Sin•
gle Precision'" or .. Double Precision'" to every anonymous
real variable. but does not require that a subexpression be
rounded to the accuracy that matches its syntactic '"type";

91

92

better accuracy is acceptable and is provided on many
machines that antedate the draft standards. as well as on the
Intel 8087 and the forthcoming Motorola 68881 and Zilog
28070. The language C evaluates all real expressions to
duuble precision regardless of whether they contain only
single-precision variables. This issue is discussed further by
Kahan and Coonen.11 and a recommendation aimed specifi
cally at Fortran is provided by Corbett. 9

5. Operations

Traditional arithmetic systems almost always distinguish
between arithmetic operations such as addition and multi
plication. and ancillary operations such as conversions, and
sometimes even comparisons. The Conner are considen:d
part of the arithmetic system proper. while the latter are
usually left to the whims of a compiler or subroutine writer.
Consequently. the benefits of using even the best arithmetic
designs may be negated by the inability to properly convert
data to and from machine representation. or by spurious
branching based on faulty comparisons. Even data conver
sion in such cases may vary, depending on whether it is done
by a compiler or at runtime.

801h the draft generalized standard and its companion
proposed binary standard include conversions and compar-

. • isons in the arithmetic system proper. (They also include the
square-root operation because known algorithms produce
speed and accuracy comparable to the other operations spec
ified when implemented in hardware.) The difficulty of
specifying accurate conversion between floating-point and
decimal-string representations of data is indicated by the
complexity of §5.6. reproduced below.

All conforming implementations of this standard shall pr&

vide operations to add. subtract. multiply, divide. extract the
square root. find the remainder. round to a floating-point
integer. conven between different floating-point precisions.
convert between floating-point numbers and integers. con
vert between internal floating-poinl representations and dec
imal strings. and compare. Whether copying without change
of precision is considered an operation is an implementation
option. Except for conversion between internal floating-point
representations and decimal strings. each of the operations
shall be performed as if it first produced an intermediate
result corrcc(to infinite precision and with unbounded range.
and then coerced this intermediate result to fit in the desti
nation's pRCision (§4 and §7). Section 6 augments the fol
lowing specifications to cover :!: 0. ::!: :a:, and NaN; Section
7 enumerates exceptions caused by exceptional operands and
exceptional results.

5.1. Arithmetic. An implementation shall provide the add,
subtract. multiply. divide and remainder operations for any
two operands of the same precision, for each supported pre
cision: it should also provide the operations for operands of
differing precisions. The destination precision (regardless of
the rounding precision control of §4.3) shall be at least as
wide as the wider operand's precision. All results shall be
rounded as specified in §4.

When." * 0. the remainder r = .t REM _,. is defined regard
less of the rounding mode by the marhematical relation
r = .t - _,. x n. where n is the integer nearest the exact
value .t/y: whenever In - .tl_,·I = 1/.?, then n is even. Thus. the

remainder is always exact. If r = 0, its sign shall be that of
.r. Precision control (§4.3) shall nor apply to the remainder
operation.

REM is defined as it is. instead of matching the '"mod"'
function found in many programming languages, because
the latter can always be computed from the former, but the
converse is not always true. This is so because REM"s
remainder is the smallest possible remainder in magnitude.
and is always exact. Note in the definition of remainder that
the integer n may not be exactly representable in the preci
sion of x, y. and r because of inadequate precision. exponent
range. or both. Nevenheless. r is exactly representable in

• the precision of x and _v. For an extreme example, consider
b = 10, p = 1. Ernin = -99, Em ... = 99, X = 1075

, and
_v = 3 x 10- 75

_ Then n = L 1/3 x 10150 J = 333 ... 33, a 150-
digit integer whose value lies above the overflow threshold.
Nevertheless. r = Io- 75

, precisely satisfying the defining
relation x = n x y + r. If y is near the underflow threshold
(i.e .. lvl<b£-+p). it is possible that r = x REM y may be
subnormal.

Despite the fact that n may be too huge to represent
exactly. many implementations of the draft binary standard
return at least the least significant three or four bits of n. In
effect. besides delivering r= x REM y they deliver n mod b3

or n mod b4
• This is convenient for calculating the reduced

argument of trigonometric and other periodic functions. The
extent of the convenience can be gauged from the following
program segment, which uses REM twice to provide the
equivalent results:

temp = x REM (b3 x .v) . . . this is exact.

r = temp REM)' . . . this is also exact.

n mod b·' = (temp - r)ly . . . rounded to nearest integer.

5.2. Square root. The square root operation shall be pro
vided in all supported precisions. The result is defined and
has positive sign for all operands ;;, O. except that ../ - 0
shall be -0. The destination precision shall be ar least as
wide as the operand's. The result shall be rounded as spec
ified in §4.

5.J. Floating-point precision conversions. It shall be pos
sible to convert floating-point numbers between all sup
poned precisions. If the conversion is to a narrower preci
sion. the result shaJI be rounded as specified in §4. Conversion
to a wider precision is exact.

S.4. Con\lersion betWftn floating point and inleger. It
shall be possible to convert between all supponed floating
point precisions and all supported integer precisions. Con
version to integer shall be effected by rounding as specified
in §4. Conversions between floating-point integers and inte•
Jcr precisions shall ht- exacr unless an exception arises as
specified in §7. I.

Floating-point overflow never occurs during conversion
to an integer because conversion to a floating-point integer
(§5.5) cannot overflow. and conversion to a fixed-point inte
ger (§5.4). if it overflowed, would have to signal either
integer overflow. if available. or invalid (§7. I). Conversion

IEEE Micro

of a nonintegral value to a floating-point integer (§5.5) is
always inexact: conversion of a nonintegral value to a fixed
point integer (§5.4) is inexact unless overflow forces invalid
to be signaled (§7).

S.S. Round floating-point mamba- to integral value. It
shall be possible 10 round a ftoating-poinr number ro an
integral valued ftoating-point number in the same precision.
The rounding shall be as specified in §4. with the under
standing thar when rounding to nearest. if the difference
between the unrounded operand and the rounded result is
cxadly one half. the rounded result is even.

The following section on conversions between floating
point and decimal strings was the most technically difficult
section to draft. The propenies specified in this section are
implied by error bounds that depend on the floating-point
precision and the number of digits in the decimal string; for
example. the 0.47 mentioned is a worst-case bound derived
for single precision on machines that conform to the draft
binary standard. For a detailed discussion of these error
bounds and economical conversion algorithms that exploit
the extended precision on such machines. see Coonen. 10

S.6. Floating point-decimal string conversion. Conver
sion between decimal strings in at least one format and float
ing-point numbers in all supponed basic precisions shall be
provided for mmbers throughout die ranges specified in Table
I. The non-negative integers D and N in Tables I and 2
describe decimal strings having values :!: M x IO:!: N, where
OEMEle>°-1.

When there is more than one choice for M and N with
M~ 10° - I. then Table l and the following discussion apply
to the choice having the smallest value of N. (In effect,
trailing zeros are saipped from or appended to M, subject
to M E 10° - I. to minimize N.) When M lies beyond the
bound specified by Max D in Table I • i.e., when
M ;3: IOM .. 0 • the implementor may, at his opcion, round
off all significant digits after the Max D-th to Olher decimal
digits. typically 0, and should signal inexact (§7.5) when
nonzero digits have been discarded. When the destination is
a decimal string, its least significant digit should be located
by format specifications for purposes of rounding. Note that
the largest possible value of N may be less than the boundary
specified in Table I when the destination is a decimal string ..

For b :/= JO, the bounds on Max D in Table I correspond
to conditions necessary for decimaJ strings to distinguish
floating-point numbers one from another. In some cases
slightly tighter bounds are possible. Coonen 10 discusses these
matters in some detail for the draft binary standard.

The entry for Max N in Table J is determined as follows.
Consider the following canonical form. the .. scientific nota
tion for ftoating-poinr numbers":

:t (PX b 1 -p) X bE = :t P11 . P 1 ... Pr- 1 X bF.,

where

b"- I ~ p ~ II'- l

when the number is normal, and

O<P~b"-1

August 1984

when the number is subnormal. Then (see Appendix)

nex1a/1er(0. l) = (I x b' -,,, x b£--::::: bE- • 1
- P

is the smallest positive floating-point number. and

nextafter(=, l) = (l,P- I) x b' -p x 1r- = bE-• •'

is the largest finite floating-point number. Nonzero decimal
strings have the canonical form

:tMX io=N = :t.M0M 1 • • • Mq-1 X 10=N, q~D.

where M and N are chosen to minimize INI subject to the
conditions J EiMEi J <>° - I and INI EiN maa • Let Dec min be the
smallest positive number to be convened from decimal to

floating point. Then

Decmm~O<>°- l)x 10-N-~ne.xtajier(0,I) = 1r-• 1
-P.

Thus. Nmaa ;;,: D + (p- I -Emin) x log10(b). Similarly, let
Dec maa be the largest finite decimal number to be convened
to floating point. Then

Dec ma• = (I X I oo- 1

) X ION"'° ;;,: nextafter(00 .1) = bE-• • 1

•

Thus. Nmaa ;;,: (1-D) + (Emaa + I) x log10(b). The final
expression for Max N results from letting E,,, denote the
larger of these two bounds on N maa. and assuming that Max
N has the form IO" - I .

Conversions shall be correctly rounded as specified in §4
for operands lying within the ranges specified in Table 2.
Otherwise. for rounding to nearest and b=2. the enor in
the convened result shall not ezceed by more than E units
in the deslination's least significant digil the error that would
be incuned by the rounding specifications of §4, provided
that exponent overflow/underflow does not occur. Here E

must saaisfy the condition t<0.5; E•0.47 has been found
to be achievable. In the directed rounding modes for b = 2
the error shall have the correct sign and shall not exceed
I + E units in the last place.

Conversions shall be monotonic. That is, incn:asing lhe value
of a ftoating-point number shall not decrease its value when

Table 1.
Floating polnt-ctectmat string conversion ranges.

MaxO

f P IOG1o(b)+ 17, b -:1,. 10

p, b = 10

Note: here Em = maxtD + (p-1 - Em1n) log11,(b),
(Ema+ 1)Iog,0(b) + 1-0}.

Table 2.

MaxN

1 oL foOIO(EatJ + 1 - 1

Correctly rounded conversion ranges.

b

2

10

MaxD

f P log,o(2) + 11
p

MaxN

LP,lOgs(2)J
1 Ql lo01otE•IJ • 1 _ 1

Note: here p. denotes the smallest precision permissible as extended support for
the basic precision p (§3.3), and

Em= max{O+ (p-1-Emm) log,0(b).
(Ema. + 1) log,0(b) + 1 - 0).

93

94

coavertcd to • decimaJ suing: and increasing the value of a
decimal suing shall noc decrease its value when converted
to a floating-point number.

When rounding to nearest. conversion from· ftoating-poinl
to decimal Siring and back to floating-point shall be the
identity as long as lhe decimal string is carried to the max
imum precision specified in Table I, namely, Max D digits.

For b= 10, conversion should be correctly rounded for
all values specified in Table I . For b = 2, the bounds on Max
D and Max N for corm:tly rounded results are determined
as follows. Let Pe be the precision in which the conversion
is to be computed. Ordinarily Pe will correspond to one of
the available extended precisions. Then the condition
1<>° <~defines D such that D digit decimal integers can
be repiacnted exactly in the conversion precision. Simi
larly, the condition SN < ,re defines N such that l«r' can be
represented exactly (further scaling of 5N by powers of 2 to
obtain loN is exact in a binary system). Thus, numbers of
the form ±Mx 1o=N, where M=e:10°- 1. can be repre
sented in the conversion precision with, at most, one round
ing error.

Example:

(I) In the draft binary standard the parameters for single
are b=2. p=24, and Emu= 127. 'The correspond
ing parameters for binary single-precision floating
point++decimal string conversion are Max D = 9.
Max M = 109

- I, and Max N = 99 for conversion
to floating point and Max N = 53 for conversion to
decimal string. The range for conectly rounded con
version is funher restricted to Max N = 13.

When rounding to nearest. conversion from floating point
to decimal string and back to floating point will be the iden
tity. provided that D is large enough to distinguish floating
point numbers one from another (the conditions in Table 1)
and that, for b = 2, Pc is large enough to represent D digit
decimal integers exactly. i.e .• provided

lpJog,o(2) J=i!:D=i!:f p.,log,o(2)+ 11,

or

lpJog,o(2) J=~{p,log,o(2) + 2 J.
This is implied by the condition

Pe'iJ::p., + 6.64 ...

or. because Pc and p, are integers.

Pc =i!: p.,+1.

Tilis relation is automatically satisfied when Pc is an extended
precision as defined in §3.3. For example, when Pc = p,~.

Pc =i!: p, + f log2(E-. - E1111n,) 1.
Noting that 2P• - 1 =i!: I 05 , we have

s
p., ~ log10{2) + I ::1: IS.

Because (Ernaa.. - Em.in,)> Sp., =i!: 90. we finally have

Pc~ p,+f 6.491 = p,+1.

If decimal Siring to floating point conversion overflows/
underflows, the response is as specified in §7. Overflow/
underflow and NaNs and infinities encountered during floa,
ing point to decimal suing conversion should be indicalcd
to the user by appropriate strings. The leuers ·NaN.• case
insensitive, optionally preceded by an algebraic sign, should
be the first characters of a suing representing a NaN. The
remainder of the string may be used for system-dependent
information on outpW, and may be ignored on input. Unless
recognized as a quiet NaN on input. an input NaN should
become a signaling NaN. The letters •infinity; case insen
sitive. optionally prec:cdcd by an algebraic sign, or the string
• 1J0,• optionally .prcccdcd by an algebraic. sign, should be
the characters representing signed infinity. Either n:presen
lalion may be produced on outpu1; boda should be accepted
on input.

The default action for attempting to conven an unrecogniz
able input decimal suing is to signal an invalid operation
exception.

To avoid inconsistencies, the procedures used for floating
point-clecimal suing conversion should give the same n:sults
reganlless of whether the conversion is performed during
language translation (interpretation. compilation, or assem
bly) or during program execution (run-time and interactive
input/output).

There are two kinds of NaNs in the standard, signaling
and quiet, as explained in §6.2. The question now is why
should input NaNs be presumed by default to be signaling
NaNs? First, the input is not a NaN but a string presumably
intended to be converted into a NaN. It seems reasonable
funher to presume that the intention was to introduce a sig
naling NaN. since the standard provides no other way to
create such a thing. Should that presumption be wrong, little
harm is done because in the absence of a trap enabled to
handle signaling NaNs. they merely tum into quiet NaNs
with no funher effect than to set the invalid operation flag.

The choice of strings to designate infinities is limited.
Note that "INF" is currently used in some implementations
of Basic to designate the largest finite number in the floating
point system.

The standard does not discuss the problem of output-field
overflow. a problem that must be solved by language imple•
mentors. An attempt to output a string of characters too long
for the preallocated field width must somehow notify the
user that his implicit assertion about the size of his result
has failed. That notification need not disturb the format of
subsequent output. For instance, in the case of printing N
= - 12345.6789 in a Fortran output field defined to be
F6.2. the expected line

::t: nn.nnxxxxxxxxxx

might be replaced by two lines

####~-12345.68
xxxxxxxxxx

without disturbing the relationship of subsequent lines on
the page.

5.7. Comparison. It shall be possible lo compare floating
point numbers in all supported precisions. even if the oper
ands· precisions differ. Comparisons are exact and never

IEEE Micro

overflow nor underflow. Four nurually exclusive n:lations
arc possible: ·tess than; •cqua1: •greater than; and ·unor
dered: The lasr case arises when II lcasr one operand is
NaN. Every NaN shall compare •unordered• wilh evcry
lhing. including itself. Comparisons shall ignore the sign of
zero (so. + 0 = - 0).

1be n:sulr of a comparison shall be delivaed in one of two
ways: either as a condition code identifying one of the four
n:lations listed above. or as a trUc•falsc response to a pred
icate that names the specific comparison desired. In addition
to the true-false response. an invalid operation exception
(§7 .1) shall be signaled when. as indicarcd in the last column
of Table 3, •unordmd• operands arc compan:d using one
of the pn:dicaics involving·<• or·>• but nor•?• (Here
cbe symbol •1• signifies •unordered:)

Table 3 exhibits the twenty-six functionally distinct useful
predicates named. in lhe first column. using dfte notaaions:
ad hoc. Fortran-like. and mathematical. It shows how they
an: obaaincd from the four condiaion codes and aells which
predicates cause an invalid operation exception when the
n:laaion is •unordered." The catties T and F indicate whether
lhe predicate is true or false when the respective n:lation
holds.

Note that predicates come in pairs, each a logical negation
of the other: applying a prefix like '"NOT• to negate a pred
icate in Table 3 n:verses the trUc/false sense of its associared
entries but leaves the last column's enuy unchanged.

11nplcmcnaations that provide predicates shall provide the
first six predicates in Table 3 and should provide the sevenlh,
as well as a means of logically negating pn:dicatcs.

There may appear to be two ways to write the logical
negation of a predicate. one using ""NOT"" explicitly and the
other reversing the relational operator. For example. the log
ical negation of (X = Y) may be written either NOT(X
= Y) or (X ?<> Y); in this case both expressions are
functionally equivalent to (X :I:- Y). However, this coinci
dence does not occur for the other predicates. For instance.
the logical negation of (X < Y) is just NOT(X < Y); the
reversed pn:dicate (X ?> = Y) is different in that it does
not signal an invalid operation exception when X and Y are
""unordered:

6. Infinity, NaNs, and signed zero

The special quantities infinity. NaNs. and signed zero
included in the draft generalized standard provide closure of
sorts to the arithmetic system and permit sensible responses
to the exceptional conditions to be discussed in §7. For
example.= provides a default result for overflow and divi
sion by zero. while the sign on = indicates the direction of
the overflow. For mathematical consistency. and to aid in
implementing interval arithmetic. zero also carries a sign.

Table 3.
Predicates and relations.

Predicates Relations Exception

greater less invalid if
ad hoc Fortran math than than equal unordered unordered

= .EQ. F F T F No
?<> .NE. ,/= T T F T No

> .GT. > T F F F Yes
>= .GE. ;at T F T F Yes
< .LT. < F T F F Yes

<= .LE. Ea F T T F Yes
? unordered F F F T No

<> .LG. T T f F Yes

<=z> .LEG. T T T F Yes
?> .UG. T f F T No

?>= .UGE. T F T T No
?< .UL. F T F T No

?<= .ULE. F T T T No
?= .UE. F F T T No

NOT(>) F T T T Yes
NOT(>=) F T f T Yes
NOT(<) T F T T Yes
NOT(<=) T F F T Yes
NOT(?) T T T F No

NOT(<>) F F T T Yes

NOT(<=>) f f F T Yes
NOT(?>) f T T F No
NOT(?>=) f T F F No
NOT(?<) T F T F No
NOT(?<=) T F F F No
NOT(?=) T T F F No

August 1984 95

96

This may indicate the direction from which underflow
occurred. or it may indicate the sign on an 00 that has been
reciprocated. All of the arithmetic propenies of the special
quantities have been similarly designed to emulate their
mathematical propcnies as nearly as possible.

The NaNs are special entities introduced to handle other
wise intractable situations. such as providing a default result
for 0/0. The fact that they propagate through a computation
suggests that they may also be used. with special program
ming. to provide error traces of various sorts. 11tey might
even be used to implement special arithmetics by taking
advantage of their triggering of arithmetic exceptions. How
ever. none of these more esoteric applications aM mentioned
in the draft standard.

6.1. Infinity arithmetic. Infinity arithmetic shall be con
sh'l.led as the limiting case of real arithmetic with operands
of arbitrarily large magnitude, when such a limit exists.
Infinities shall be interpreted in the affine sense, that is,
-cc< (every finite number)< +00.

Arithmetic on 00 is always exact and lhereforc shall signal
no exceptions, except for the invalid operations specified for
oc in § 7. I . The exceptions that do pertain to oc are signaled
only when

(I) :x: is created from finite operands by overflow (§7.3)
or division by zero (§7.2). wilh the corresponding
trap disabled, or

(2) :z: is an invalid operand (§7.1).

6.2. Operations with NaNs. Two different kinds of NaN,
signaling and quiet, shall be supported in all operations.
Signaling NaNs afford values for uninitialized variables and
arithmetic-like enhancements (such as complex-affine infin
ities or extremely wide range) that are DOI the subject of the
standard. Quiet NaNs should. by means left to the imple
mcntor·s discretion, afford retrospective diagnostic infor
mation inherited from invalid or unavailable data and results.
Propagation of the diagnostic information requires that
information contained in the NaNs be preserved through
arithmetic operations and basic precision conversions.

Signaling NaNs shall be reserved operands that signal the
invalid operation exception (§ 7. I) for every operation listed
in §S. Whether copying a signaling NaN without a change
of precision signals the invalid operation exception is the
implementor·s option.

Signaling NaNs are closely analogous to the reserved
operands on the DEC PDP/I I and Vax, and to the indefinite
operand on the CDC 7600 and Cyber. in that they precip
itate some signal when touched but not when created. Quiet
NaNs arc similar to the reserved operand on the Vax in that
they result from an invalid operation. but differ in that they
generate no signal when encountered in subsequent operations:

Every operation involving a signaling NaN or invalid oper
ation (§7.1) shall, if no trap occurs and if a floating-point
resull is to be delivered, deliver a quie1 NaN as its result.

Every operation involving one or two input NaNs, none of
lhem signaling, shall signal no exception but, if a floating
point result is to be delivered. shall deliver as its result a

quic1 NaN. which should be one of the input NaNs. Note
tha1 pn.-cision conversion.,; mighl be unable to deliver the
same NaN. Quiet NaNs have effects similar to signaling
NaNs on operations tha1 do DOI deliver a floating-point resul1;
these operations. namely, comparison and conversion to a
precision lhat has no NaNs. are discussed in §5.4, §5.6,
§5.7, and §7.1.

6.J. The algebrak sign. This standard says nothing about
lhe sign of a NaN. Otherwise the sign of a product or quo
tient is the Exclusive Or of the operand's signs; and lhe
sign of a sum. or of a difference x-y regarded as a sum
x + (- y), differs from at most one of the addend's signs.
1bese rules shall apply even when operands or results are
zero or infinite.

When the sum of two operands with opposite signs (or the
difference of two operands with like signs) is exacdy zero.
the sign of that sum (or difference) shall be • + • in all
rounding modes except round toward - 00, in which mode
that sign shall be • - ". However, x + x = r - (- x) retains
me same sign as x even when x is zero.

Except that ../ - 0 shall be - o. every valid square root shall
have positive sign.

7. Exceptions

One objective of the draft standard is to minimize for
users the complications arising from exceptional conditions.
The arithmetic system is intended to continue to function on
a computation as long as possible. handling unusual situa
tions with reasonable default responses. including setting
appropriate flags. Because a user may want to override default
resulls and do something special in response to an exception.
the standard also accommodates user-supplied traps:

There arc five types of exceptions that shall be signaled when
detected. The signal entails setting a status flag, taking a
trap. or possibly doing both. With each exception should be
associated a trap under user control. as specified in §8. The
default response 10 an excep1ion shall be to proceed without
a trap. This standard specifies results to be delivered in both
trapping and nontrapping situations. In some cases the result
is different if a trap is enabled.

For each type of exception the implementation shall provide
a status flag that shall be SCI on any occurrence of lhe cor
responding exception when no corresponding trap occurs.
It shall be reset only a~ the user's request. The user shall be
able to test and to alter the status flags individually, and
should funhcr be able to save and restore all five at one time.

The only exceptions that can coincide arc inexact with over
flow and inexact wilh underflow.

A flag records the occurrence of an exceptional event.
Resetting a flag clears it. and it stays clear until the first
subsequent event sets it again, or until it is restored by the
user to a previous state. Until reset by the user. the set state
of a flag per.ieveres, providing evidence of a past event: the
flag may in some implcmemations point to diagnostic infor
mation about the location and nature of the event and/or,
perhaps. some subsequent ones.

IEEE Micro

The crudest implementations will use just one bit for a
flag. Next better is to point to the last event since the user
altered the flag. Pointing to the first event after the ftag was
reset is slightly better. and feasible for high-speed machines.
Much better. and much harder to implement. is to point to
the first and the last. and to keep count of how many occurred
in between.

In all cases. a human user should ideally be able to mon
itor what is going on by means of some kind of annunciator,
perhaps a panel light or a blinking dot on the screen to signify
that certain (preselected) ftags were set and are being or have
been dealt with by the program. lntenogating the annuncia
tor should reveal which flags are set, and funher interro
gation should reveal why.

Because the ftag is an object known to the operating
system. to alter a flag (to set or reset or restore it) may entail
a call to the operating system or to a runtime library pro
cedure. But to sense whether a flag is clear, and perhaps to
save its value. may entail little more than a memory refer
ence. Thus. alteration of a flag. including resetting it, may
be too slow for inclusion with other operations inside a loop,
while a true/false test of a flag should be fast enough for
that.

7.1. Invalid operation. The invalid operation excep1ion is
signaled if an operand is invalid for the opera1ion 10 be
performed. 1be ftoaling-poinl result delivered when the
exception occurs without a trap shall be a quiet NaN (§6.2).
The invalid operations are

(I) Any operation on a signaling NaN (§6.2);

(2) Addition or subttac::tion: magnitude subtraction of
infinities like (+ao) + (-ao);

(3) Multiplication: 0 x ao;

(4) Division: OIO or ao/ao;

(S) Remainder: X REM y. where y is zero or Xis infinite;

(6) Square IOOl if the operand is less than zero;

(7) Conversion of an internal ftoating-point rwmber to
an integer or to a decimal string when ~verftow,
infinity, ~ NaN precludes a faithful represcnwion
in that formal and this cannot otherwise be signaled;

(8) Conversion of an unrecognizable input sering; and

(9) Comparison via predicates involving •<• or •>",
without •1•. when lhe operands are ·unorc1era1· (§5. 7.
Table 3).

7.2. Division by zero. If the divisor is zero and the dividend
is a finite nonzero number, then the division by zero exce.,.
tion shall be signaled. The result, when no trap occurs, shall
be a correctly signed ao (§6.3).

The exception called •Division by Zero· is misnamed
for historical reasons. The division by zero flag. when set,
indicates precisely that an infinite result was delivered by
some previous floating-point operation on finite operands,
that the exact result is not finite. and that no trap was taken
(whether not implemented. or implemented but not enabled
by the user). For example, 3.0/0.0 = + 00; similarly. /n(O)
= -00, tan(90°) = -tan (-90°) = co. atanh(l) = +oo,
... though these are not specified by the draft standards.

August 1984

A different exception. ·overflow," is signaled when an
infinite result is produced inexactly from finite operands. No
exception is signaled when an infinite result is produced from
infinite operands. as in cox cc. m/0, J + CD, ••• and. pre
sumably. exp(+=). In(+cc), sinh(oc),

7 .3. Overtlow. The overflow exception shall be signaled
whenever the destination precision's largest finite number is
exceeded in magnirude by what would have been lhe rounded
ftoaling-point n:sull (§4) were lhe exponent range unbounded.
The result. when no trap occurs. shall be determined by the
rounding mode and the sign of the intermediate result as
follows:

(a) Round to nean:sr carries all overftows lo :x: with the
sign of the intennediate resull.

(b) Round toward O carries all overflows 10 the preci
sion•s largest finite number with the sign of the imer
mediate result.

(c) Round toward - :x: carries positive overflows 10 the
pn:cision·s largest finite number and carries negative
overflows to -cc.

(d) Round toward + :x: carries nega1ive overflows 10 the
prccision·s most negative fini1e number and carries
posi1ive overflows 10 + :x:.

Trapped overflows on all operations except conversions shall
deliver 10 lhe trap handler 1he result obtained by dividing
the infini1ely precise result by b0 and then rounding. The
exponenl adjustment a for a precision shall be chosen to be
approximately 3 x (Em.., - Emin)/4 for that precision. and
should be divisible by 1welve. Trapped overflow on conver
sion from a ftoating-poin1 precision shall deliver to the trap
handler a n:su11 in thal or a wider .precision, possibly with
rhe exponent adjusted, bul rounded 10 the desrination·s pre
cision. Trapped overflow on decimal siring 10 ftoa1ing poinl
conversion shall deliver to the trap handler a n:sull in the
widest supported precision, possibly with the exponent
adjusted. but rounded to the destination's precision; when
the result lies too far outside the range for the exponen1 10
be adjusted. a quiea NaN shall be delivered instead.

The exponent adjustment of approximately 3
x (Emaa - Em,n)/4 is chosen to translate overftowed/under
ftowed results as nearly as possible to the middle of the
exponent range so that. if desired, they can be used in sub
sequent scaled operations with less risk of causing further
exceptions. The requirement for divisibility by 12 simplifies
the extraction ofJow order integer (square, cubic. and quar
tic) roots.

Traditionally overflow has been associated with the pro
duction of results whose magnitudes lie above a threshold
Jr-+ 1 beyond which values cannot be represented. The
draft continues this tradition.

If the program will respond to overflow by aborting. then
a simple trap suffices. If instead it is desired to continue the
computalion under circumstances that will not lead to mis
leading resulls. some value must be delivered. Some systems
simply deliver the number of largest magnitude and correct
sign. Others deliver special values ~hich behave approxi
mately (but not exactly) like the 00 of this draft.

The draft standard prescribes a default infinite result and.
in addition, a solid indication that this substitution has

97

98

occurred-the overflow flag. The overflow flag. when set.
indicaces precisely that an infinite result was delivered by
some previous floating-point operation on finite operands,
that the exact result is finite, and that no trap was taken
(whether not implemented. or implemented but not enabled
by the user). It is therefore also appropriately raised by such
things as attempts to compute exp(I OlO).

7.4. Underflow. Two correlated events contribute to under
flow. One is the creation of a tiny nonzero result between
:!: b£- which, because it is so tiny. may cause some other
exccpcion later such as overftow upon division. 1be ocher is
extraoniinary loss of accuracy during lhe approximation of
such tiny rxunbers by subnormal numbers. The implementor
may choose how these events are detected, but shall detect
these events in the same way for all operations. Tminess
may be detected either

or

(I) •after rounding•: when a nonzero result computed
as though the exponent range were unbounded would
lie suictly between :!: b£-;

(2) •before rounding•: when a nonzero result computed
as though boch the exponent range and the precision
were unbounded would lie strictly between :!: Jr-.

Loss of accuracy may be detected as either

or

(3) a denormalization loss: when the delivered result
differs from what would have been computed were
exponent range unbounded;

(4) an inexact result: when the delivered result differs
from what would have been computed were both
exponent range and precision unbounded. (This is
the condition called inexact in §7.5.)

When an underflow trap is not implemented or is not enabled
(the default case). underflow shall be signaled (via the
underflow flag) only when both tininess and loss of accuracy
have been detected. The method for detecting tininess and
loss of accuracy docs not affect the delivered result which
might be zero, subnormal, or :!:b£-. When an underflow
trap has been implemented and is enabled, underflow shall
be signaled when tininess is detected regardless of loss of
accuracy. Trapped underflows on au operations except con
version shall deliver to the trap handler the result obtained
by multiplying the infinitely precise result by ba before
rounding. where the exponent adjusbnent a shall be the
same as in §7 .3. Trapped underflows on conversion shall be
handled analogously to the handling of overflows on
conversion.

Note that a system whose underlying hardware always
traps on underflow, producing a rounded. exponent-adjusted
result. must indicate whether such a result is rounded up in
magni1ude in order that the correct subnormal result may be
produced in system software when the user underflow trap
is disabled.

Aoating-point formats which do not include subnormal
values naturally associate underflow with the corresponding

production of results whose magnitudes lie beneath the
threshold IJE-. In these cases. the value zero is clearly the
best approximation to an underflowed result when it is nec
essary to deliver some numerical value. This situation has
two potentially adverse consequences. First. the zero value
thus produced may precipitate a division by zero or other
untoward event which would not have occurred absent the
underflow. Second. the rounding error which accompanies
the replacement of a nonzero result is substantially greater
than would have arisen had the exponent not been too small.

The presence of subnormal numbers in the draft allows
the effects of underflow to appear gradually. In particular,
the subtraction of nearly equal rumbers each near bE- always
produces a subnormal value which can be repn:scnted exactly.
These tiny numbers may be more prone to precipitating over
flows if reciprocated. but will not lead to division by zero
unless cxacdy equal numbers were subtracted. In the case
of multiplication and division, a zero approximation to an
underflowed result can still arise. but in any event the max
imum error is reduced from Jr- to ,,e---P _

The significance of underflow varies according to appli
cation and will often be concerned either with taking evasive
action where small (subnormal) values occur-or with obtain
ing a diagnostic indication that approximation error in excess
of that attributable to rounding (signaled by inexact) has
occurred.

Thus, the definition of underflow differs, depending on
whether traps are to be taken. When an underflow trap is
implemented and enabled, the threshold test is appropriate
for all operations. independent of whether a rounding error
would arise in a subnormal approximation. This allows action
such as scaling to be taken upon the first production of a
value beneath the underflow threshold. When only the flag
is to be set. the indication is appropriate only in the presence
of a rounding error that may invalidate an a priori error
analysis. Thus. addition. subtraction. and remainder. whose
results are always exact when they lie beneath the underflow
threshold, cannot raise the underflow flag.

The denormalization loss test is preferable to the inexact
result test, which can occasionally deliver a slightly pessi
mistic indication of lost accuracy. However. the denormal
ization loss test may be substantially harder to implement.
in which case the inexact result test is an acceptable
compromise.

Implementations that always hold operands and deliver
results in double or extended format registers. shortening to
single or basic precision only upon storing (§4.3). may sig
nal underflow during a copy operation if treated as an arith
metic operation (which the draft standard permits) provided
the trap is enabled; however, when a trap is not present or
not enabled, the copy operation cannot raise the underflow
flag because it is an exact operation.

7 .S. Inexact. If the rounded result of an operation is not
exact or if il overflows without an overflow trap. then the
inexact exception shall be signaled. The rounded or over
flowed result shall be delivered to the deslination or, if an
incxac1 1rap occurs. lo the trap handler.

Inexact applies only to valid operations. lnexacl and
underflow flags are destined to be raised frequently, and then

IEEE Micro

usually ignored. To describe a way to avoid unnecessarily
updating these flags, we must distinguish between hardware
flags (single bits in a processor's state) and software flags
(pointers stored in memory), between hardware trap han
dlers (part of the operating system) and software trap han
dlers (subroutines preselected by a user), and between a
hardware trap-disable bit and a software-trap enable pointer
(to the software trap handler preselected by the user). The
scheme is fast because it identifies the hardware flag bit with
the hardware trap-disable bit.

In this scheme, the operating system will arrange that
each hardware trap-disable bit (hardware flag bit) be on if
and only if its corresponding software flag is nonnull, so the
occurrence of underflows or inexact results will not be con
cealed from the user. Assume that the hardware must pro
duce an underflowed or inexact result.

In the usual case, the appropriate trap-disable bit is already
on. and the appropriate default result is delivered directly
with no funher excepcional activity required of the proces
sor. When the appropriate trap-disable bit is off, then that
bit should be turned on. and a rounded result, possibly
denormalized or with adjusted exponent, should be deliv
ered to the hardware trap handler together with a bit of infor
mation sufficient to compute a denormalized result from one
with adjusted exponent if necessary.

The hardware trap handler can tell what has just hap
pened by comparing the present state of the hardware trap
disable bits with the previous state. If an appropriate non
default software trap handler has been enabled by the user,
the hardware trap handler resets the hardware trap-disable
bit, then invokes the software trap handler. Otherwise, the
hardware trap handler places a suitable nonnull pointer into
the proper software flag and delivers the appropriate default
result. Thus, if an event like inexact occurs many times
before its software flag is reset, only the first occurrence
delays computation to set the flag.

8. Traps

A user should be able to request a trap on any of the five
exceptions by specifying a handler for it. He should be able
to requeSI that an existing handler be disabled, saved or
restored. He should also be able to deienninc wbelber a
specific trap handler for a designated exccplioa bas been
enabled. When an exception whose trap is disabled is sig
naled, it shall be handled in the manner specified in §7.
When an exccplion whose trap is enabled is signaled, the
execution of the program in which the exception occuned
shall be suspended. the ttap handler previously specified by
the user shall be activated, and a result, if specified in §7.
shall be delivered to it.

8.1. 'lrap handler. A trap handler should have the capabil
i1ies of a subroutine that can return a value to be used in lieu
of the exceptional operation's result; this result is undefined
unless delivered by the lrap handler. Similarly. the flag(s)
corresponding 10 the exceptions being signaled with their
associa1cd trJps enabled may be undefined unless se1 or reset
by the trap handler.

When a sys1cm maps, the trap handler should be able to
de1ermine

(I) which exceplion(s) occurred on lhis operation;

August 1984

(2) the kind of operation that was being performed;

(3) the destination's precision;

(4) in overflow, UDderftow, and ineuct exceptions, the
correctly rounded result, including inf onnation that
might not fit in the dcstinalion's precision; and

(5) in invalid operation and divide ~y zcro·exccptions,
the operand values.

8.2. Precedence. If enabled, the overflow and underflow
traps take preccdeDce over a separare inexact trap.

Appendix: Recommended functions and
predicates*

The following functions and predicates are recommended
as aids to program ponability across different systems, per
haps performing arithmetic very differently. They are
described generically; that is, the types of the operands and
results are inherent in the operands. Languages that require
explicit typing will have corresponding families of functions
and predicates.

Some functions below, like the copy operation y : = x
without change of precision, may at the implementor's option
be treated as nonarithmetic operations which neither signal
underflow for subnormal operands nor signal the invalid
operation exception for signaling NaNs; the functions in
question are (1), (2), (6), and (7).

(1) copysign(x.y) returns x with the sign of y. Hence,
abs(x) : = copysign(x, 1.0), even if x is NaN.

(2) -xis x copied with its sign reversed, not 0-x; the
distinction is germane when x is :!: 0 or NaN. Con
sequently, it would be a mistake to use the algebraic
sign to distinguish signaling NaNs from quiet NaNs.

(3) scalb(x,N) rctumsx x UV, for integral valuesN without
computing UV.

(4) Jogb(x) returns the exponent of x, a signed integer in
the ~ision of x, exccp(that logb(NaN) is a NaN,
logb(oo) is +co, and logb(O) is -co and signals the
division by zero exception. When x is positive and
finite, the expression scalb (x, - logb(x)) lies strictly
between O and b; it is less than 1 only when x is
subnormal.

Logb of a subnormal X is - Emin•

(5) nextafter(x,y) returns the next representable neighbor
of x in the direction toward y. The following special
cases arise: if x = y. then the result is x without any
exception being signaled; otherwise, if either x or y

•This appcndi:a:. is not part o(the proposed IEEE Standard 8S4 for Radi:a:.•
and Wonf-lcn~•h•indcpcndent Floating-point Arithmclic, bul is included
for information only.

99

is a quiet NaN, then the result is one or the other of
the input NaNs. Overflow is signaled when xis finite
but nextafter(x,y) is infinite; underflow is signaled
when nextafter(x,y) lies strictly between ~J,E--; in
both cases, inexact is signaled.

(6) finitc(x) returns the value TRUE if -00 < x < +00,

and returns FALSE otherwise.

(7) isnan(x), or equivalently x ¢ x, returns the value TRUE
if x is a NaN, and returns FALSE otherwise.

(8) x<>y is TRUE only when x<y or x>y, and is dis
tinct fromx:t=y, which means NOT(x=y) (sec again
1able 3).

(9) unordered(x,y), or x?y, returns the value TRUE if x
is unordered with y, and returns FALSE otherwise
(sec again Table 3).

(10) class(x) tells which of the following ten classes x
falls into: signaling NaN, quiet NaN, - 00, negative
normal, negative subnormal, -0, +0, positive sub
normal, positive normal, and + 00• This func
tion is never exceptional, not even for signaling
NaNs. ■

References

l. D. Stevenson. chairman. ·A Proposed Standard for Binary
Aoating-point Arithmetic, Draft 10.0: IEEE Aoating-point
Subcommittee Working Document P754182-8.6, l 982. (A copy
of this draft is available from R. Karpinski, U-76, University
of California. San Francisco, CA 94143. Draft 10.0supercedes
Draft 8.0, which was published as • A Proposed Standard for
Binary Aoating-point Arithmetic: in Ct»npwer. Vol. 14, No.
3, Mar. 1981, pp. Sl-62.)

2. •Aoating-point Standards Move Toward Adoption; to appear
in Compwer.

3. W. S. Brown, • A Simple But Realistic Model of Aoating-point
Computation,• ACM Tn:uu. Mada. Software, Vol. 7, No. 4,
Dec. 1981, pp. 445-480.

4. J. T. Coonen, • An Implementation Guide to a Proposed Stand
aid for Floaling-point Aridunctic,· Computer. Vol. 13, No. I,
Jan. 1980, pp. 68-79. (Ernta in C,ompwu. Vol. 14, No. 3,
Mar. 1981, p. 62.)

s. W. Kahan. ·ne Proposed IEEE Standard P754 for Aoating
point Arithmetic: What Oood Is 1t?• Session 16 of .Mini/Micro
~. San Francisco, CA, Nov. 10, 1983.

6. T. E. Hull, "The Use of Controlled Precision,• in The Rela
tionship Be~en Numerical Compuzation and Programming
Languages, J. K. Reid, ed., North-Holland Pub. Co., Amster
dam. 1982, pp. 71-82.

7. Intel Corp., Fortran-86 User's Guide, Santa Clara, CA, 1982.

8. W. Kahan and J. T. Coonen, "The Near Ortbogonali1y of Syn
tax, Semantics, and Diagnostics iD Numerical Programming
&vironments: in The Relalionship Be~en Nwurical Com·
pllllltion and Programming Languages, J. K. Reid, ed., North
Holland Pub. Co., Amsterdam, 1982, pp. 103-113.

9. R. P. Corbett, •Enhanced Arithmetic for Fortran: ACM Sign,un
Newsletter. Vol. 18, No. 1, Jan. 1983, pp. 24-28; ACM Sig
plan Newskner, Vol. 17, No. 12, Dec. 1982, pp. 41-48.

10. J. T. Coonen, •Accurate, Economical Binary++Decimal Con
versions." submitted for publication.

Copyright © 1984 The Institute of Electrical and Electronics Engineers, Inc.
Reprinted with permission from MICRO,

10662 Los Vaqueros Circle, Los Alamitos, CA 90720

