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Besides making the proposed IEEE 854 standard available for comment, this 

article explains how to overcome some of its implementation problems. 
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T he Microprocessor Standards Committee of the IEEE 
Computer Society sponsors two groups drafting pro

posed standards for floating-point arithmetic. The first, Task 
P754, reported Draft l 0.0 of a Proposed Standard for Binary 
Floating-point Arithmetic out of committee in December, 
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1982. 1 That document is now a de facto standard2 and is 
progressing slowly through the approval process within the 
IEEE Computer Society. 

In August 1983, the second group, Task P854, com
pleted Draft 1.0 of a Proposed Radix- and Word-length-
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independent Standard for Aoating-point Arithmetic that 
generaJizes and is upward compatible with the IEEE Pro
posed Standard for Binary Aoating-point Arithmetic. This 
article places their contents before the public for the first 
time. 

Text drawn from the P854 draft is set off from surround
ing expository material by indentation from both margins. 
The article also includes material that describes how deci
sions were reached in preparing the P854 draft and explains 
how to overcome some of the implementation problems. 

We are publishing this material to invite comment on the 
work of P854 prior to its submission to the IEEE Standards 
Board for adoption as an IEEE standard. We intend that such 
submission follow this publication by six months. We ask 
that readers of this article direct any comments or criticisms, 
in writing. to either of the following individuals: 

W. J. Cody 
MCS-22l/C223 
Argonne National Laboratory 
Argonne. IL 60439 

R. Karpinski 
U-76 
University of California 
San Francisco, CA 94143 

In what follows. we refer to the P754 draft as the .. draft 
binary standard: and the P854 draft as either the '"draft 
generalized standard• or simply the '"draft.• 

Many individuals helped prepare these drafts. Each con
tributed as an individual; no endorsement by an employer is 
implied. The authors of this article were the voting members 
of P854 when Draft 1.0 was adopted. 

1. Scope 

This draft has the same scope as the draft binary standard. 

1.1. Implementation objecthes. Ir is intended that an 
implementation of a floating-point system conformins;o this 
standard can be realized entirely in software, entirely in 
hardware. or in any combination of softwan: and hardware. 
It is the environment the programmer or user of the system 
sees that conforms or fails to conform to ~ draft Slandard. 
Hardware components that require software support to con
form shall noc be said to conform apan from such software. 

1.2. Inclusions. This standard specifies 

( l) Constraints on parameters defining values of basic 
and extended floating-point oombers; 

(2) Add. subtract. multiply, divide, square root. remain
der. and compare operations; 

(3) Convcr.;ions between integers and floating-point 
numbers: 

(4) Conversions between different floating-point pre
cisions: 

C.51 Conversion between basic precision floating-point 
numhcrs and <lccimal strings: and 

161 f-lo.uin~-point exceptions and their handling, includ
int: non-numbers (NaNs). 
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1.3. Exclusions. This standard docs not specify 

( I) Fonna1s for inremaJ storage of ftoaling-point raunbcrs. 
(2) Formats of decimal strings and integers. 
(3) lnterprctalion of the sign and significand fields of 

NaNs. or 
(4) Conversion between extended precision (§3.2) ftoat

ing-point numbers and decimal strings. 

2. Definitions 

The following terms are defined for purposes of the draft 
generalized standard: 

Destination. Every unary or binary operation delivers its 
result to a destination. either explicidy designated by the 
user or implicidy supplied by the system (e.g .. intermediate 
results in subex~ions or arguments for procedures). Some 
languages place the results of intermediate calculations in 
destinations beyond the user's conuol. Nonetheless, this 
standard defines the result of an operation in terms of that 
destination's precision as well as the operand's values. 

Exponent. The component of a floating-point number that 
normally signifies the integer power to which the radix is 
raised in determining the value of the represented number. 
Occasionally the exponent is called the signed or unbiased 
exponent. 

This definition implies that the radix used for the represen
tation of floating-point numbers is the same as the radix used 
for scaling. For example, a decimal significand nmst be scaled 
by a power of 10. Note, however, that the exponent is an 
integer. and it need not be implemented as a string of base
b digits. 

Floating-point munber. A digit-string chancterim1 by three 
components: a sign, a signed exponent. and a significand. 
Its numerical value, if any. is the signed product of its sig
nificand and the radix raised to the power of its exponent. 
In this document a digit-string is not always distinguished 
from a m1mbcr it may represent. 

Fraction. The component of the significand that lies to the 
right of its implied radix point. 

Made. A variable that a user may set, sense. save. and 
n:storc to control the execution of subsequent arithmetic 
o~ons. The default mode is the mode that a program 
can assume to be in effect unless an explicitly contrary state
ment is included in either the program or its specification. 

The following mode shall be implemented: 

(I) Roundin~. to control the direction of rounding errors; 
and. in certain implementations, 

(2) Rounding prcxision. to shorten the precision of results. 

The implementor may, at his option, implement the follow
ing modes: 

(3) Traps disabled/enabled, to handle exceptions. 
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NaN. Not a number; a symbolic entity encoded in ftoating
point format. There are 1wo types of NaNs (§6.2). Signaling 
NaNs signal the invalid operation exception (§7. I) whenever 
they appear as operands. Quiet NaNs propagate lhrough almost 
every arithmetic operation without signaling exceptions. 

A NaN is similar in some respects to the .. indefinite.. on 
CDC 7600 and Cyber systems. and to the •reserved oper
and" in DEC PDP- I I and Vax. 

Normal number. A nonzero number that is finite and not 
subnormal. 

Radix. The base for the representation of floating-point 
Dllmbers. 

Result. The digit string (usually representing a number) that 
is delivered to the destination. 

Shall and should. In this standard the use of the word •shall• 
signifies that which is obligatory in any conforming imple
mentation; the use of the word •should"' signifies that which 
is strongly recommended as being in keeping with the intent 
of the standard, although architectural or other constraints 
be)'ond the scope of this standard may on occasion render 
the recommendations impractical. 

Significand. The component of a floating-point number that 
consists of a leading digit to the left of its implied radix point 
and a fraction field to the right. 

In the familiar .. scientific notation," numbers arc expressed 
in a form like -1.2345 x 10-61 . Here are the first• - "' is 
the algebraic sign, '"I .2345" is the significand, ... 2345" is 
the fraction, • t0"' is the radix, and .. -67" is the exponent. 

Status flag. A variable that may take two states. set and 
clear. A user may clear a flag, copy it. or restore it to a 
previous state. When set. a status flag may contain additional 
system-dependent information. possibly inaccessible to some 
users. The operations of this standard may as a side effect 
set some of the following flags: inexact result, underflow, 
overflow, divide by zero and invalid operation. 

Subnonnal number. A nonzero floating-point raunber whose 
exponent is the pn:cision's minimum and whose leading sig
nificant digit is zero. 

For example, calculators whose lowest exponent is - 99 
would admit subnormal numbers if they permitted numbers 
like 0~0123 x 10-99

• Subnormal numbers used as arithmetic 
operands do not behave exceptionally, but subnormal n:sults, 
sometimes accompanied by a signal, serve to make under
flow gradual. Subnormal numbers correspond to the .. denor
malized numbers" in the draft binary standard. 

User. Any penon, hardware, or program noc itself specified 
by this standard. having access to and controlling those oper
ations of the programming environment specified in this 
standard. 

The draft is deliberately vague about the meaning of the 
word "user" because ir could refer to a human seeking results, 
an applications program exploiting the arithmetic, or a com
piler generating code for the arithmetic system. 

3. Precisions 

The main characteristic of the draft binary standard is its 
attention to detail. Because it is specific to 32-bit words. it 
specifies even the bit-patterns representing floating-point 
quantities in the basic formats. Similar detail is found in 
other discussions, such as binary++decimal string conver
sion and the adjustment of overflowed exponents. 

While lhe draft gcneralil.ed standard also deals with detail, 
it is best ~haracteri7.ed by its parameterization of the arith
metic. Because the draft generalized standard applies to 
machines of arbitrary word length and to radices other than 
binary, the representation of floating-point quantities is not 
easily specified. Instead, the draft derives the set of values 
that may be taken by" floating-point quantities in each of the 
supported precisions from a set of four integer parameters. 
These parameters tum out to be fundamental to the whole 
arithmetic system. They permit a level of detail comparable 
to that in the draft binary standard while preserving essential 
abstractness in discussing such things as floating-point 
++ decimal string conversion and the adjustment of over
flowed exponents. 

This draft is a prescription for arithmetic which, given a 
choice of the four integer parameters, defines the represent
able values and the results of all operations precisely. In this 
respect, the draft differs ~m descriptive models of arith
metic, like Brown's,3 which derive some information from 
similar parameters but cannot say exactly what arithmetic 
results will be generated. We will see later that proper spec
ification of the four integer parameters produces essentially 
the arithmetic in the draft binary standard. an important 
verification of the desired compatibility of the two proposals. 

Section 3 of the draft generalized standard discusses the 
precisions and their parameterization: 

This standard defines four floating-point precisions in two 
groups, basic and extended. each having two widths. single 

"'and double. The standard levels of implementation are dis
tinguished by the combinations of precisions supponed. 

J.I. Sets ol Yalues. The standard does not specify how to 
encode numbers for internal storage. Four integer parame
ters specify each precision: 

b-the radix, 

p-the number of base-b digits in the significand. 

Em .. -the maximum exponent, and 

Emin -the mininmm exponent. 

The parameters are subject to the following constraints: 

b shall be either 2 or IO and shall be the same for all 
supported precisions. 

(£"' .. -Em,n)/p shall exceed 5 and should exceed 10, 
and h"- 1 ;,- IOs. 

The balance between the overflow threshold (bEmaa • 1) and 
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the underflow threshold (b£min) is charac1erized by their 
producl (bEm.,. •Em;n• 1). which should be lhe smallest inte
gral power of b lhat is ~4. 

Because overflow is so much more serious a disaster than 
gradual underflow, this constraint moves the overflow 
threshold slightly further away from l (at the cost of bringing 
the underflow threshold slightly closer). The intent is to 
ensure that normal values can be reciprocated without awk
ward exception; e.g .. the inverse of the smallest positive 
normal value (the underflow threshold) should not overflow, 
and the inverses of the largest finite values (almost the over
flow threshold) should suffer minimal loss of significance. 

Each precision aJlows for lhe representation of just the fol
lowing entities: 

Numbers of lhe form 

(- l)'b£(dc,.d1d2 ••. dp- 1), where 

s is an algebraic sign. 

Eis any integer between Eman and£,..,..., inclusive, 
and 

each d; is a base-b digit (O~d,~b-1); 

Two infinities, + oc and - oc; 

At least one signaling NaN; and 

At least one quiet NaN. 

The aJgebraic sign provides additional information about 
any variable lhat has lhe value zero. Although aJI precisions 
have distinct representations for +0, -0, +co, and -co. 
lhe signs are significant in some circumstances, such as divi
sion by zero, and not in olhers. In this standard, O and co 
are written without a sign when lhe sign does DOI matter. 
An implementation may find it helpful to provide additiooaJ 
information about a variable which is NaN through an alge
braic sign, but this standard does not imerprer such eittensioos. 

Note that §3.1 does not mention the representation of 
numbers, only their values: 

The foregoing description enumerates some values redun
dantly, e.g., 

6°(1 •O) = b 1(0• I)= b2cO·Ol) = ... 

but the standard docs DOI distinguish them. 

The Slandard allows an implemenwion co encode some values 
redundantly provided thal it does DOI distinguish redundanl 
encodings of nonzero values. An implementation may aJso 
reserve some digil strings for purposes beyond the scope of 
lhis slandard. 

Although the draft generalized standard is to be radix
indcpendcnt, the committee could find no vaJid technical 
argument for allowing radices other than 2 or JO. Radices 
that are higher powers of 2 or IO have disagreeable prop
cnics. Nevcnheless, the standard is drafted so that this par-
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ticular limitation is expressed only in §3.1 and §5.6; we 
believe that were this limitation removed, only §5.6 would 
have to be revised. 

Constraints on the parameters were not imposed capri
ciously. The lower limit of Sp for Em ... - Emin accommodates 
instrumentation equipment where large exponent range is 
not imponant, but some form of standardized floating-point 
arithmetic is. The inequality b"- 1;;,i 105 permits implemen
tation of ~significant-decimal arithmetic in 32-bit words 
without resorting to digit encoding more complicated than 
BCD. 

The subnormal numbers in this scheme arc those nonzero 
m1mbers with magnitudes less than 1r-. All bigger finite 
numbers are normal. The natural way in which zero and 
subnormal numbers occur is a consequence of focusing on 
the values of the numbers rather than on their representation. 
Representation of the other special operands, infinities, and 
NaNs, requires that something special be done. 

Examples: 

(I) In the ~t binary standard, the parameters for single 
precision arc b=2, p=24, Em ... = 127, and 
Emin = - 126. All of the special operands are accom
modated by reserving extreme values of the exponent 
beyond Em ... and Emin• 

(2) The parameters for many hand calculators are b = l 0, 
p = l 0, Emaa = 99, and Errain = - 99. However, none 
of the special operands arc accommodated. 

With the establishment of the parameterization, it is pos
sible to describe the various supported precisions and the 
relations between them. Note that the terms •single preci
sion" and •double precision" may be known by other names 
in existing programming languages. For example, "single 
precision" is called "real" in Pascal and Fortran. 

3.2 Basic Precisioas 

3.2.1. Sing/~. 1be narrowest precision supported shall be 
called sing/~ pncision. When necessary to distinguish from 
other parameters, those defining single pn:cision are denoted 
thus: 

E_,,E...,.p •. 

3.2.2. Doub/~. When a second. wider basic precision is 
supported, it shall be called dollbl~ pncision. When nec
essary to distinguish from other paramelerS, those defining 
double precision are dcnoced thus: 

E~Em;,v,Pt1· 

In addition to the n:qu~ments specified in §3.1, parameters 
for double precision shall satisfy 

/1'-';3, IOb:?p', 
E--.,~ 8£....,,., +7. 

£fftffl4 ~ 8 £min,· 

The condition v- :::1: I Ob2p, provides that double precision 
be at least one decimal-digit wider than twice single preci
sion to protect the formation of inner products ( vector dor 
products) of single-precision data using double-precision 
arithmetic. The consequence when b = 2 is that at least four 
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additional bits more than twice single precision must be 
provided in double precision. The draft binary standard pro
vides five such bits. The constraints on £~ and £mini ensure 
that products of up to eight factors (or powers up to the 
eighth power) of normal single-precision values will neither 
overflow nor underflow. 

In addition to inner products. certain other commonly 
occurring computations can be earned out more accurately 
and naturally when the arithmetic used provides extra expo
nent range and precision over that found in the data. We will 
see in a moment that exponentiation and conversion between 
ftoating-point repraentations and decimal strings are com
putations of this type (there are many others). 

If i~plemented. double-precision arithmetic provi_dcs the 
desired suppon for single precision. But what supports sin
gle precision when double precision is not implemented. and 
what supports double precision? The draft standard provides 
extended precisions for these purposes. Although extended 
precisions afford almost full protection in many important 
computations. they provide only partial protection for inner 
products. In a first implementation of a system conforming 
to this draft s1andard. supporting the few additional digits 
in an extended precision may be easier. substantially more 
economical. and almost as beneficial as supporting the next 
higher basic precision with its more than doubling of the 
digits. The issues to be considered when selecting between 
implementation of an extended precision and implementa
tion of the next higher basic precision are discussed further 
by Coonen' and Kahan.' 

3.3. Extencled precisions. The two extended precisions. 
single CJttended and double extended. are implementation
dependent. When necessary to distinguish from other 
parameters, those defining. for example. single-CJttended are 
denoted thus: 

Parameters for single-ex1ended shall sa1isf y 

E ..... .,~8Emn, +7, 

and 

If b :t- I 0. P-.c must be large enough lo supporl conversion to 
and from decimal s1ring.s (§5.6). Thus. for b= 2, the con
dition p, .. ~P • + r&og~E ..... , - £..,,n,> 1 shall be satisfied. For 
all b. 1he c:onditionp ... ~ l.2p, shall be satisfied. In addition, 
lite following condition should be satisfied to protect agains1 
error in lite computation of y.c: 

ln{3/n(b)(Emaa + I)} 
p..,> I +p, + /n(b) • 

For b = 2. the condition 

p., ;is p, + r log2(Emu, - Emin,) 1 
in §3.3 states that at least as many bits as are required for 
representing a single-precision number (significand plus 
exponent) shall be used for representing the single-extended 
significand. Wider would be better. but might be uneconom
ical because of architectural constraints such as bus widths. 

Ideally p ... should be large enough to protect against error 
in the computation of y 1• even when the result is X, the 
largest single precision floating-point quantity. or a. the 

smallest normal positive floating-point quantity. Assuming 
that 

). = bli-"(b-b-P);.: Ila= b-1-:-. 

we want to be able to compute /n(X) with absolute error less 
than b-P, in single-extended precision. (If X < Ila. replace 
E1naa. + I with -Emin and A with I/a in the analysis.) Let 

y' = exp(x/n(y)) ==). = bE-'(b-b-P•). 

Then the computed argument x ln(y) delivered to the expo
nential routine is effectively 

x /n(y)( I :t E)\ 

where E = b1
-P". Here. the first two rounding errors come 

from the computation of /n(y) and the product x /n(y). and 
the third accounts for the error to be made in the argument 
reduction in the exp routine. Computationally. to first order 
terms in the errors. 

t-xp(x /n(.v))-+ t-.rp[x /n(y)(I :t 3E))(I + 11). 
== ( I +11)). exp[ :t /n().)3E]. 
== (I + 11)). [I :t /n().)3E], 

where 11 is a single-precision rounding error. Now the desire 
is that 

This simplifies to 

ln{3/n(b)[Emu + I]} 
p., > I +p, + /n(b) 

Because this ideal may not be practical. the condition on Pu 
is recommended but not required. For example. it may not 
be easy to allocate more space for the p,, digits than that 
space normally allocated to the representation of a single
precision floating-point number, i.e .. the space normally 
used to represent two signs. the Ps digits of the significand 
and the largest exponent. Ema.,• say. In traditional floating
point architectures this is exactly one or two word lengths. 

Example: 

(I) In the draft binary standard, the parameters are 
£,naa, = 127, Emu., ;.: I 023 = 8Emaa, + 7. £m,n, 

= - 126, Emin., :5:: - 1022 < 8Emin,, and p,., ;.: 32 
> p s + 7. This extended format falls I bit short of 
what it ideally should be to support _v '. owing to 

practical considerations of wordlength. 

Double-extended precision bears the same rela1ion 10 double 
J)fCCision as single-exiended bears to single precision. 

Note lhat double precision satisfies lhe requirements for sin
gle-exlended precision. 

One of our principal objectives is to facilitate movement of 
software among machines that conform to the draft standard. 
So that single-precision software supported by either single• 
extended or double-precision arithmetic can be insensitive 
to whichever of the two is actually used. both must treat 
underflow in the same way. Thal is why single extended 
includes subnormals. 
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3.4 Combinations of predsioas. All implementations con
forming to this scandard shall suppon single psuision. 
Implementations should suppon the extended precision cor
responding to the widest basic precision supported. and need 
not support any Olhcr extended precision. 

Section 3.4 recognizes that double precision satisfies all of 
the requirements for single ex.tended. It would be wasteful 
to provide both of these precisions unless complete upward 
compatibility and speed were imponant issues. 

Why did the authors of the draft standards not follow 
Coonen4 in specifying. besides single and double. a quad
ruple-precision f onnat? Presumably it is obvious that a 
quadruple fonnat should bear the same relation to double as 
double bears to single. Less obvious is whether a family-of 
intermediate precisions positioned between single and dou
ble. and between double and quadruple. would be worth 
implementing and supporting with appropriate language and 
library facilities. Such a question has been considered by 
T. E. Hull. 6 but the authors have chosen to say nothing more 
about that question at this time. 

4. Rounding 

Rounding is one of the least understood and often one of 
the most badly designed features in traditional arithmetic 
systems. The draft standard specifies four different rounding 
modes in §4. These include what we intuitively think of as 
rounding. but done carefully; what is frequently called trun
cation; and two directed rounding modes of use when imple
menting interval arithmetic. The rounding modes are user
selectable and apply to all pertinent operations. described in 
§5. once selected. 

Rounding takes a number regarded as infinitely precise and. 
if ncccssary, modifies it to fit the dcstinalioo's precision while 
signaling the inexact exception (§7.S). Exc:epc for conver
sion between floating-point numbers and decimal sttings 
(whose weaker conditions arc specified in §5.6). every oper
ation specified in §S shall be performed as if it first produced 
an intermediate result correct to infinite precision and with 
unbounded range, and then rounded that result according to 
one of the modes in this section. 

The rounding modes affect all arithmetic opcra!ions exccpc 
comparison and remainder. The rounding modes may affect 
the signs of zero sums (§6.3), and do affect the thresholds 
beyond which overflow (§7.3) and undcrftow (§7.4) may be 
signaled. 

4.1. Round to nearest. An implementation of this standard 
shall provide round to nearest as the default rounding mode. 
In this mode the repn:scntable value nearest to the infinitely 
precise result shall be delivered; if the two nearest n:prc• 
sen1able values arc equally near, the one with ils least sig• 
nificant digit even shall be delivered. However. an infinitely 
precise result with magnitude al least 1r-cb- ½b1 -"> shall 
round 10 cc with no change in sign; here Em.. and p arc 
determined by the destination precision (§3) unless overrid
den by a rounding precision mode (§4.3). 

4.2. Directed roundings. An implcmentalion shall also pro. 
vide three user-selectable directed rounding modes: round 
toward +oc, round lowani -cc, and round toward 0. 
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When rounding toward +CD, the result shall be the preci
sion's value (possibly +111) closest to and no less than the 
infinitely precise result. When rounding toward - CD, the 
result sball be the precision's value (possibly -CD) closest 
to and no greater than the infinitely pn:cisc result. When 
rounding toward o. the result sball be the precision's value 
closest to and no greater iD magnitude than the infinitely 
precise result. 

Rounding toward zero provides a mode of arithmetic 
capable of nearly mimicking features of certain widely used 
machines and languages. Fust, rounding toward zao pre
vents infinity from being created by overflow; this approx
imates the situation OD machines that, Jacking infinity, replace 
overflows by the biggest available finite magnitude with the 
appropriate sign. Second. rounding toward zero is obliga
tory in Fonran•s three conversions from floating point to 
integer: 

I= X 
. . . INT(X) . . . or . . . IFIX(X) . . . , 
... AINT(X) ... 

The draft standard's default rounding mode in conversion to 
integer nearly matches a construction common in Fortran. 
namely, 

... lNT(X +0.5) . . . or ... AINT(X +0.5) ...• 

except when X is already a nonnegative even integer. Intel's 
Fortran 867 assigns the name RINT(X) to the draft binary 
standard"s default rounding to nearest integer. 

4.3. Rounding precision. Normally a result is rounded to 
the pm:ision of its destination. However. some systems deliver 
results only to double or exccndcd destinations. On such a 
system the user, which may be a high-level language com
piler. shall be able to specify that a result be rounded instead 
10 single precision. though it may be stoled in double or 
extended precision with its wider exponent nnge. Similarly, 
a system that delivers results only to double extended des
tinations shall permit the user to specify rounding to single 
or double precision. Nore that to meet the specifications in 
§4. I. the result cannot suffer more thin one rounding error. 

Conttol of rounding precision is intended to allow sys
tems whose destinations are always double or extended to 
mimic, in the absence of overflow/underflow, the precisions 
of systems with single and double destinations. Proper mim
icking requires that such machines provide operations to 
combine single operands. returning a single result with only 
one rounding. Ao implementation should not provide oper
ations that combine double or extended operands to produce 
a single result. nor operations that combine double extended 
operands to produce a double result. with just one rounding, 
because using such operations would violate §5. l. below. 

The precision to which anonymous variables (constants 
and subexpressions) shall be rounded is determined or lefl 

. undetermined in a confusing way in most programming lan
guages. For example, Fonran assigns a .. type• called '"Sin• 
gle Precision'" or .. Double Precision'" to every anonymous 
real variable. but does not require that a subexpression be 
rounded to the accuracy that matches its syntactic '"type"; 
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better accuracy is acceptable and is provided on many 
machines that antedate the draft standards. as well as on the 
Intel 8087 and the forthcoming Motorola 68881 and Zilog 
28070. The language C evaluates all real expressions to 
duuble precision regardless of whether they contain only 
single-precision variables. This issue is discussed further by 
Kahan and Coonen.11 and a recommendation aimed specifi
cally at Fortran is provided by Corbett. 9 

5. Operations 

Traditional arithmetic systems almost always distinguish 
between arithmetic operations such as addition and multi
plication. and ancillary operations such as conversions, and 
sometimes even comparisons. The Conner are considen:d 
part of the arithmetic system proper. while the latter are 
usually left to the whims of a compiler or subroutine writer. 
Consequently. the benefits of using even the best arithmetic 
designs may be negated by the inability to properly convert 
data to and from machine representation. or by spurious 
branching based on faulty comparisons. Even data conver
sion in such cases may vary, depending on whether it is done 
by a compiler or at runtime. 

801h the draft generalized standard and its companion 
proposed binary standard include conversions and compar-

. • isons in the arithmetic system proper. (They also include the 
square-root operation because known algorithms produce 
speed and accuracy comparable to the other operations spec
ified when implemented in hardware.) The difficulty of 
specifying accurate conversion between floating-point and 
decimal-string representations of data is indicated by the 
complexity of §5.6. reproduced below. 

All conforming implementations of this standard shall pr& 

vide operations to add. subtract. multiply, divide. extract the 
square root. find the remainder. round to a floating-point 
integer. conven between different floating-point precisions. 
convert between floating-point numbers and integers. con
vert between internal floating-poinl representations and dec
imal strings. and compare. Whether copying without change 
of precision is considered an operation is an implementation 
option. Except for conversion between internal floating-point 
representations and decimal strings. each of the operations 
shall be performed as if it first produced an intermediate 
result corrcc( to infinite precision and with unbounded range. 
and then coerced this intermediate result to fit in the desti
nation's pRCision (§4 and §7). Section 6 augments the fol
lowing specifications to cover :!: 0. ::!: :a:, and NaN; Section 
7 enumerates exceptions caused by exceptional operands and 
exceptional results. 

5.1. Arithmetic. An implementation shall provide the add, 
subtract. multiply. divide and remainder operations for any 
two operands of the same precision, for each supported pre
cision: it should also provide the operations for operands of 
differing precisions. The destination precision (regardless of 
the rounding precision control of §4.3) shall be at least as 
wide as the wider operand's precision. All results shall be 
rounded as specified in §4. 

When." * 0. the remainder r = .t REM _,. is defined regard
less of the rounding mode by the marhematical relation 
r = .t - _,. x n. where n is the integer nearest the exact 
value .t/y: whenever In - .tl_,·I = 1/.?, then n is even. Thus. the 

remainder is always exact. If r = 0, its sign shall be that of 
.r. Precision control (§4.3) shall nor apply to the remainder 
operation. 

REM is defined as it is. instead of matching the '"mod"' 
function found in many programming languages, because 
the latter can always be computed from the former, but the 
converse is not always true. This is so because REM"s 
remainder is the smallest possible remainder in magnitude. 
and is always exact. Note in the definition of remainder that 
the integer n may not be exactly representable in the preci
sion of x, y. and r because of inadequate precision. exponent 
range. or both. Nevenheless. r is exactly representable in 

• the precision of x and _v. For an extreme example, consider 
b = 10, p = 1. Ernin = -99, Em ... = 99, X = 1075

, and 
_v = 3 x 10- 75

_ Then n = L 1/3 x 10150 J = 333 ... 33, a 150-
digit integer whose value lies above the overflow threshold. 
Nevertheless. r = Io- 75

, precisely satisfying the defining 
relation x = n x y + r. If y is near the underflow threshold 
(i.e .. lvl<b£-+p). it is possible that r = x REM y may be 
subnormal. 

Despite the fact that n may be too huge to represent 
exactly. many implementations of the draft binary standard 
return at least the least significant three or four bits of n. In 
effect. besides delivering r= x REM y they deliver n mod b3 

or n mod b4
• This is convenient for calculating the reduced 

argument of trigonometric and other periodic functions. The 
extent of the convenience can be gauged from the following 
program segment, which uses REM twice to provide the 
equivalent results: 

temp = x REM (b3 x .v) . . . this is exact. 

r = temp REM )' . . . this is also exact. 

n mod b·' = (temp - r)ly . . . rounded to nearest integer. 

5.2. Square root. The square root operation shall be pro
vided in all supported precisions. The result is defined and 
has positive sign for all operands ;;, O. except that ../ - 0 
shall be -0. The destination precision shall be ar least as 
wide as the operand's. The result shall be rounded as spec
ified in §4. 

5.J. Floating-point precision conversions. It shall be pos
sible to convert floating-point numbers between all sup
poned precisions. If the conversion is to a narrower preci
sion. the result shaJI be rounded as specified in §4. Conversion 
to a wider precision is exact. 

S.4. Con\lersion betWftn floating point and inleger. It 
shall be possible to convert between all supponed floating
point precisions and all supported integer precisions. Con
version to integer shall be effected by rounding as specified 
in §4. Conversions between floating-point integers and inte• 
Jcr precisions shall ht- exacr unless an exception arises as 
specified in §7. I. 

Floating-point overflow never occurs during conversion 
to an integer because conversion to a floating-point integer 
(§5.5) cannot overflow. and conversion to a fixed-point inte
ger (§5.4). if it overflowed, would have to signal either 
integer overflow. if available. or invalid (§7. I). Conversion 
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of a nonintegral value to a floating-point integer (§5.5) is 
always inexact: conversion of a nonintegral value to a fixed
point integer (§5.4) is inexact unless overflow forces invalid 
to be signaled (§7). 

S.S. Round floating-point mamba- to integral value. It 
shall be possible 10 round a ftoating-poinr number ro an 
integral valued ftoating-point number in the same precision. 
The rounding shall be as specified in §4. with the under
standing thar when rounding to nearest. if the difference 
between the unrounded operand and the rounded result is 
cxadly one half. the rounded result is even. 

The following section on conversions between floating
point and decimal strings was the most technically difficult 
section to draft. The propenies specified in this section are 
implied by error bounds that depend on the floating-point 
precision and the number of digits in the decimal string; for 
example. the 0.47 mentioned is a worst-case bound derived 
for single precision on machines that conform to the draft 
binary standard. For a detailed discussion of these error 
bounds and economical conversion algorithms that exploit 
the extended precision on such machines. see Coonen. 10 

S.6. Floating point-decimal string conversion. Conver
sion between decimal strings in at least one format and float
ing-point numbers in all supponed basic precisions shall be 
provided for mmbers throughout die ranges specified in Table 
I. The non-negative integers D and N in Tables I and 2 
describe decimal strings having values :!: M x IO:!: N, where 
OEMEle>°-1. 

When there is more than one choice for M and N with 
M~ 10° - I. then Table l and the following discussion apply 
to the choice having the smallest value of N. (In effect, 
trailing zeros are saipped from or appended to M, subject 
to M E 10° - I. to minimize N.) When M lies beyond the 
bound specified by Max D in Table I • i.e., when 
M ;3: IOM .. 0 • the implementor may, at his opcion, round 
off all significant digits after the Max D-th to Olher decimal 
digits. typically 0, and should signal inexact (§7.5) when 
nonzero digits have been discarded. When the destination is 
a decimal string, its least significant digit should be located 
by format specifications for purposes of rounding. Note that 
the largest possible value of N may be less than the boundary 
specified in Table I when the destination is a decimal string .. 

For b :/= JO, the bounds on Max D in Table I correspond 
to conditions necessary for decimaJ strings to distinguish 
floating-point numbers one from another. In some cases 
slightly tighter bounds are possible. Coonen 10 discusses these 
matters in some detail for the draft binary standard. 

The entry for Max N in Table J is determined as follows. 
Consider the following canonical form. the .. scientific nota
tion for ftoating-poinr numbers": 

:t (PX b 1 -p) X bE = :t P11 . P 1 ... Pr- 1 X bF., 

where 

b"- I ~ p ~ II'- l 

when the number is normal, and 

O<P~b"-1 
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when the number is subnormal. Then (see Appendix) 

nex1a/1er(0. l) = (I x b' -,,, x b£--::::: bE- • 1 
- P 

is the smallest positive floating-point number. and 

nextafter(=, l) = (l,P- I) x b' -p x 1r- = bE-• •' 

is the largest finite floating-point number. Nonzero decimal 
strings have the canonical form 

:tMX io=N = :t.M0M 1 • • • Mq-1 X 10=N, q~D. 

where M and N are chosen to minimize INI subject to the 
conditions J EiMEi J <>° - I and INI EiN maa • Let Dec min be the 
smallest positive number to be convened from decimal to 

floating point. Then 

Decmm~O<>°- l)x 10-N-~ne.xtajier(0,I) = 1r-• 1
-P. 

Thus. Nmaa ;;,: D + (p- I -Emin) x log10(b). Similarly, let 
Dec maa be the largest finite decimal number to be convened 
to floating point. Then 

Dec ma• = (I X I oo- 1

) X ION"'° ;;,: nextafter( 00 .1) = bE-• • 1

• 

Thus. Nmaa ;;,: (1-D) + (Emaa + I) x log10(b). The final 
expression for Max N results from letting E,,, denote the 
larger of these two bounds on N maa. and assuming that Max 
N has the form IO" - I . 

Conversions shall be correctly rounded as specified in §4 
for operands lying within the ranges specified in Table 2. 
Otherwise. for rounding to nearest and b=2. the enor in 
the convened result shall not ezceed by more than E units 
in the deslination's least significant digil the error that would 
be incuned by the rounding specifications of §4, provided 
that exponent overflow/underflow does not occur. Here E 

must saaisfy the condition t<0.5; E•0.47 has been found 
to be achievable. In the directed rounding modes for b = 2 
the error shall have the correct sign and shall not exceed 
I + E units in the last place. 

Conversions shall be monotonic. That is, incn:asing lhe value 
of a ftoating-point number shall not decrease its value when 

Table 1. 
Floating polnt-ctectmat string conversion ranges. 

MaxO 

f P IOG1o(b)+ 17, b -:1,. 10 

p, b = 10 

Note: here Em = maxtD + (p-1 - Em1n) log11,(b), 
(Ema+ 1)Iog,0(b) + 1-0}. 

Table 2. 

MaxN 

1 oL foOIO(EatJ + 1 - 1 

Correctly rounded conversion ranges. 

b 

2 

10 

MaxD 

f P log,o(2) + 11 
p 

MaxN 

LP,lOgs(2)J 
1 Ql lo01otE•IJ • 1 _ 1 

Note: here p. denotes the smallest precision permissible as extended support for 
the basic precision p (§3.3), and 

Em= max{O+ (p-1-Emm) log,0(b). 
(Ema. + 1) log,0(b) + 1 - 0). 
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coavertcd to • decimaJ suing: and increasing the value of a 
decimal suing shall noc decrease its value when converted 
to a floating-point number. 

When rounding to nearest. conversion from· ftoating-poinl 
to decimal Siring and back to floating-point shall be the 
identity as long as lhe decimal string is carried to the max
imum precision specified in Table I, namely, Max D digits. 

For b= 10, conversion should be correctly rounded for 
all values specified in Table I . For b = 2, the bounds on Max 
D and Max N for corm:tly rounded results are determined 
as follows. Let Pe be the precision in which the conversion 
is to be computed. Ordinarily Pe will correspond to one of 
the available extended precisions. Then the condition 
1<>° <~defines D such that D digit decimal integers can 
be repiacnted exactly in the conversion precision. Simi
larly, the condition SN < ,re defines N such that l«r' can be 
represented exactly (further scaling of 5N by powers of 2 to 
obtain loN is exact in a binary system). Thus, numbers of 
the form ±Mx 1o=N, where M=e:10°- 1. can be repre
sented in the conversion precision with, at most, one round
ing error. 

Example: 

(I) In the draft binary standard the parameters for single 
are b=2. p=24, and Emu= 127. 'The correspond
ing parameters for binary single-precision floating 
point++decimal string conversion are Max D = 9. 
Max M = 109 

- I, and Max N = 99 for conversion 
to floating point and Max N = 53 for conversion to 
decimal string. The range for conectly rounded con
version is funher restricted to Max N = 13. 

When rounding to nearest. conversion from floating point 
to decimal string and back to floating point will be the iden
tity. provided that D is large enough to distinguish floating
point numbers one from another (the conditions in Table 1) 
and that, for b = 2, Pc is large enough to represent D digit 
decimal integers exactly. i.e .• provided 

lpJog,o(2) J=i!:D=i!:f p.,log,o(2)+ 11, 

or 

lpJog,o(2) J=~{p,log,o(2) + 2 J. 
This is implied by the condition 

Pe'iJ::p., + 6.64 ... 

or. because Pc and p, are integers. 

Pc =i!: p.,+1. 

Tilis relation is automatically satisfied when Pc is an extended 
precision as defined in §3.3. For example, when Pc = p,~. 

Pc =i!: p, + f log2(E-. - E1111n,) 1. 
Noting that 2P• - 1 =i!: I 05 , we have 

s 
p., ~ log10{2) + I ::1: IS. 

Because (Ernaa.. - Em.in,)> Sp., =i!: 90. we finally have 

Pc~ p,+f 6.491 = p,+1. 

If decimal Siring to floating point conversion overflows/ 
underflows, the response is as specified in §7. Overflow/ 
underflow and NaNs and infinities encountered during floa,
ing point to decimal suing conversion should be indicalcd 
to the user by appropriate strings. The leuers ·NaN.• case 
insensitive, optionally preceded by an algebraic sign, should 
be the first characters of a suing representing a NaN. The 
remainder of the string may be used for system-dependent 
information on outpW, and may be ignored on input. Unless 
recognized as a quiet NaN on input. an input NaN should 
become a signaling NaN. The letters •infinity; case insen
sitive. optionally prec:cdcd by an algebraic sign, or the string 
• 1J0,• optionally .prcccdcd by an algebraic. sign, should be 
the characters representing signed infinity. Either n:presen
lalion may be produced on outpu1; boda should be accepted 
on input. 

The default action for attempting to conven an unrecogniz
able input decimal suing is to signal an invalid operation 
exception. 

To avoid inconsistencies, the procedures used for floating 
point-clecimal suing conversion should give the same n:sults 
reganlless of whether the conversion is performed during 
language translation (interpretation. compilation, or assem
bly) or during program execution (run-time and interactive 
input/output). 

There are two kinds of NaNs in the standard, signaling 
and quiet, as explained in §6.2. The question now is why 
should input NaNs be presumed by default to be signaling 
NaNs? First, the input is not a NaN but a string presumably 
intended to be converted into a NaN. It seems reasonable 
funher to presume that the intention was to introduce a sig
naling NaN. since the standard provides no other way to 
create such a thing. Should that presumption be wrong, little 
harm is done because in the absence of a trap enabled to 
handle signaling NaNs. they merely tum into quiet NaNs 
with no funher effect than to set the invalid operation flag. 

The choice of strings to designate infinities is limited. 
Note that "INF" is currently used in some implementations 
of Basic to designate the largest finite number in the floating
point system. 

The standard does not discuss the problem of output-field 
overflow. a problem that must be solved by language imple• 
mentors. An attempt to output a string of characters too long 
for the preallocated field width must somehow notify the 
user that his implicit assertion about the size of his result 
has failed. That notification need not disturb the format of 
subsequent output. For instance, in the case of printing N 
= - 12345.6789 in a Fortran output field defined to be 
F6.2. the expected line 

##### ::t: nn.nnxxxxxxxxxx 

might be replaced by two lines 

####~-12345.68 
xxxxxxxxxx 

without disturbing the relationship of subsequent lines on 
the page. 

5.7. Comparison. It shall be possible lo compare floating
point numbers in all supported precisions. even if the oper
ands· precisions differ. Comparisons are exact and never 
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overflow nor underflow. Four nurually exclusive n:lations 
arc possible: ·tess than; •cqua1: •greater than; and ·unor
dered: The lasr case arises when II lcasr one operand is 
NaN. Every NaN shall compare •unordered• wilh evcry
lhing. including itself. Comparisons shall ignore the sign of 
zero (so. + 0 = - 0). 

1be n:sulr of a comparison shall be delivaed in one of two 
ways: either as a condition code identifying one of the four 
n:lations listed above. or as a trUc•falsc response to a pred
icate that names the specific comparison desired. In addition 
to the true-false response. an invalid operation exception 
(§7 .1) shall be signaled when. as indicarcd in the last column 
of Table 3, •unordmd• operands arc compan:d using one 
of the pn:dicaics involving·<• or·>• but nor•?• (Here 
cbe symbol •1• signifies •unordered:) 

Table 3 exhibits the twenty-six functionally distinct useful 
predicates named. in lhe first column. using dfte notaaions: 
ad hoc. Fortran-like. and mathematical. It shows how they 
an: obaaincd from the four condiaion codes and aells which 
predicates cause an invalid operation exception when the 
n:laaion is •unordered." The catties T and F indicate whether 
lhe predicate is true or false when the respective n:lation 
holds. 

Note that predicates come in pairs, each a logical negation 
of the other: applying a prefix like '"NOT• to negate a pred
icate in Table 3 n:verses the trUc/false sense of its associared 
entries but leaves the last column's enuy unchanged. 

11nplcmcnaations that provide predicates shall provide the 
first six predicates in Table 3 and should provide the sevenlh, 
as well as a means of logically negating pn:dicatcs. 

There may appear to be two ways to write the logical 
negation of a predicate. one using ""NOT"" explicitly and the 
other reversing the relational operator. For example. the log
ical negation of (X = Y) may be written either NOT(X 
= Y) or (X ?<> Y); in this case both expressions are 
functionally equivalent to (X :I:- Y). However, this coinci
dence does not occur for the other predicates. For instance. 
the logical negation of (X < Y) is just NOT(X < Y); the 
reversed pn:dicate (X ?> = Y) is different in that it does 
not signal an invalid operation exception when X and Y are 
""unordered: 

6. Infinity, NaNs, and signed zero 

The special quantities infinity. NaNs. and signed zero 
included in the draft generalized standard provide closure of 
sorts to the arithmetic system and permit sensible responses 
to the exceptional conditions to be discussed in §7. For 
example.= provides a default result for overflow and divi
sion by zero. while the sign on = indicates the direction of 
the overflow. For mathematical consistency. and to aid in 
implementing interval arithmetic. zero also carries a sign. 

Table 3. 
Predicates and relations. 

Predicates Relations Exception 

greater less invalid if 
ad hoc Fortran math than than equal unordered unordered 

= .EQ. F F T F No 
?<> .NE. ,/= T T F T No 

> .GT. > T F F F Yes 
>= .GE. ;at T F T F Yes 
< .LT. < F T F F Yes 

<= .LE. Ea F T T F Yes 
? unordered F F F T No 

<> .LG. T T f F Yes 

<=z> .LEG. T T T F Yes 
?> .UG. T f F T No 

?>= .UGE. T F T T No 
?< .UL. F T F T No 

?<= .ULE. F T T T No 
?= .UE. F F T T No 

NOT(>) F T T T Yes 
NOT(>=) F T f T Yes 
NOT(<) T F T T Yes 
NOT(<=) T F F T Yes 
NOT(?) T T T F No 

NOT(<>) F F T T Yes 

NOT(<=>) f f F T Yes 
NOT(?>) f T T F No 
NOT(?>=) f T F F No 
NOT(?<) T F T F No 
NOT(?<=) T F F F No 
NOT(?=) T T F F No 
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This may indicate the direction from which underflow 
occurred. or it may indicate the sign on an 00 that has been 
reciprocated. All of the arithmetic propenies of the special 
quantities have been similarly designed to emulate their 
mathematical propcnies as nearly as possible. 

The NaNs are special entities introduced to handle other
wise intractable situations. such as providing a default result 
for 0/0. The fact that they propagate through a computation 
suggests that they may also be used. with special program
ming. to provide error traces of various sorts. 11tey might 
even be used to implement special arithmetics by taking 
advantage of their triggering of arithmetic exceptions. How
ever. none of these more esoteric applications aM mentioned 
in the draft standard. 

6.1. Infinity arithmetic. Infinity arithmetic shall be con
sh'l.led as the limiting case of real arithmetic with operands 
of arbitrarily large magnitude, when such a limit exists. 
Infinities shall be interpreted in the affine sense, that is, 
-cc< (every finite number)< +00. 

Arithmetic on 00 is always exact and lhereforc shall signal 
no exceptions, except for the invalid operations specified for 
oc in § 7. I . The exceptions that do pertain to oc are signaled 
only when 

(I) :x: is created from finite operands by overflow (§7.3) 
or division by zero (§7.2). wilh the corresponding 
trap disabled, or 

(2) :z: is an invalid operand (§7.1). 

6.2. Operations with NaNs. Two different kinds of NaN, 
signaling and quiet, shall be supported in all operations. 
Signaling NaNs afford values for uninitialized variables and 
arithmetic-like enhancements (such as complex-affine infin
ities or extremely wide range) that are DOI the subject of the 
standard. Quiet NaNs should. by means left to the imple
mcntor·s discretion, afford retrospective diagnostic infor
mation inherited from invalid or unavailable data and results. 
Propagation of the diagnostic information requires that 
information contained in the NaNs be preserved through 
arithmetic operations and basic precision conversions. 

Signaling NaNs shall be reserved operands that signal the 
invalid operation exception ( § 7. I ) for every operation listed 
in §S. Whether copying a signaling NaN without a change 
of precision signals the invalid operation exception is the 
implementor·s option. 

Signaling NaNs are closely analogous to the reserved 
operands on the DEC PDP/I I and Vax, and to the indefinite 
operand on the CDC 7600 and Cyber. in that they precip
itate some signal when touched but not when created. Quiet 
NaNs arc similar to the reserved operand on the Vax in that 
they result from an invalid operation. but differ in that they 
generate no signal when encountered in subsequent operations: 

Every operation involving a signaling NaN or invalid oper
ation (§7.1) shall, if no trap occurs and if a floating-point 
resull is to be delivered, deliver a quie1 NaN as its result. 

Every operation involving one or two input NaNs, none of 
lhem signaling, shall signal no exception but, if a floating
point result is to be delivered. shall deliver as its result a 

quic1 NaN. which should be one of the input NaNs. Note 
tha1 pn.-cision conversion.,; mighl be unable to deliver the 
same NaN. Quiet NaNs have effects similar to signaling 
NaNs on operations tha1 do DOI deliver a floating-point resul1; 
these operations. namely, comparison and conversion to a 
precision lhat has no NaNs. are discussed in §5.4, §5.6, 
§5.7, and §7.1. 

6.J. The algebrak sign. This standard says nothing about 
lhe sign of a NaN. Otherwise the sign of a product or quo
tient is the Exclusive Or of the operand's signs; and lhe 
sign of a sum. or of a difference x-y regarded as a sum 
x + ( - y), differs from at most one of the addend's signs. 
1bese rules shall apply even when operands or results are 
zero or infinite. 

When the sum of two operands with opposite signs (or the 
difference of two operands with like signs) is exacdy zero. 
the sign of that sum (or difference) shall be • + • in all 
rounding modes except round toward - 00, in which mode 
that sign shall be • - ". However, x + x = r - ( - x) retains 
me same sign as x even when x is zero. 

Except that ../ - 0 shall be - o. every valid square root shall 
have positive sign. 

7. Exceptions 

One objective of the draft standard is to minimize for 
users the complications arising from exceptional conditions. 
The arithmetic system is intended to continue to function on 
a computation as long as possible. handling unusual situa
tions with reasonable default responses. including setting 
appropriate flags. Because a user may want to override default 
resulls and do something special in response to an exception. 
the standard also accommodates user-supplied traps: 

There arc five types of exceptions that shall be signaled when 
detected. The signal entails setting a status flag, taking a 
trap. or possibly doing both. With each exception should be 
associated a trap under user control. as specified in §8. The 
default response 10 an excep1ion shall be to proceed without 
a trap. This standard specifies results to be delivered in both 
trapping and nontrapping situations. In some cases the result 
is different if a trap is enabled. 

For each type of exception the implementation shall provide 
a status flag that shall be SCI on any occurrence of lhe cor
responding exception when no corresponding trap occurs. 
It shall be reset only a~ the user's request. The user shall be 
able to test and to alter the status flags individually, and 
should funhcr be able to save and restore all five at one time. 

The only exceptions that can coincide arc inexact with over
flow and inexact wilh underflow. 

A flag records the occurrence of an exceptional event. 
Resetting a flag clears it. and it stays clear until the first 
subsequent event sets it again, or until it is restored by the 
user to a previous state. Until reset by the user. the set state 
of a flag per.ieveres, providing evidence of a past event: the 
flag may in some implcmemations point to diagnostic infor
mation about the location and nature of the event and/or, 
perhaps. some subsequent ones. 
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The crudest implementations will use just one bit for a 
flag. Next better is to point to the last event since the user 
altered the flag. Pointing to the first event after the ftag was 
reset is slightly better. and feasible for high-speed machines. 
Much better. and much harder to implement. is to point to 
the first and the last. and to keep count of how many occurred 
in between. 

In all cases. a human user should ideally be able to mon
itor what is going on by means of some kind of annunciator, 
perhaps a panel light or a blinking dot on the screen to signify 
that certain (preselected) ftags were set and are being or have 
been dealt with by the program. lntenogating the annuncia
tor should reveal which flags are set, and funher interro
gation should reveal why. 

Because the ftag is an object known to the operating 
system. to alter a flag (to set or reset or restore it) may entail 
a call to the operating system or to a runtime library pro
cedure. But to sense whether a flag is clear, and perhaps to 
save its value. may entail little more than a memory refer
ence. Thus. alteration of a flag. including resetting it, may 
be too slow for inclusion with other operations inside a loop, 
while a true/false test of a flag should be fast enough for 
that. 

7.1. Invalid operation. The invalid operation excep1ion is 
signaled if an operand is invalid for the opera1ion 10 be 
performed. 1be ftoaling-poinl result delivered when the 
exception occurs without a trap shall be a quiet NaN (§6.2). 
The invalid operations are 

(I) Any operation on a signaling NaN (§6.2); 

(2) Addition or subttac::tion: magnitude subtraction of 
infinities like ( +ao) + (-ao); 

(3) Multiplication: 0 x ao; 

(4) Division: OIO or ao/ao; 

(S) Remainder: X REM y. where y is zero or Xis infinite; 

(6) Square IOOl if the operand is less than zero; 

(7) Conversion of an internal ftoating-point rwmber to 
an integer or to a decimal string when ~verftow, 
infinity, ~ NaN precludes a faithful represcnwion 
in that formal and this cannot otherwise be signaled; 

(8) Conversion of an unrecognizable input sering; and 

(9) Comparison via predicates involving •<• or •>", 
without •1•. when lhe operands are ·unorc1era1· (§5. 7. 
Table 3). 

7.2. Division by zero. If the divisor is zero and the dividend 
is a finite nonzero number, then the division by zero exce.,. 
tion shall be signaled. The result, when no trap occurs, shall 
be a correctly signed ao (§6.3). 

The exception called •Division by Zero· is misnamed 
for historical reasons. The division by zero flag. when set, 
indicates precisely that an infinite result was delivered by 
some previous floating-point operation on finite operands, 
that the exact result is not finite. and that no trap was taken 
(whether not implemented. or implemented but not enabled 
by the user). For example, 3.0/0.0 = + 00; similarly. /n(O) 
= -00, tan(90°) = -tan (-90°) = co. atanh(l) = +oo, 
... though these are not specified by the draft standards. 
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A different exception. ·overflow," is signaled when an 
infinite result is produced inexactly from finite operands. No 
exception is signaled when an infinite result is produced from 
infinite operands. as in cox cc. m/0, J + CD, ••• and. pre
sumably. exp(+=). In( +cc), sinh(oc), .... 

7 .3. Overtlow. The overflow exception shall be signaled 
whenever the destination precision's largest finite number is 
exceeded in magnirude by what would have been lhe rounded 
ftoaling-point n:sull (§4) were lhe exponent range unbounded. 
The result. when no trap occurs. shall be determined by the 
rounding mode and the sign of the intermediate result as 
follows: 

(a) Round to nean:sr carries all overftows lo :x: with the 
sign of the intennediate resull. 

(b) Round toward O carries all overflows 10 the preci
sion•s largest finite number with the sign of the imer
mediate result. 

(c) Round toward - :x: carries positive overflows 10 the 
pn:cision·s largest finite number and carries negative 
overflows to -cc. 

(d) Round toward + :x: carries nega1ive overflows 10 the 
prccision·s most negative fini1e number and carries 
posi1ive overflows 10 + :x:. 

Trapped overflows on all operations except conversions shall 
deliver 10 lhe trap handler 1he result obtained by dividing 
the infini1ely precise result by b0 and then rounding. The 
exponenl adjustment a for a precision shall be chosen to be 
approximately 3 x (Em.., - Emin)/4 for that precision. and 
should be divisible by 1welve. Trapped overflow on conver
sion from a ftoating-poin1 precision shall deliver to the trap 
handler a n:su11 in thal or a wider .precision, possibly with 
rhe exponent adjusted, bul rounded 10 the desrination·s pre
cision. Trapped overflow on decimal siring 10 ftoa1ing poinl 
conversion shall deliver to the trap handler a n:sull in the 
widest supported precision, possibly with the exponent 
adjusted. but rounded to the destination's precision; when 
the result lies too far outside the range for the exponen1 10 
be adjusted. a quiea NaN shall be delivered instead. 

The exponent adjustment of approximately 3 
x (Emaa - Em,n)/4 is chosen to translate overftowed/under
ftowed results as nearly as possible to the middle of the 
exponent range so that. if desired, they can be used in sub
sequent scaled operations with less risk of causing further 
exceptions. The requirement for divisibility by 12 simplifies 
the extraction ofJow order integer (square, cubic. and quar
tic) roots. 

Traditionally overflow has been associated with the pro
duction of results whose magnitudes lie above a threshold 
Jr-+ 1 beyond which values cannot be represented. The 
draft continues this tradition. 

If the program will respond to overflow by aborting. then 
a simple trap suffices. If instead it is desired to continue the 
computalion under circumstances that will not lead to mis
leading resulls. some value must be delivered. Some systems 
simply deliver the number of largest magnitude and correct 
sign. Others deliver special values ~hich behave approxi
mately (but not exactly) like the 00 of this draft. 

The draft standard prescribes a default infinite result and. 
in addition, a solid indication that this substitution has 
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occurred-the overflow flag. The overflow flag. when set. 
indicaces precisely that an infinite result was delivered by 
some previous floating-point operation on finite operands, 
that the exact result is finite, and that no trap was taken 
(whether not implemented. or implemented but not enabled 
by the user). It is therefore also appropriately raised by such 
things as attempts to compute exp( I OlO). 

7.4. Underflow. Two correlated events contribute to under
flow. One is the creation of a tiny nonzero result between 
:!: b£- which, because it is so tiny. may cause some other 
exccpcion later such as overftow upon division. 1be ocher is 
extraoniinary loss of accuracy during lhe approximation of 
such tiny rxunbers by subnormal numbers. The implementor 
may choose how these events are detected, but shall detect 
these events in the same way for all operations. Tminess 
may be detected either 

or 

(I) •after rounding•: when a nonzero result computed 
as though the exponent range were unbounded would 
lie suictly between :!: b£-; 

(2) •before rounding•: when a nonzero result computed 
as though boch the exponent range and the precision 
were unbounded would lie strictly between :!: Jr-. 

Loss of accuracy may be detected as either 

or 

(3) a denormalization loss: when the delivered result 
differs from what would have been computed were 
exponent range unbounded; 

(4) an inexact result: when the delivered result differs 
from what would have been computed were both 
exponent range and precision unbounded. (This is 
the condition called inexact in §7.5.) 

When an underflow trap is not implemented or is not enabled 
(the default case). underflow shall be signaled (via the 
underflow flag) only when both tininess and loss of accuracy 
have been detected. The method for detecting tininess and 
loss of accuracy docs not affect the delivered result which 
might be zero, subnormal, or :!:b£-. When an underflow 
trap has been implemented and is enabled, underflow shall 
be signaled when tininess is detected regardless of loss of 
accuracy. Trapped underflows on au operations except con
version shall deliver to the trap handler the result obtained 
by multiplying the infinitely precise result by ba before 
rounding. where the exponent adjusbnent a shall be the 
same as in §7 .3. Trapped underflows on conversion shall be 
handled analogously to the handling of overflows on 
conversion. 

Note that a system whose underlying hardware always 
traps on underflow, producing a rounded. exponent-adjusted 
result. must indicate whether such a result is rounded up in 
magni1ude in order that the correct subnormal result may be 
produced in system software when the user underflow trap 
is disabled. 

Aoating-point formats which do not include subnormal 
values naturally associate underflow with the corresponding 

production of results whose magnitudes lie beneath the 
threshold IJE-. In these cases. the value zero is clearly the 
best approximation to an underflowed result when it is nec
essary to deliver some numerical value. This situation has 
two potentially adverse consequences. First. the zero value 
thus produced may precipitate a division by zero or other 
untoward event which would not have occurred absent the 
underflow. Second. the rounding error which accompanies 
the replacement of a nonzero result is substantially greater 
than would have arisen had the exponent not been too small. 

The presence of subnormal numbers in the draft allows 
the effects of underflow to appear gradually. In particular, 
the subtraction of nearly equal rumbers each near bE- always 
produces a subnormal value which can be repn:scnted exactly. 
These tiny numbers may be more prone to precipitating over
flows if reciprocated. but will not lead to division by zero 
unless cxacdy equal numbers were subtracted. In the case 
of multiplication and division, a zero approximation to an 
underflowed result can still arise. but in any event the max
imum error is reduced from Jr- to ,,e---P _ 

The significance of underflow varies according to appli
cation and will often be concerned either with taking evasive 
action where small (subnormal) values occur-or with obtain
ing a diagnostic indication that approximation error in excess 
of that attributable to rounding (signaled by inexact) has 
occurred. 

Thus, the definition of underflow differs, depending on 
whether traps are to be taken. When an underflow trap is 
implemented and enabled, the threshold test is appropriate 
for all operations. independent of whether a rounding error 
would arise in a subnormal approximation. This allows action 
such as scaling to be taken upon the first production of a 
value beneath the underflow threshold. When only the flag 
is to be set. the indication is appropriate only in the presence 
of a rounding error that may invalidate an a priori error 
analysis. Thus. addition. subtraction. and remainder. whose 
results are always exact when they lie beneath the underflow 
threshold, cannot raise the underflow flag. 

The denormalization loss test is preferable to the inexact 
result test, which can occasionally deliver a slightly pessi
mistic indication of lost accuracy. However. the denormal
ization loss test may be substantially harder to implement. 
in which case the inexact result test is an acceptable 
compromise. 

Implementations that always hold operands and deliver 
results in double or extended format registers. shortening to 
single or basic precision only upon storing (§4.3). may sig
nal underflow during a copy operation if treated as an arith
metic operation (which the draft standard permits) provided 
the trap is enabled; however, when a trap is not present or 
not enabled, the copy operation cannot raise the underflow 
flag because it is an exact operation. 

7 .S. Inexact. If the rounded result of an operation is not 
exact or if il overflows without an overflow trap. then the 
inexact exception shall be signaled. The rounded or over
flowed result shall be delivered to the deslination or, if an 
incxac1 1rap occurs. lo the trap handler. 

Inexact applies only to valid operations. lnexacl and 
underflow flags are destined to be raised frequently, and then 
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usually ignored. To describe a way to avoid unnecessarily 
updating these flags, we must distinguish between hardware 
flags (single bits in a processor's state) and software flags 
(pointers stored in memory), between hardware trap han
dlers (part of the operating system) and software trap han
dlers (subroutines preselected by a user), and between a 
hardware trap-disable bit and a software-trap enable pointer 
(to the software trap handler preselected by the user). The 
scheme is fast because it identifies the hardware flag bit with 
the hardware trap-disable bit. 

In this scheme, the operating system will arrange that 
each hardware trap-disable bit (hardware flag bit) be on if 
and only if its corresponding software flag is nonnull, so the 
occurrence of underflows or inexact results will not be con
cealed from the user. Assume that the hardware must pro
duce an underflowed or inexact result. 

In the usual case, the appropriate trap-disable bit is already 
on. and the appropriate default result is delivered directly 
with no funher excepcional activity required of the proces
sor. When the appropriate trap-disable bit is off, then that 
bit should be turned on. and a rounded result, possibly 
denormalized or with adjusted exponent, should be deliv
ered to the hardware trap handler together with a bit of infor
mation sufficient to compute a denormalized result from one 
with adjusted exponent if necessary. 

The hardware trap handler can tell what has just hap
pened by comparing the present state of the hardware trap
disable bits with the previous state. If an appropriate non
default software trap handler has been enabled by the user, 
the hardware trap handler resets the hardware trap-disable 
bit, then invokes the software trap handler. Otherwise, the 
hardware trap handler places a suitable nonnull pointer into 
the proper software flag and delivers the appropriate default 
result. Thus, if an event like inexact occurs many times 
before its software flag is reset, only the first occurrence 
delays computation to set the flag. 

8. Traps 

A user should be able to request a trap on any of the five 
exceptions by specifying a handler for it. He should be able 
to requeSI that an existing handler be disabled, saved or 
restored. He should also be able to deienninc wbelber a 
specific trap handler for a designated exccplioa bas been 
enabled. When an exception whose trap is disabled is sig
naled, it shall be handled in the manner specified in §7. 
When an exccplion whose trap is enabled is signaled, the 
execution of the program in which the exception occuned 
shall be suspended. the ttap handler previously specified by 
the user shall be activated, and a result, if specified in §7. 
shall be delivered to it. 

8.1. 'lrap handler. A trap handler should have the capabil
i1ies of a subroutine that can return a value to be used in lieu 
of the exceptional operation's result; this result is undefined 
unless delivered by the lrap handler. Similarly. the flag(s) 
corresponding 10 the exceptions being signaled with their 
associa1cd trJps enabled may be undefined unless se1 or reset 
by the trap handler. 

When a sys1cm maps, the trap handler should be able to 
de1ermine 

(I) which exceplion(s) occurred on lhis operation; 
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(2) the kind of operation that was being performed; 

(3) the destination's precision; 

(4) in overflow, UDderftow, and ineuct exceptions, the 
correctly rounded result, including inf onnation that 
might not fit in the dcstinalion's precision; and 

(5) in invalid operation and divide ~y zcro·exccptions, 
the operand values. 

8.2. Precedence. If enabled, the overflow and underflow 
traps take preccdeDce over a separare inexact trap. 

Appendix: Recommended functions and 
predicates* 

The following functions and predicates are recommended 
as aids to program ponability across different systems, per
haps performing arithmetic very differently. They are 
described generically; that is, the types of the operands and 
results are inherent in the operands. Languages that require 
explicit typing will have corresponding families of functions 
and predicates. 

Some functions below, like the copy operation y : = x 
without change of precision, may at the implementor's option 
be treated as nonarithmetic operations which neither signal 
underflow for subnormal operands nor signal the invalid 
operation exception for signaling NaNs; the functions in 
question are (1), (2), (6), and (7). 

(1) copysign(x.y) returns x with the sign of y. Hence, 
abs(x) : = copysign(x, 1.0), even if x is NaN. 

(2) -xis x copied with its sign reversed, not 0-x; the 
distinction is germane when x is :!: 0 or NaN. Con
sequently, it would be a mistake to use the algebraic 
sign to distinguish signaling NaNs from quiet NaNs. 

(3) scalb(x,N) rctumsx x UV, for integral valuesN without 
computing UV. 

(4) Jogb(x) returns the exponent of x, a signed integer in 
the ~ision of x, exccp( that logb(NaN) is a NaN, 
logb(oo) is +co, and logb(O) is -co and signals the 
division by zero exception. When x is positive and 
finite, the expression scalb (x, - logb(x)) lies strictly 
between O and b; it is less than 1 only when x is 
subnormal. 

Logb of a subnormal X is - Emin• 

(5) nextafter(x,y) returns the next representable neighbor 
of x in the direction toward y. The following special 
cases arise: if x = y. then the result is x without any 
exception being signaled; otherwise, if either x or y 

•This appcndi:a:. is not part o( the proposed IEEE Standard 8S4 for Radi:a:.• 
and Wonf-lcn~•h•indcpcndent Floating-point Arithmclic, bul is included 
for information only. 
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is a quiet NaN, then the result is one or the other of 
the input NaNs. Overflow is signaled when xis finite 
but nextafter(x,y) is infinite; underflow is signaled 
when nextafter(x,y) lies strictly between ~J,E--; in 
both cases, inexact is signaled. 

(6) finitc(x) returns the value TRUE if -00 < x < +00, 

and returns FALSE otherwise. 

(7) isnan(x), or equivalently x ¢ x, returns the value TRUE 
if x is a NaN, and returns FALSE otherwise. 

(8) x<>y is TRUE only when x<y or x>y, and is dis
tinct fromx:t=y, which means NOT(x=y) (sec again 
1able 3). 

(9) unordered(x,y), or x?y, returns the value TRUE if x 
is unordered with y, and returns FALSE otherwise 
(sec again Table 3). 

(10) class(x) tells which of the following ten classes x 
falls into: signaling NaN, quiet NaN, - 00, negative 
normal, negative subnormal, -0, +0, positive sub
normal, positive normal, and + 00• This func
tion is never exceptional, not even for signaling 
NaNs. ■ 
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