
N 
SPARC IEEE 754 Implementation Recommendations 

N.1. Unaligned floating
point data registers 

N.2. Reading an empty FQ 

N.3. Traps inhibit results 

A number of details in ANSI/IEEE 754 floating-point standard are left to be 
defined by implementations, and so are not specified in this document. In order 
to promote increased ponability among new SPARC implementations of pro
grams such as instruction set test vectors, the following recommendations are 
designed to eliminate many uncertainties, especially with regard to exceptional 
situations. These recommendations, perhaps modified slightly in the light of sub
sequent experience, are intended to be incorporated as requirements in a future 
SPARC revision. 

The effect of executing an instruction that refers to an unaligned floating-point 
register operand (double-precision operand in a register whose number is not 0 
mod 2, or quadruple-precision operand in a register not O mod 4) is undefined in 
Chapter 4. An illegal_instruction trap should occur in this case. 

The effect of reading an empty floating-point queue is not specified in Chapter 4. 
A trap handler which attempts to read such a queue contains a software error. A 
sequence_ error fp _ exception trap occurs in this case. 

To summarize what happens when a floating-point trap occurs, as described in 
Chapter 4 and elsewhere: 

• The destination/register is unchanged 

• The FSR/cc (floating-point condition codes) field is unchanged 

• The FSR aexc (accrued exceptions) field is unchanged 

• The FSR cexc (current exceptions) field is unchanged except for 
IEEE_754_exceptions; in that case, cexc contains exactly one bit which is 1. 
corresponding to the exception that caused the trap 

These restrictions are designed to ensure a consistent state for user software. 
Instructions causing an fp _ except on trap due to unfinished or unimplemented 
FPops execute as if by hardware; that a hardware trap was taken to supervisor 
software is undetectable by user software except possibly by timing considera
tions. A user-mode trap handler i:ivoked for an IEEE 754 exception, whether as 
a direct result of a hardware IEEE_754_exception or as an indirect result of 
supervisor handling of an unfinished_ FPop or unimplemented_ FPop, may rely on 
the following: 



2 

N.4. NaN operand and 
result definitions 

Untrapped floating-point 
result in different format from 
operands 

Untrapped floating-point 
result in same format as 
operands 

• Supervisor software will pass it the address of the instruction which caused f"""""\. 
the exception, extracted from a deferred trap queue or elsewhere 

• The destination/register is unchanged from its state prior to that 
instruction's execution 

• The FSR/cc is unchanged 

• The FSR aexc is unchanged 

• The FSR cexc contains one bit on for the exception that caused the trap 

• The FSR/tt, qne, u, and res fields are zero 

Supervisor software is responsible for enforcing these requirements if the 
hardware trap mechanism does not. 

An untrapped floating-point result can be in a format which is either the same as, 
or different from, the format of the source operands. These two cases are 
described separately, below. 

F[sdq]TO[sdq], with quiet NaN operand: no exception caused; result is a quiet 
NaN. The operand is transformed as follows: 

NaN transformation: The most significant bits of the operand fraction are 
copied to the most significant bits of the result fraction. When converting to 
a narrower format, excess low order bits of the operand fraction are dis-
carded. When converting to a wider format, excess low order bits of the ~ 
result fraction are set to 0. The quiet bit (the most significant bit of the result 
fraction) is always set to 1, so the NaN transformation always produces a 
quiet NaN. 

F[sdq]TO[sdq], signaling NaN operand: invalid exception, result is the signaling 
NaN operand processed by the NaN transformation above to produce a quiet 
NaN. 

FC:MPE[sdq] with any NaN operand: invalid exception, unordered/cc. 

FCMP[sdq] with any signaling NaN operand: invalid exception, unordered/cc. 

FC:MP[sdq] with any quiet NaN operand but no signaling NaN operand: no 
exception, unordered/cc. 

No NaN operand: for an invalid exception such as sqrt(-1.0) or 0.0 + 0.0, the 
result is the quiet NaN with sign= 0, exponent= all 1 's, and fraction= all l's. 
The sign is O to distinguish such results from storage initialized to all 'l' bits. 

One operand, quiet NaN: no exception, result is the quiet NaN operand. 

One operand, signaling NaN: invalid exception, result is the signaling NaN with 
its quiet bit (most significant bit of fff..ction field) set to 1. 

Two operands, both quiet: no exceptio&l, result is the rs2 (second source) 
operand. 



N.S. Trapped Underflow 
definition (UFM=l) 

N.6. Untrapped underflow 
definition (UFM=O) 

Appendix N - SPARC IEEE 754 Implementation Recommendations 3 

Two operands, both signaling: invalid exception, result is the rs2 operand with 
the quiet bit set to 1. 

Two operands, just one a signaling NaN: invalid exception, result is the signaling 
NaN operand with the quiet bit set to 1. 

Two operands, neither signaling NaN,just one a quiet NaN: no exceptw~ result 
is the quiet NaN operand. 

In the following tabular representation of the untrapped results, NaNn means the 
NaN in rsn, Q means quiet, S signaling: 

rs2 operand 
number QNaN2 SNaN2 

none IEEE754 QNaN2 QSNaN2 
rsl number IEEE 754 QNaN2 QSNaN2 

operand QNaNl QNaNl QNaN2 QSNaN2 
SNaNl QSNaNl QSNaNl QSNaN2 

QSNaNn means a quiet NaN produced by the NaN transformation on a signaling 
NaN from rsn; the invalid exception is always signaled. The QNaNn results in 
the table never generate an exception, but IEEE 754 specifies a number of cases 
of invalid exceptions and QNaN results from operands that are both numbers. 

Underflow occurs if the correct unrounded result has magnitude between zero 
and the smallest nonnalized number in the destination format In terms of IEEE 
7 54, this means "tininess detected before rounding". 

Note that the wrapped exponent results intended to be delivered on napped 
underflows and overflows in IEEE 754 aren't relevant to SPARC at the 
hardware/supervisor levels; if they are created at all, it would be by user software 
in a user-mode trap handler. 

Underflow occurs if the correct unrounded result has magnitude between zero 
and the smallest normalized number in the destination format, and the correctly 
rounded result in the destination format is inexact; that result may be zero, sub
nonnal, or the smallest nonnalized number. In terms of IEEE 754, this means 
"tininess detected before rounding" and "loss of accuracy detected as inexact". 

Note that floating-point overflow is defined to be detected after rounding; the 
foregoing underflow definition simplifies hardware implementation and testing. 

The following table summarizes what happens when an exact unrounded value 
u satisfying 

0 S I u I S smallest normalized number 
would round, if no trap intervened, to a rounded value r which might be zero, 
subnormal, or the smallest normalized value. "UF" means underflow trap (with 
ufc set in cexc), "NX" means inexact trap (with nxc set in cexc), "uf' means 
untrapped underflow exception (ufc set in cexc and ufa in aexc), and unx" means 
untrapped inexact exception (nxc set in cexc and nxa in aexc). 



4 

N.7. Integer overflow 
definition 

N.8. Nonstandard mode 

underflow trap UFM=l UFM=O UFM=O 
inexact trap NXM=? NXM=l NXM=0 
r is minimum normal none none none 

U=r r is subnonnal UF none none 
r is zero none none none 
r is minimum normal UF NX ufnx 
r is subnonnal UF NX ufnx 
r is zero UF NX ufnx 

F[sdq]TOi: when a NaN, infinity, large positive argument~ 2147483648.0, or 
large negative argument S-2147483649.0, is convened to integer, the resulting 
exception is invalid. If no trap occurs and the sign bit of the operand is positive 
(i.e., is 0), the numerical result is 2147483647. lfno trap occurs and the sign bit 
of the operand is negative (i.e., is 1), the numerical result is -2147483648. 

SP ARC implementations are permitted but not encouraged to deviate from 
SPARC requirements when the nonstandard mode bit of the FSR is 1. Some 
implementations use that bit to provide alternative handling of subnormal 
floating-point operands and results that avoids unfinished_ FPop traps with conse
quent poor performance on programs that underflow frequently. 

Such traps could be avoided by proper system design. Cache misses in the CPU 
cause holds in the FPU, in order for extra cycles to occur to refill the cache, so 
that their occurrence is invisible to software and doesn't degrade performance in 
the normal cache hit case. Similarly "subnormal misses" in the FPU can be 
avoided by any of several better implementation techniques that avoid causing an 
unfinished_ FPop trap or degrading perfonnance in the normal case. One way is 
to cause subnormal misses in the FPU to hold the CPU, so that operand or result 
alignment can take a few extra cycles without any other effect on software. 
Another way to avoid extra cycles is to provide extra normalization hardware for 
operands and results. 

So the best implementation of nonstandard mode is a no-op: nonstandard mode 
runs identically to the standard SPARC mode. Such implementations identify 
themselves in the NS bit of the FSR, which always reads 0, even after a 1 is writ
ten. 

Second best is to implement nonstandard mode for subnormal operctnds and 
results as outlined below so that implementations behave uniformly: 

Subnormal operands 
In nonstandard mode are replaced by zeros with the same sign. An 
inexact exception always arises if no other exception would, and so 
traps ifNXM=l. 

Untrapped subnormal results 
In nonstandard mode are replaced by zeros with the same sign. 
Underflow and inexact exceptions always arise. In terms of the previ
ous table: 



Appendix N - SPARC IEEE 754 Implementation Recommendations 5 

~. 

underflow trap UFM=l UFM=O UFM=O 
inexact trap NXM=? NXM=l NXM=O 
r is minimum nonnal none none none 

U=r 
r is zero none none none 
r is minimum nonnal UF NX ufnx 

U¢T 
r is zero UF NX ufnx 


