
Micro-Analysis of the Titan's Operation Pipe

John Sanguinetti
Ardent Computer Corporation

Abstract

Much of the performance analysis done in designing a
computer is based on fundamental operation rates, like
cycle time and number of pipe stages in an operation
pipeline. This kind of analysis yields peak computation
rates which, in fact, may never be realized. Resource
contention between different units, each of which has a
fundamental operation rate adequate to support a given
overall peak, may cause the actual obtainable rate to be
much less. In order to determine the effects of interactions
between different requestors and common resources,
micro-analysis, or detailed modelling of the part of the
system in question, is necessary. In this paper, we report
on the results of such an analysis on the operation pipe of
the Titan graphics supercomputer. The Titan is a new
class of machine with a supercomputer-style architecture
implemented in a technology appropriate for a single­
user machine. The micro-analysis reported here resulted
in enhancing the actual obtainable computation rate from
10.8 Mflops to 14.6 Mflops for a particular real applica­
tion, while the fundamental operation rate is 16 Mflops.

Description of the Titan

The Titan was conceived to be a ''Visualization Tool" -
a machine which would allow an engineer or scientist to
model a physical entity and then visualize the results of
the model. Consequently, the machine would have to
first be able to do the computation required for physical
modelling and second be able to render the resulting
image, all in a reasonable amount of time. The goal of the
Titan was to provide a significant fraction (about 25%) of
the performance of a super-computer and provide supe­
rior graphics performance for a price less than $100,000.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage.
the ACM copyright notice and the title of the pub)ication and its date appear.
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish. requires a fee and/
or specific permission.

© 1988 ACM 0-89791-272-1/88/0007/0190 $1.50

190

Particular performance goals included executing the
Unpack lOOxlOO benchmark at a rate of 6 Mflops (com­
piled) on a single processor. This was considered an
important performance goal since many real problems
have characteristics similar to the Linpack benchmark,
and typical supercomputer rates on this benchmark range
from 20 to 40 Mflops- a Cray 2S (1 processor) is rated at
23 Mflops [Dongarra].

Aside from computational power for physical modelling
problems, floating point power is also needed for doing
3-D graphics rendering. Drawing a picture on a 1024x1280
screen which occupies 1/2 of the screen area using a ray­
tracing algorithm with shading, 3 light sources, and
environmental reflection would typically take about 3.5
billion floating point operations. Titan was intended to
have enough computational power to draw such pictures
in "reasonable" time. A rate of 2 Mflops for scalar compu­
tation would allow such rendering to be done in about 8
minutes on a 2 processor Titan.

In order to satisfy its performance goals, the Titan needs
a fast processor and a high bandwidth processor-to­
memory interconnection. In order to do double-precision
vector triad operations, the processor-to-memory con­
nection must deliver 16 bytes to the processor and 8 bytes
to memory for each operation, making a requirement of
24MB per Mflop (this requirement can be reduced by
chaining in the floating point unit for some operations).

The Titan is a symmetric multiprocessor, with up to four
identical processors. The organization of the processor is
fairly typical of a vector computer. There is an integer
processor (IPU) and a floating point unit (FPU). The FPU
contains two load pipes to memory, one store pipe, a
single operation pipe which can accommodate a chained
multiply and add, and a reasonably large set of vector
registers (8192 cells) which can be configured in a variety
of vector sizes. Fig1.1re 1 is a block diagram of the proces­
sor and memory of the Titan.

The fundamental rates of the various units are matched so
that a peak of one result every 2 clock cycles can be

http://crossmark.crossref.org/dialog/?doi=10.1145%2F55364.55383&domain=pdf&date_stamp=1988-06-01

IPU

I

RBus

SBus

.......

L--. Store Pipe

Floating Point Unit

Arbiter

'

Memory
Interleave
0

Op Pipe

Vector
Register
File

-

-

-

• ■ ■

TIT AN Block Diagram
Figure 1.

191

Load Pipe

Load Pipe

Arbiter

Memory
Interleave
15

achieved. Each load pipe can deliver one operand from
memory to the vector register file every 2 cycles, the
vector register file can deliver 2 operands every 2 cycles
to the operation pipe, the operation pipe can deliver one
result every 2 cycles to the vector register file, the vector
register file can deliver one result every cycle to the store
pipe, and the store pipe can deliver one result to memory
every cycle. Finally, the interleaved memory can receive
and deliver results and operands at a rate of 1 operand
and 1 result every cycle. Since the clock frequency is 16
MHz, floating point results can be delivered to memory
at a frequency of 8 Mhz. For add and multiply operations
that is a processing rate of 8 Mflops, and for chained
multiply and add operations, that is a rate of 16 Mflops.

The peak processing rate has been defined as the rate
which the manufacturer guarantees the machine will not
exceed. Since the operation pipe can execute at 16 Mflops,
the peak rate is 16 Mflops. A load-load-add-multiply­
store chained operation will have a sustainable rate of 16
Mflops, as long as no contention occurs anywhere in
either memory or the vector register file. In real operation,
contention does sometimes occur, and the question of
interest is how close to the peak rate can sustained opera­
tion run. The detailed design of the various units can have
a dramatic effect on the answer to that question.

In the case of the Titan, micro-analysis of the operation
pipe (that is, a cycle by cycle analysis) revealed that a non­
intuitive change in the design could increase the actual
sustainable rate for a given benchmark program from
10.8 Mflops to 14.6 Mflops. The code being executed here
was Daxpy (figure 2), which is the dominant part of the
Unpack benchmark. The modelling was done using a
mixed-level model of the Titan, with the relevant compo­
nents of the vector unit modelled at the gate level. This is
a slow, but absolutely accurate, model of the vector unit
(in a sense, the model is the design).

do 1 i = 1, n
1 y(i) = y(i) + a*x(i)

Figure 2.

The Operation Pipe

The components of the floating point unit involved with
a typical triadic vector operation are the load pipes, the
operation pipe, the store pipe, and the vector register file
(VRF), which serves as source and destination for the
operands and results. The central component is the op­
eration pipe, or op pipe. This pipeline has a number of
operational characteristics which affect the overall FPU
operation.

192

The fundamental characteristic of the op pipe is that it
operates at half the frequency of the rest of the FPU. That
is, each stage of the pipeline requires two cycles. This
comes from the use of an off-the-shelf arithmetic chip (the
Weitek 2264/2265), which must be cycled at a rate slower
than 16 MHz. The pipeline is divided into sections, as
shown in figure 3. The first section fetches operands from
the VRF and the second section presents the fetched
values to the appropriate arithmetic chip. The third sec­
tion consists of stages 3, 4, and 5, each of which takes two
cycles. This is where the arithmetic is actually performed.
Stages 6, 7, and 8 are an optional section, which does a
second operation in the case of a chained multiply and
add. The last section is stage 9, where results are stored in
the VRF. All of the stages within a given section must be
in the same phase (A or B), and there can be only one
entry in a single stage at a time.

In this pipeline, stalls can occur when there is either an
operand-result dependency or contention in the VRF
inhibits loading operands or storing results. These occur
in stages lB, SA (for chained operations), and 9A. An­
other source of stalls is the requirement that stage 2 and
stages 3-5 must stay in phase with each other. That is, an
entry in stage 2A cannot move to stage 2B if an entry in
stages 3-5 is moving from the B phase to the next stage A
phase. Typically, stalls due to VRF bank contention last
for one cycle, and the same is true for out-of-phase stalls.

Standard pipeline design (see [Kogge]) follows a greedy
strategy. An entry in the pipe moves to the next stage
unless stalled by either a stall .condition for the destina­
tion stage, e.g. operand fetch stalled, or the stage ahead is
stalled. Events which occur in earlier stages in the pipe­
line (later in the stream of operations) do not affect
stalling behavior in later stages.

The Vector Register File

The vector register file is a shared resource, serving as the
source and destination for all the FPU units. As a result,
it is subject to contention when two units need to access
vector registers on the same cycle. The bandwidth of the
VRF was increased by dividing it into four banks, each of
which can be accessed by one of the units on each cycle.
Thus, if each unit is accessing a different bank, no conten­
tion occurs.

For example, figure 4 shows the op pipe accessing two
operands from different banks on the same cycle, as both
operands are obtained in stage 2A. At the same time, the
store pipe can access a different bank, obtaining a result
to store in memory. Note that results are stored from the
op pipe stage 9 on the opposite phase as operand fetch, so

1A 18 I3A 138 [4A 148 I sA [s0 I I sA [ss [1 A I 1s [aA I ss I EE]
Op
decode

Operand
fetch

Present
operands to
arithmetic
chip

Do arithmetic Optional add Store
results

Operation Pipeline

Figure 3.

Store Pipe

request
result

result

Bank O Bank 1 Bank 2 Bank3

VRF

Op Pipe

Figure 4.

contention is avoided even in the same bank between
operands and results.

If two units do access the same bank on the same cycle, the
conflict is resolved by priority, with writes into the VRF
having higher priority than reads from it. This typically
happens with the load pipes contending for the same
bank as operand fetch. If a load pipe write and an operand
read occur to the same bank on a given cycle, the operand
fetch is stalled.

A consequence of this conflict resolution is that if load
pipes were allowed to run at a rate of one element per
cycle, which the bus and memory system can support, the
op pipe would be locked out of that bank. For this reason,
load pipes are limited to produce one element every two
cycles, though for a triadic operation, they would typi­
cally alternate cycles anyway.

193

Performance Effects

The fundamental rates of the various units are matched so
that the op pipe should be the limiting resource, emitting
results every two cycles. Indeed, if the triad being per­
formed is strictly done within the vector register file, that
is always the case. However, in the common case where
operands come from memory, are chained to the opera­
tion, and the results are chained to the store pipe to go
back to memory, VRF contention does occur.

When the initial design was simulated, the operation rate
of the Daxpy loop, which is essentially a single load-load­
multiply-add-store chained operation, was 10.8 Mf, not
the peak rate of 16 Mf which would be obtained if the
operation was contained within the VRF. In order to
determine the cause of this lower than expected operation
rate, micro-analysis, or detailed modelling, of the FPU
was used.

Micro-analysis

Micro-analysis of a performance phenomenon is the
detailed modelling of a small part of the system, from
which the system's performance is determined [Beizer].
This is most appropriate to the analysis of that part of the
system which is the primary performance factor. Such
analysis usually takes the form of an analytic model on a
restricted enough part of the system to make solution
feasible. In the problem at hand, micro-analysis is appli­
cable, but a tractable analytic model is not apparent.

The modelling technique used was a mixed-level simula­
tion model of the Titan. The model incorporated different
levels of abstraction for different components of the
machine. The highest levels of abstraction were used for
those components which were not involved in the opera­
tion in question, for example the I/ 0 and graphics boards.
Intermediate levels of abstraction, which generally re­
tained the important behavior of a component but did not
include the unused functionality, were used for models
like the memory boards, the integer processor, and the
arithmetic chips. This level is sometimes called the func­
tional, or behavioral level.

The register transfer level is a lower level of abstraction,
in which the structure of the component is modelled, but
the mechanism for transforming data is modelled ab­
stractly (for example, x = y + z would model the collection
of gates which make up the adder). This level was used
for the cross-bar switch which routes data between the
FPU units and the VRF. The lowest level of abstraction is
the gate level, in which the component is modelled by its
actual netlist. Gate level models were used for the op pipe
and the load and store pipes, as well as the VRF controller
and scoreboard. In a very real sense, the model is the
component being modelled.

Mixed-level modelling was proposed in the context of
operating system design by [Zurcher]. The idea was that
successive refinement would lead in a top-down fashion
to progressively more complete simulation models, until
ultimately the final model was the operating system
itself. This methodology has not gained wide acceptence
for doing operating system design. However, it is prov­
ing successful in hardware design. A gate level simula­
tionmodelcanautomaticallybetransformedintoanetlist
from which components can be fabricated.

For the purposes here, a major advantage of mixed-level
simulation was that it facilitated micro-analysis of the
FPU. Those components which were involved with the
operation in question could be elaborated at the gate
level, while those which were involved to lesser degrees
could be represented by more abstract models. Figure 5

194

shows the various levels of abstraction in the Titan model
used to analyze the op pipe phenomE:non here.

Among the tangible benefits of this method were reason­
able execution time of the simulation model. The model
was simulated on a Sun 3/260 workstation at a rate of
about 3 simulated cycles/ second, which was fast enough
to do a simulation run in a matter of minutes (or a small
number of hours). The simulation model was written in
Verilog-XL ([Gateway]).

Modelling Results

When the Daxpy operation was simulated in the system
model, a sustained rate of 10.8 Mf was obtained. The
cause of this degradation can be found in the interaction
between operand fetch stalls and phase stalls :in the op
pipe.

Because of more or less random variations in the memory
system, occasionally the load pipes will deviate from the
normal alternating pattern of returning operands. These
random variations are due to memory traffic generated
by other system components, such as the integer proces­
sor, other processors, or I/0. Figure 6 shows an example
of typical bus activity for the two system buses at the
beginning of this vector operation. Note that at cycle 16
there are two consecutive references to the same bank
(pipe b). After that, the two pipes begin alternating again.

When one of these deviations occurs, the op pipe reaches
a state where repeating stalls reduce the pipeline through­
put by a factor of two. The two stalls in question are the
VRF bank contention stall in 1 B and the phase stall in 2A.
Figure 7 shows how this occurs. Each line in the figure
corresponds to a cycle. VRF accesses by the load pipes are
indicated by the pipe identifier (a orb), and the operation
element number is given for each op pipe stage. An entry
in lBwill stallifitoccurson thesamecycleasa B pipeVRF
access (because it is accessing the same bank). The first
entry marked by a * shows a VRF bank conflict stall,
which was a result of the deviation in returned data.

The stall in 1B ca uses the two pipe sections 2 and 3-5 to get
out of phase with each other, causing a phase stall in the
entry marked by a+. Thus the VRF bank contention stall
has turned into a 2-cycle stall. Since the load pipes have
resumed their alternating behavior, however, a second
VRF bank stall will occur on the next operand fetch, and
the process has reached a recurring state. This is very
similar to the linked-conflict phenomenon in the Cray X­
MP memory system described by [Cheung].

Memory

Scoreboard

cycle

Pipe A
PipeB

Adder
Multiplier
Divider

I-cache

D-cache

Functional Level

Crossbar
Data Path

Register Transfer Level

VRF Op Pipe

11

b

Gate Level

Figure 5.

12 13 14 15 16 17

a a a
b b b

Load Pipe VRF Requests

Figure 6.

195

18

b

I
IPU

I

I Load Pipes I
I

Store Pipe I

19 20

a
b

Cycle Vrf access lb 2a 2b 3a 3b 4a 4b Sa Sb 6a ...
15 b 4 3 2 1
16 b 5* 4 3 2 1
17 a 5 4 3 2 1
18 b 5+ 4 3 2 1
19 a 6 5 4 3 2
20 b 6* 5 4 3 2
21 a 6 5 4 3

Operation Pipe With Recurring Stalls

Figure 7.

Cvcle
1

Vrf access 1 b 2a 2b 3a 3b 4a 4b Sa Sb 6a ...
5 b 4 3 2 1

1 6 b 5* 4 3 2 1
1 7 a 5 4 3 2 1
1 8 b 5 4+ 3+ 2+ 1+
1 9 a 6 5 4 3 2 1
2 0 b 6 5 4 3 2

Operation Pipe With Downstream Stalls

Figure 8.

The solution to this problem is relatively straightforward,
though counter-intuitive. If, instead of stalling the ele­
ment in stage 2A to regain correct phase ordering, the
downstream operations are stalled (stages 3-5), then the
next operand fetch will happen one cycle earlier, and will
not suffer a VRFbankconflict. This is illustrated in figure
8.

When this solution was implemented in the simulation
model, the operation rate for Daxpy increased to 14.8 Mf.
The difference between the new rate and the maximum of
16 Mf is now solely a result of the occasional memory
deviations, which cause 1-cycle stalls in the op pipe.
When the Titan was actually built and this operation was
measured, the modelled performance was obtained. As
a result, the complete Linpack lOOxlOO benchmark exe­
cutes at a rate of more than 6 Mflops on a single processor
Titan.

Conclusion

References

1. Beizer, Boris. Micro-Analysis of Computer System
Performance. VanNostrandReinholdCo.NewYork,
1978.

2. Cheung, Tony and James E. Smith. "A simulation
Study of the Cray X-MP Memory System" in IEEE
Transactions on Computers, Vol. C-35, No. 7, July
1986.

3. Dongarra, Jack J. "Performance of Various Com­
puters Using Standard Linear Equations Software
in a Fortran Environment" Technical Memoran­
dum No. 23. Argonne National Laboratory, Feb.
1988.

4. Gateway Design Automation Corp. Hardware
Description Language and Simulator. Gateway De­
sign Automation Corp., Westford, Mass., March
1987.

By using micro-analysis of the operation pipe and its
interactions with the vector register file, we were able to 5.
modify the design to improve the sustainable processing

Kogge, Peter M. The Architecture of Pipelined Com­
puters. Mc.Craw-Hill Co., New York, 1981.

rate 35 percent on a significant part of the Unpack bench­
mark. Because this is a common operation in many pro- 6.
grams of interest, the overall effect is significant.

196

Zurcher, Frank and Brian Randell. "Iterative, Multi­
Level Modelling-a Methodology for Computer
System Design" in Proceedings IFIP Congress 68,
1968.

