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Abstract 

Much of the performance analysis done in designing a 
computer is based on fundamental operation rates, like 
cycle time and number of pipe stages in an operation 
pipeline. This kind of analysis yields peak computation 
rates which, in fact, may never be realized. Resource 
contention between different units, each of which has a 
fundamental operation rate adequate to support a given 
overall peak, may cause the actual obtainable rate to be 
much less. In order to determine the effects of interactions 
between different requestors and common resources, 
micro-analysis, or detailed modelling of the part of the 
system in question, is necessary. In this paper, we report 
on the results of such an analysis on the operation pipe of 
the Titan graphics supercomputer. The Titan is a new 
class of machine with a supercomputer-style architecture 
implemented in a technology appropriate for a single­
user machine. The micro-analysis reported here resulted 
in enhancing the actual obtainable computation rate from 
10.8 Mflops to 14.6 Mflops for a particular real applica­
tion, while the fundamental operation rate is 16 Mflops. 

Description of the Titan 

The Titan was conceived to be a ''Visualization Tool" -
a machine which would allow an engineer or scientist to 
model a physical entity and then visualize the results of 
the model. Consequently, the machine would have to 
first be able to do the computation required for physical 
modelling and second be able to render the resulting 
image, all in a reasonable amount of time. The goal of the 
Titan was to provide a significant fraction (about 25%) of 
the performance of a super-computer and provide supe­
rior graphics performance for a price less than $100,000. 
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Particular performance goals included executing the 
Unpack lOOxlOO benchmark at a rate of 6 Mflops (com­
piled) on a single processor. This was considered an 
important performance goal since many real problems 
have characteristics similar to the Linpack benchmark, 
and typical supercomputer rates on this benchmark range 
from 20 to 40 Mflops- a Cray 2S (1 processor) is rated at 
23 Mflops [Dongarra]. 

Aside from computational power for physical modelling 
problems, floating point power is also needed for doing 
3-D graphics rendering. Drawing a picture on a 1024x1280 
screen which occupies 1/2 of the screen area using a ray­
tracing algorithm with shading, 3 light sources, and 
environmental reflection would typically take about 3.5 
billion floating point operations. Titan was intended to 
have enough computational power to draw such pictures 
in "reasonable" time. A rate of 2 Mflops for scalar compu­
tation would allow such rendering to be done in about 8 
minutes on a 2 processor Titan. 

In order to satisfy its performance goals, the Titan needs 
a fast processor and a high bandwidth processor-to­
memory interconnection. In order to do double-precision 
vector triad operations, the processor-to-memory con­
nection must deliver 16 bytes to the processor and 8 bytes 
to memory for each operation, making a requirement of 
24MB per Mflop (this requirement can be reduced by 
chaining in the floating point unit for some operations). 

The Titan is a symmetric multiprocessor, with up to four 
identical processors. The organization of the processor is 
fairly typical of a vector computer. There is an integer 
processor (IPU) and a floating point unit (FPU). The FPU 
contains two load pipes to memory, one store pipe, a 
single operation pipe which can accommodate a chained 
multiply and add, and a reasonably large set of vector 
registers (8192 cells) which can be configured in a variety 
of vector sizes. Fig1.1re 1 is a block diagram of the proces­
sor and memory of the Titan. 

The fundamental rates of the various units are matched so 
that a peak of one result every 2 clock cycles can be 
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achieved. Each load pipe can deliver one operand from 
memory to the vector register file every 2 cycles, the 
vector register file can deliver 2 operands every 2 cycles 
to the operation pipe, the operation pipe can deliver one 
result every 2 cycles to the vector register file, the vector 
register file can deliver one result every cycle to the store 
pipe, and the store pipe can deliver one result to memory 
every cycle. Finally, the interleaved memory can receive 
and deliver results and operands at a rate of 1 operand 
and 1 result every cycle. Since the clock frequency is 16 
MHz, floating point results can be delivered to memory 
at a frequency of 8 Mhz. For add and multiply operations 
that is a processing rate of 8 Mflops, and for chained 
multiply and add operations, that is a rate of 16 Mflops. 

The peak processing rate has been defined as the rate 
which the manufacturer guarantees the machine will not 
exceed. Since the operation pipe can execute at 16 Mflops, 
the peak rate is 16 Mflops. A load-load-add-multiply­
store chained operation will have a sustainable rate of 16 
Mflops, as long as no contention occurs anywhere in 
either memory or the vector register file. In real operation, 
contention does sometimes occur, and the question of 
interest is how close to the peak rate can sustained opera­
tion run. The detailed design of the various units can have 
a dramatic effect on the answer to that question. 

In the case of the Titan, micro-analysis of the operation 
pipe (that is, a cycle by cycle analysis) revealed that a non­
intuitive change in the design could increase the actual 
sustainable rate for a given benchmark program from 
10.8 Mflops to 14.6 Mflops. The code being executed here 
was Daxpy (figure 2), which is the dominant part of the 
Unpack benchmark. The modelling was done using a 
mixed-level model of the Titan, with the relevant compo­
nents of the vector unit modelled at the gate level. This is 
a slow, but absolutely accurate, model of the vector unit 
(in a sense, the model is the design). 

do 1 i = 1, n 
1 y(i) = y(i) + a*x(i) 

Figure 2. 

The Operation Pipe 

The components of the floating point unit involved with 
a typical triadic vector operation are the load pipes, the 
operation pipe, the store pipe, and the vector register file 
(VRF), which serves as source and destination for the 
operands and results. The central component is the op­
eration pipe, or op pipe. This pipeline has a number of 
operational characteristics which affect the overall FPU 
operation. 
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The fundamental characteristic of the op pipe is that it 
operates at half the frequency of the rest of the FPU. That 
is, each stage of the pipeline requires two cycles. This 
comes from the use of an off-the-shelf arithmetic chip (the 
Weitek 2264/2265), which must be cycled at a rate slower 
than 16 MHz. The pipeline is divided into sections, as 
shown in figure 3. The first section fetches operands from 
the VRF and the second section presents the fetched 
values to the appropriate arithmetic chip. The third sec­
tion consists of stages 3, 4, and 5, each of which takes two 
cycles. This is where the arithmetic is actually performed. 
Stages 6, 7, and 8 are an optional section, which does a 
second operation in the case of a chained multiply and 
add. The last section is stage 9, where results are stored in 
the VRF. All of the stages within a given section must be 
in the same phase (A or B), and there can be only one 
entry in a single stage at a time. 

In this pipeline, stalls can occur when there is either an 
operand-result dependency or contention in the VRF 
inhibits loading operands or storing results. These occur 
in stages lB, SA (for chained operations), and 9A. An­
other source of stalls is the requirement that stage 2 and 
stages 3-5 must stay in phase with each other. That is, an 
entry in stage 2A cannot move to stage 2B if an entry in 
stages 3-5 is moving from the B phase to the next stage A 
phase. Typically, stalls due to VRF bank contention last 
for one cycle, and the same is true for out-of-phase stalls. 

Standard pipeline design (see [Kogge]) follows a greedy 
strategy. An entry in the pipe moves to the next stage 
unless stalled by either a stall .condition for the destina­
tion stage, e.g. operand fetch stalled, or the stage ahead is 
stalled. Events which occur in earlier stages in the pipe­
line (later in the stream of operations) do not affect 
stalling behavior in later stages. 

The Vector Register File 

The vector register file is a shared resource, serving as the 
source and destination for all the FPU units. As a result, 
it is subject to contention when two units need to access 
vector registers on the same cycle. The bandwidth of the 
VRF was increased by dividing it into four banks, each of 
which can be accessed by one of the units on each cycle. 
Thus, if each unit is accessing a different bank, no conten­
tion occurs. 

For example, figure 4 shows the op pipe accessing two 
operands from different banks on the same cycle, as both 
operands are obtained in stage 2A. At the same time, the 
store pipe can access a different bank, obtaining a result 
to store in memory. Note that results are stored from the 
op pipe stage 9 on the opposite phase as operand fetch, so 
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contention is avoided even in the same bank between 
operands and results. 

If two units do access the same bank on the same cycle, the 
conflict is resolved by priority, with writes into the VRF 
having higher priority than reads from it. This typically 
happens with the load pipes contending for the same 
bank as operand fetch. If a load pipe write and an operand 
read occur to the same bank on a given cycle, the operand 
fetch is stalled. 

A consequence of this conflict resolution is that if load 
pipes were allowed to run at a rate of one element per 
cycle, which the bus and memory system can support, the 
op pipe would be locked out of that bank. For this reason, 
load pipes are limited to produce one element every two 
cycles, though for a triadic operation, they would typi­
cally alternate cycles anyway. 
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Performance Effects 

The fundamental rates of the various units are matched so 
that the op pipe should be the limiting resource, emitting 
results every two cycles. Indeed, if the triad being per­
formed is strictly done within the vector register file, that 
is always the case. However, in the common case where 
operands come from memory, are chained to the opera­
tion, and the results are chained to the store pipe to go 
back to memory, VRF contention does occur. 

When the initial design was simulated, the operation rate 
of the Daxpy loop, which is essentially a single load-load­
multiply-add-store chained operation, was 10.8 Mf, not 
the peak rate of 16 Mf which would be obtained if the 
operation was contained within the VRF. In order to 
determine the cause of this lower than expected operation 
rate, micro-analysis, or detailed modelling, of the FPU 
was used. 



Micro-analysis 

Micro-analysis of a performance phenomenon is the 
detailed modelling of a small part of the system, from 
which the system's performance is determined [Beizer]. 
This is most appropriate to the analysis of that part of the 
system which is the primary performance factor. Such 
analysis usually takes the form of an analytic model on a 
restricted enough part of the system to make solution 
feasible. In the problem at hand, micro-analysis is appli­
cable, but a tractable analytic model is not apparent. 

The modelling technique used was a mixed-level simula­
tion model of the Titan. The model incorporated different 
levels of abstraction for different components of the 
machine. The highest levels of abstraction were used for 
those components which were not involved in the opera­
tion in question, for example the I/ 0 and graphics boards. 
Intermediate levels of abstraction, which generally re­
tained the important behavior of a component but did not 
include the unused functionality, were used for models 
like the memory boards, the integer processor, and the 
arithmetic chips. This level is sometimes called the func­
tional, or behavioral level. 

The register transfer level is a lower level of abstraction, 
in which the structure of the component is modelled, but 
the mechanism for transforming data is modelled ab­
stractly (for example, x = y + z would model the collection 
of gates which make up the adder). This level was used 
for the cross-bar switch which routes data between the 
FPU units and the VRF. The lowest level of abstraction is 
the gate level, in which the component is modelled by its 
actual netlist. Gate level models were used for the op pipe 
and the load and store pipes, as well as the VRF controller 
and scoreboard. In a very real sense, the model is the 
component being modelled. 

Mixed-level modelling was proposed in the context of 
operating system design by [Zurcher]. The idea was that 
successive refinement would lead in a top-down fashion 
to progressively more complete simulation models, until 
ultimately the final model was the operating system 
itself. This methodology has not gained wide acceptence 
for doing operating system design. However, it is prov­
ing successful in hardware design. A gate level simula­
tionmodelcanautomaticallybetransformedintoanetlist 
from which components can be fabricated. 

For the purposes here, a major advantage of mixed-level 
simulation was that it facilitated micro-analysis of the 
FPU. Those components which were involved with the 
operation in question could be elaborated at the gate 
level, while those which were involved to lesser degrees 
could be represented by more abstract models. Figure 5 
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shows the various levels of abstraction in the Titan model 
used to analyze the op pipe phenomE:non here. 

Among the tangible benefits of this method were reason­
able execution time of the simulation model. The model 
was simulated on a Sun 3/260 workstation at a rate of 
about 3 simulated cycles/ second, which was fast enough 
to do a simulation run in a matter of minutes (or a small 
number of hours). The simulation model was written in 
Verilog-XL ([Gateway]). 

Modelling Results 

When the Daxpy operation was simulated in the system 
model, a sustained rate of 10.8 Mf was obtained. The 
cause of this degradation can be found in the interaction 
between operand fetch stalls and phase stalls :in the op 
pipe. 

Because of more or less random variations in the memory 
system, occasionally the load pipes will deviate from the 
normal alternating pattern of returning operands. These 
random variations are due to memory traffic generated 
by other system components, such as the integer proces­
sor, other processors, or I/0. Figure 6 shows an example 
of typical bus activity for the two system buses at the 
beginning of this vector operation. Note that at cycle 16 
there are two consecutive references to the same bank 
(pipe b ). After that, the two pipes begin alternating again. 

When one of these deviations occurs, the op pipe reaches 
a state where repeating stalls reduce the pipeline through­
put by a factor of two. The two stalls in question are the 
VRF bank contention stall in 1 B and the phase stall in 2A. 
Figure 7 shows how this occurs. Each line in the figure 
corresponds to a cycle. VRF accesses by the load pipes are 
indicated by the pipe identifier (a orb), and the operation 
element number is given for each op pipe stage. An entry 
in lBwill stallifitoccurson thesamecycleasa B pipeVRF 
access (because it is accessing the same bank). The first 
entry marked by a * shows a VRF bank conflict stall, 
which was a result of the deviation in returned data. 

The stall in 1B ca uses the two pipe sections 2 and 3-5 to get 
out of phase with each other, causing a phase stall in the 
entry marked by a+. Thus the VRF bank contention stall 
has turned into a 2-cycle stall. Since the load pipes have 
resumed their alternating behavior, however, a second 
VRF bank stall will occur on the next operand fetch, and 
the process has reached a recurring state. This is very 
similar to the linked-conflict phenomenon in the Cray X­
MP memory system described by [Cheung]. 
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Cycle Vrf access lb 2a 2b 3a 3b 4a 4b Sa Sb 6a ... 
15 b 4 3 2 1 
16 b 5* 4 3 2 1 
17 a 5 4 3 2 1 
18 b 5+ 4 3 2 1 
19 a 6 5 4 3 2 
20 b 6* 5 4 3 2 
21 a 6 5 4 3 

Operation Pipe With Recurring Stalls 

Figure 7. 
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Operation Pipe With Downstream Stalls 

Figure 8. 

The solution to this problem is relatively straightforward, 
though counter-intuitive. If, instead of stalling the ele­
ment in stage 2A to regain correct phase ordering, the 
downstream operations are stalled (stages 3-5), then the 
next operand fetch will happen one cycle earlier, and will 
not suffer a VRFbankconflict. This is illustrated in figure 
8. 

When this solution was implemented in the simulation 
model, the operation rate for Daxpy increased to 14.8 Mf. 
The difference between the new rate and the maximum of 
16 Mf is now solely a result of the occasional memory 
deviations, which cause 1-cycle stalls in the op pipe. 
When the Titan was actually built and this operation was 
measured, the modelled performance was obtained. As 
a result, the complete Linpack lOOxlOO benchmark exe­
cutes at a rate of more than 6 Mflops on a single processor 
Titan. 

Conclusion 
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