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PREFACE

This book grew out of lecture notes for a course on floating-point com-
putation given for several years at the IBM Systems Research Institute.
It presents floating-point arithmetic in a somewhat generalized form which
allows for variations in the radix and the word length. However, instead of
striving for extreme generality, the book discusses the arithmetic of the IBM
System/360 in detail and generalizes it where it is convenient to do so. The
examples in the book refer primarily to the System/360 and to the FOR-
TRAN and PL/I compilers currently available for it, but other machines and
other compilers are discussed where appropriate. All the examples are pre-
sented in higher-level languages, so no knowledge of Assembler Language
is necessary. However, it is assumed that the reader is familiar with either
FORTRAN or PL/I. (It is not necessary for him to be familiar with both of
these languages.)

The material presented here might constitute a second course in program-
ming for someone interested in scientific computing. A first course in pro-
gramming usually concentrates on a description of language features and the
use of these features in writing programs. This book discusses the details of
what actually happens when floating-point arithmetic is performed during
the execution of the program, and the emphasis is on the quality of the answers
produced. It is my hope that, by making the reader more aware of the arith-
metic that will be performed as a result of the FORTRAN statement he writes,
the book will contribute to the production of better programs,

This book is directed toward two different types of readers, First, it is
addressed to the obvious audience of those who are interested in using
higher-level languages to write programs which will perform floating-point
computation. Second, it ia also directed toward the compiler designers and
machine designers who are concerned with floating-point operations. The
material presented here has been found to be of interest to this group because,

iX



X ‘PREFACE

by illustrating the way floating-point arithmetic is used to solve problems, it
leads to an understanding of the reasons for incorporating various features
in the hardware and in the languages.

It is a pleasure to acknowledge the assistance [ have reccived from many
friends, colleagues, and students. Particularly important was my association
with the SHARE Numerical Analysis Project, for it led to many helpful
discussions with W._ J. Cody, L. J. Harding, Jr., W. Kahan, H. Kuki, O. K.
Smith, and L. R. Turner. | would especially like to thank W. J. Cody and
D. W. Sweeney for reading the manuscript and making many helpful sugges-
tions. Finally, I would tike to thank Miss Katherine Chandri for carcfully
typing the manuscript.

PAaT H. STERBENZ
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l FLOATING-POINT NUMBER
SYSTEMS

1.1. FIXED-POINT CALCULATION

We shall begin with a brief look at fixed-point calculation in order to
understand why one is led to use floating-point arithmetic. Fixed-point arith-
metic is extensively used in computers, especially in business or commercial
applications. Since many of the early stored program machines had only
fixed-point arithmetic, at least insofar as the operation codes available in
hardware were concerned, it has also been used for scientific computing.

Fixed-point arithmetic is the natural form of arithmetic when one is
dealing with small integers. Here a “small” integer is one which is small
enough so that we may record it and use it exactly—that is, without rounding.
Usually, the limitation is either the word size of the machine or the maximum
number of digits on which arithmetic can be performed in one step. This limit
may be 1019, 233, 10'3, etc., depending on the machine being used. On some
variable word length machines, the bound may be so large that we are
restricted only by the efficient use of storage. Of course, one can use more than
one word to hold a number and use multiple-precision fixed-point arithmetic,
but this becomes cumbersome, and it is seldom supported by higher-level
languages. If all the data, intermediate results, and answers are small integers,
all the arithmetic is exact, so no errors are introduced by the arithmetic
operations. This is often (but not always) the situation in the calculations one
finds in accounting and business applications of computers. (To keep all
quantities in the realm of integers, one may have to express financial data in
cents rather than dollars.) Consequently, machines designed for business or
commercial applications of computers emphasize fixed-point arithmetic. For
scientific computing, indexing provides a salient example of arithmetic
involving only small integers.



2 FLOATING-POINT NUMBER SYSTEMS . CHAP. 1

By contrast, problems which are referred to as scientific frequently involve
calculations in which the arithmetic produces only an approximate answer.
If we want to divide 1 by 3 on a decimal machine, we would require an infinite
number of places to represent the answer .333333 . . . exactly. Consequently,
we are forced to round the result to a modest number of digits. Practical
considerations lead to the same approach for multiplication. Although the
product of several numbers, each having only a finite number of digits, could
be computed and stored exactly, the number of digits required can grow
quite rapidly. For example, we may require 50 digits to represent the product
of 10 five-digit numbers. In this case we find it expedient to round the result
to a reasonable number of digits, even though we could calculate the exact
answer if we wanted to. Thus, we may distinguish between integer arithmetic,
which is exact, and the fixed-point arithmetic of scientific computing, in which
the computed answers are approximations for the true answers.

If we are using integer arithmetic on a variable word length machine, we
may store each variable in a field just large enough to hold the number of
digits required by the maximum value the variable may attain. We are then
faced with the problem of estimating the maximum size of each value we
develop. Underestimating the maximum size of any quantity can result in a
catastrophic error, which, if undetected, can result in the program producing
a ridiculous answer. However, since all the arithmetic is exact, we are not
concerned with error analysis.

In contrast, in scientific computing we are continually faced with the prob-
lem of rounding numbers in order to reduce the number of digits required to
a manageable size. This often leads to a fixed word length approach in which
we select some reasonable word length for the number of digits which will be
carried in each number. On a fixed word length machine, there is a compelling
reason for selecting the word length of our numbers to be the word length of
the machine, although there are cases in which one might pack two numbersin
one word on a machine with long word length or use two words per number
on a machine with short word length. On a variable word length machine, we
may select the word length to be used in computation arbitrarily within some
rather wide limits. Thus, we are led to treat each quantity as a signed p-digit
number in the number base of the machine. Typical examples are a 10-digit
decimal word, a 35-bit binary word, etc. The 10-digit decimal word length is
quite common in the desk calculators designed for scientific computing, and
many stored program machines have roughly this word length. These
machines are usually capable of developing numbers twice as long in the
registers. For example, we may be able to multiply two 10-digit numbers to
produce a 20-digit result, and on a typical desk calculator we can add a 10-
digit number into 10 consecutive positions of a 20-digit accumulator.

To illustrate the use of fixed-point arithmetic, we suppose that we are
work?njwith a 10-digit decimal machine. The decimal point is not actually
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stored as part of the number; instead, its position must be remembered by the
programmer. Thus, instead of storing the number —12.34512345, we store
the minus sign and the string of digits 1234512345, Suppose that we have
decided to store a number x with three digits to the left of the decimal point
and seven digits to the right. This means that we are convinced that | x| will
always be less than 1000, If, for some data, we have x = .5432154321, we
have to store x as 0005432154. Now suppose that we want to compute
z == x -|- y, where x is stored with three places to the left of the decimal point
and y is stored with the decimal point at the left of the number. For example,
we may have x == 123.4512345 and y = .1111122222. Before we can add x
and y we must shift one of them to line up the decimal points. By shifting y
three places to the right, we produce 0001111122, which has three places to
the left of its decimal point. Then this value may be added to x to produce the
value 123.5623467 for z.

A further complication is that there may be a high-order carry. Thus, even
though x < 1000 and y < |, we may have z = x 4+ y > 1000, in which case
z would require four places to the left of the decimal point. Unless we are
convinced that | z| will be less than 1000 for all runs of the program, we shall
have to store z with four places to the left of the decimal point. Thus, for the
data considered above we would store z as 0123562346, which sacrifices one
digit of accuracy. Because we had to allow for the possibility that | z| may be
~> 1000, we have sacrificed accuracy whenever | z| < 1000. This is the funda-
mental problem that faces us whenever we use fixed-point arithmetic. We
must estimate the maximum value for each quantity which is involved in the
calculation, either as data, intermediate result, or final answer. If this estimate
of the maximum number of digits required is exceeded, we lose high-order
digits, which may cause us to produce ridiculous answers. But if we overes-
timate the maximum, we lose accuracy unnecessarily.

If we store x in a 10-digit word with three places to the left of the decimal
point, we can represent x to within 4.5 X 10-7 regardless of the size of x.
Now if x = 123.4512345, we can represent x with small relative error, but if
x = 0000056, we can save only two significant digits of x. Thus, in fixed-point
computation we control absolute error rather than relative error or the
number of significant digits. In some problems it is absolute error that we
want to control, and fixed-point arithmetic can be used quite easily. In other
problems, such as the solution of simultaneous equations, scale factors can be
introduced so that the computation can be carried out using fixed-point
arithmetic [see National Physical Laboratory (1961)]. But there are many
problems which are quite difficult to handle in fixed-point. A particularly
annoying aspect of fixed-point computing is that a slight change in the prob-
lem may change the bounds for various quantities in the program, so that
extensive recoding becomes necessary.

As an illustration of the difficulty of programming in fixed-point, consider

)



4 FLOATING-POINT NUMBER SYSTEMS CHAP. |

the problem of computing x" for large N. Suppose that we have quite tight
bounds for the range of x, say .1 <{ x < 1. If we want to compute x'°°, we
know only that 10-10° < x19° < |, If we are working with a 10-digit machine,
we store x'°° with the decimal point at the left. Then we shall store zero for
X100 if x109 j5 [ess than 1019, that is, if x is less than about .793.

In writing a fixed-point program, we must decide which digits to save at
the time we write the program, so we must make the decision without secing
the numbers involved. This is quite different from the situation in manual
calculation. Whether we are working with pencil and paper or with a desk
calculator, we record the decimal point with each number we write down and
we look at the number before deciding which digits to keep. It is quite natural
to try to follow this same approach in machine computation. For each number
we shall store the first few significant digits and an indication of where the
decimal point lies. We can see from the example of x'°° that unless we carry a
great many digits, ~e cannot guarantee that the decimal point will lie between
the first and last digit we are carrying. Thus, instead of storing the decimal
point as a character in the string of digits, it is convenient to store a count
indicating how many digits of our number lie to the left of the decimal point.
If this count is negative, it indicates the number of leading zeros that have
been suppressed. Since we do not see the intermediate results, we must depend
on the computer to select the proper digits for us. For each arithmetic opera-
tion we ask the computer to present us with the first few significant digits and
the count telling us where the decimal point lies. These operations are referred
to as floating-point arithmetic.

Floating-point arithmetic has proved to be very useful, and today most of
what is thought of as scientific computing is performed in floating-point
arithmetic. It is available as hardware operation codes on many machines,
and it is accomplished by subroutines on others. It is widely exploited by
higher-level languages through compilers and interpreters. In fact, the ability
to write a program without keeping track of the decimal point adds a great
deal to the ease of use of many higher-level languages.

1.2. FLOATING-DECIMAL REPRESENTATION OF
NUMBERS

Because decimal numbers are much more familiar than binary or hexa-
decimal numbers, we shall begin by describing floating-decimal numbers and
arithmetic. In Section 1.4 these will be generalized to an arbitrary radix, and
throughout most of the book we shall deal with floating-point numbers with
an arbitrary radix. However, many of the examples will use the decimal
system.

As we have seen, our objective is 1o represent numbers by their first few
significant digits and an indication of where the decimal point lies. The
approach we shall follow is a slipht modification of the familiar concept of

SEC. 1.2 FLOATING-DECIMAL REPRESENTATION OF NUMBERS 5
scientific notation. To indicate which digits of a number are significant, it has
long been the custom to write numbers such as the velocity of light as
1.86 x 10° miles per second instead of 186,000 miles per second. Thus, in
scientific notation we write our number as a signed number x in the range
1 <Z|x| < 10 times a power of 10. This could be implemented on a computer
—and it sometimes has been. However, we shall modify this approach slightly
and hold the significant digits with the decimal point at the left, so the velocity
of light will be written as .186 x 10° miles per second. That is, we write our
numbers as y x 10, where .1 <|y| < 1. Here the exponent on the 10 is the
count we discussed in the last section. A further modification that we make to
the idea of scientific notation is that instead of carrying only the significant
digits in a number, we shall carry a fixed number of digits throughout the
computation regardless of whether we can guarantee that the low-order digits
are significant.

We now have to decide how many digits to carry in the floating-point
numbers. 1t is natural to try to fit the floating-point representation of a num-
ber into one word, and this is the usual approach when floating-point
arithmetic is to be performed by hardware operation codes. However, if the
floating-point arithmetic is performed by subroutines, it is quite possible to
use one word to hold the significant digits and another word to hold the power
of 10. Suppose that we have a decimal machine in which each word holds a
sign and 10 decimal digits. We shall illustrate a floating-decimal representa-
tion in which we use one word per number. The sign bit of the word holds the
sign of the number, and we shall use eight decimal digits of the word to hold
the high-order eight digits of the number (not all of which need be significant).
It is assumed that there is a decimal point at the left of these eight digits and
that the high-order digit is not zero. Thus, we represent the velocity of light
as 18600000 x 10¢.

We have two digits left to hold the power of 10. Now our number may be
multiplied by either a positive or negative power of 10, so the exponent of the
10 is a signed integer. Since the sign bit of the word was used to hold the sign
of the number, we have to hold a signed integer in two decimal digits. A
common approach is to store the signed exponent plus 50 in these two digits.
Then we can represent powers of 10 from 10-3° to 104%, inclusive. We assume
that the representation for the power of 10 is written ahead of the significant
digits, so our representation for the velocity of light becomes -{-5618600000.
Obviously other approaches are possible, and they will be discussed in
Section 12.2.

From time to time we shall want to refer to the various parts of the
floating-point representation, so it is desirable to introduce terminology for
them. Unfortunately, thefe are several terms in common use. In this book we
shall follow a commonly used terminology borrowed from logarithms. We
shall refer to the string of significant digits with its sign and the decimal point
on the left as the mantissa of the floating-point number, The mantissa will
have a fixed number of digits, so the low-order digits may not be sigaiticant,
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The power of 10 will be called the exponent of the number and the exponent
plus 50 will be called the characteristic. Thus, for our representation of the
velocity of light as -5618600000, the mantissa is {-.18600000, the exponent is
6, and the characteristic is 56. This terminology becomes awkward only when
we talk about logarithms of floating-point numbers. Since other names that
are sometimes used to describe the parts of the floating-point representation
are also used elsewhere in mathematics, changing the nomenclature merely
changes the ambiguity to some other area. Thus, the mantissa is called the
Sraction in Campbell (1962) and in Cody (1971a), it is called the fractional part
in Knuth (1969), and it is called the coefficient in Ashenhurst (19654, 1965b).
Forsythe and Moler (1967) avoid ambiguity by referring to the mantissa as
the significand, but this name has not yet achieved wide use. The characteristic
is often called the biased exponent.

Another aspect of number representation is the distinction between
normalized and unnormalized numbers. A nonzero number is said to be
normalized if the leading digit of its mantissa is not zero. Since we associate
the sign with the mantissa m, this means that .1 < |m| <2 1. Now if the
mantissa is zero, the number is zero regardless of what the characteristic is.
The representation of zero is said to be normalized if its sign is plus and its
characteristic is zero. Thus, a normal zero is 4-0000000000. A number which is
not normalized is said to be unnormalized. In most of our work we shall
assume that all the numbers we are dealing with are normalized and the
floating-point arithmetic always produces normalized answers. In Section 12.4
we shall discuss unnormalized operands and arithmetic operations which are
allowed to produce unnormalized results.

We have tacitly assumed that the mantissa m is represented by a sign fol-
lowed by a positive number which represents [m|. The representation of
negative numbers by complements is discussed in Section 12.2.

When we are writing programs in a higher-level language, such as
FORTRAN or PL/I, we can usually think of our numbers as they are written
analytically, rather than as they are represented in the machine. Thus, we
think of the velocity of light as .18600000 x 10¢ instead of as - 5618600000.
There are some situations, such as the dismantling of floating-point numbers
(discussed in Section 4.4), in which we must know exactly how the numbers
are represented in the machine. But these cases are atypical, and for most of
this book we shall be able to deal with numbers as they are written analytically.

1.3. FLOATING-DECIMAL ARITHMETIC

Before proceeding to a more general setting, it is desirable to see how to
perform the standard arithmetic operations of addition, subtraction, multi-
plicat’ ~and division for floating-decimal numbers with the representation
descr )in the previous section. For each operation, our objective is to
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produce the first cight digits of the result as a normalized floating-point num-
ber. We shall ignore the limitation on the size of the exponent until the
discussion of overflow and underflow in Chapter 2.

We shall perform these operations on the normalized floating-point
numbers x and y, where x = 10‘m and y = 107n. Here m and n are eight-digit
decimal numbers, and if they are not zero, we have .1 - |m| <2 | and
A <qn) < 0.

First, consider multiplication. If either factor is zero, we produce a normal
zero as the answer. If both factors are nonzero, we may casily determine the
sign of the answer by checking whether x and y have like or unlike signs. To
sce how the absolute value of the answer is computed, we may assume that x
and y are both positive, so .1 <Z m, n < 1. We want the first eight significant
digits of

xy = 10*'mn.

We first compute the 16-digit product ma. 1€ mn >> .1, the mantissa of the
answer is the first eight digits to the right of the decimal point in mn and the
characteristic of the answer is

e |- £+ 50 — characteristic (x) -I- characteristic () — 50.

On the other hand, suppose that mn < .1. If we took the answer to be the
first cight digits to the right of the decimal point in mn, we would produce an
unnormalized result. Since both m and n are .1, we have

Ol <mn < |,

so mn has exactly one leading zero. We shift min one place to the left, which is
equivalent to multiplying it by 10, and we subtract | from e |- f. Since

xp =: 10¢*/-'(10mn)

and .1 <7 10mn <2 1, the mantissa of the answer is the first eight digits to the
right of the decimal point in 10mn, and the characteristic of the answer is

e | f— 1 |- 50 = characteristic (x) - characteristic (y») — 50 — I.

Here the normalization which we had to perform after multiplication is called
postnormalization.

Next, consider division. I x is zero, the answer is zero, and if y is zero, the
answer is undefined. Since we determine the sign of the answer by checking
whether x and y have like or unlike signs, we may assume that x and y are

positive. Now
.'SA =10/ .'_’! ’
¥ n )
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and, since .l - m, n -2 |, we have

d<™o 0.
n

16 m < n, we have .| -2 m/n -2 1. In this case we take the mantissa of the
answer to be the first cight digits to the right of the decimal point in m/n and
the characteristic of the answer to be

e - f1- 50 characteristic (x) — characteristic (p) |- 50.

On the other hand, if m > n, we have

1M 0.

n

In this case we shift m one place to the right, which is equivalent to dividing it
by 10, and add [ to e. Since

X o qor rrdm,
U n

the mantissa of the answer is the first cight digits to the right of the decimal
point in (.1m)/n, and the characteristic of the answer is

e - f1 11 50 characteristic (x) — characteristic (y) |- 50 | .

Finally, consider addition and subtraction. Since x and y are signed
numbers, to subtract y from x we simply change the sign of y and add it to x.
Therefore, it suflices to consider addition. As in manual computation, we
must first line up the decimal points of x and y. We begin by comparing the
characteristics of x and y and interchanging x and y, if necessary, to make x
the number with the larger characteristic. Thus, we obtain e | - /. We then
write y as 10°n’, where n* - 10°“ 'n is obtained by shifting n to the right
e ~ fplaces. If e £ f, y will now be unnormalized and n’ will have 8 |- e - [
places to the right of the decimal point. Then

x -y - 10(m | '),

so if m | n" is in the range .1 - " |m | n'| < I, the characteristic of the
answer is ¢ | 50, and the mantissa of the answer is the first eight digits to the
right of the decimal point in m |- #'. Suppose that .1 = |m |- #'|- 1 fails to
hold. First, consider the case in which x and y have the sume sign. Then
Jm | 0’| - [m] - 1, sowehave|lm | n’| - 1.Since

fm § w'f fm) a2,

| =

)
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there is exactly one digit to the left of the decimal point. We shift m |- n’ one
place to the right and add 1 to e. Since

x4 y = 100 L1(m |- n)),

the characteristic of the answer is e -{- 1 }- 50, and the mantissa of the answer
is the first eight digits to the right of the decimal pointin .1(m |- n’).
Finally, suppose that x and y have opposite signs. Then

[m 4 n'| < max(m|, |n']) < I,

so we have |m -} ’| < .1. If m -} n' is zero, we produce a normal zero as the
answer. Otherwise, we have 0 < |m + n'| < .1, so we now normalize the
answer and refer to this procedure as postnormalization. Let k be the number
of leading zeros inm |- n', so .1 <, 10¥|m 4- n'| < |. Then we shift m -{- n’
to the left k places and subtract k from e. Since

x -y = 10 410%(m |- n')},
the characteristic of the answer is
e — k -|- S0 = characteristic (x) — &,

and the mantissa of the answer is the first eight digits to the right of the
decimal point in 10%(m -{- n').

1.4. FLOATING-POINT NUMBER SYSTEMS

We shall now generalize the idea of floating-decimal arithmetic discussed
in the last two sections to include many of the systems actually in use on
computers. We want to do this in such a way as to include decimal, binary,
octal, and hexadecimal representations of numbers, to allow for variations in
word length from one machine to another, and to allow for variations in the
details of how the arithmetic is performed. We shall designate the floating-
point number system by FP(r, p, a). Here r is the radix or base of the number
system. Thus, r is 10 for a decimal machine, 2 for a binary machine, 8 for an
octal machine, and 16 for a hexadecimal machine. Although these are the
commonly used values of , our approach will allow r to be any integer >2.
Since we shall occasionally want to use examples from systems other than
decimal, we shall adopt the following convention about writing numbers: The
radix may be specified by writing a letter as a subscript following the string of
digits. The subscript will be D for decimal, B for binary, O for octal, and H
for hexadecimal. If no radix is specified, the number is decimal. Thus,

(4.0 25 = 25, = 19, - 31, - 11001,
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For hexadecimal numbers, the digits “ten” through “fiftecn™ will be designated
by A through F, respectively. Thus, 12, = C,.

In the symbol FP(r, p, a), p stands for precision, and it designates the
number of base r digits contained in the mantissa. For a we shall substitute
various symbols specifying the details of how the arithmeticis to be performed.
Thus, ¢ will stand for chopped arithmetic, R for rounded arithmetic, etc. {The
precise meaning of rounding and chopping is discussed in Section 1.5.) The
system discussed in Sections 1.2 and 1.3 is designated by FP(10, 8, ¢), indicat-
ing that it used eight-digit decimal numbers and that it employed chopped
arithmetic. Similarly, a 27-bit binary machine using chopped arithmetic would
be designated by FP(2, 27, ¢).

Now FP(r, p, a) will denote a system comprised of a set § of numbers
which we shall call floating-point numbers and a definition of the four arith-
metic operations of floating-point addition, floating-point subtraction, floating-
point multiplication, and floating-point division, defined for elements of S. The
set S of floating-point numbers depends on r and p but not on a. When r and
p are not fixed by context, we shall write S(r, p) instead of S. The sct S(r, p)
contains zero and all numbers of the form

(1.4.2) X == r'm,

where ¢ is any integer (positive, negative, or zero) and m is any positive or
negative fraction satisfying

(1.4.3) rt' <l m| |

whose absolute valuc can be expressed in the base r using at most p digits.
That is,

{m| = r*°M,

where M is an integer in the range r*-' -7 M -2 r*. In (1.4.2), the signed
number m is called the mantissa of x and e is called the exponent of x.

Since every floating-point number is a real number, we can perform the
standard arithmetic operations of addition, subtraction, multiplication, and
division upon the elements of S viewed as real numbers. Thus, for x and y in
S, we may form x | y, xp, and x/y. However, it is quite possible that these
operations will produce numbers not in S. For example, we may nced 2p
digits to represent the product of two p-digit numbers, and division may
produce a result requiring an infinite number of digits. Since the results of
floating-point arithmetic always lie in S, the floating-point operations produce
results which may differ from the results produced by the arithmetic opera-
tions in the field of real numbers. Thus, we define four new operations, called
ﬂna)'ng-point addition, floating-point subtraction, floating-point multiplication,

: oating-point division for which we use the symbols (P, ©, *, and )
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respectively. The use of « to denote floating-point multiplication is so familiar
from FORTRAN that it seems very natural. On the other hand, the use of -
for floating-point division may require some care. If x is to be divided by y in

the field of real numbers, we shall write x/y or % never x . ).

In general, we expect the operations (1), &, *, and | to produce results
which are close to the results produced by |-, —, -, and /. That is, we expectto
have x * y = x), ctc. The symbol substituted for a in FP(r, p, a) will specifly
the details of exactly how the floating-point operations are defined.

Our definition of FP(r, p, a) omits several details of the floating-point
number representation which would have to be specified in order to give a
description of the system that is complete enough to allow an engineer to
design a computer to handle it. In fact, some of the details we have omitted
may affect the programmer who is using the machine. The most striking
omission is that we have not specified any bounds on the range of the
exponent. In practice, such bounds always exist. For the system described in
Section 1.2, the exponent had to lie in the range —50 -~ e - ~ 49, and for the
IBM System/360 the exponent must lie in the range —64 <~ ¢ -~ 63. Attempt-
ing to produce a number whose exponent lies outside this range results in
overflow or underflow, so the bounds for the exponent are of interest to the
programmer. But in analyzing a program, problems related to overflow and
underflow are often studied separately from problems related to the errors
introduced by the floating-point arithmetic. This will be our approach here.
We shall study the effects of performing arithmetic in a hypothetical system
FP(r, p, @) which places no bounds on the exponent, and we shall relegate the
study of overflow and underflow to a separate chapter (Chapter 2).

Even though we do not place bounds on the exponent of the numbers in
S(r, p), from time to time we shall want to refer to the characteristic of a
floating-point number. We shall assume that there is a number y such that the
signed exponent e is actually stored as a characteristic which is defined to be
e |- . Then p is 50 for the system described in Section 1.2, 64 for the IBM
System/360, and 128 for the IBM 7090. A machine which stores the exponent
as a signed number would have p == 0. We shall assume that a normalized
zero is stored with the smallest allowable characteristic.

Another omission is that we have not allowed for variations in the form in
which negative numbers are stored. We shall assume that negative numbers
are stored with a minus sign and the true value of the magnitude of the
mantissa. Of course other approaches are possible. Machines have been built
which use either r's complements or (r — |)'s complements. The use of com-
plements will be discussed in Section 12.2, but throughout the rest of this book
we shall assume that negative numbers are stored with sign and true magnitude.

Still another omission is that we have not allowed for variations in where
the radix point falls in the mantissa of a floating-point numbe.)Throughout
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this book we shall assume that the radix point lies at the left of the mantissa,
so the mantissa of @ normalized, nonzero number satisfies (1.4.3). However,
other schemes have been implemented. For example, on the CDC 6600,
floating-point numbers are represented in the form 2¢c, where ¢ is called the
coefficient and is an integer. In this case, the binary point is at the right of the
mantissa. Since results from FP(r, p, a) are readily translated to such a system,
we shall assume throughout that the radix point lies at the left.

We have specified that all floating-point numbers are normalized, and we
shall assume that the floating-point operations (), ), *, and -:- produce
normalized results. Many machines offer the programmer the option of
producing unnormalized results by suppressing the postnormalization which
may occur in (9, O, and ». This is true for ( and O on the IBM System/360,
but the FORTRAN and PL/l compilers for that machine translate the
arithmetic operations which appear in an arithmetic expression into the
normalized operation codes. Thus, we are dealing with the system the pro-
grammer sees when he writes programs in FORTRAN or PL/I for the IBM
System/360. In Section 12.4, we shall discuss both unnormalized operation
codes and unnormalized operands.

Finally, some machines have special numbers which are treated differently.
For example, the CDC 6600 has an oo and an indeterminant form. The IBM
7030 had flag bits in the floating-point word which could causc interrupts.
These features will be discussed in Section 12.2.

15. FP{r,p.c) AND FP(r,p. R)

We shall now specify two different ways in which the floating-point
operations (1), &, *, and - may be defined, yielding two different systems
which will be designated by FP(r, p, ¢) and FP(r, p, R). The letters ¢ and R
will denote chopped and rounded arithmetic, respectively. In chopped arith-
metic, the result is first normalized, and then its low-order digits are discarded
and its high-order p digits are retained unchanged. One often sees this
approach referred to as fruncation instead of chopping. However, this use of
the word truncation may lead to confusion with the term truncation error,
which is a poorly defined and overworked term in numerical analysis. 1t is
used to refer to the error introduced by replacing an infinite series by a finite
number of terms of the series, and it is sometimes used in a much wider
context to refer to the error introduced by replacing a continuous problem by
a discrete problem. To avoid the possibility of confusion between this type of
error and the error introduced by the floating-point arithmetic, we use the
term chopping instead of the more commonly used term truncation, The term
chopping has been used in this context by other authors. [See, for example,
McCracken and Dorn (1964).]

)
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If x is any real number, let X denote x chopped to p digits in the base r.
More specifically, for any real number x let T be the set of all numbers y in
S(r, p) with || <7 | x|. Then % is the element in T which is closest to x. Thus,
in FP(10, 8, ¢), .123456789 - : .12345678 and —.123456789 - —.12345678.
To perform arithmetic in FP(r, p, ¢), we first perform the corresponding
operation in the real number system, and then we chop the result to p digits in
the base r. Thus

xBy=x-+y
XOp=x—y
X ay=Xxp
x vy =Xy

Similarly, we introduce the concept of rounded arithmetic. Here rounding
means that we round to the closest p-digit number in the base r. If two such
numbers are equally close, we round the magnitude upward. This is sometimes
referred to as symmetric rounding. Other rules for rounding are possible, but
they are more complicated, and they are seldom implemented on computers.
For any real number x, let x° be x rounded to p digits in the base r.
The is, x_in the number in S(r. p) which is closest to x. If two numbers in
S(r, p) are equally close to x, x_ will denote the one with larger magnitude.
Thus, in FP(10, 8, R), .T233456780° - .12345679, .123456785 == .12345679,
.123856783° - .12345678, and —.123456785 = .12345679. To perform
arithmetic in FP(r, p, R), we first perform the operation in the real number
system, and then we round the results to p digits in the base r. Thus, in
FP(r. p. R):

X@y =X Ty
xQy x=y

—0

X x p =Xy
. ~———0
x - y=xly

Most implementations of floating-point arithmetic have tried to produce
results which were either approximately the correctly chopped results or
approximately the correctly rounded results. However, computers have
seldom, if ever, produced exactly the results which would be produced in
FP(r, p. ¢) or FP(r, p, R). (In Section 12.3 we shall discuss how a machine
could be designed to produce exactly these results.) Thus, both FP(r, p, ¢) and
FP(r, p, R) are idealized systems which probably do not describe exactly the
arithmetic the programmer is using. But since the ideas of chopping and
rounding are easy to work with, it is often convenient to study the results
produced in these systems, without considering the modifications which have
been introduced by the machine designers to make the arithmetic casier to
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perform. In Scction 1.8 we shall discuss the system FP(r, p, cly), which has
been implemented on many machines, including the IBM System/360. In
some cases there is no difference between the results in FP(r, p, ¢) and
FP(r, p, clg), and in other cases the difference is not important, so we may
draw our examples from FP(r, p, ¢). In still other cases the distinction between
EP(r, p, ¢) and FP(r, p, clg) is important, so we shall deal with FP(r, p, cly).
Since we shall place special emphasis on the arithmetic of the IBM
System/360, we shall be most concerned with FP(r, p, clg). Because this
system is closely related to FP(r, p, ¢), we shall devote much more time to the
study of FP(r, p, ¢) than we do to the study of FP(r, p, R). However,
FP(r, p, R) will be discussed where appropriate, and many of the results
obtained for FP(r, p, ¢) will be carried to FP(r, p, R) in the exerciscs.

1.6. LAWS OF ALGEBRA

Algebraic manipulation of formulas is based on the validity of a few
fundamental laws. Specifically, we appeal to the fact that the real numbers
form a field. This means that the sum and product of real numbers are defined
and that the following six axioms hold for any real numbers a, b, ¢:

I. Closure: The product ab and sum a |- b of the real numbers @ and b
are real numbers.

2. Commutative laws:

(1.6.1) a ha
ab - ba

3. Associative laws:

@1b)lcalble

(1.6.2)
(ab)e -+ a(be)
4. Distributive law:
(1.6.3) a(h -t- ¢) = ab -|- ac

5. There are real numbers 0 and 1 such that

(1.6.4) a+0=0-+t+a—-a
and
(1.6.5) al ==lg-:a

hold for all a.

)
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6. For any real number a there is a real number —a such that
(1.6.6) a-l(—-a)=(-a) l-a:-=0,
and if a 5 0, there is a real number a-! such that
(1.6.7) aa' =a'a=1.

A consequence of these axioms is that there are no divisors of zero, that is,
if @b - 0, then at least one of the factors a, b must vanish., Another conse-
quence of these axioms is the cancellation law:

(1.6.8) Ifab -- ac and a # O, then b := ¢.
We now define subtraction by

a—b-:a-{(—b),
and if b + 0, we define division by

l =T -1
5 ab™',

Two immediate consequences of these definitions, along with (1.6.1) and
(1.6.2), are

(1.6.9) @t+b)—b-a
and
(1.6.10) a(Z—) - b,

We now ask whether these laws are valid in our floating-point number
system. Since their validity may depend on the details of how the arithmetic is
performed, we study the specific system FP(r, p, c). [The question of whether
these laws are valid in FP(r, p, R) forms Exercises 3-7.] We shall see that
scveral of these laws fail to hold, although some of the ones which fzil do hold
“approximately” in the sense that the two expressions ure approximately
equal. The investigation of which of the laws hold approximately will be
postponed until Section 3.4. The fact that some of these laws fail to hold is
more than an oddity of the floating-point number system. Because they are
the basis of the algebraic manipulation of formulas, the failure of any of them
means that the programmer must think of his computation as being performed
in FP(r, p, ¢) instead of in the real number system. It may affect the best way
to write a formula in FORTRAN or PL/L.
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The following theorem is an immediate consequence of the definitions and
the validy of the commutative laws in the real number system.

THEOREM

In FP(r, p, c), the floating-point sum a @ b and the floating-point product
a = b of two floating-point numbers a and b are floating-point numbers. Also,

for any a and b in S(r, p),

aPb=bPa
axb-bxa
ap0-0Pa=a
a*l = lxa=a

a®(~a) = (~a)@®a = 0.

It will be shown in Section 1.9 that for any a # 0in S(r, p) there is a num-
ber b in S(r, p) with a.x b = |. That is, every nonzero element in FP(r, p, ¢)
has an inverse. However, this is not as helpful as it seems. In the real number
system, the existence of the inverse is used to define division, and it enables us
to solve the equation ax == 4. But we have defined division directly. Moreover,
we shall see in Section 1.9 that, because of the failure of the associative law of
multiplication in FP(r, p, c), the existence of a number ¢ witha * ¢ == | is not

helpful in solving the equation a * x = b.

We shall now show that the remaining laws, namely (1.6.2), (1.6.3), (1.6.8),
(1.6.9), and (1.6.10), fail to hold in FP(r, p, c) for nontrivial combinations of
r and p. [They may hold, for example, in FP(2, 1, ¢).] By this we mean that it is
not true that they hold for all a, b, c in S(r, p). There may be some values of
a, b, ¢ for which they hold, but for each law we shall display an example for

which the law Fails.
Failure of the Associative Law of Addition

To show that
@mbydec=awmdw@r)

fails to hold in FP(r,p, c),leta = r-2?, b -- |, and ¢ == -~ 1. Then

ab =T Fr - |,
S0
(ambwe = 1H(-1) -0
But
a)brc)--r 2P0 = r 27

so the law fails.

o )
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If the associative law of addition were valid in FP(r, p, ¢), then (1.6.9)
would also hold. That is, we would have

(@®HOb--a

But the example above shows that this fails to hold for a =: r 27 and b == 1.

Sometimes we can exploit the fact that these laws fail. Suppose that we
want the integer part of a number x which is known to be positive and less
than r2-%, Let 3 =: r?-'. Then the integer part of x is given by (x (D y) & ».
For example, suppose that we are working in FP(10, 8, ¢) and that x --
12.345678. Then x -{- y = 10000012, so (x -+ y) — y is 12. (Another way to
produce the integer part of x is given in Section 12.4.)

In other cases, the failure of (1.6.9) may be more annoying. For example,
in FP(10,8,¢) fet a=-3.3333333 and &b --.22222222. Then a® b =
3.5555555 and (a ) b) — b is 3.33333328, so (a D b) © b is 3.333332, which
is different from a.

From the examples we have considered, it might appear that the failure of
the associative law was due to the fact that subtractions were involved. We
now give an example which shows that the associative law of addition may
fuil to hold even if a, b, and c all have thesame sign. Leta == 1,5 = (r — l)r-?,
and ¢ = r 7. Then

@HPe =TI =D ?Dro=1dr?::1,
but
aD(B@) = 1@r e =1 pton

so the associative law fails to hold. However, in Section 3.4 we shall show that
the associative law holds approximately if a, b, and ¢ all have the same sign.

Faiflure of the Associative Law of Multiplication
We shall show that the associative law of multiplication
(axb)ysc-:ax(bxc)

fails to hold in FP(r, p, ¢), except for trivial combinations of r and p. To
simplify notation, let s - p - 1. We shall assume that

4r 2 -y P,
which is true for all interesting combinationsof rand p. Leta 6 | |- 7 *

ande - | - 2r * Then

(@sh)yrc T 1 T rTse (I F2r=(0- 2r

I -d4r 2. 1 por
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But
as(bec)=asT —r* —2r2t = fr)s(l —r*- r?

2 | — P 2 )

=1 —=2re

Thus, the associative law of multiplication fails to hold in FP(r, p, ¢} if
4r-2 <7 r?, thatis, if 4 < r?-2. By considering various special cases, it can be
shown that the associative law of multiplication fails to hold in FP(r, p, ¢)
except for the four trivial systems FP(3, 1, ¢), FP(2, I, ¢), FP(2, 2, ¢), and
FP(2, 3, ¢).

The failure of the two associative laws has an annoying logical conse-
quence. In the real number system, we define the product of two real numbers;
then, since the associative law of multiplication holds, we may simply write
the product of three real numbers as abc and let the reader group them in any
way he wants to. But, since the associative law of multiplication fails to hold
in FP(r, p, ¢) for interesting values of r and p, it is not legitimate to use this
approach for floating-point multiplication. Technically, we should be required
to specify whether we want (a * b) * c or a » (b # ¢); we should not be aliowed
to write a * b * c. However, the FORTRAN and PL/I compilers allow us to
write a * b * ¢ without inserting parentheses. A justification for this lics in the
fact that the associative law of multiplication holds approximately in
FP(r, p, c), as will be shown in Section 3.4. With somewhat less justification,
the compilers also allow us to write a sum, such as a &) b (1) ¢ (1) d, without
parentheses. Some compilers, for example the FORTRAN and PL/l com-
pilers for the IBM System/360, specify that these operations be performed
from left to right. That is,

arbeced =((@a*xb)*rc)xd
a@bDcdhd = ((adb w4

On the other hand, there have been some compilers which did not guarantee
the order in which these operations would be performed. Since we are
emphasizing the 1BM System/360 and its compilers, we shall use (1.6.11) as
the definition of repetitive multiplication and repetitive addition in our
floating-point number systems FP(r, p, a).

Consider the two expressions @ * b+ c and a * ¢ » b in FP(r, p, ¢). Now

(1.6.11)

asbec==(a*b)rc-:cs(asbh)
and
arcrb-=(a*c)*b:~(cxa)*b.

~—Jhen these two expressions may fail to be equal because the associative law
oes not always hold. As an example, consider the expression 2xy, which )
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may code as 2 * x * y. In FP(10, 8, ¢), suppose that x := .88§11117 and that
y = 44444444, Then

2+ x = 1.76222234 = 1.7622223,
while
2+ p = 88888888 — 2y.

Thus, 2 * yis exact, but 2 * x is not. Then 2 * y * x == 2xy, but 2 » x * y may
be smaller than this. Indeed, by carrying out the computations we find
that 2+ y *» x = 78320992 but that 2+ x=*p = .78320990. Similarly, in
FP(16, 8, ¢), if x = 88111117, and y = .44444444,,, then

1]
i

2« x == 1.1022222E, = 1.1022222,,

and

it

2+ y = 88888888, = 2y.

Direct computation yields 2+ y» x = 48914286, while 2*x*yp -
.48914282,. Although multiplication by 2 is always exact on a binary
machine, on a machine with any other radix it can introduce error if the
absolute value of the mantissa is greater than one-half. Thus, the order of the
factors can be important even in so simple an expression as 2xp. If we know
something about the size of x and y, we may have a preference for one or the
other of the forms 2+ x * yor 2+ y * x.

Failure of the Cancellation Law

To show that the cancellation law (1.6.8) fails to hold in FP(r, p, ¢), except
for trivial combinations of r and p, we find values a, b, and ¢ in S(r, p) such
thata £ 0,5 = c,and a * b = a *» c. To this end, we first consider the case in
which r>2and p>:2. Leta-=2, b~r— 1, and ¢ r— 1| rto-V,
Then b +# ¢, but

arb-=r fr—2
and

ar*c=r4+r—242r%V =y |pr—-2
Thus, a + b == a * ¢, so the cancellation law fails. It is particularly annoying
that we cannot cancel so simple a multiplier as 2.
For FP(2, p, c), we suppose that p 4. Let @ - b = 1.1, and ¢ -
1.lg + 2-t*-Y Then b # ¢, but
a*b—=axc = 1001,

so the cancellation law fails.
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By considering the remaining cases, it can be shown that the cancellation
law fails to hold in FP(r, p, ¢} except for the four systems FP(3, 1, ¢)
FP(2, 1, ¢), FP(2, 2, ¢), and FP(2, 3, ¢).

1)

Failure of the Distributive Law
We shall show that the distributive law
ax(bMc) =(@a*by(axc)

fails to hold in FP(r, p, ¢) for interesting values of r and p. First, suppose that
r>=2andp>2. Leta==r—1,b:r--1 |-r® P andc - (r N 2",
Then

ash—=(r—2)r 11

and
a*c=[(r—2) 1- NJr-te-n,
50
(@*byir(@rc)=(r =2 | 14 (r -2y 20 oD
= =2 b (-2t
But

a*(b@D) - (r—Ne@e—1|r 22
=r--2 b | (r-Drte
so the distributive law fails to hold in FP(r,p, ¢) for r - 2and p - 2.

For FP(2,p, c), suppose that p - 4. Let a  1.b,, b= L1, | 2 ' 1,
andc==2'""" Thenaxb -- 100l,andaxc (1.1))2 " 50

(@xb)H(axrc) = (1000), -2 7 1 27 . 1001,
But
as(h -c)=Llge(l.lg | 2 2) - 1001, -2 2,

so the distributive law fails. By considering the remaining cases, it can be
shown that the distributive faw fails to hold in FP(r, p, ¢) except for the single
case of FP(2, 1, ¢).

Failure of the Relationax (b -+ a)=b

tn FP(r. p, ¢), let a and b be positive and ¢ b : a. Then ¢ bfa, so
unless b/a can be expressed in p digits in the basc r, we have ¢ -~ bla. Then
ac < b, so
ax(b . a). ac-<b.
Thus, the relation

(1.6.12) asxh . a) b
holdsifand only if b :- a -- b/a.
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Except for the trivial case of FP(2, 1, ¢), we may select b - 1 and let a be
an integer in the range | << @ < r? which is relatively prime to r. Then b/a
cannot be represented in a finite number of digits in the base r, so (1.6.12)
fails. Thus, (1.6.12) fails to hold in FP(r, p, ¢) except for the trivial case of
FPQ2, |, ¢).

1.7. INEQUALITIES IN FP{(r, p. c)

We shall now investigate the extent to which FP(r, p, ¢) preserves the order
relationships which we are accustomed to for the real number system. Since
cvery number in S(r, p) is a real number, the relations x <2 y, x < y, etc., are
defined for them. The following laws are fundamental for the manipulation of
inequalities in the real number system:

I. If a < b, then for all ¢
altc<b|ec
2. If a << b and ¢ < d, then
ate<bitd
3. If b << ¢ and a is positive, then
ab < ac.
We would like the corresponding laws to hold in FP(r, p, c).
First, we observe that if x and y are real numbers with x << y, then X <7 .
Of course we may have ¥ = § even though x <<'y. This occurs whenever the
first p digits of x and y are the sume. The following theorem follows imme-

diately from this observation and the definitions of (P and .

Tueorem 1.7.1
In FP(r, p, ¢),

l. fa<b,thena@d c << b c holds for all c.
2.lIfa<bande<d,thena@®c<b@Dd
3. If b < c and ais positive, thenaxb Za=c..

Unfortunately, these relationships, which were strict inequalities in the
real number system, have been weakened to <7 in FP(r, p, ¢). We shall show
below that the strict inequalities fail to hold in FP(r, p, ¢), so this theorem is
the strongest statement that can be made,



22 FLOATING-POINT NUMBER SYSTEMS CHAP. |

For (1), let a - r-22, b=2r"2? and c = 1. Thena < b, butapc =~
b®Mc=1.
For (2), we assume that p > 2. Let

a=1—r"
b=1
c=r-?

d=r-2 | p-tetn),

Thena < bandc << d,buta® ¢ - - b @ d —= 1. By considering the remaining
case of p - - |, it can be shown that the strict inequality holds in (2) only for
FP(2, 1, o).

For (3). we note that in any system FP(r, p, ¢) in which the cancellation
law fails to hold, we have positive numbers a, b, c withb << cand as* b =
a » ¢. Thus, the strict inequality holds in (3) only for the systems FP(3, 1, ¢),
FP(2, 1, ¢), FP(2, 2, ¢) and FP(2, 3, ¢).

The importance of these results lies in the fact that once we have estab-
lished that an inequality holds, we expect to be able to deduce other relation-
ships from it. Suppose that we have compared x and y in a program and found
that x -7 y. If we now decide to change the units in which they are expressed
by multiplying both of them by a positive constant, we expect the resulting
values to satisfy the same inequality. However, we have seen that they may
become equal. Indeed, if r 5= 2, even multiplication by 2 may convert unequal
numbers into equal numbers. This may have annoying consequences. For
example, if the denominator of a fraction is a * b — a * ¢, then determining
that b # ¢ is not sufficient protection against division by zero. Another
annoying consequence may arise in trying to debug a program which is
misbchaving. If our output shows us that a* b - ax ¢, we cannot be
absolutely certain which branch we took if the program branches on the
condition b = ¢. This might lead us to search for the bug in the wrong part of
the program.

1.8. FP(r. p, clq)

When we introduced the system FP(r, p, ¢), we mentioned that many
machines use approximately, but not exactly, this system. It may be viewed
as an idcal system which is not quite attained in practice. We shall now
describe a system FP(r, p, cly), which is a slight modification of FP(r, p, ¢)
and which describes exactly the arithmetic that has been implemented on
many machines. It includes both the single- and double-precision arithmetic
‘ ) IBM System/360 and the single-precision arithmetic of the IBM 709,

and 7094 (but not the 704). It does not describe the double-precision

4

sec. 1.8 FP(r, p, clq) 23

arithmetic of the IBM 7094, which is more closely related to the programmed
double-precision arithmetic described in Chapter 5. We are still ignoring the
bounds on the range of the exponent.

The symbol clg means that we shall perform chopped arithmetic using a
low- order register which is q digits long, where ¢ may be any integer >> 0.
This low-order register will be used in the operations @, ©, and * to hold
iow-order digits of intermediate results which have more than p digits. More
specifically, in the operation * it will hold the next g digits of the product, and
in the operations (® and © it will hold the next ¢ digits of the operand which is
shifted. The 7090 has a 27-bit low-order register called the MQ, and the IBM
System/360 uses a one-digit low-order register called the guard digit. Thus, the
arithmetic on the IBM 7090 is performed in the system FP(2, 27, ¢/27), and
the single-precision arithmetic on the IBM System/360 is performed in the
system FP(16, 6, c/1). When the early copies of the IBM System/360 were
delivered, there was no guard digit for double-precision arithmetic, so the
double-precision arithmetic was performed in the system FP(16, 14, cl0).
Later, during 1968, the architecture of the 1BM System/360 was changed to
incorporate a guard digit in double-precision arithmetic. This change was
also made in the machines already installed, so double-precision arithmetic on
the 1BM System/360 is now performed in the system FP(16, 14, c/l). Since the
length of the low-order register determines the length of the intermediate
results which may be held, we may think of FP(r, p, c) as FP(r, p, clo0).

We still assume that our floating-point arithmetic takes p-digit normalized
operands and produces a p-digit normalized result. We are interested in the
low-order register only as it affects the high-order digits which are returned
as the answer. Of course, it would be desirable to make the low-order digits
available to the programmer—at least to the assembly language programmer
-~-since they are useful for programming rounding or programming higher-
precision arithmetic. However, this is not a requirement for the system
FP(r, p, clg). Thus, in the IBM System/360 the guard digit, which is used while
the arithmetic is being performed, is never saved in a register, so there is no
way the programmer can get access to it—even in assembly language. Never-
theless, the guard digit meets our requirement for a one-digit low-order
register.

Floating-Point Division

In the machines we are modeling here, the IBM 7090 and the 1BM
System/360,t the floating divide operation produces the correctly chopped
result. Thus, in FP(r, p, clg) we define a = b to be a/b.

tExceptions 1o this rule are the IBM System/360 models 91, 95, and 195. On these
models, the floating divide operation may produce a result which differs from the result
produced by other models of the IBM System/360. [See International Business Machines
(1966 and 1969).]
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Floating-Point Multiplication

We define the product a * b to be zero if either factor is zero. If ab - 0,
the sign of the product is -|- or — depending on whether @ and b have like or
unlike signs. Then we may assume that a and b are positive. Let

a=r‘m, ri<m<|,
and
b=r'n, riv<<n<l.
Let 4’ = mn, so
ab =rty’.
Since
rr<uy<l,

' is a 2p-digit number with the radix point at the left and at most one leading
zero. We assume that we can hold only p -+ ¢ digits of the result, so we let u"’
be the first p -} ¢ digits to the right of the radix point in g'. Thus, if ¢ =~ p,
we have g’ = u', but if ¢ < p, u" is obtained by discarding the low-order
p — q digits of the 2p-digit number »'. Let

ash=rryu,

where g and g are defined as foliows: If r-' < g < I, theng -- ¢ |- fand
g = i On the other hand, if x4’ < r-*, then we shift 4" onc place to the
left to normalize it and compensate by decreasing the exponent by 1. (This
shift is referred to as postnormalization.) In this case we have g = ¢ |- f — |
and g = rzz”". We may summarize these two cases by writing

g=etf—k
”=;k_l_‘-ﬂ’

where k is | or 0 depending on whether or not postnormalization is required.

We shall now compare the results obtained for a » b in FP(r, p, cly) and
FP(r, p, c). If no postnormalization is required, in each case thc mantissa of
a * b is the high-order p digits of the 2p-digit number 4, so the results are the
same. On the other hand, if postnormalization is required, the mantissa of
a» b in FP(r, p, cly) is digits 2 through p + } of u”. Now if ¢ ™= 1, these are
the same as the digits of ', so a » b produces the same result in FP(r, p, cly)
as it does in FP(r, p, ¢). But if ¢ = 0, the (p {- I)st digit of g’ is zero, so,
after a left shift of one place for postnormalization, the pth digit of the product
is zero. Thus, we have proved the following theorem:

TueoreM 1.8.1

The floating-point product ¢ produces the same result in FP(r, p, cly) for
q > 1 as it does in FP(r, p, ¢). For ¢ - 0 the product » produces the same

}f

)
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result in FP(r, p, ¢f0) as it does in FP{r, p, c) whenever no postnormalization
is required. If postnormalization is required, the product a * b in FP(r, p, c/0)
is obtained from the product a * b in FP(r, p, ¢) by replacing the pth digit of
the mantissa by zero. ‘

A particularly annoying consequence of the result for ¢ — 0 (no guard
digit) concerns multiplication by a power of r. If a is a power of r, say r¢, then
we writeaas r**'-r ', so the mantissa of @ is r~*. (This is written in the base
ras .1.) Then g’ == r-'n < r-', so postnormalization is required. Thus, if
¢ - - 0, multiplication by a power of r replaces the low-order digit of the
mantissa by zero. In many scientific cafculations, scale factors are chosen to
be a power of r so that scaling will not introduce rounding errors. [For
example, sce Forsythe and Moler (1967).] We see that this fails to be true in
FP(r. p, c10). Even more annoying, since 7° == 1, we find that multiplication by
I may change a number. Indeed, multiplication by 1 in FP(r, p, c/0) has
exactly the effect of replacing the low-order digit by zero, so FP(r, p, c/0) does
not have a unit element satisfying (1.6.4). The engineering change on the IBM
System{360 mentioned above, which added a guard digit to the double-
precision arithmetic, removed these problems by changing the system from
FP(16, 14, ¢l0) to FP(16, 14, cl}).

Floating-Point Addition and Subtraction
We define

(1.8.1) a )b aw)(--h),

s0 we may restrict our attention to, the floating-point addition of signed
numbers. As above, we writc ¢ rem and b - : r’n. We shall assume that a
and b are normalized and that ¢ "~ /. (If ¢ -2 f, we interchange a and b to
produce the situation described above.) Then we write

b =rn,

where #° r “I'n is obtained by shifting n to the right ¢ — f places. Of
course #’ is not normalized unless e - - f. We are assuming that we have only a
q-digit register to hold the low-order digits shifted out of the p-digit register
holding b, so we let #'* be the hjgh-order p -| ¢ digitsof the[p -| (¢ - f)]-digit
number o', If ¢ - f- ¢, we have n”' - n', but if ¢ -- f>- g, then 0" is
obtained from ' by discarding the low-order ¢ -- f - - ¢ digits. Any digits of
' which do not appear in n' are lost and cannot enter the calculation, (The
shift of ¢ - /' places to the right, retaining only the high-order p |- ¢ digits, is
called the preshifi.) We then form ' m | 0’ and set

ai b F'}?
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We note that if onc of the operands is zero (in normalized form) it has the
smallest allowable characteristic, so its exponent is not greater than the
exponent of the other operand. Thus, if ¢ # f, it is the zero which is shifted to
the right, so n”” - ' - n. Then our definition produces

apP0--ax0--a
(1.8.2) oWwd: b

0-b - - b,
as expected.

To analyze the effects of this definition in more detail, it is convenient to
separate the discussion into two cases, depending on whether the addition of
signed numbers results in the addition or subtraction of their magnitudes. In
each case we shall write the results as

(1.8.3) ahyb rep
Add Magnitude Case

This case arises if we add numbers having the same sign or subtract
numbers having opposite signs. A consequence of our definition is that

(1.8.4) ( ayt)(-b) (ath b).

Using (1.8.1), (1.8.2), and (1.8.4), we may reduce the discussion of the add
magnitude case to the discussion of a (1) b where a and b are positive. Since
m and n’ are less than I,

’

mooom-n 2
and
moemort,

Then g’ can be represented as a (p | q | 1)-digit number with the radix
point after the first digit (which may be zero). If 4’ -< I, wewritcg ¢ and
st - 1. On the other hand, if g’ > 1, we write

rea’ o e '),

sog e | tand g = r "4 In either case, we retain the high-order p digits
of m | n”, and these are the same as the high-order p digits of m -} n.
Thercefore, in the add magnitude case, a (D b and a (- b produce the same
results in FP(r, p, clg) for all g > 0 as they do in FP(r, p, ¢). Any digits of n’
which were discarded to produce n”” would have been discarded later when g’
was chopped to produce u.

Subtract Magnitude Case

}is case arises if we add numbers having opposite signs or subtract
n. _Bers having the same sign. Using (1.8.1), (1.8.2), and (1.8.4), we may
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reduce this case to the problem of computing a (1) b where

a>0:-b
and
a;-|b|.
Then
pe-ma4n <m<l,

If 2’ = - 0, we set a (1) b equal to a normalized zero. If u’ is not zero, we need
to ask only whether it is normalized. If it is not, we normalize it and refer to
this operation as postnormalization. Let & be the number of leading zeros in
u’. Since

’.r”‘ = pe k(f‘”’),

wesetg:-e  kand g - ¥

We first supposc thatg .- 0. Before we computed m | »”” by subtracting
[n"| from m, we shifted n to the right ¢ — f places. Now if ¢ — f ;> 2, then
[n’] -7 r=2% so

gom—|n| V= b

Thus, when ¢ — f - 2 we never have to shift 4’ more than one place to the
left to postnormalize it, so & is either 0 or 1. Therefore, if k ~- 2, thene -- f
must be 0 or 1. This means that whenever & ~- 2 we have "’ n', so g’
m | n’ and it may be represented with at most p | | digits to the right of the
radix point. Then, when we shift 4’ to the left k ;.- 2 places, we are able to
hold all its digits, so g = r¥(m - #'). That is, if ¢ >> 0 and £ = 2, the
operation () introduces no error, so

adb:a- b

This is a rather surprising result, since the postshift of two or more places
indicates that the subtraction a —- | b| has produced leading zeros and there-
fore resulted in the loss of significance. The secret lies in the fact that although
the operation a (+) b produces exactly the correct result for the operands a and
b, the result is sensitive to crrors in @ and b.

Next, we note thatife — f -~ g, thenn” - n';sou’ -- m -| o’. Inthiscase
the operation a b b produces the correctly chopped result —that is, it pro-
duces the same result as it would in FP(r, p, c).

Finally, suppose that ¢ -~ f > g > 0. Then some of the low-order digits of
n’ were chopped during the preshift. Unless these digits were zero, we have
subtracted too little from m, so

pooom-- |0

But we may have to chop nonzero digits of 4 in order to sho~*~ 4’ to p
digits, and this would make the answer smaller, Thus, we hat j) cffects
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which tend to compensate. Chopping n’ tends to make x too large, while
chopping u’ tends to make g too small. Sinceq > 1, we must havee — f > 2,
so k is either 0 or 1. Then g will be either digits 1 through p or else digits 2
through p -I- 1 of u’. Now we have retained p -|- g digits of n’, so

(1.8.5) |n'] — || < r-tooe,

(For the 1BM 7090, g = 27 so the difference between n’ and #”' is seldom
important. But for the IBM System/360, we have g - 1 and thedifference may
be noticeable.) From (1.8.5) we see that if ' is too large, it is in error by less
than 1 in the (p -I- g)th position to the right of the radix point. Then if g is too
large, it is too large by less than 1 in the (p + g — 1)st position. In particular,
this means that if a @ b s @ + b, than |a @) b| is greater than [a |- 5] by |
in the last place. We summarize these results in the following theorem.

THEOREM 1.8.2
For the subtract magnitude case with g > 0,

1. If the postshift is two or more places,a @ b = a - b.

2. If the preshift is g or fewer places, the operation a @) b produces the
same result in FP(r, p, clq) as it does in FP(r, p, ¢).

3. Ifthe preshift is more than g places, the operationa + beither produces
the same result in FP(r. p, clg) as it does in FP(r, p, ¢), or else the result in
FP(r, p. clg) may be obtained by increasing the absolute value of the result in
FP(r, p, c¢) by | in the last place. In this case, {a + b]| < |a -| b] << |a ) b),
and |a (D b) is greater than |a - b] by less than 1| in the (p | ¢ — I)st
position. )

Finally, suppose that ¢ = 0. In this case we may produce a result which is
quite bad. For example, suppose that a:= 1 and b - - (1 --r *?). Here
m=rtn=—(—r?,n=—["'—r®v and n" == —(r ' — r-?).
Then in FP(r, p, cl0),

adb=r>
but
at b=ttt

Thus, the result in FP(r, p, cl0) is r times as large as the result in FP(r, p, c).
This was one of the reasons for adding a guard digit to the double-precision
arithmetic on the 1BM System/360.

In summary, we see that for ¢ > 0 the four operations (), ©, », and -
produce results in FP(r, p, clg) which are close to the results produced in
FP(r, p, c). In fact, the only difference arises in the subtract magnitude cuse
for the operations @ and ©. Since we are primarily interested in the case
¢ > 0, we may often ignore the distinction between these Systems und deal
with FP(r, p, ¢). Indeed, in all the examples discussed in Sections 1.6 and 1.7

)

st LY THL SOLUHION O a+ & b, p, ©) 29

in the study of the laws of algebra and inequalities, the same results would-be
produced in FP(r, p, clg) for ¢ ~- 0 as in FP(r, p, ¢). Thus, we have demon-
strated the failure of these laws in FP(r, p, clq) for ¢ > 0 and nontrivial
combinations of r and p.

1.9. THE SOLUTION OF axx =5 IN FP(s, p. c)

In this section we shall consider the question of whether or not an equa-
tion of the form

(1.9.1) asx - b

has a solution in FP(r, p, ¢). [Our analysis will also apply to FP(r, p, clq) for
all g ;- 0, since the operation » produces the same result in this system as it
does in FP(r, p, c).} Since the solution of ax - b is b/a, it is natural to ask
whether b -: a satisfies (1.9.1). But if it did, we would have

ae(b+a)=b,

and we saw in Section 1.6 that this holds if and only if the division b = ais
exact. Thus, b -.- a seldom satisfies (1.9.1). For any a and ¢ in S(r, p), we may
sct b a=* ¢ and obtain an equation of the form (1.9.1) which does have a
solution, although this solution may be different from b -:- a. In this section
we shall show that for nontrivial combinations of r and p there arc always
nonzero a and b in S(r, p) for which (1.9.1) does not possess a solution.

Assume that ¢ and b are given, and writca - r*m. Since we do not expect
tosolve (1.9.1)ifa 0, and we clearly can solve itif b 0, we may assume
that neither @ nor b is zero. Changing the sign of x changes the sign of @ * x,
so we need consider only the case in which a and b are positive. Then
r'- m- l,and wemay write x - r/n,r ' - n-2 1. Now il a or x is
multiplied by a power of r, ¢ * x is multiplied by the same power of r, so the
problem of solving (1.9.1) reduces to the question of whether or not we can
find a number x such that @ « x has the same mantissa as b. Clearly this
depends only on the mantissas of ¢ and b. Then (1.9.1) is solvable for all b if
and only if the mantissa of @ » x takes on all the (r — 1)r? ! possible nonzero
values as the mantissa of x varies from r ' to | -- r *», But the failure of the
cancellation law for nontrivial systems FP(r, p, ¢) implies that there are num-
bers a, x, and y in S(r, p) such that ¢ = 0, x and y have different mantissas,
und @« x  a=»y For this value of a there are duplications among the
mantissus of ¢ » x 48 the mantissn of x varies from r 'to | — r "2, s0 there
must also be omissions. That is, there are values of b for which g + £ I8 never
b. The fuilure of the cuncellation luw also shows that there are values of d and
b Tor which the solutivn of (1.9.1) is not wiique,
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We shall now examine the computation a * x in more detail. Write
asx =r'f Ry,

where g - r*mnand & is 1 or 0 depending on whether or not postnormaliza-
tion is required. Now
r'm<mn << m,

so we have eitherr 'm<mn < r-'and k = lorelser=' <. mn -2 mand
k = 0. Similarly, ifk == 1, we have r-'n << mn <2 r-%, and ifk - - 0, we have
r ' < mn < n. Thus, if postnormalization is required, the mantissa u of
axx is >~ both m and n. On the other hand, if no postnormalization is
required, y is less than both m and ». Surprisingly, x4 can never lic between
m and n.

We note that if m -- r~', then g -: n, so Eq. (1.9.1) can be solved for all
b. Thus, we may assume thatm >. r V. Ifn -~ | — r ?, we have

m:mn-—-~m-—r°m>:=_>.m -r?*

sog mn m - r-* Inthis case the mantissa of a + x is less than m by |
in the last place.

Now suppose that n < | — r # and consider the number y obtained by
increasing x by | in the last place. Then y - r/l, where! -=n t-r 2. Ifk == 0,

(1.9.2) ml--mn-| mr?<_mn}ir?
yields ml < mn | r ». On the other hand, if k - 1, we have
(1.9.3) ml -mn- rPmmnr *y

sorml > u | r °. Then,if ml << r ', we find that increasing x by | in the last
place incrcases a » x by at least 1 in the last place. For the special case in which
a » x requires postnormalization but a » y does not, we have

(1.9.4) mn<<ml--mn4r°m<mn-tre°<rtygoro>e

so ml -~ r '. Clearly a # y is greater than a « x in this case. Finally, il n
I - r #, then increasing x by 1 in the last place produces y - r/,soa* y
r’a, which is greater than a » x by | in the last place. We have proved:

THEOREM 1.9.1

In FP(r, p, ¢), let @ and x be positive. If a * x requires postnormalization,
increasing x by | in the last place increases a » x by at least 1 in the last place.
If a * x does not require postnormalization, increasing x by 1 in the last place
either leaves ¢ + x unchanged or increases it by | in the last place,
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We shall now consider the changes ina « x as n# varies fromr 'tol  r 7.
We shall still assume thatm = r='. Ifn  r ', g - mand postnormalization
is required. Ifn | -r 2 u -m--r? and no postnormalization is
required. Let v be the smallest mantissa » for which no postnormalization is
required. Thenr ' <2 v - 1 -r » andfrom(1.9.4) weseethatmvy r '. An
immediate consequence of this is that z = r' ‘v is a solution of

(1.9.5) a»z =1,

That is, every nonzero element of FP(r, p, ¢) has an inverse under the opera-
tion *. Now il the associative law were valid in FP(r, p, ¢), we could solve
(1.9.1) by letting z be a solution of (1.9.5) and setting x - z* 5. Then a * x
would be equal to (a * 2) * b, which is b. Unfortunately, since the associative
law of multiplication fails to hold in FP(r, p, ¢) for nontrivial systems, the
existence of an inverse does not allow us to solve (1.9.1).

Now as n varies fromvto ! - r 2, yvariesfromr-'tom r-?,andin
this range increasing n by | in the last place increases u by at most | in the last
place. Then g takes on every value less than m, so (1.9.1) can always be solved
if the mantissa of b is smaller than the mantissa of a. It can also be solved if a
and b have the same mantissa, since n - r~! yields g -~ m. Thus, if (1.9.1) fails
to have a solution, the mantissa of » must be larger than the mantissa of a.

We shall now ask whether we can solve (1.9.1) for all b .- 0. We surely can
iftm 1 r 2 because there are no mantissas which are larger. Then we
may assume that r ' <2 m <2 1 -r 2. There are (1 -- m)r? — | mantissas
greater than m. If (1.9.1) has a solution for all b, a * x cannot skip any of
these mantissas as n varies from r ' -| r ? to v -- r *, Since there are no
repetitions among the values of u corresponding to # in this range, a
necessary and sufficient condition for (1.9.1) to have a solution for all b is that

v or? [ - e oe,
that is,

(1.9.6) v r'i1--m

Since the right-hand side of (1.9.6) is obtained by increasing r * by (1 -- m)r?
units in the last place, it is surely large enoughsothatm{r ' | | —-m) " -r -\,
Thus, v can never exceed the right-hand side of (1.9.6). Therefore, a necessary
and sufficient condition for (1.9.1) to have a solution for all 4 is that

mir bl -mo-r?) ),
which reduces to
m* (L brt'—rP®mitr'..0
Let
gu) 2 fr et brt
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Then (1.9.1) has a solution for all bif and only if g(m) > 0. By direct substitu-
tion we find

g("-l) o r-(p&l!
Bt A jro) = —jr=? A (o Do (4 Do
g(l . r-p) . r-(ptl)

gl —jr?) = —(j— 1)r=2 4 jr=2*V | j(j — 1)r-2»,

Now g(r) is a quadratic expression which is positive for large |¢]. If there are
two values ¢, < ¢, for which g(r) is negative, then g(¢) is negative for all ¢ in
the range ¢, <{t <{ 1,. Clearly g(r-") and g(l — r~®) are always positive. If
r > 2and p > 2, we find that g(r-' -|- r~?) and g(1 — 2r-*) are negative, so
(1.9.1) has a solution for all bif and only if misr-' or | — r~?. Forr == 2 and
p >4, we find that g(2-' 4 2-%) and g(l — 2-'*-"’) are positive, but
g2 -2 * ")and g(1 — 3-2-7) are negative, so (1.9.1) has a solution for
all b if and only if m has one of the four values 2-1,2°! -} 272, | — 2-2 or
! -- 2-t% v By considering the remaining cases we may prove the following
theorem:

THEOREM 1.9.2

In FP(r, p, ), Eq. (1.9.1) with a % O has a solution if b =: 0 or if the
absolute value of the mantissa of b is not larger than the absolute value of the
mantissa of a. In the four systems FP(3, 1, ¢), FP(2, 1, ¢), FP(2, 2, ¢), and
FP(2, 3, c), (1.9.1) always has a solution if a = 0. In any other system
FP(r, p, ) with r > 3, (1.9.1) has a solution for all b if and only if the absolute
value of the mantissa of aisr~' or | -— r=2. In FP(2, p, ¢) with p > 4, (1.9.1)
has a solution for all bif and only if the absolute value of the mantissa of a is
one of the four numbers 2%, 2! -} 272 | — 22 or | — 21,

Our study of a = x also leads to a better understanding of the relationship
between (b < a) = @ and b. We suppose that @ and b are positive, and let
x — b -: a. We saw in Section 1.6 that x + a will be less than b unless the
division b :- a is exact, that is, unless b/a is in S(r, p). Suppose that x < b/a,
soasx < h letx=rmr'< m<1,and let y - re(m | r ?). Then
ax < b < ay, so ‘

(1.9.7) asx-<b-asy.
Now (1.9.2) and (1.9.3) show that the mantissa of a * ¥ cannot exceed the

mantissa of a *+ x by more than r units in the last place. Then (1.9.7) yields the
following theorem:

)
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Tur:orim 1.9.3
In FP(r, p, ¢) ot in FP(r, p, clg) withq - I, leta = 0andc (b - a) xa.

Then || cannot exceed | ¢| by more than 7 units in the last place of c.
1.10. DIVISION
We have defined division in both FP(r, p, ) and FP(r, p, cly) by
a-=b - ab.

We now look more closely at the details of this computation. If b is zero, the
quotient is undefined, and for any b 5 0, we have 0 - b 0. Then we may
assume that ¢ and b are nonzero and normalized. Let

a r'm, rot e m| < o,
b r'n, rte | T L
Then
a -y M
—_— = —_—
b n
and
r! <|ﬂ “<<r
n

Writca © b rep I0|min| -~ 1, wesetg e fand g m/n. Onthe
other hand, if |mfn| - 1, we have

a _ ¢~/o|( l'”)
—_— =z r ' =
b n

_|_"_1_ -1,

and

r'<"|r

sowesetg e Sl land g r 'mln Letk beOil |m|--|n|and I if
|m| " - |n|. Then

g e[k
u--r*mjn.

We note that in forming r~*m we may have to shift m one place to the right, so
we must be able to handle a (p | 1)-digit dividend.

Now on some machines—for example, the IBM 7090—the floating-point
divide operation produces both a quotient and a remainder. To see how the
remainder is defined, we recall that for positive integers 4 and B we may
divide 4 by B to produce quotient Q and a remainder R less than B. That is,
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there are unique integers Q and R such that
A=BQ - R
0<R<B

This is readily extended to any integers 4 and B with B = 0, so we have the
following theorem:

THeoreMm 1.10.1

If A and B are any integers with B 3= 0, there are unique integers Q and
R such that

1. A= BQ |- R.

2. 0 < |R| <|8B|.

3. If Q is not zero, it has the same sign as A/B.
4. If R is not zero, it has the same sign as 4.

Theorem 1.10.1 is often the basis of the fixed-point divide operation on

computers.
We wish to divide m’ by n, where m’ - r *m.Set A ri*m’and B - ren.
Then the Q and R of Theorem 1.10.1 satisfy

rr*m’ = r°nQ | R,

5O

(1.10.1) m' = nr?Q |- r *R.
Wesetqg == r *Q and s = r **R, so

(1.10.2) m = nq -} s.

Since |r*#n| > |r**m’|, we have |Q| -< r* and hence |g| -< 1. Also, since
|R| < |rPn|, we have

(1.10.3) |s| < |r®nl

In both (1.10.1) and (1.10.2), the two terms on the right-hand side have the
same sign, so

|m'| = |nl-lq| I |5
With (1.10.3), this yiclds

) [ng| <|m'| <|nl(q] t r?),
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Since ¢ is r~? times an integer and || < |, g is m'/n. By the definition of m’,
|m’'{n] > r-', so q is normalized. In general, s is not normalized. Let ¢ = rfq
and d - re**-75. Then a = bc + d and ¢ = a + b. Machines such as the
IBM 7090 which produce both a quotient and a remainder normally produce
these values of ¢ and d, leaving d in unnormalized form. Thus, the remainder
d is characterized by

d = a — b(a = b).

EXERCISES

1. Carry out the arithmetic in FP(10, 4, ¢) for each of the examples in Sections
1.6 and 1.7.

2. In FP(10, 4, ¢), find an equation a + x =: b with @ # 0 which does not have a
solution. Also, find an equation for which the solution is not unique.

Show that the associative law of addition fails to hold in FP(r, p, R).

It can be shown that the associative law of multiplication fails to hold in
FP(r, p, R) except for the three trivial systems FP(3, I, R), FP(2, I, R), and
FP(2, 2, R). Show that this law fails to hold in FP(r, p, R) for the following
combinations of r and p:

a r>2,p=2.

b.r=2,p>4.

5. 1t can be shown that the cancellation law fails to hold in FP(r, p, R) except for
the three trivial systems FP(3, 1, R), FP(2, 1, R), and FP(2, 2, R). Show that
this law fails to hold in FP(r, p, R) for the following combinations of r and p:
ar>2,p>2
b.r=2,p=>4.

6. 1t can be shown that the distributive law fails to hold in FP(r, p, R) except for
the trivial system FP(2, 1, R). Show that this law fails to hold in FP(r, p, R) for
the following combinations of r and p:
a r>5p=>13.
b.r=2p>4.

7. It can be shown that the relation a s (b -:- @) — b fails to hold in FP(r, p, R)
except for the trivial systems FP(2, 1, R) and FP(2, 2, R).Show that this relation
fails to hold in FP(r, p, R) for the following combinations of r and p:
ar>2p=2,
b.r=2p>4.

8. Show that the following inequalities hold in FP(r, p, R):
a. fa < b, then a® ¢ < b (D ¢ holds for all ¢.
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10.

11.

12

13.

14.

15.

16.

17.
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b.ifa-<bhandc < d,thena@®c < b@®d.

c. ifa < b, thena+c < becholdsforallc > 0.

Show that incquality a of Exercise 8 cannot be strengthened to a strict in-
equality.

For incquality b of Exercise 8, it can be shown that strict inequality holds only
for the trivial system FP(2, 1, R). Show that the strict inequality fails to hold
in FP(r, p, R) for the following combinations of rand p:

a.r>2,p>=>2

b.r=-2,p>2.

Show that inequality ¢ of Exercise 8 cannot be strengthened to a strict inequal-
ity except for the trivial systems FP(3, 1, R), FP(2, 1, R), and FP(2, 2, R).

In FP(r, p, R), what is the mantissa of a = x if @ and x are positive and the
mantissa of xis 1 - r=??

If r> 2, show that the equation aex -1 does not have a solution in
FP(r, p, ) when the mantissa of a is 1 — r-?. That is, a number whose
mantissa is 1 — r-? does not have an inverse in FP(r, p, R) ifr>2.

Show that the cquation a « x - 1 always has a solution in FP(r, p, R)if a is
positive and its mantissa m satisfies

I prt
r'<m< ! .

If r =~ 2 and we exclude the trivial case FP(3, 1, R), show that in FP(r, p, R)
theequationa « x b has a solution for all bif and only if |a|is a power of r.

Show that in FP(2, p, R) with p == 3 the equation @ ¢ x =- bhasa solution for
all b if and only il the absolute value of the mantissa of a is either 27! or
| - 278, ) .

Suppose that we use Euler’s method to solve the differential equation y* - - Y
for 0 << x < | with $(0) - - 1. Wetake N steps with step size i -- 1/N. For this
differential equation, the formula for Euler’s method reduces to

Yart = Yn — Iy

To illustrate the arithmetic involved, we solve this problem several times with

different values of N, taking N :: 16,32, 64, ..., 4096. In each case we print ‘

only the final value yn. _
We shall consider two different ways in which this formula ryughl be coded

in FORTRAN. They are

Y::Y—HeY
and
Z (I, -H)*2Z,

Our FORTRAN program is

19.
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1 FORMAT (16,2F13.8)

N == 16

DO 200K --19
Y = 1

Z =1

H = I./N

DO 100 -: I,N
Y =: Y—HsY

100 Z = (1.—H}Z
WRITE (3,)N,Y,Z
200 N =: N2
sTOP
END

The question is whether or not the values printed for Y and Z are identical.
Run this program in single-precision on whatever machine you have available
and explain why the values of Y and Z are the same or different on that
machine. (You may have to modify the WRITE statement to agree with the
conventions at installation.)

The values printed for Y and Z by the program in Exercise 17 will be identical
if it is run on the IBM 7090, but they will be different if it is run on the IBM
System/360.

a. Explain why the values of Y and Z are identical when the computation is
performed in FP(2, 27, ¢/27) but different when the computation is per-
formed in FP(16, 6, c/1).

b. Explain in gencral terms how the values of Y and Z would differ if the com-
putation were performed in FP(2, 27, cl1).

¢. Explain in general terms how the values of Y and Z would differ if the
computation were performed in FP(16, 6, cl6).

Suppose that we have written a FORTRAN program whose input includes a
temperature X measured in centigrade. The program converts X from
centigrade to Farenheit by the FORTRAN statement

F - 1.8¢X -} 32,

Suppose that we want F 1o be exactly zero, so we ask what number X musi be
supplied as input to produce the value zero for F. Here X must be the solution
of the equation ’

As X = =32,

where A is the number in S(r, p) 10 which the FORTRAN compiler converts
1.8. We assume thut the integer 32 is converted exactly. Depending on the
FORTRAN compiler used, 4 may be either T.8 or T.8", (The FORTRAN
compiler for the 1BM System/360 produced by the manufacturer would
produce 4 -~ 1.8))
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Show that the following statements are true:

a. The equation A + X - —32, does not have a solution in FP(16, 6, c/1)
il A =18 =: 1.CCCCCy. .

b. The equation A + X =: —32, has a solution in FP(16, 6, c/1)if A: 1.8 ::
1.CCCCDy. .

c. In FP(16, 14, c/1), the equation A + X - —32, has a solutionif 4 1.8
but notif 4 - 1.8, -

d. InFP(2, 27, ¢/27), the equation A « X :- —32phasasolutionif A4 - 1.8 --
1.8

e. In FP(10, 8, ¢), the equation 4+ X - —32 has a solution. (Here no
conversion is necessary.)

20. Consider the computation of
c=(b--a)sa

in FP(r, p, c), where r and p designate the radix and precision of the machine
you are using. Find an example which shows that there are numbers a and b in
S(r, p) such that b and ¢ differ by r units in the last place.

2 FLOATING-POINT OVERFLOW
AND UNDERFLOW

2.1. BOUNDS FOR EXPONENTS

Up to this point we have assumed that a floating-point number was any
number which could be written in the form r'm, where ¢ is any integer,
r ' < |m] <1, and |m|can be expressed in the base r using at most p digits.
But, as we saw in Sections 1.3 and 1.4, we usually store the signed exponent as
a characteristic in a few digits of the word. Thus, in a decimal machine the
characteristic is often defined to be the exponent plus 50, and it is stored in
two-decimal digits. This restricts the exponent to the range —-50 <~ ¢ - 49,
The IBM 704, 709, 7090, and 7094 used an eight-bit characteristic which
was defined to be the exponent plus 128, This restricted the exponent to

128 -7 e <~ 127. The IBM System/360 uses a seven-bit characteristic which
is defined to be the exponent plus 64, so the exponent must lie in the range
- 64 <7 e -~ 63. The CDC 6600 uses an 11-bit field to hold the exponent, and
it holds negative exponents in one’s complement form. This produces a range

1023 <C e -~ 1023 for the exponent. Thus, in general, the exponent is re-
stricted to a range

(2.1.1) e, e < et

For a4 machine which stores the exponent as a characteristic, we usually have
(2.1.2) e, —{e*- 1)

But if the machine holds negative exponents as either one’s complements or

sign and true magnitude (as, for example, the IBM 7030 did), we may have
e, -= - ¢*. Since the CDC 6600 uses a mantissa which is a 48-bit integer, in

) )
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our notation, which treats the mantissa as a fraction, we would write ¢*
1071 and e, - - — 975.

Restricting the range of the exponent restricts the range of the floating-
point numbers which we can represent. We shall use Q to designate the
largest positive floating-point number which can be represented subject to
(2.1.1). Similarly, w will designate the smallest normalized positive number
which can be represented subject to (2.1.1). Then

(2.1.3) Q r(d—-r?-r
and
(2.1.9) w: et

For the IBM System/360, this yields

Q 10831 - 167%) -2 16°?

(2.1.5) o - 10°55.

This presents a slight asymmetry in our floating-point number system: There
are some small numbers whose reciprocals cannot be represented because they
are larger than Q.

The fact that the bounds ¢* and e, are inherent in the machine imple-
mentation of floating-point arithmetic suggests that they should be included
in the definition of floating-point numbers. Thus, instead of S(r, p) we could
deal with the set S(r, p. e,, ¢*) which contains zero and all numbers in S(r, p)
which can be written in the form rom, where e is an integer satisfying (2.1.1)
and r ' <7 |m|- " 1. However, we shall not follow this approach. Instead, we
shall deal with problems related to overflow and underflow separately from
problems related to rounding crror and the anomalies of floating-point
arithmetic. We shall perform arithmetic in the system FP(r, p, @) as long as
the results we obtain have exponents satisfying (2.1.1). Il we try to produce a
result which has an exponent outside this range, we say that we have encoun-
tered exponent spill. 1f we try to produce a number with absolute value
greater than Q. the exponent spill is called exponent overflow or floating-point
overflow. Similarly, if we try to produce a nonzero number with absolute villue
less than , the cxponent spill is called exponent underflow or floating-point
underflow. In this book we shall not deal with fixed-point overflow, so we
shall often use the simpler terms overflow and wunderflow to describe exponent
spill.

In this chapter we shall discuss various ways of dealing with exponent
spill. This often involves both the question of what the hardware does an‘d
the question of what the compiler does. OF course what the compiler can do is
to some extent determined by what the hardware does.

)
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2.2. S)-ZERO FIXUP

One of the earliest approaches to the problem of exponent spill used what
we shall call the Q-zero fixup. This was used in many of the interpreters which
performed floating-point arithmetic, and it is still extensively used today.
With this approach, whenever we have a floating-point underflow, the result
is sct to zero. After a floating-point overflow, the result is set to a number
which has the correct sign and whose absolute value is Q. When Q is used in
this way, it is sometimes erroneously referred to as “infinity.” But Q is a
legitimate floating-point number, and it does not act like oo, For example,
Q--2-2Q.

A more claborate approach is used in the floating-point arithmetic of the
CDC 6600. Here floating-point underflow produces zero as the answer, and
floating-point overflow produces a genuine infinity. This is a special bit
pattern which is treated as infinity by the hardware. Thus, for any normal
floating-point number x,

(2.2.1) (DX =X oo
(2.2.2) X--oo::0

Also, if x £ 0,

(2.2.3) X *x o o0

(224) x- 0 (53]

There is another special bit pattern which is called INDEFINITE and is
produced as the result of an indeterminant form. Thus, 0 *+ oo and 0 : 0 both
produce INDEFINITE as the result. For any arithmetic operation, if one of
the operands is INDEFINITE, the result is INDEFINITE. Thus, the CDC
6600 truly has an «-zero fixup. 1t depends on having the hardware recognize
certain bit patterns as «v or INDEFINITE whenever they are used as
operands in any floating-point operation. Thus, this fixup depends on how the
hardware works. There is no reasonable way to implement it unless the
hardware tests the operands in every floating-point operation.

The Q-zero fixup and the oo-zero fixup have the sume objective: They
allow the computation to proceed after exponent spill in a more or less
reasoniable manner. The Q-zero fixup is easier to implement, since it does not
require the testing of the operands in all floating-point operations. In fact, it
is often implemented in software when the hardware produces some other
result, :

We shall now look at the rationale for these fixups, Producing an answer
which is o or INDEFINITE is usually an indication that exponent spill has
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occurred. With the Q-zero fixup, if our final answer is close to €, it is often

(perhaps usually) an indication that exponent spill occurred earlier. However, -

the real motivation for cither the Q-zero fixup or the o»-zero fixup is that we
may be able to produce good answers cven though we have encountered
exponent spill for some intermediate results.

We shall illustrate this by considering the computation of sin x. Typical
coding would first reduce the problem to compulting the sine or cosine of an
argument x with, say, | x| < n/4. For sin x in this reduced range, we would set
y - - x + x and compute z = sin x from

(2.2.5) z—=x*(a, l-y*s(@ 1y*(a, Lysta;-l---2)--))

Here the a, are the cocflicients for a polynomial approximation for sin x in the
range - (n/4) << x -~ n/4. To produce good relative error for small x, we must
have a, =~ 1. Now, suppose that x  x underflows. On the 1BM System/360
this means that x2 -2 1673, so

(2.2.6) | x| < .25-16732.
If we set p» - 0, we shall compute
Z XAy = X

Indeed, if @, - |, then z - x, and for x satisfying (2.2.6) we find that the
approximation sin x =~ x is good to over 65 hexadecimal digits. Therefore,
setting the result to zero after exponent underflow allows us to produce
excellent results in this computation. If we used some other approach for
underflow, say terminating the computation, we would have had to test x to
see whether it satisfied (2.2.6). If it did, we would set z - x; otherwise we
would compute z from (2.2.5). This would be faster when x satisfied (2.2.6),
but it would degrade performance whenever x? . 16 %, which is by far the
commoner case.

The calculation described above is typical of a class of programs which will
produce good answers if a quantity which underflows is replaced by zero.
This does not mean that this approach is always successful. Some drawbacks
to setting the underflowed result equal to zero are discussed in Sections 2.7
and 2.8, wherc other approaches are considered. However, there are many
cases where a term which has underflowed may be ignored, so this approach
enjoys wide popularity. In fact, one often hears the Q-zcro fixup referred to
as the standard fixup.

Setting the result equal to -} Q after overflows is less attractive; basically,
it is an attempt to approximate the oo-zero fixup. But there arc some situa-
tions in which it will produce good results. For example, suppose that we
er )-tcr overflow in computing x and that we are recally interested in
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y - arctan x. If x is positive, arctan x and arctan Q are both approximately
n/2, so replacing x by Q allows us to compute a good approximation for y.
Similarly, we shall produce a good result for y if we replace x by - Q when-
ever x is negative. Thus, the Q-zero fixup handles this problem quite nicely.
However, the example seems rather contrived.

A more typical situation is to encounter overflow in a sequence of multi-
plications and divisions used to compute one term in a sum. (Addition and
subtraction can produce overflow only if both operands have absolute value
close to Q.) We would like to have overflow in the denominator treated as
equivalent to underflow in the numerator. The co-zero fixup does this quite
nicely. For example, consider

x==(asb)+~ (c*+d)

Assume that ¢ * d overflows but that a s b does not. The co-zero fixup will
produce x == 0. The Q-zero fixup will also produce x - 0 if |a « b] < Q-w.
[If e* and e, satisfy (2.1.2), Q-w — r"3(1 — r-?) = r~'.] Thus, the Q-zero
fixup produces the same result as the oo-zero fixup as long as |a *+ b| < Q-w,
and it will produce a small value for | x| as long as |a # b| is substantially less
than Q. Suppose that we want to use the value we have computed for x to
compute

zZ=x@®

If x has been set to zero, we shall compute 2 : = y. If the Q-zero fixup has
produced a nonzero value for x and y is small, we may obtain a poor value
for z. Even the oo-zero fixup will not always yield good values for z. For
example, suppose that y = 1, a«b = Qf2 and that c-d =~ 2Q. Then x
should be approximately |, so if we replace x by zero, we shall produce a poor
value for z. This value would be even worse if y were, say, 10-¢. Thus, neither
the Q-zero fixup nor the co-zero fixup is a panacea, but there are a reasonable
number of cases in which they produce good results.

In our definition of the -zero fixup, the result after overflow was set to a
number with the correct sign and with the absolute value Q. Similarly, the
ca-zero fixup could have been defined to use two special bit patterns represent-
ing -0 and —oo, with normal sign control and definitions such as
(-+o0) 4 (—o0) = INDEFINITE. We now consider an example which
illustrates the value of retaining the sign after overflow. Suppose that we are
using a gradient technique to find the maximum of a function f(x, y). With
such a method we vary the step size 4 from step to step. [See Crockett and
Chernoff (1955).] If we have taken a step in gradient direction which results in
a decrease in the value of f(x, y), it means that we have taken too large a step.
Thus, if we take a step of size i from (x,, y,) to (x,,,, »’,,,) and find that

S Xpa s Yur 1) < f(x0 3,

)
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we reject the point (x,, . y,.,) and take another step from (x,, 3,) with smaller
step size, say /2. Now suppose that f(x,,,,»,.,) overflows. If f(x,,,.»..,)
< -~ Q, we surcly want to reject the point (x,,,.,.,) and reduce /1. Our
program will do this automatically if our computation of f(x,,,.r,,,) pro-
duces the result - Q or any negative number close to - Q. On the other hand,
if we did not preserve the sign and our computation of f(x,,,.r,,,) produced
the value Q or oo, our program would move to the point (x,,,, v,,,) thinking
that it had produced an increase in f(x, »). Thus, there are problems in which
the sign of a number which has overflowed can be vital.

If the hardware provides an interrupt on exponent spill (see Section 2.3),
the actual fixup is often performed by software. Even so, the type of fixup
which can be provided by the software is constrained by the way the hardware
operates. We have seen that the oo-zero fixup depends on the hardware
recognizing certain bit patterns as oo or “indefinite” whenever they are used
as operands. Even the Q-zero fixup requires that the hardware produce the
correct sign. Originally, the IBM System/360 produced a result after exponent
spill which could be described as ?-zero. Here the result was set to zero afler
underflow, and the result after overflow was unpredictable in the sense that it
varied from model to model. In some cases the resuit was set to zero after
overflow. The Q-zero fixup could not be performed by software because the
sign of a result which had overflowed was often lost. The engincering change
referred to in Section 1.8 changed the architecture of the machine so that after
cither overflow or underflow it now produces the wrapped-around characteristic
described in Section 2.3. The standard software then changes this result to the
Q-zero fixup.

Other fixups are possible. For example, we might want an Q- fixup, so
that a result which underflowed would not appear to be zero in a test made by
an IF statement. However, the Q-zero fixup is by far the commonest now in
use.

2.3. INTERRUPT

Often the programmer wants o know whether or not an exponent spill
has occurred. In fact, unless the hardware provides a standard fixup, there
must be some monitoring of the floating-point arithmetic, so that software
can provide a fixup after exponent spill. '

In many implementations of floating-point arithmetic, the result after
exponent spill has a wrapped-around characteristic. To define this result more
precisely, we shall assume that the characteristic is defined to be the exponent
plus y and that it may be any integer fromQtoc-- 1. Thene* ¢ -1 —y
ande, - —y, 50
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We say that the result after exponent spill has a wrapped-around characteris-
tic if it has the correct sign, the correct mantissa, and a characteristic in the
interval [0, ¢ - 1] which differs from the correct characteristic by ¢. Thus,
instcad of ¢ | | the characteristic will be 1; instead of —3 it will be ¢ — 3.
This means that if we have performed an operation in which the answer is so
large that it overflows, the hardware may return a very small number as the
answer. Similarly, the result after underflow may be a very large number.
These results are almost the worst possible numbers to use for further calcula-
tion, so some type of fixup is required if we are to proceed.

The scope of the problem may best be illustrated by looking back to the
IBM 704, When exponent spill occurred in this machine, the result had a
wrapped-around characteristic and an indicator was set. The only way to
provide a fixup such as the Q-zero fixup was to test an indicator after each
floating-point operation—a rather obnoxious procedure. Moreover, for @),
(-, and = the result appeared in the accumulator and (roughly) the low-order
bits appeared in the MQ. But for -; , the quotient appeared in the MQ and the
accumulator held the remainder. Since the accumulator and the MQ each had
its own characteristic, either could overflow or underflow, and each had its
own indicator which had to be tested. Unless one were programming double-
precision arithmetic, underflows in the remainder, or in the MQ following
), (O, or #, could usually be ignored. To determine exactly what had
happened, one had to know whether the operation was --, what indicators
had been turned on, and, in one case, the high-order bit of the characteristic
of MQ. Since it is troublesome to test the indicators after each floating-point
instruction, one might be led to forego any fixup and merely test the indicators
at the end of a routine to see whether spill had occurred. But such a test was
ambiguous. Suppose that we found that the overflow indicator for the
accumulator had been turned on. This could indicate one or more overflows or
underflows of the result of (b, O, or ». On the other hand, it might have been
caused by the underflow of a remainder, which could be ignored. In fact,
since fixed-point arithmetic was performed in the same accumulator, the
overflow indicator could have been turned on by a fixed-point overflow, or
even by shifting a number to extract the low-order bits. Thus, even a test at
the end of the program to find out whether or not spill had occurred was
often impractical. Many programs did not even bother to test for spill at all.
One simply ran them and hoped for the best.

As a result of this situation, a new treatment of exponent spill was used in
the IBM 709, and later, in the IBM 7090 and 7094. It was based on an
approach which was referred to as trapping on those machines and which is
now usually referred to as interruption. After exponent spill, the register still
held the result with wrapped-around characteristic as it had before. However,
the flow of the program would be interrupted, and the program would branch
to a fixed location which should have a routine to handle the spill. The
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instruction counter would be saved, so the overflow routine could find the
location of the instruction that caused the spill and return to the following
instruction. This has been modified slightly on more recent machines. On the
IBM System/360, there are many situations which may cause interrupts, so
the interrupt handler must first determine the cause of the interrupt and then
branch to the appropriate routine. Moreover, for certain of the interrupts
there is a mask which can be set to specify whether the interruptis to be taken
or ignored.

The use of interruption after exponent spill provides a great deal of flexibil-
ity. If suitable programs are included in the interrupt handler, it is possible
to provide a wide variety of different treatments of spill. The approaches
described in Sections 2.5, 2.7, and 2.8 depend very heavily on the assumption
that there is an interrupt after exponent spill and that the hardware produces
the answer with wrapped-around characteristic.

It is convenient to restate the definition of the wrapped-around character-
istic in a way which is not as dependent on the way in which the characteristic
is stored. We use (2.3.1) as the definition of ¢. Then the result after exponent
spill is said to have a wrapped-around characteristic if it has the correct sign,
the correct mantissa, and a characteristic which is the correct characteristic
plus ¢ after underflow and the correct characteristic minus ¢ after overflow,

24, MESSAGES AND TESTS

As we saw in Section 2.3, if the hardware provides an interruption after
cxponent spill, the fixup is often produced by the overflow routine. In addi-
tion, the overflow routine often prints error messages to indicate that exponent
spill has occurred. The overflow routine is usually supplied by the compiler,
and it determines what options (if any) are available to the programmer. But
FORTRAN G and FORTRAN H for the IBM System/360 provide the
extended error-handling facility, which allows the uscr to specify the treatment
he wants for exponent spill. He can specify the number of error messages he
wants printed, and he can indicate whether or not the computation should be
terminated. He can even supply the name of a subroutine he wants called to
provide his own fixup. This makes it easy for the user to write his own overflow
routine in a higher-level language. In this section and in Section 2.10 we shall
discuss some of the things we might want the overflow routine to do.

The most drastic action that can be taken after exponent spill is to
terminate the program. (We would hope that if this is done the overflow
routine would give us a clear indication of what happened and where in the
program it occurred.) However, there are several reasons we might prefer not
to terminate the execution of the program. First, as we have seen in Section
22 jstandard fixup might allow the program to run to completion and
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produce the correct answer. In this case, if exponent spill terminates the
program, the programmer must code tests to avoid the spill. Thus, in those
cases in which a standard fixup would be successful, we clearly do not want to
terminate the calculation. A second objection is that even if the exponent spill
indicates a catastrophic error, terminating the program may deny the pro-
grammer the information he needs to debug the program. If the program were
run to completion, it might produce output that would be helpful in tracing
the crror. Finally, although some of the results may be contaminated by
exponent spill, others may contain meaningful information. Thus, one column
in a page of output may be nonscnse, while the remaining output is valid.
Even more annoying, out of several cases to be run there may be one case
which spills. If this happens to be the first case run, terminating the calculation
denies us the results from the good cases. Thus, terminating the execution of
the program is often too drastic an action to take after exponent spill, so it
probably should not be adopted as the standard procedure. However, it is
desirable for the overflow routine to offer the programmer the option of
terminating the calculation if he wants to.

It should be pointed out that allowing the calculation to proceed with an
Q-zero fixup may produce other difficulties. For example, it may even produce
an infinite loop. But many computers today use an operating system which
will terminate the program when a time estimate is exceeded. This provides
protection against infinite loops arising from other sources as well.

We shall assume that program execution is allowed to continue after
exponent spill. Then there are four questions which must be addressed:

I. What output, if any, should be produced to indicate that spill has
occurred ?

2. How can the programmer insert a test in his program to find out
whether he has had an overflow or an underflow?

3. What number should be produced as the result after exponent spill in
order 1o allow the calculation to continue?

4. To what point should the overflow routine retrun after processing the
interruption ?

In this section we shall discuss questions | and 2. The other questions will be
discussed in Scction 2.10.

We shall first address the question of what output should be printed after
exponent spill. We heartily recommend that this output use the English words
overflow and underflow to describe what happened. In early versions of
FORTRAN for the IBM System/360, the output printed after exponent spill
was the message

IHC2101 PROGRAM INTERRUPT () OLD PSW IS

)
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followed by 16 hexadecimal digits representing the program status word
(PSW). By consulting the correct manual, the programmer would discover
that the interrupt could have been caused by fixed-point overflow, floating-
point overflow, floating-point underflow, or floating-point division by zero.
To find out which it was he had to look at the eighth hexadecimal digit of the
16-digit PSW to see whether it was 9, A, C, or D. It is clearly preferable
(almost mandatory) to have an English description of what happened. This is
provided by the extended error-handling facility on the IBM System/360.

If a number which has overflowed is replaced by --Q, we are very likely to
encounter further overflows. Forexample,if x - -| Q, 2 » x overflows. Thus,
if we have any overflows in a program and use the Q-zero fixup, we are likely
to have many overflows. For FORTRAN on the 1BM 7090, this led to the
approach of printing a line of output for each of the first five exponent spills
in a program but not printing messages for spills after the first five. Since it is
quite possible to encounter 2000 or 3000 overflows, something of this sort is
desirable. It is better to have the overflow routine count the number of over-
flows and the number of underflows for which no messages were printed and
print a2 message at the end of the program giving these counts. Also, instcad
of printing exactly five messages, it is desirable to allow the programmer to
specify how many messages he wants.

One problem that arose on the IBM 7090 is not present on the I1BM
System/360. On the 7090, single-precision addition, subtraction, and multi-
plication produced a double-precision result in which the second word had its
own characteristic. Therefore, these operations could produce underflow in
cither the high-order or the low-order digits of a result. In many cases, the
low-order digits would never be used, so the fact that they underflowed was
irrclevant. Nevertheless, if this was one of the first five spills, an underflow
message would be printed even though high-order digits were valid. If some
of the numbers in a calculation were getting small, we were very likely to
encounter underflow first in the low-order digits. Thus, the first five messages
about exponent spill might describe irrelevant underflows in the low-order
digits. Then, when spills occurred which might affect the answers, no messages
were printed, because five spills had already occurred. Unfortunately,
messages describing these irrclevant underflows often conditioned the pro-
grammer to ignore all underflow messages. The absence of the low-order
characteristic on the IBM System/360 eliminates this problem. This situation
was also taken into account in the design of the extended-precision arithmetic
on the models 85 and 195 and on the IBM System/370. Underflow in the
characteristic of the low-order double word does not cause an interrupt on
these models.

Next, we shall consider the question of how the programmer can perform
a test 1o find out whether spill has occurred. With many of the FORTRAN
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compilers for the IBM System/360, this involves calling a subroutine named
OVERFL. We write

CALL OVERFL (K)

and K will be set to 1, 2, or 3 by the subroutine OVERFL. K will be 2 if no
spill has occurred since the last time OVERFL was called. If there have been
one or more spills since the last time OVERFL was called, K will be setto I or
3 depending on whether the last spill was an overflow or an underflow. This
may be annoying if we have a program in which we are concerned about
overflows but may ignore underflows. If we call OVERFL and the value
returned is 3, we do not know whether an overflow has occurred. Thus, when
we call the OVERFL routine with an argument K, there should be at least
four values to which K can be set. These would specify that since the last time
OVERFL was called there has been no spill, overflows only, underflows only,
or both overflows and underflows. With the extended error-handling facility,
we can obtain even more information—we can find out the number of
overflows and the number of underflows that have occurred.

25. ON OVERFLOW AND ON UNDERFLOW
IN PL/I

A great deal of flexibility has been built into PL/I at the language level by
the inclusion of the ON OVERFLOW and ON UNDERFLOW statements.
We can use the construction '

ON OVERFLOW: BEGIN:

and then write any PL/I statements we want to. If a floating-point overflow
occurs, the interrupt handler will branch to this piece of coding, so the pro-
grammer can do whatever he wants to after overflow. In many respects this is
equivalent to allowing the programmer to write his own overflow routine in a
!\igh-level language. He can print whatever output he desires, store whatever
information he needs, keep track of overflows and underflows for later
testing, and branch to any point in his program, including RETURN to the
instruction following the one which caused the spill. The treatment of over-
flow may be changed by using additional ON OVERFLOW statements,
and each procedure (subroutine) may have its own ON statements which
modify the treatment of spill within the procedure.

The ON statements are extremely powerful, and they provnde the PL/!
programmer with a great deal of flexibility in the treatment of exceptional
cases. However, a limitation on the power of these statements is the fact that



50 FLOATING-POINT OVERFLOW AND UNDERFLOW CHAP. 2

the programmer does not have access to the contents of the register that
spilled. Consequently, these statements cannot be used to provide special
fixups, such as those discussed in Sections 2.7 and 2.8. In fact, they cannot
even be used to produce the Q-zero fixup after overflow.

Since the way exponent spill is handled by PL/l may depend on the
implementation, we shall consider version V of the PL/I (F) compiler for the
I1BM System/360. First, suppose that we do not use the ON statements to
provide our own treatment for spill. After an exponent spill, a message will
be printed indicating whether the spill was an overflow or an underflow and
where in the program it occurred. Following underflow, the result is set to
zero and the calculation proceeds, but following overflow, the calculation is
terminated. If we use the NO OVERFLOW prefix, the calculation will
proceed after overflow, but the result will be left with a wrapped-around
characteristic and no messages will be printed. Thus, there is no way to
provide the Q-zero fixup and allow the calculation to proceed after overflow.

In spite of this limitation, the ON statements provide a very powerfuf tool
and they are a significant advance in the handling of spills at the language
level. In fact, the availability of these statements might be a reason for writing
a program in PL/I rather than FORTRAN.

2.6. EXAMPLE

In most implementations of floating-point arithmetic, the range of the
exponents is Jarge enough to handle the vast majority of the numbers that
arise in our calculations. For example, on the IBM System/360, we have
Q=723 x 10" and w = 5.40 x 10-7%, Even Avogadro's number, which is
6.03 < 1023, and Planck’s constant, which is 6.55 x 1027 erg second, are
comfortably within this range. Since Q is so large, it might appear that we
would never encounter overflow unless our program contained errors in
logic. We shall now consider an example which shows that this is not truc.

Suppose that a manufacturer produces two models of a product, model A
and model B. He has collected data which shows that 109 of his orders are
for model A and 909, are for model B, and on a particular day he reccives
2000 orders for this product. We assume that the orders are random and
independent, so he would expect to have about 200 orders for model A. We
want to compute the probability that there will be at most 200 orders for
model A. Indeed, we might like to see the probability that there are exactly &
orders for model A and the probability that there are at most & orders for
model A, fork == 0, 1, ..., 2000. If we are going to write a program to solve
this problem, we would like it to work in a more general setting in which the
number of orders received is N and the probability that any order is for model
Ais p. Then g = | — p is the probability that an order is for model B. Let
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x, be the probab.il-ity that exactly & of the N orders are for model A, and let
¥ be the probability that at most & of the N orders are for model A. Then

&
6.1 Yu = B
and
(2.6.2) x, (;{v)pkqn- K
where (g ) is the binomial coefficient
26.3 o p—
(263) (k)""k!(N-— 318

If we first compute the x,’s, the Yi's present no problem, so we shall consider

only the problem of writing a program to compute the x,'s given by (2 ‘6 2)

The program must work for N on the order of 2000. T
Clearly, the formula for x, may be rewritten as

(2.6.4) X, NN - I)"I“'(N —k I I)pqu—k.
We shall consider the computation of X290 When N :=2000and p .1, and

we shall assume that we are using a machine with the values of i
above for the IBM System/360. This computation may be :;z)l?tn?n?:)g;':?:
parts, namely, computating (.9)'3°0, (.])z00, 200!, and 2000-1999 ... 180]
Then these four quantities must be combined. Now k! overflows for k ~ 57.
so 200! overflows. All the more 0, 2000-1999 ... 1801 overflows Sincé
(:l)’°°' o 10-200,(.1)29° ypderflows. We even find that (.9)!800 unde.rﬂows
since it is a'pproximulely 4.3 x 10-*>. Thus, we cannot represent any of lhe'
four parts listed above. However, we know that each X, satisfies 0 < x, « |
and we expect y,,, to be about one-half, so R

200

2 X, = .5,
i

Since lhe_sum of 201 of the x,'s is about .5, they cannot all be small, (For
::}):amp{e, if each x, -< .001, we would have Y200 < .201.) Therefore, many of
€ X.'s must be “reasonable”-sized numbers, say .001 < x, -2 [. Since

X200 > 001 and (.1)20° —: 10290 the binomial coefficient (Z%) must
overflow.

If x, < @ for some value of k, then x, -- 10-77
o 2 [k, . » S0 we would be quite
willing to replace X, by zero. [This will happen for k- 0, since x, - - (.9):'°°°.]

)
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Thus, we shall requirc our program to set x, equal to zero if it is less than o,
but otherwise we want a valid answer for x,. There arc several ways in which
this might be coded, but to illustrate the handling of exponent spill we shall
perform all the multiplications and divisions. For N - 2000 and & : 200,
there are 2400 operations, and in the worst case, for & 2000, there are 6000
operations. We shall sce in Section 3.5 that this will not cost us more than 13
bits in accuracy, so if the calculation is performed in double-precision, the
result will be good to better than single-precision accuracy. (These vague
statements about accuracy are made more precise in Section 3.5.) For
N - 2000, both x, and x, are less than . To avoid the complication of
branching around certain loops for these two values of &, we shall compute
x only for | <~k -7 N - L. Thus, our problem is

PROBLEM

Write a program which takes the values of N, p, and & with 1 -7k -~
N - 1 and produces x, defined by (2.6.2). Set the answer to zero if x, <7 @
(or if x, is slightly greater than @ but the rounding error introduced by the
multiplications and divisions makes our computed value for x, less than w.)

Since we are interested only in the computation, we shall ignore the
statements necessary to type the variables as double-precision, to read in the
input N, p, and k; and to write the output x,. We shall first write crude
FORTRAN and PL/1 programs which ignore the problem of spill. These
programs will then be modified 10 illustrate two different ways to cope with
the spills. We shall assume that the programs are to be run on the IBM
System/360.

FORTRAN Progran Ignoring Spill

Q 1P
X
DO 100 J 1K
100 X - X«(N|1-J)
DO200J 1K

200 X - X/

DO 300 ) LK
300 X - XsP

KK Kl

DO 400 J - KK,N
400 X -- X«Q

For PLJI, we could simply translate this program. However, because of
the way we shall recode it later, we shall change the DO loops to use the DO
WHILE construction.
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PL{1 Program Ignoring Spill

Q 1P

X 1

KI, K2, K3 l;

DO WHILE (K1 -~ K):
X X«(N |1 -KI);

K1 Kl | 1I;:
END;

DO WHILE (K2 -~ K);
X - X/K2;
K2 K21 1;
END;

DO WHILE (K3 -: : K);
X X+P
K3 K3|1;
END;

DO WHILE (K3 .. - N);
X X+Q;
K3 - K3}1;
END;

B_qth these programs will produce good results if they are run in double-
precision on the 1BM System/360 and no spill occurs. Unfortunately, we are
guaranteed to encounter spill for the data we are considering.

We first modify the FORTRAN program to prevent spill. Let BIG be a
large power of r comfortably less than Q, say 169 for the IBM System/360.
(We make BIG a power of r so that we shall not introduce rounding error
when we use it as a scale factor.) Now if

(2.6.5) _:_G . x - BIG,

multiplying or dividing X by a number less than 2000 cannot cause spill. If X
gets to be larger than BIG, we shall divide it by BIG. Then the true value we
are computing is represented by X - BIG. We shall use an integer 1 to count
the number of times we have divided by BIG, so the value of v, will be
represented by

(2.6.6) X, X-(BIG)
Similarly, we set SMALL L/BIG, and if X becomes less than SMALL we

shall mullip_ly X by BIG and subtract one from 1. Then the value of X will
always be given by (2.6.6). The coding is shown below,
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FORTRAN Program Preventing Spill

BIG 16.%%50
SMALL - L/BIG
Q :1.-P

X 1

1::0

DO 100 J -- LK
X - Xs(N}1--)
IF (X.LE.BIG) GO TO 100
X - X/BIG
1111
100 CONTINUE
DO 200 J == 1,K

X - X/
IF (X.GE.SMALL) GO TO 200
X :: XsBIG

I = 1—1
200 CONTINUE
DO 300J = 1LK
X -= XsP
IF (X.GE.SMALL) GO TO 300
X - X+«BIG
[ = 1=l
300 CONTINUE
KK : Kl
DO 400 J - KK,N
X - X«Q
IF (X.GE.SMALL) GO TO 400
X - Xs*BIG
1 11
400 CONTINUE

This coding produces values of X and I such tha? (2.6.6) holds .(except for
rounding error.) if I - - 0, we have produced the desired an:swcf. Since _(2.6.5)
holds and we know that x, < 1, [ cannot be positive. Butif L is neg?tlvc: ::Ie
muy.be able to divide X by BIG without underflow (as long as X = 167'%).
Thus, 1o complete the program, we write

TEST = 1.J(16.#+15)

500 IF (1.GE.O) GO TO 700
IF (X.LT.TEST) GO TO 600
X -= X/BIG
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GO TO 500
600 X 0
700 CONTINUE

With this added coding, we now have a solution to our problem in
FORTRAN.

For the PL/1 program, we shall consider a different approach which makes
usc of the ON statements. Of the four loops in our original PL/l program, we
note that the first loop makes X larger, while the other loops make X smaller.
Our approach is to start making X larger until it overflows, then go to the
loops which make X smaller until it underflows, then return to the first loop,

etc. Basic to this approach is an assumption about the way the PL/I compiler
works. We assume that a statement such as

(2.6.7) X -- XsP;

is compiled into a LOAD, followed by a FLOATING MULTIPLY to com-
pute X+P, followed by a STORE to store the new value for X. Thus, if the
multiplication produces an interrupt, the value of X in storage is the value X
had prior to the multiplication. Similarly, we assume that the statement

K3 :: K3--1;

compiles into a LOAD, ADD, STORE sequence and that this is performed
after the computation in (2.6.7). Then, when an interrupt occurs, the values of
X and K3 in storage are the values that these variables had prior to the
computation which caused the interrupt. Our approach would not work if X
and K3 were held in registers instead of being stored each time we go through
the loop. (We can verify our assumption about the way PL/I compiles these

statements by looking at an Assembly listing of the compiled code.) Our
PL/1 coding is:

PL{I Program Which Handles Spill

ON OVERFLOW GO TO SMALLER;
ON UNDERFLOW BEGIN;

IF K1 -2 K THEN GO TO BIGGER;

ELSE DO;
X 0
GO TO FINIS;
END:

END;
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X - |;
Q I-P

K1, K2, K3 I;
BIGGER: DO WHILE (K1 < - K);
X - XNl KI)
K1 - Kl }1;
END;
SMALLER: DO WHILE (K2 -7 - K);
X - X/K2;
K2 K211,
END;
DO WHILE (K3 <2 = K);
X -= X#P;
K3 = K341,
END;
DO WHILE (K3 <= -- N);
X - X=Q;
K3 -- K311,
END;
IF KI <= - K THEN GO TO BIGGER;
FINIS:

Note that in PL/I, if K2 is larger than K, then the DO loop beginning
DO WHILE (K2 -2 :: K);

will not be executed. Thus, suppose that we overflow, go to SMALLER, and
then underflow in the loop controlled on K3. If we overflow again, we go lo
SMALLER, but since K2 will be greater than K we shall not exccute the DO
loop controlled on K2. Instead, we shall skip this loop and pick up the
calculation where we dropped it. Also, note that in the ON UNDERFLOW
routine, we had to see whether there was any work still to be done in th(? loop
labeled BIGGER. If we have underflowed and there is no more compu{nng to
be done in the loop which will make X larger, we set X 0 and go to FINIS.

This PL/I program provides a solution to our problem. Here the treatment
of spill required us to branch to a different poifu in lh‘_: program rather than
simply returning to the instruction after the instruction Whlf;h caused the
interrupt. One difficulty with this type of programming is that it makes every
floating-point instruction a conditional branch. Smcc' some of the branches in
the program are not shown explicitly, the program is h:!rder to debug. .

In summary, this is an example of a problem in which the answer is of
“reasonable” size, but we are exposed to spill in the calculation and a smnd'.u"d
fixup will not help us. Yet we have been successful in solving the problem in
higher-level languages.
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2.7. COUNTING MODE

Probably the best treatment of exponent spill that has been described in
the literature was developed by W. Kahan (1965a and 1966) for the IBM 7094
at the University of Toronto. This approach allowed the programmer to call
the overflow routine and specify which one of several treatments of spill he
wanted. In addition to specifying whether he wanted overflow messages
printed or suppressed, he could specify one of three different modes for
handling the result after spill. Naturally one of these modes called for the
Q-zero fixup. The other two modes which could be requested were the
counting mode discussed in this section and the gradual underflow discussed in
the next section.

Counting mode is not designed as a standard fixup to be used indiscrimi-
nantly. Rather, it is designed to be one of several options which might be
requested occasionally for handling specific problems. For the problem
discussed in Section 2.6, counting mode provides a solution similar to the
approach we used in our FORTRAN program. However, it is a much cleaner
and more elegant solution. It is based on the assumption that the result
produced by the hardware after an exponent spill has a wrapped-around
characteristic. We recall that this means that the result has the correct sign,
the correct mantissa, and a characteristic which is the correct characteristic
plus ¢ after underflow and the correct characteristic minus ¢ after overflow.
Here ¢ depends on the machine, and (see Section 2.3) it is defined by

c :e* —e, 1.

To use the counting mode, we would call the overflow routine and tell it
to begin operating in counting mode, counting in location 1. It would then
operate in counting mode until it was told to change. When spill occurs, the
result in the register will be left unchanged, so it will still have a wrapped-
around characteristic. But the number in location | is increased or decreased
by 1, depending on whether the spill was an overflow or an underflow. Thus,
in location | we have a count of the number of overflows minus the number of
underflows. 1t is the responsibility of the problem programmer to store a zero
in location 1 before he enters the counting mode and to see that [ is typed as
an integer. The objective of counting mode is to allow us to produce numbers
X and 1, such that the correct result is given by

(VAR) X (r).

Had we had this approach available for the broblém in Section 2.6, we
could have used our original FORTRAN program with only slight maodifica-
tions. We would have to call the overflow routine at the beginning of the
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program to tell it to operate in counting mode and count in location 1. We
would also need a statement [ = 0 to initialize {. At the end of the program
we would have found X and I such that the desired value for x, is given by
(2.7.1). We know that x, cannot be greater than €, so X will hold the va!ue of
x, unless I is negative. But if I is negative, the computed value for x, is less
than @, so we want to set x equal to zero. Thus, at the cnd of the program we
need only the onc additional statement:

IF (LLT.O) X ~ 0.

This approach is not only simpler and easier to program, but it is more
efficient, because it removes the tests from the loops. We have allowed the
hardware to monitor the spills instead of having to test for them ourselves.

The use of counting mode is based on several assumptions abopt the
problem. First, at any time only one location | is used to count the spllls.. $0
the question of which variable is to be multiplied by (r°)! must be unambigu-
ous. For example, suppose that we wanted to compute both

(2.72) x hl'llak
and
(2.1.3) y < 1 b

k-1

If we used the FORTRAN programming

X 1

Y 1

DO 100 K I, N
X - Xe*A(K)

100 Y - Y+B(K)

we would be unable to tell whether a spill affected x or y. Either we .w'ou'ld
have 1o modify the program to compute x and y in sepurate loops, reinitializ-
ing [ in between, or else we would have to be able to guarantec that one of the
calculations, say (2.7.2), would never cause spill. . .

A second requirement is that we must know whether a spill inan interme-
diate result affects the numerator or the denominator of a fraction. If a spill
were encountered in the FORTRAN statement

X == (AsB)/(C+D)

the effect would be ambiguous. Suppose that an overflow occurred. T!le

computed value of X should be multiplied by r< if the overflow occ'm:red while

we_were computing A+B or during the division, but it should be divided by r
overflow occurred while we were computing C+D,

)
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Finally, we require that further calculation using a spilled result must
involve only multiplications and divisions, because a number which has
spilled does not have the correct characteristic. If it were used in an addition
or subtraction, the shifting would not be done correctly. (Of course, special
routines could be written to perform the addition and subtraction correctly,
The calling sequence for such a routine would specify the two terms to be
added, the overflow count I, and which of the terms the overflow count
applicd to.) However, the most rapid change in the characteristic arises from
multiplication and division, so the counting mode handles an interesting

collection of cases. Indeed, it is immediately applicable to computations
such as

— T 9t b,
x kr.l: ¢ - d,

il we can guarantee that the addition ¢, + d, never causes spill. If we cannot
guarantee this, we would have to rearrange the computations as

;ﬁ' (ak 1 bk)
x =
J-II (Cg - d.)

If the FORTRAN compiler provides the extended error-handling facility,
it is easy for the user to produce this treatment for exponent spill. With PL/I,
the ON statements enable us to produce counting mode for overflow but not
for underflow. For example, we can write the statement

ON OVERFLOW | = [{1;

This would do exactly what counting mode does when an overflow occurs,
because PL/I does not provide any standard fixup after overflow. (The lan-
guage states that after overflow the result is undefined, and in fact the
compiler for the IBM System/360 leaves the result unchanged.) However, the
analogous treatment for underflow will not work, because the PL/I tanguage
requires that the result be set to zero after an underflow. Thus, we cannot use
ON UNDERFLOW to do the counting, because the result is not left with
wrapped-around characteristic.

2.8. GRADUAL UNDERFLOW

Gradual underflow is another treatment of underflow which was devised
by Kahan (19654 and 1966). With this approach, a number which should have
an exponent less than ¢, will be written with the exponent e, and an unnor-
malized mantissa. (For many machines this means that a number which has
underflowed will be written with the characteristic zero.) Thus, if the exponent

)
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should be ¢, &, we shall make the exponent of the number ¢, and shift the
mantissa k places to the right, so the mantissa has k leading zeros. We retain
only p digits to the right of the radix point in the mantissa, so the k low-order
digits of the mantissa must be chopped (or rounded). If the exponent should
be e, - p or less, we shall shift the mantissa p or more places to the right,
leaving a zero mantissa. Since we have assumed in Section 1.4 that a normal
zero is stored with the smallest allowable characteristic, this will be a normal
zero.

The problem addressed by both counting mode and gradual underflow is
to avoid having numbers which have spilled contaminate a final result. If the
computation involves a sequence of multiplications and divisions, the
counting mode provides an elegant answer. The gradual underflow is designed
primarily for addition and subtraction. We want to be assured that our
treatment of underflow will not contaminate the result when a number which
has underflowed is added to a number which has not.

To illustrate the problem, consider the IBM System/360. Suppose that we
want to compute x (1) y, where x has characteristic 2 and mantissa .123456,,
and y has underflowed but should have had the characteristic -- 1 and the
mantissa .654321,.. In FP(16, 6, ¢l1), where there are no bounds on the
exponent, we would have shifted the mantissa of y three places to the right
and performed the addition:

.123456
.0006543

1234AA3,

Then the number 1234443, would have been chopped 1o six digits, so the
mantissa of x (1) y would be .123444. But y underflowed, and if we usc the
Q-zero fixup, we shall replace y by zero, so x (h y will be x. Thus, the Q-zero
treatment of underflow has contaminated the fourth hexadecimal digit of our
answer. In the worst case, if x == @ and y should have characteristic | and
mantissa .FFFFFF,, we have the following results:

x t y - 16 °* » AFFFFFFy

x(Hy 16~ AFFFFF, in FP(16, 6, /1) with no bounds on

exponents
x(by - 16°°* < NFFFFFy it the arithmetic is performed in
FP(16,6,cl1). @ - 1673, and gradual
underflow is uscd
if @~ 167% and the Q-zero fixup is
used.

xwy 165 x .1,

Thus, there arc cases in which the Q-zero fixup may produce an error of
almost 1 in the first significant digit of the answer. In this situation, gradual
underflow allowed us to produce the same result as we would have produced if
we had been abletouse | asa characteristic. (See Exercise 4.)
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F_rom.lhe above examples, we sce that if the exponent e of x is in the range
ey i e<ley |- p--2, then x &) y may have abnormally large error if y
underflows and we use the Q-zero fixup. For the IBM System/360, this can
affect single-precision numbers with characteristic <, 4 and double-precision
numbers with characteristic << 12, and on the models 85 and 195 and the
!BM System/370 this can affect extended-precision numbers with character-
istic << 2(?. Since the number | has characteristic 65, this means that a signifi-
cant portion of the extended-precision numbers can be affected by this type of
crror.

Gradual underflow provides a good solution to the problem of adding a
number which has underflowed to a number which has not. Even in a
sequence of additions, such as the computation of

L]
S = E ak'
k-1

gradual underflow is attractive. Suppose that some of the a,s underflow but
that the final value of S does not. If we use gradual underflow, the bound for
the error in the answer will be close to the bound that would have been
obtained if no underflow had occurred. (In many cases it is the same bound.)

The penalty we pay for gradual underflow is the introduction of unnor-
maI!zed numbers into our calculation. Floating-point arithmetic with unnor-
malized operands will be discussed in more detail in Section 12.4. As we shall
see then, the use of unnormalized operands in the operations & and © may
cause the wrong operand to be shifted and result in the loss of accznracy.
However, this situation does not arise when the unnormalized operands have
exponent e,, so the addition or subtraction of the unnormalized numbers
prodt!ced by gradual underflow does not present a problem. For many
macl.nnes, the use of unnormalized operands in the operations » and -- may
require more care. As we shall see in Section 12.4, there are machines (for
example, the IBM 7090) on which the operations = and =- may produce
unnormalized results with exponents greater than ¢, and poor accuracy if the
operands are unnormalized. Fortunately, this problem does not arise on the
IBM System/360, because the floating-point multiply and divide operations
prenormalize the operands before performing the arithmetic. Thus, if we use
gradual underflow with the 1BM System/360, the only unnormalized numbers
we shall produce will have the exponent ¢,, so we shall not encounter any
difficulty with them.

2.9. IMPRECISE INTERRUPT

Some of the very fast machines, such as the IBM System/360 models 91
and 195, use the pipeline approach to achieve speed. With this approach, the
computer wi.ll be processing different stages of several different instructions
at the same time. In this case, the interrupt cannot operate as ¢leanly s it docs
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on nonpipeline machines. We shali consider here the situation with regard to
the models 91 and 195 of the IBM System/360. If a floating-point spill occurs
and the interrupt is masked on, all instructions which have alrcady been
decoded will be completed before the interrupt is taken. When the interrupt
occurs, the instruction counter will point to the next instruction to be
executed. All instructions prior to this instruction have been cxecuted, but
instructions beyond it have not. However, hefore the interrupt is taken, we
may have executed other floating-point instructions after the one which
caused the interrupt. The interrupt is said to be imprecise in the sense that we
do not know which instruction caused the interrupt. In fact, the result of an
operation which spilled may be used as an operand in another floating-point
operation before the interrupt occurs.

On a machine with an imprecise interrupt, we cannot count on a software
fixup for exponent spill, because the interrupt may occur too late. Any fixup
that is to he performed must bc done by the hardware. The modecls 91 and
195 of the IBM System/360 provide the Q-zero fixup in hardware, instead of
leaving the result with wrapped-around characteristic. This means that some
of the more elegant approaches 1o exponent spill, such as the counting mode
or gradual underflow, cannot be used on these machines., However, we may
still wish to mask the interrupt on in order to print messages or to allow a
FORTRAN programmier to test whether or not spill has occurred by the use
of CALL OVERFL. If we are using the ON OVERFLOW or ON UNDER-
FLOW statements in PL/I, care must be exercised, because the interrupt may
occur slightly later in the program than we would expect it to. For this reason,
the PL/l program shown in Section 2.6 would not work correctly on the
models 91 and 195 of the IBM.System/360.

The inability to provide a precise interrupt for exponent spill is inherent in
the pipcline approach to computer design. The CDC 6600, which is also a
pipeline machine, approaches the problem differently. It automatically
provides the o-zero fixup in hardware, and it does not provide any interrupt
at all for exponent spill.

2.10. CHANGING THE TREATMENT OF SPILL

As we mentioned in Section 2.4, the overflow routine is usually supplied
by the compiler, and it determines what options (if any) the programmer has.
While some systems are very rigid and do not allow the programmer any
choice at all, other systems provide a great deal of flexibility, For example,
the overflow routine developed by Kahan (1965a and 1966) allowed the
programmer to specify whether he wanted the Q-zero fixup, counting mode, or
gradual underflow. In addition, he could specify the maximum number of
messages he wanted printed.

he extended error-handling facility, which is availuble with some of the
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FORTRAN compilers for the IBM System/360, provides even greater flexi-
bility. The programmer can indicate whether or not he wants the calculation
to be terminated, and he can specify the maximum number of messages he
wants printed for each type of error. Also, if he docs not want to usc the
Q-zero fixup, he can specify the name of a subroutine he wants called to
produce a special fixup. By coding the appropriate subroutine, he can produce
either counting mode or gradual underflow. The ability to call his own
subroutine after exponent spill also allows the programmer to supply his own
CIror messages.

. Similarly, the ON statements in PL/I enable the programmer 10 provide
his own treatment for cxponent spill. Although he cannot provide his own
fixup, he can print his own overflow messages and he can perform any calcula-
tions he wants to. Morcover, the ON statements allow him to branch to any
point in his program after exponent spill.

Thus, with either PL/I or the extended error-handling facility, the pro-
grammer has a great deal of freedom in specifying the action he wants taken
after exponent spill. Indeed, it is almost as if he were writing his own overflow
routine, subject to a few restrictions. We shall now consider how he might
want to use this capability.

An important aspect of these systems is that they make it casy to change
the treatment of exponent spill at any time in the program. This can be
especially useful if we want to use a special fixup, such as counting mode.
Although counting mode can be very effective for certain types of calculations,
we have seen that we would not want to use it as the standard fixup. With
cither the ON statements or the extended crror-handling facility, we can
change the fixup to counting mode during the execution of one part of a
program but use the Q-zero fixup in the rest of the program. In particular, a
subroutine can use its own fixup without altering the treatment of exponent
spill in the rest of the program.

We may want o suppress error messages during past of a program but
allow them to be printed during the rest of the program. For cxample, suppose
that we are using a subroutine which has been thoroughly tested and which
will produce good answers if the Q-zero fixup is used for underflow. Then any
un.dcrﬂows that occur in this subroutine can be ignored, so there is no need to
print messages for them. In fact, it we have supplied a bound for the number
t)f underflow messages, then printing messages for these irrelevant underflows
fmght prevent the printing of messages for other underflows that occur later
in the program but cannot be ignored. Therefore, we would like to suppress
underflow messages during the execution of such a subroutine and then
resume printing them when we leave the subroutine,

There are also times when we might want to supply our own crror mes-
sages, so that we can make them more informative than the ones supplicd by
the system. For example, by printing the value of one or more variables, we
might be able to indicate how far the program had progressed before the

)
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exponent spill occurred. This is easy to do with the ON statements, and it can
also be accomplished with the extended error-handling facility in FORTRAN
if the variables we want to print are in COMMON.

Finally, consider the point to which we want to branch after exponent spill
occurs. In the PL/I solution of the problem in Section 2.6, we saw that the
ability to branch to any point in the program can be extremely useful. There
are other situations in which it is also convenient. Suppose that we are run-
ning several cases, only one of which produces exponent spill. It might be quite
desirable to terminate the calculation of the case which spilled, write a
message, and then proceed to the next case. In this way we can salvage the
results of the good cases even though we cannot complete the calculation of
the case that spilled.

There are some problems in which we can avoid exponent spill in the
intermediate results by changing the way in which the calculation is per-
formed. (For example, this is the case in the computation of ./a* + b* dis-
cussed in Exercise 7 and in the solution of a quadratic equation discussed in
Section 9.3.) For problems of this sort, it is sometimes attractive to write the
program assuming that no spills occur and then use the ON statements to
provide special treatment for the cases that spill. In this way, we can use the
simpler procedure for the cases that do not spill, so we avoid degrading the
speed of the routine. If a spill occurs, we shall use a special procedure to com-
plete the solution of the problem, so we do not want to return to the
instruction following the one that caused the spill. Thus, this approach would
not be feasible without the ability to branch to some other point in the
program after exponent spill.

Since we may want to change the treatment of spill many times during the
execution of a program, it is important that these changes be cheap in terms of
execution time. The treatment of spill can be changed in PL/I at the cost of a
few loads and stores, and it can be changed with the extended error-handling
facility at the cost of a subroutine call.

211. VIRTUAL OVERFLOW AND UNDERFLOW

We shall use the terms virtual overflow and virtual underflow to refer to
situations in which a subroutine performs a test and finds that it has been
asked to calculate a quantity whose absolute value is either greater than Q or
between zero and . In this case, no floating-point arithmetic was performed
which tried to produce a number with exponent greater than e* or less than
€4, 50 we do not have a genuine spill and there will be no interruption. Instead,
the subroutine itself must take some action to reflect the fact that the answer
cannot be represented as a legitimate floating-point number.

For example, consider the library program used to compute e*. Now e*
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will be greater than Q for x > log, Q, and log, Q is a rather modest-sized
number—about 174.673 for the IBM System/360. Thus, if we write a
FORTRAN program for the IBM System/360 and use the expression EXP(X)
with X == 200, the library program cannot compute the cofrect value for
EXP(X), because it is greater than Q. Similar situations arise in the programs
for SINH(X), COSH(X), GAMMA(X), etc.

It is interesting to note that the subroutine for e* would be unlikely to
produce a genuine spill, even if it did not test to see whether x > log, Q.
Typical coding to compute ¢* first divides x by log, r (or multiplies x by log, €)
to produce

x .
og,r

Y=
Then
e* - elog, r=1r.

Next, y is written in the form
y=1—F,

where / is an integer and F is a fraction with 0 <Z F < 1. This yields
e* == plpF,

with -1 <" r ¥ <7 1. Then our computed value for e* will have an exponent
equal to / and a mantissa which is an approximation for r~*. The computation
for r ¥ does not produce any spill, and 7 is simply converted to a characteris-
tic and inserted in the proper place in the word. Since this would produce a
ridiculous answer when x is greater than log, Q, a test must be made. Thus,
the program may produce a virtual overflow, but it will not produce a genuine
overflow.

The importance of virtual overflow and underflow lies in the fact that the
programmer thinks of them as being the same, or almost the same, as genuine
overflow and underflow. But they do not produce an interrupt to initiate the
normal treatment of spill. For example, consider the *« operation in
FQRTRAN or PL/L. Typically, the expression X++B is evaluated as if it were
written as the FORTRAN expression EXP(B*ALOG(X)). Thus, when a real
num.ber is raiscd (o a real power, there is an implicit usc of the exponential
rou!lne. On the other hand, many compilers handle a real number raised to
an integer power (X#*1) by repetitive squaring. (See Section 3.6.) Suppose
that x > ./Q. Then both X*X and X2 will produce a genuine overflow.
But if the number stored in B is 2, then X**B does not. In fact, many
FORTRAN compilers handle the expression X+#2. as if it were written as
EXP(2.+ALOG(X)), so it will not produce a genuine spill. The problem
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programmer does not want (o have to worry about the details of this sort; he
would like to have X++2 and X»+2. produce the same effect.

In general, we would like to have virtual spill produce the same effects
that a genuine spill would have. If we are using a standard fixup, say the
Q-zero fixup, this is easy to implement. If, say, the routine for e* finds that the
argument is greater than log, €, it can simply multiply two positive numbers
which are large enough to produce an overflow. This will cause an interrupt,
and the overflow routinc will provide a standard fixup, write the appropriatc
messages, and include the overflow in the counts that are tested by calling
OVERFL. Control will be returned to the routine for e*, which will deliver the
standard fixup as the answer.

The problem becomes more difficult if we are using a more sophisticated
treatment of spill, such as the counting mode described in Section 2.7. As a
first approach, we might try to find two numbers whose product would over-
flow and produce the correct result with wrapped-around characteristic. But
there is a bound for how large the characteristic can be after overflow. (See
Exercise 3.) Even worse, in the routine for ¢* we may find that e* is greater
than rQ. This suggests that if the counting mode is to be implemented for
virtual spill, it should be possible to call the overflow routine and tell it that we
have encountered virtual spill. The calling sequence would use two arguments
I and X to indicate that the correct result is X-(r)'. The overflow routine
would provide whatever treatment of spill was then being used and return the
answer in X. It can be argued that this is unnecessary sophistication, but it
would provide an elegant treatment for virtual spiil.

2.12. DIVISION BY ZERO AND
INDETERMINANT FORMS

Another subject that is closely related to exponent spill is division by zero.
If we coded the expression A = B, we did not expect B to be zcro. Often A
and B are approximations we have computed for numbers a and b, and we
really want to form a/b. If B is zero but 4 is not, it is reasonable to assume
that | b| is less than |al, so a/b has a large absolute value. The CDC 6600,
which uses a special bit pattern to represent oo, sets 4 -+ 0 equal to
whenever A = 0. Other machines, such as the IBM System/360, provide an
interrupt when a divide operation is performed and the divisor is zero, and
then they depend on the interrupt routine to write an error message and
provide a standard fixup. Here the natural fixup is to set 4 = 0 cqual to Q
whenever A = 0, and we shall refer to this as the Q fixup for division by zero.
Evenif we interpret A -~ Otomean 4 < b for some b close to zero, we cannot
determine the sign of 4 = b, so the Q fixup always sets the quoticnt to | Q.

Supposc that we are using the Q fixup for division by zero and the Q-zero
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fixup for exponent spill. If we wish to compute 4 - Band B underflows, the
Q.-zcro fixup will set B~ 0. Then if 4 % 0, the Q fixup for division by 'zero
will set 4 - B equal to Q. Thus, an underflow in the denominator has been
treated as an overflow in the quotient. This is a reasonable approach, but it is
not a panacea. Forexample,if 4 @ and B has underflowed but should have
been only slightly less than w, this approach would set 4 - Bequal to Q when
the correct answer is only slightly larger than |.

Next, suppose that we try to perform a floating-point division of zero by
zero. Here, there is no generally acceptable value to be used in further calcula-
tion. In fact, such a division is usually a signal of trouble in the program. The
only reason for not terminating the program is that we may want to proceed
to other parts of the program or other data that will not be contaminated by
the result of this division. The error message printed for division by zero
should distinguish the case 0 + 0 from the case 4 -- 0 with A :# 0. Moreover.
a different fixup, say O or 1, should be used for 0 =- 0. |

A similar situation arises with other indeterminant forms, such as X*sY
w.hen X and Y are both zero. These should be handled as a special sort of
virtual spill in which a special message is printed and a special fixup is used

In FORTRAN, we may want to use different fixups for 0++0 depending m;
whether it arises from 1s+J, X*2I, or X++Y, where X and Y are floating-point
numbers and 1 and J are integers. This is because integers are usually exact
but a floating-point number is often only an approximation for the number wé
are really interested in. Thus, if X and | are zero, we may think of Xs»| as
representing x° for some x close to zero, so it is natural to use one as the fixup
On the other hand, if X and Y are zero and we think of X*»Y as representing.
E'd f:r solrlne x and y close to zero, there is no natural fixup.

‘inally, consider the indeterminant form 0.co. We mentioned i i
2.2 that the CDC 6600 has special bit patterns to represent oo ae:derSl;i;?Il:
NITE, and that 0o is defined to be INDEFINITE. When we are using the
Q-?ero fixup, we often think of Q as infinity. But since Q is a valid floating-
point number, 0+Q is zero. In fact, 0«Q does not cause an interrupt, so we
have no opportunity to provide a special fixup for it. ,

EXERCISES

1. The subroutine which FORTRAN uses for the ++ o i
: peration often ¢
Xe+#N for N < 0 as if it were written as n computes

L./(X++1ABS(N)).
If Q -2 1/w, this may produce overflow even though XN . w. What

FORTRAN coding would you use (o produce the numb: -
crw  167°%
IBM System/360? e on the
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For the machine you are using, find floating-point numbers a and b such that
XX does not spill if a << X < b, but it will spill if X is any other nonzero,
normalized, floating-point number.

Consider a machine in which the characteristic is defined to be the exponent
plus y and may be any integer from zero 0 2y -~ 1. Thene* :: 7 -~ land e,
—7. Assume that arithmetic is performed in FP(r, p, /1) and that il a floating-
point operation produces exponent spill, the result is left with a wrapped-
around characteristic. Let @ and b be nonzero, normalized, floating-point
numbers. What are the upper and lower bounds for the characteristic of the
result in the following situations?

a. a@® b after overflow.

b. a + b after overflow.

c. a + b after overflow.

d. a@ b after underflow.

e. a» b after underflow.

f. a - b after underflow.

Suppose that a is a normalized floating-point number, that b has underflowed,
and that we use the gradual underflow fixup. Except for overflow and under-
flow, the calculation is performed in FP(r, p, cl1).

a. If a and b have the same sign, show that the value produced by a (D b is
the same value we would have produced if the range for the exponents had
been large enough so that b did not underflow.

b. If aand b have opposite signs, compare the value produced for a (1) b by this
approach with the value we would have produced if the range for the
exponent had been large enough so that b did not underflow.

c. Let ¢ = a + b and let & be the value we would have produced for ¢ if we
had used the Q-zero fixup instead of gradual underflow. We define the
relative error by

¢ — c,

p.: -

What is the largest value p may have?

For the machine that you are using, supposc that x and y are normalized
floating-point numbers. What are the best bounds a and b for which you can

guarantee that
Xex —ysy

willnolspillifagxsbanda:\:ygb?

Some machines have a compare instruction which will determine whether
A> B, A B, or A< B without producing exponent spill. When the
hardware includes such an instruction, the FORTRAN compilers often use
it to handle logical IFs, such as IF(A.LT.B). Even if there is a compare
instruction, many FORTRAN compilers will implement the arithmetic IF,
such as 1F(A -- B), by subtracting B from A and determining whether the
result is positive, zero, or negative. Then the logical IF can prevent spills that
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might be produced if we used the arithmetic IF. Unfortunately, some
FORTRAN compilers have elected not to implement the logical IF.

Assume that A and B are normalized floating-point numbers. Write a
FFORTRAN program to determine whether A > B, A B, or A ~ B using
only arithmetic IFs. This should be coded in such a way that you can guarantee
that the program will never produce exponent spill.

l:el z be the corpplcx number a -+ bi. Suppose that we are using a version of
FORTRAN which does not support complex data types or complex arithmetic.
Then we shall be given the two parts of z, a and b, as normalized floating-point
numbers. Writc a FORTRAN program to compute

|z]| == Afa® 4 b7

on the machine you are using. This should be coded in such a way that it will
not produce exponent spill unless the answer spills. (It is clear that either
z -: Oorelse|z| 3> ®, so the final answer cannot underflow. But |Q | Qi} :-
2 Q, so the program may have a virtual overflow. We want to get a good
answer for | z| whenever it does not exceed Q. If | z] > Q, use whatever stan-
dard fixup, such as Q or oo, is convenient on the machine you are using.)

In Section 2.7, we saw that in the implementation of PL/I for the IBM System/
360, the ON statements could be used to produce the counting mode for
overflows but not for underflows. We may rewrite the computation of the
cxample of Section 2.6 to change the underflows into overflows in the
denominator. Let p°  1/pandyg’ - 1/g. Then

Xk

s

where

a NN-D---(N-K11
and

b kAP,

Write a PL/I program for this computation, using the ON OVERFLOW
statement to produce the same effect as the counting mode.

A problem which can easily produce exponent spill is the computation of the
determinant of a large matrix. Even if the clements of the matrix are of
“reasonable™ size, the determinant may be very large or very small. If 4 is a
matrix of order n with elements of “reasonable™ size, so is the matrix Bobtained
by multiplying every clement of A by 10, But

det(B) - 107 det(A4),
so if n is lurge, at least one of these detesminants must spill. A typical program
to c.ompulc the determinant of A4 first converts 4 to a triangular matrix T
having the same determinant (except perhaps for sign). We consider the
problem of computing the determinant of a triangular matrix 7. This deter-
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minant is given by

d= 1]t
i
a. Write a FORTRAN program for the machine you are using to compute d,
given that
0 |<Q
for all i. If d satisfics
o<|d<Q

the program should produce d regardless of whether any of the intermediate
results spill. If d is not in this range, a standard fixup should be used.
b. Recode this program, assuming that your system provides counting mode.
¢. Code this problem in PL/I using the ON statements,

10. Suppose that we are using the counting mode to handle exponent spill. We
shall consider a subroutine to perform the function alluded to in Section _2.7
of adding a number which has spilled to a number which has not. The calling

sequence is
CALL ADD (A,B,])

This is to mean that the floating-point number A is to be added to the number
B:(ro).
The routine is to compute D and J, such that
D-(r) = A + B-(r9},

and store D and J in place of B and I. ‘ .
a. Determine a scheme for computing D and J. This will involve making tests

to determine the size of A, B, and 1. o
b. Write a FORTRAN program to implement the scheme you devised in part

a.

3 ERROR ANALYSIS

3.1. SIGNIFICANT DIGITS

The idea of significant digits is familiar to any student of the physical
sciences, and it is often used to motivate the idea of floating-point arithmetic.
Unfortunately, the specification of which digits in a number are significant is
often rather vague. Certainly leading zeros are not to be counted, but there
are scveral different views about exactly when other digits in the number are
to be considered significant. For example, a commonly used approach is to
ignore leading zeros and count any other digit as significant if the error is less
than one-half a unit in that radix place. On the other hand, we might be willing
to consider a digit to be significant when the error is known only to be less
than one unit in that radix place. We shall ignore these ambiguities and not
try to give a precise definition of significant digits. Instead, we observe that in
those problems in which one is led to speak of significant digits, it is usually the
relative error that is the really important measure of error, in the sense that it
can be handled nicely mathematically and that the way in which it is pro-
pagated can be easily understood. Thus, the number of significant digits is
usually used as a rough measure of relative error.

A major disadvantage of an error analysis based on the number of
significant digits is the discreteness of this measure of error. For example, in
FP(r, p, @) there are usually only p |- 1 statements that can be made about
the number of significant digits, namely that p, p- - 1,...,2, 1, or none of
the digits are significant. (However, a constant such as 2 may be correct to
infinitely many places.) For machines of comparable accuracy, the larger r is,
the smaller p will be. Thus, the number of significant digits gives a more

)

n
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accurate indication of the size of the error when r is small than it does when r
is large. But even on a binary machine, the discreteness of the number of
significant digits is a major limitation.

This discreteness is also annoying when we try to decide whether or not a
digit should be considered to be significant. For example, suppose that our
definition of significant digits specifies that a digit is significant if the error is
less than one-half a unit in that position. If ¥ = 12.345 and £ - - 12,346 are
two approximations for the number x = 12.34549981, then we would say
that ¥ has five significant digits while £ has only four. Yet £ is almost as good
an approximation for x as ¥ is.

Another annoying aspect of the discreteness of the number of significant
digits concerns its behavior in the neighborhood of a power of the radix.
Suppose that ¥ and ¥ are approximations for x and y and that cach of them
has an error of slightly less than .0005. If ¥ -~ 1.002 and y = .998, then the
approximations have about the same relative error, but ¥ has four significant
digits while ¥ has only three. Thus, in the neighborhood of a power of the
radix there is a jump in the number of significant digits required to produce
either the same relative error or the same absolute error. .

Because of these difficulties, we shall not propose a precise definition for
the number of significant digits. Instead, we shall view it as a crude mecasure
of relative error. Thus, it is meaningful to discuss the distinction between,
say, two significant digits and eight significant digits, but we shall not be
precise about the distinction between n and n |- | significant digits.

In the same vein, we shall use the expression “good to almost word
length” to mean that the error is at most a “few” units in the last place. This
expression will be used to distinguish between this situation and the situation
in which we have only one or two significant digits. )

There is a well-known rule for the number of significant digits in a product
or quotient. In general terms, this states that if the factors have »' and n”
significant digits, then the product has n -~ min(n’, n’’} significant digits. In
Exercise 1, we shall show that this statement of the rule is too strong and that
the error in the product may be larger than is suggested by the statement that
it has n significant digits. A more precise statement of this rule is given in
Hildebrand (1956). However, the rule is widely remembered in the form given

above, and it is often used as a justification for floating-point computa-

tion.

We shall not pursue a more precise statement of this rule; instead, our
analysis of error will be based on the rules for relative error. We again observe
that the number of significant digits is a crude measure of relative error, so
the rule above is satisfactory when we are considering the difference between,
say, two and eight significant digits rather than the distinction between seven
and eight significant digits,

)
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3.2. RELATIVE ERROR

We shall now examine the concept of relative error more closely. If % is an
approximation for x and x # 0, the relative error p is defined by

(3.2.1) p XX
Clearly this is equivalent to
(3.2.2) X=(l | p)

It turns out that it is often convenient to use (3.2.2) instead of (3.2.1),
although (3.2.1) is the natural definition of relative error and it is far more
familiar. However, whenever we have %, p, and x satisfying (3.2.2) with x = 0,
we may consider ¥ to be an approximation for x with relative error p. Note
that p is a signed number. The absolute value of ¥ is too large when p is
positive and it is too small when -1 < p < 0.If p < —1, ¥ has the wrong
sign.

When x is zero, the relative error is often left undefined. However, there
are some situations in which it is convenient to extend the definition of
relative error to include thiscase. If # = x 0, we set p = 0, since there is no
error. If x is zero but ¥ is not, we define p to be co.

Now suppose that x is written in the form

(3.2.3) X trem, rot<7\m|-< 1.

Here we do not require that x be in S(r, p), so we may use infinitely many
digits in the representation of m. Let ¥ be an approximation for x, and write

X rem.

We have used the same exponent ¢ for x and %, so we cannot require that m be
normalized. Then

(3.2.4) p: X-—-x_nt_-m

X m

Thus, the relative error in the approximation ¥ ~ x is the relative error in the
mantissas when the numbers are written with the same exponent.

An important special case arises if x is any real number satisfying (3.2.3)
and ¥ - %is the approximation obtained by chopping x to p digits in the base
r. Then |#i| -~ |m], so p < 0. Since

1@ - m|-zre
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and r-! <7 |m| % 1, (3.2.4) yields
(3.2.5) 0>p> —rtem

We shall often rewrite (3.2.5) as

f

(3.2.6) = (- p)x, 0<p<rte,

This is a very convenient bound for the relatiw': error introduced by
chopping a number to S(r, p), and we shall usc it extensively. Howcver,'we can
obtain a slightly stronger bound, which we shall want to use occasmn_ally.
Suppose that x satisfies (3.2.3), and write X :- .(l — p)x. Now [x]|=
(I - p)] x|, so we may assume that x > 0. Let x -- X == €, SO

6.
X | €

p ==
Here 0 e < re?and re-' < x <r Let f(t) = 1)(% 4 1). Then
' . X

so the maximum value of f(z) on the interval 0 {5 re™? is f(re-*). There-
fore,

; r?
(3.2.7} 0:§p<f(f' P)‘ W’
Now % .- r* !, 50 (3.2.7) yields
-lp- 1
(3.2.8) Foo(l=pix, 0Zp< T'l._r—“’m

Since this bound is only slightly stronger than the simpler l.)our'ld given in
(3.2.6), there will be only one or two occasions when we shall find it necessary

to use (3.2.8) instead of (3.2.6). R .
Now suppose that X in (3.24) is the approximation x obtained by

rounding x to p digits in the base r. Then

|h— m| < 4r?,
50

(3.2.9) lp| < 4r-te-m.

In this case we do not know the sign of p. . N
In general, let X = r'm be an approximation for x, where x is given by

)
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(3.2.3). If | - m| - ¢, then the relative error p satisfies
(3.2.10) e<|p|<Zre.

Thus, the bound r¢ for the relative error in x due to an error € in the mantissa
depends on r. If r is small, not only is the bound re small, but the range given
by (3.2.10) is small. We often find that the errors introduced at each stage in
the calculation have a bound which can be expressed in terms of units in the
pth position. For example, each arithmeltic operation introduces an error of
less than onc unit in the last place when the arithmetic is performed in
FP(r, p, ¢) and an error of at most one-half a unit in the last place when the
arithmetic is performed in FP(r, p, R). For other systems FP(r, p, a), we
obtain bounds of the same sort. Thus, the error introduced in m by a floating-
point operation is bounded by an € such as r ~?. But the error often propagates
as relative error. Therefore, we would favor a machine with small radix so
that the term re in (3.2.10) is small. The choice of the radix for a machine will
be discussed in more detail in Section 12.1. However, we note that the relative
error introduced by chopping x to produce x is bounded by r~'*-", so for
FP(16, 6, c¢) we get a bound 16°3% == 2720 which is the same bound we would
get for FP(2, 21, ¢).

As a special case of (3.2.10), we note that if ¥ is obtained from x by
increasing | x| by 1 in the pth place, we have ¥ - (I 4 p)x, with

3.2.11) rr < pL ey,

3.3. RELATIVE ERROR IN FP{(r, p, clq)

In this section we shall study both the relative error introduced by per-
forming arithmetic in FP(r, p, clg) and the way in which relative error is
propagated by arithmetic operations. We shall assume throughout that g > 0.

Relative Error in Multiplication and Division
In FP(r, p, clq) withq - 0, we have a+ b = ab and a =~ b = a/b, so
arb - (I — p)ab, 0<lp<ipito-n

(3.3.1
) a--b (1 - p)-g—, 0 p<ptom,

Now supposc that we have approximations ¥ and 7 for x and p with

= (1 e)x
(-

(332)

o=
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If ® and ¥ are the results of earlier calculations, we usually do not Em.o'w the
signs of ¢ and 7, and the bounds forgandt may be larger than r=t*-', But
if % and  are the numbers we have in the machine and we wz}nl to compute
xy, the best we can do is to form X « 7. By (3.3.1) we may write

Zej=(1—pFy 0<p<re?,

$0
Fay=(1—pXl + o) -+ 7)xy.

If we use ¢ to denote the relative error in ¥ + y, we have

g+ 5=+ @xy
where

(3.33) ¢p=—p+ott-—-ps-ptdor— pot

We hope that each of the relative errors p, g, and ¢ is small, say less than
10- 3. Then the product terms in (3.3.3) are much smaller than p, ¢, and 1, so

3.34) px=—ptoitr

Since we do not know the signs of ¢ and 7, we cannot get any f:omforl from
the minus sign in (3.3.4). The signs may be such that the magnitudes of p, o,

and t are added rather than subtracted. o .
Division produces similar results. If % and y satisfy (3.3.2), we wrilc

Fey=( --m%, 0 p-<rte

0
s i—:—y-._-(___L___l —p 1e)x,
(-t y
If we write
- . o= _x—'
-y (1} 5)),
we have
1--pil 1 a)
(3.3.5) 14-6 = <__]p_‘(_r_

We obtain a useful approximation for | {- & by recalling that for |7| < I,

L R
1t
If | 7| is small, this yields

=1l--1
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As with (3.3.4), since we do not know the signs of ¢ and 7, we do not know
whether these errors add or compensate.

Several comments should be made about these formulas.

In (3.3.4) we see the basis for the vague rule we referred to in Section 3.2
for the number of significant digits in a product. If ¥ and ysatisfy (3.3.2), then
the true product Xy satisfies '

3.3.7 y=0+0o+ 1+ otdxy,

so the relative error in ¥y is approximately the sum of the relative errors o
and t in X and ¥. If ¢ and 7 are small, the relative error in Xy cannot be much
larger than twice the maximum of |¢|, |t|. Since we use the number of
significant digits as a measure of relative error, this leads to the rule that the
product has as many significant digits as the least significant factor. As we

. have seen, this is only a rough estimate for the error in the product, and if we

give a precise meaning to significant digits, it is often too strong a statement.
It is too strong, not only because the relative errors are added, but also
because an error of § in the kth place of a factor may produce g = §r-*-",
while a relative error of Jr "*~"? in the product may correspond to an absolute
error of almost r/2 in the kth place if its mantissa is only slightly less than 1.
However, the rule does indicate correctly that the relative error does not grow
rapidly when we are performing multiplications and divisions. (See Section
3.5)

Also, in (3.3.4) we see that the relative error in the product is approxi-
mately the sum of three terms, numely the relative errors ¢ and t inherited
from the factors ¥ and y, and the new error p introduced because we formed
the floating-point product ¥ » 7 instead of the true product ¥j. There is a
widely remembered rule which states that it is not worth developing and
retaining digits unless we can guarantee that they are significant. If we fol-
lowed this rule, we would be allowed to make p almost as large as ¢ and 7.
That is, we would be allowed to insert a new error whose magnitude is almost
as large as the bound for the relative error due to earlier approximations. But
this has very much the flavor of saying that we are willing to double the error
at each stage in the calculation (or, perhaps, multiply it by 1.5 or 1.1). This
may be acceptable if we only perform. two or three operations, but on an
automatic computer we often perform hundreds or thousands of operations,
so we certainly do not want to double the error at each step.

It is quite likely that we first heard of the rule that it is not worth devel-
oping digits unless we can guarantee that they are significant when we were
introduced to logarithms. At that time, we might have assumed that if we
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were asked to multiply four 5-digit numbers, we had to develop the fuli 20-

digit product. Untif we were persuaded that it was rcasonable to retain only

five digits, we could not be expected to use logarithms. But these calculations
usually involved only a few operations. Even here, we would usually continue
to use a five-place table of logarithms even after the error had grown to a
point at which we could only guarantee that four digits of the answer were
significant.

The secret of success of floating-point computation lies in the fact that we
continue to do arithmetic to p digits of precision even though the accuracy of
our intermediate results has degraded so that we can only guarantee that a
few digits are significant. That is, we select a precision of, say, cight decimal
digits, and we perform all calculations at that precision, even though we can
regard only three or four of the digits as significant. Thus, the new errors
introduced are small with respect to the propagated error, so our loss of
accuracy is more dependent on the inherited error than on the new error
intfroduced at the present step. This will be illustrated in Section 3.5. We shall
see that the really important question is not how much earlier errors have
affected the accuracy of our present result, but rather how the error we
introduce now will affect the final answer.

Relative Error in Addition and Subtraction

We shall first examine the operations (P and (5 in FP(r, p, clg), and then
we shall study the way in which relative error is propagated by these opera-
tions.

In Section 1.8 we saw that in the add magnitude case we have a (H b
a{banda™ b - a — b, soin this casec we have

anNb-- (1 — pYa -t b), 0<p-~rtoV

3.38
( ) a=b - (1 - pla - b), O-“p-"pr eV

We may easily reduce the subtract magnitude case to the computation of
a ¢H) b wherc a - 0 > b and a =~ |b|. The operation a () » will be exact if
a - --b, so we shall assume that

a>0>5b> —a.

Since there is no reasonable bound for the error introduced in the subtract
magnitude case in FP(r, p, c/0), we shall discuss only FP(r, p, clq) withg "~ |.
By Theorem 1.8.2, the operation a @) b produces a result which eitherisa -1 b
or can be obtained by increasing @ - b by | in the last place. Write

a i b-rm, rt'-"m-1
and

) a@® b - rom.
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Then |m — m| -7 r» so
(3.3.9) a®b (1 pla I-b), |p|<p -t

This result produces the same bound for |p| that we would have had in
FP(r, p. ¢}, but we no longer know the sign of p.

The bound in (3.3.9) may be sharpened sli i
_m : A i ghtly. We shall consider the
case in which a (1 b > a [- b. As we saw in Theorem 1.8.2, if a @ b is not

a |- b thena () bis greater thana |- b is i
‘ greater than a -+ b by less th
the (p |- ¢ — 1)st place. Then we may write yiess han in

(3.3.10) athb (1| p)a I b), —r T < p < prtera-,
Thus, we have proved

Tueorem 3.3.1
In FP(r, p, clq) with q 1,

amb (1] pXa b B),  —pV < p o ptrien
a(_)b . (l i' p)(a - b)‘ _r‘lP“U < p < r-poq_z..

For the add magnitude case, the inequalities read —r-2-v .- p <0

COROLLARY
In FP(r, p, cl}),

aib (1 1 p)a |-8), |p|l<<rto-n
a@b (1 Fpla--b), |p|<po-n,

We shall now turn to the question of the propagation of error by addition
and subtraction. We shall consider this problem in terms of relative error
although there are many cases in which it is advantageous to study it in term;
of absolute error instead. (See, for example, Section 3.12.) We shall again
suppose that we have approximations % and ¥ for x and y satisfying (3.3 2)
and we shall suppose that both ¢ and t are greater than — 1, so both ¥ a;n;i 5
have the correct signs. We shall first consider the add magnitude case, so wﬁ
May assume that both x and y are positive. Then ’

s Xt y=x+ylox-+t1y

,?-F-:.: l-- -{-
where V= (1A g)x -+ ),
Now ¢lx |- y) — ox |- 1)

[min(a, D))(x - ») < ax |- 1y < [max(o, D)(x + »,
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)

(3.3.11) min(a, 1) < ¢ < max(a, 7).

This yields

(3.3.12) lpl < max(al, |z ).

That is, in the add magnitude case the relative error in X -|- 7 is at most the
maximum relative error in one of the terms.

Unfortunately, in the subtract magnitude case there is no bound for the
relative error in the answer due to errors in the operands. For example,
suppose that we have the approximations

X = 1.2345678

¥ = 1.2345677

for
x == 1.23456776

y = 123456774,

Then x — p — 2.10°® while X — y = 10-7, so even though ¥ and y are good
approximations for x and y, we find that ¥ — 7 is not a good approximation
for x — y. Indeed, we could have good approximations X and y for x and y
but find that x — y is zero while ¥ — y is not.

In the subtract magnitude case, we are exposed to the magnification of the
relative error because of the loss of leading digits. If we have lost several
leading digits, then we have had to shift the answer several places to post-
normalize it, and we saw in Section 1.8 that in this case the floating-point
subtract operation introduces no crror. That is, ¥ y — ¥ — 7. However,
any error in X or p will affect higher-order digits of X - §, so small errors in
the operands may produce a large relative error in the answer. But the
floating-point arithmetic was not at fault. To produce a better answer we must
have better approximations for x and y.

3.4. APPROXIMATE LAWS OF ALGEBRA

We now return to the study of the laws of algebra discussed in Section [.6.
There, we showed that the following laws of algebra are not valid in
FP(r, p, ¢):

Associative laws:

34.1) adBbme)  (amb)e
(3.4.2) as(bec) (asbh)*c.

) )
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Distributive law:

(3.4.3) a*xb(he) (@rb)@(a= o).

Cancellation law:
H‘a;éOandatb—-atc, then b — ¢,

We now ask wheth
! er these Jaws hold approxim
ately. For cxa
shall sce that we can write y mple, we

a*(hsc) .
in the scnse that )~ (axb)sc

asbec) =1+ plasb)s*c]

with a small bound for lpl

For cach of the laws stated above, we shall determine whe
la.w holds approximately. When it does, we shall obtain boundstf’:;rtl(:; rne(l)z:l‘i::
difference p :mq for the number of units in the last place by which the two
num.bers may differ. As in Chapter |, we shall study the system FP(r. c)in
detail and relegate the study of FP(r, p, R) to the exercises, P

First, we shall prove two theorems which wi i
these o ich will be helpful in the study of

THEOREM 3.4.1

Fp Suppose t!mt .f‘:mc'i » are positive real numbers. In FP(r, p, ¢) or in
(r, p, cly), X (1) § is either x -y or less than x |- y by 1 in the last place

Proof. Since we have the add magni i
Since we h: gnitude case, the computation 5 () j
produces X |- p in either FP(r, p, ) or FP(r, p, clg). We may choose nOlilliO}'l

so that x - y and write
X == rem, r-teim-z
fBF =rin, rotelnc .,

Here f'is either ¢ or ¢ - 1. Also, we have
x=x-}¢, 0<e<re»,

Now £ (1) 7 = T T, since the digi
(4 J A gits chopped from y to produce 7
chopped from % -} y to produce % -|- y. Then 7P 7 ould be

e R e e e e N sy e

ED7) trie =Xy,
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Thus,  ¢+) p is either x |- y or less than x |- y by 1 in the last place.

THEOREM 3.4.2

Suppose that x and y are positive real numbers and that x is in S(r, p)- In
FP(r, p, ¢) or in FP(r, p, clg) with ¢ => 1, x = y is either xy or less than xy by
at most r units in the last place.

Proof. Let

x=rm  r'<m<l

y:rln‘ r'<n<l
and

Xy =rtl, r' <l

Here

g=eVf—k
and

{ =r*mn,

where & is | or 0 depending on whether or not postnormalization is required.

Now
y=5te,0<e <r?

and

xp=x*p-{€,0 7€ <re
S0

xy=x(y |- €)= x*y |- € | xe€,.
That is,

xp =x*y-| €,
where

€ = x€, | €,.

Then

€<t P |- r'mrf? = ro= (1 |- r*m).

If no postnormalization is required, € << 2r* -2, but when postn(lr_malization is
required, we have only € < (r |- 1)r*-?. Then x * y is either xp or less than
Xy by at most r units in the last place.

We now turn to the study of the approximate laws of algebra.

Associative Law of Addition

The example given in Section 1.6 showed that the associative law of
addition (3.4.1) does not even hold approximately in FP(r, p, c).

We now ask whether (3.4.1) holds approximately in the special case in
which g, b, c all have the same sign. Clearly, this may be reduced to the case in

jthey are all positive. We may apply Theorem 3.4.1, setting x = a and
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¥y b | ¢ Sincey b (1) ¢, this shows thata (1) (b (+) ¢) iscithcra b |- ¢

or less than ¢ |- b | ¢ by 1 in the last place. A similar result holds for

(a1 b) () ¢, s0 it can differ - : i
This youids tier from a () (6 (1) ¢) by at most 1 in the last place.

THEOREM 3.4.3

If a,b, and ¢ all have the same si in ei
gn, then in either FP(r, p.¢) or
FF"(r, P, clq), the numbcrs (@D by canda @ (b (#) ¢) are cither identical or
clse they differ by 1 in the last place. We can write

and a)b@®e) (1} AaDHDc),  |p|<rw» v
aBbme) (1 — p)a b - c), O-"p<2re
(a@bDe (1= p)a + b o), 0<"p - 2re,

To show that a (b (b () ¢) and (a(H) b)) ¢ may indeed differ by 1 in

the last place cven if g, b, and ¢ ail have the same sign, we may set g -= |
and b ¢ ..y - I)r 2. Then (@b P ec - 1, while aPbw ) =

I }orte-n,
Associative Law of Multiplication

« it ( Al 41 ) ) I :
lpl)l(ixll"l e'y n l " I p [4 ‘l"d l" (' P, (C q) ’()l q > l. '“ c“hel Ol ”'cse

(3.4.4) B

- —
llrll’li'

so f#is the bound given in (3.2.8) for the relative error i i
a number to S(r, p). We may write roriniroduced by chopping

and ash (1 pab, 0" p<p,

Then (axbyec (I o)(as b)c], 0 a<p.

lasb)yse (1 p g polabe,
S0 we may write
(asb)ysc (1. abe,
where 0 -~ ¢ .- 28 B*. Similarly, we may write
asthse) (1 -- @)abe,
where 0 -~ g . - 28 - g
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Thus, we have

as(h*c) - (H)[(a «b)scl.

$0
(3.4.5) ax(bsc)= (1 1 Ol@sb)xcl
where
I —
116= ,—_%’
Then 1
- 2p 4 B <14 8 < g’
50
| R 2 - z.

~2f - PI<S<g—pr ' (—IET‘LI;)’

This yields

28 — B*
(3.4.6) 161 < (#_—%2

Using the value of # in (3.4.4), (3.4.6) reduces to
347 18] < 2r 201 | et

We shall now try to bound the number of units in the last place by which
a * (b + ¢) and (a » b) » c may differ. We may assume that a, b, and c are all
positive. Since b * ¢ == be, we may use Theorem }ﬁ_.Z with x = a anfi y= be
to find that a * (b » ¢) is either gbc or less than abc by at most r units in the
last place. A similar result holds for (a + b)sc,so(axb)yxcandax(b*c)
can differ by at most r units in the last place.

We have proved

THeOREM 3.4.4

In FP(r, p, ¢) and FP(r, p, clg) with ¢ > 1, the numbers (a = P) + ¢ and
a + (b + ¢) can differ by at most r units in the last place. We may write

(asb)sc=(1+d)laxb)sd
where & satisfies (3.4.7).

We consider an example from FP(16, 6, c) to show that @ « (b * ¢) and
(a+b)+ ¢ can indeed differ by r units in the last place. Let a = .FEm
b = IOOOFF‘"' 3hd C = |.0|006,,. Then (a* b) *C is .FFOE3F}” Whl'e
ax(b=xc)is .FFOE2F,.
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Distributive Law

We shall now consider whether the distributive law (3.4.3) holds approxi-
mately. Since the cancellation law fails to hold in FP(r, p, ¢) except for
trivial combinations of r and p, there are positive numbers a, b, and ¢
such that b« ¢ but a*b = a+c. Then (a»b) @ [a»* (—c)] is zero, but
a*[b@®(—c)) is not, so the distributive law (3.4.3) does not even hold
approximately.

However, in FP(r, p, cly) with g >> 1, we know that for arbitrary a, b, and
¢ we have

b@®c- (11 pXb c), lpl<r®-®
and
a*(b®c):= (I ~aad®ec), 0<o<r e,
)

(3.4.8) a*(b@c)=-( 1 1)a | c),

where
lit--1--a- p~op.
Then
(3.4.9) —2r - & polemD)

Thus a * (b () ¢) is approximately equal to a(b -|- ¢). If the distributive law
does not hold approximately, it means that (a + b) @ (a * ¢) is not approxi-
mately equal to ab -|- ac. We note that if the arithmetic is performed in

FP(r, p, ¢} instead of FP(r, p, clg), the bound for t in (3.4.9) may be sharpened
to

(3.4.10) =2rt <.

We shall now show that (3.4.3) does hold approximately in FP(r, p, clq)
when b and ¢ have the same sign and ¢ > 1. We may assume that q, b, and ¢
are all positive. Since we have the add magnitude case, b @) ¢ =: b |- ¢. Then
we may use Theorem 3.42 withx =aandy = b |- ctofind thata * (b @ ¢)
is either a(b -1- c) or less than a(b -I- ¢) by at most r units in the last place.
Similarly, since a * b = ab and a * ¢ = ac, we may use Theorem 3.4.1 with
x = aband y = ac to find that (a + b) @ (a * c) is either ab -|- ac or less than
ab -} ac by | in the last place. Then the two sides of (3.4.3) can differ by at
most r units in the last place. As a consequence, we may write

(34110 as(bwe)= (11 plasb)yn(asc)
.._’-U 1) 5—\ p f;’ r"ﬁ‘- Il'
We have proved
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THEOREM 3.4.5 ‘

In FP(r, p. &) or in FP(r, p, clg) with g . t,if b and ¢ have ll?c.s.um; sulyj.v,v;
then a * (b () ¢) and (a * b) (1) (@ * ¢) cun dlf.Tcr by at most r units lr’\ t ‘ch..ns
place and (3.4.11) holds. Regardless of the signs (?f h szl ¢, .wc aIFv.lys d.\Yc
(3.4.8), where t satisfies (3.4.10) when the arflhmct!c is pcrrormcd u:
FP(r, p. ¢) and T satisfies (3.4.9) when the arithmetic is performed 1

withg - I. o

FP(',l:op's;:';’:/ ﬂlmt :hcrlwo sides of (3.4.3) may indced diﬂ'c'r by r um'ls mI ll‘\c
last place when b and ¢ have the same sign, we shall consider anlcxdmplpc :r)r
FP(r, p. ¢). where we assume that r -3 and p .- 4. Let a r .
b-:1,and

c r.(‘,.” | r 1p |)[l _r (p 2} | r tp I)l_

Then the reader may verify that

arbiiey 1P dAr Dr 7,

while
(ashyin(a*e) 1 --r ot (r D"

A similar example may be found for a binary machine. (Sce Exercise 3)

Cancellation Law

We shall now show that the cancellation law holds approximately in
EP(r, p. ¢) and FP(r, p, clq) forg - 1. Supposc thata £0andaxb a=*c.
Using the value of § in (3.4.4), we may write

asbh (1 -puab, 0:-"p-Ip

and
axc (1 o, 0- o-.p
SO
(1 -pab (1 agc
Then
(3.4.12) LARURURL
where
| . - l ov
LT )
50 |
I - ﬂ l | T- I . /]
Therefore,

) |z|«:r[—ﬂ U e
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so, using (3.4.4),
(3.4.13) [t) < rote-n,

We now try to bound the number of units in the last place by which 4 and
¢ may differ. Choose notation so that || < | ¢] and let m be the mantissa of c.
1€] 4] is less than | ¢] by j units in the last place, then

P
Il £ >jr e,

[m] ~

s0 (3.4.13) implies that j - - r. Thus, b and ¢ can differ by at most r - | units
in the last place. We have proved

THEOREM 3.4.6

InFP(r, p, ¢) and FP(r, p, clq) withq ;~ |,ifa # 0Oandasx b a=*c, then
b and ¢ can differ by at most r -- 1 units in the last place. Also, &6 (I | T)c,
where || << r o 1),

We consider an example to show that b and ¢ can indeed differ by r - 1
units in the last place. Assume thatp ~4andleta |t r ', b 1 - r 2,

andc == b | (r — 1)r 2. Then b and ¢ differ by r - - | units in the last place,
but in FP(r, p, ¢)

asb asc Py rt—-rt- 3

3.5. PROPAGATION OF ROUNDING ERROR

As a simple example of the growth of rounding error, we shall consider
the problem of computing

(3.5.1) x oL

i

Here we shall assume that the x; are all given exactly as floating-point num- -
bers. Our computing procedure is to set

Py = x,
and define

P, P, \x. ko 1,2,...,n,

so x - P Since we are performing the arithmetic in FP(r, p, a), instead of
computing P, we compute P,, k  1,2,....n Here

P, P ex,, kO 1L2,...,n
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Then we may write _ .
P (1 pIlxss

where the bounds for the p, depend on the arithmetic used. For FP(r, p, cly)
with ¢ - 1, we know that

0L —p.<r'®"™
On the other hand, if we had used rounded arithmetic we would have had
TAES

iil" (1 pP.

Now

and by induction, one proves that

e [fio s

Then, setting % = P,. we have

(3.5.2) 2 (1 ox
where
(3.5.3) 11a- ]"| a1 p.

Since an expression for relative error quite often has the form of (3.5.3).
we look for a simple bound for ¢. Suppose that we are given bounds p, and
p* such that

(3.5.4) — P TP "

holds for each i. We shall assume that p, and p* are nonnegative and that
Py 1,s0l —pg -0 Then

(3.5.5) 1 opyespty L
Now
3 n & I kvt -~ i“ n &
~|!(|~P*)“~—k21kh(—) /,kll\'p*
o=l par .
Let 5 denote the larger of p, and p*. Then

(3.5.6) lol- (4 1 gy L

)
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We shall now consider the expression (1 |- p)* — I:

. 23 Bl P nn | 1)
(a1pr | 31(/()" np | m===pt e
so if np is small, we have

(357 (0 -pr--1=np.

However, we often want a bound for || instead of an approximation for a
bound. Now for p > 0,

L) n
(hypy -1 . -1 kz;(k)
Then (3.5.6) yields

| 5@ e,

(3.5.8) lo| < e — L.

If #7 is small, this is approximately the bound ng that would be obtained
using (3.5.7). In some applications, (3.5.8) is a convenient form for the bound,
but in other cases, it is convenient to use the bound given by the following
theorem:
Tueorem 3.5.1
If p > 0 and n is a positive integer with np < |, then
(L1 pr -1 <<np t (np).

Proof. This clearly holds if n is | or 2, so we want to show that

1l np | (pyr>(l | py llnp|”‘" ')212":( )

that is,

or

(3.5.9 nin |- ;M)
) 2 s >le k P

Now

(np)’ )_‘ (np)" - (ng)’ o,

L] n _ n ("p)k
g(k)”*,\("””kz, %
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Since np < 1, this yields

k3

50 (3.5.9) holds.
Thus, if nj < 1, we may write (3.5.6) as

(3.5.10) lo| < np(l -I- np).
We shall now consider
| =14 (1= prl=1=(—pr

THEOREM 3.5.2
If0 < p < | and n is a positive integer with np < |, then

|—14-(1 = pr| < np.

Proof. We may assume that n > 1. Since

. [N
I —(l—=py-=np— g(k)(-—p)".
it suffices 1o show that
n n _ " '
kgz ( k )( P) >0

Let m be the largest integer < [(n — 1)/2]. Then n is either 2m -+ 1 or2m -+ 2,

S0 o ]
8= 50 b ]

Therefore, it suffices to show that

n 2J ( n ) Zlﬁl’
(3.5.11) (2,-)” >y 1)

which reduces to .
I > ;%gilp.
But . |
%'—2{ p< % <gzTi< 1,
so the inequality holds.

T ')rcsults may be combined into the following theorem:

SEC. 3.5 PROPAGATION OF ROUNDING ERROR 91

THEOREM 3.5.3

Let 1 1o -[I7.U 1 p) where —p,<p I p* holds for i--
1. 2,....n Suppose that np, and np* are both positive and less than 1. Then

—npy << a < np*(l | np*).
If j is the larger of p, and p*, then [a| < np(l - np).

These theorems are fundamental for establishing bounds for relative error.
The bound for |g| is given by (3.5.6), and in (3.5.7) we see that ng is an
approximation for this bound. But in Theorem 3.5.1 we see that ng is also a
bound for the relative error in the approximation (3.5.7). Since we are
bounding the relative error g, we hope that ng is small, say 10~% or 109, But
then the approximation (3.5.7) is very good. Indeed, if np is so large that the
approximation (3.5.7) is unsatisfactory, then it is almost certainly large
enough to indicate that the approximation ¥ = x is unsatisfactory. Thus,
(3.5.7) is a good approximation which is not likely to mislead us.

These bounds of the form np may be interpreted in another way. Suppose
that we have performed » multiplications in FP(r, p, clg) with ¢ > |. Then
Pe - P2 1and p* — 0, so

(3.5.12) —Nhpy <o <0.

Now, suppose that n = r*, so np, = r~»=*-0_Then (3.5.12) is the bound we
would have had for the relative error introduced by a single multiplication in
FP(r,p - k, clq), so we may think of the r* multiplications as having pos-
sibly cost us & digits in accuracy. Thus, performing a million multiplications
may cost us about six decimal digits, or, since 10¢ = 222, about 20 bits. Then
we would not want to perform a million multiplications in FP(16, 6, c/t), but
the bound for the relative error introduced by performing a million multi-
plications in FP(16, 14, ¢/1) is smaller than the bound for the relative error
introduced by a single multiplication in FP(16, 9, ¢/1).

This also sheds light on the precision we should use. Suppose that we want
to perform 200 multiplications in FP(10, 8, ¢). Then we may lose between two
and three decimal digits of accuracy. Instead of performing all arithmetic in
FP(10, 8, ¢), suppose that we adhered to the “well-known rule” referred to in
Section 3.3, which states that it is not worth developing digits unless we can
guarantee that they are significant. This would suggest that after the first 100
multiplications we could reduce the precision of our arithmetic to six decimal
digits. But then the second 100 multiplications would expose us to the loss of
two more decimal digits, so the final bound for relative error would be the
same as the bound for the relative error after a single multiplication in
FP(10, 4, ¢). Here we sec clearly the advantages of performing all arithmetic
at the higher precision, so the new error introduced will always ")small.
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Reducing the precision of the arithmetic risks unnccessary damage to the

final result.
Finally, suppose that instead of (3.5.1) we really wanted to compute

(3.5.13) y ‘[’o I

where the x, in (3.5.1) are floating-point numbers with x; = y. If cach x,
satisfies

x, - (LT, |t} t*,
then

X - ']'[o X, ['ﬁu(l | t,-)]y.

The relative error here again has the form of (3.5.3). If (n { 1)t* -~ |, we may

write
X:=(1 1 aXl 1 1),

where the bounds for ¢ are given by Theorem 3.5.3 and 1 satisfies
~n It T(n e[t (n } )2t

This suggests that the precision should be chosen so that the bound g for the
p, is no larger than 7%, and we would prefer to have g substantially smaller
than 7*. We are sometimes interested in the special case in which x, - J,, so
the p, and the 7, have the same bounds. Then we may writex (1 | #)y with

—(2n | Dp, - p-20.

3.6. XesN

Many higher-level languages use a special symbol, such as ** or {. 10
designate exponentiation. Since most computers do not have an instruction
to perform exponentiation, XV must be evaluated by a subroutine. Thus, in
terms of the computation performed, the »* operation is similar to a function,
such as SQRT or SIN,

The calculation performed for «+ operation in FORTRAN often depends
on the data types of the operands. For example, if X and Y are real, the
calculation performed to compute X#++Y is often equivalent to the evaluation
of the expression EXP (Y«ALOG(X)). In this section, we shall consider the
computation of X+«N, where X is real and N is a positive integer. We shall
assume that the computation is carried out in either FP(r, p, ¢) or FP(r, p, cly)
with ¢ >> 1, and we shall consider three approaches for the computation of

Y = X+&N

)
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Eac'h up.pr.oach will be illustrated by a FORTRAN program, and for the sake
of s.nmpllcuy, we shall allow the programs to change X and N. We repeat that
N is assumed to be a positive integer.

Repetitive Multiplication

Here, we shall perform the computation

Y - |
DO100 1 - 1. N
100 Y = YaX

This a{pproach rFquircs N multiplications, and the growth of rounding error
for this calculation wis studied in Section 3.5. Using (3.5.2) and (3.5.3), we
see that we compute ¥V - (I — o)V, where ,

(3:6.1) R | (Y

i

He'rc‘ p: is the relative error introduced by the ith multiplication, and it
S:lllsl.lcs. 0;_, P r » ' The first multiplication forms 1¢X, and since
multiplication by | is exact, #: -= 0. Then (3.6.1) may be replaced by

N

(3.6.2) l --a———-n(l - p).
Setting p, = r » 1 we have

(3.6.3) 0-“a<1 (1 po,
or, using Theorem (3.5.2),

(3.6.4) 0< 0 <(N-- lp,.

Repetitive Squaring

In this approach, we use the binary representation of N. Let

(3.6.5) =S k2
N ‘}% k2,

where

(3.6.6) 7 < N2 2mn

and each k, is 0 or 1. Then the binary representation of N is

N (kmkm-l "‘k|ko)p-
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Let P, - X%, so

(36.7) PP, i L2....m,
and

(3.6.8) y . xakr Alﬁo Joe

or

(3.6.9) Y 'ﬁ_ P,

We use (3.6.9) to compute ¥, and our computational procedure is

P X
Y {
100 L - N2
K - N--2+«L
IF(K.EQ.1) Y- YaP
N - L
IF(N.EQ.0) GO TO 200
P .- P«P
GO TO 100
200 CONTINUE
Let
(3.6.10) ko Sk,
i 0

Then this algorithm requires only & | m floating-point multiplications. On a
binary machine, the computation L - N/2 may be performed by shifting N
one place to the right, and K = N — 2+L is the low-order bit of N prior to
this shift. Thus, the fixed-point arithmetic used in this algorithm may be very
easy to perform in Assembler language. In any event, we only go through the
loop m { | times, so this approach produces substantial savings in computer
time when N is large.

In this procedure, instead of computing the £, and Y from (3.6.7) and
(3.6.9), we compute approximations P, and ¥ by setting A, X and using

3.6.11) P, P, «P_,. i~ L2,....m,
and
(3612) Y 1P,

HOD

where || * denotes the # operation,
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We may write

(3.6.13) P (1 - p)PE,, 07 pcpto-n

and

(3.6.14) Pl o)l o) (1 gy 7.
i0
k20

with 0 -~ g, - r v Since the first multiplication i
S . e plication in (3.6.14 Itiplies :
number by I, g, - 0. Now Py X, P, - —p)Xz ) multipies

Py (= p)r(l - pyxe

and one proves by induction that

SO Foth—pXt - p ) /S RN RN R L €
- o . m
Y l(lll(l - 0.)—lp3"]ll[(l . p') e (l - pl)zv-lxz.],“
. o .
l‘“l (a-- U:)J‘ILX“" ‘“l (1= p)e e (1 = pyer),
Thus
Yo (-,
where
-k A .m i
[ T (' - . 2t
or L“' a,)“][”]!(l P
b [flo e i
N . k.zl"
Then o % J l”l t”/(l P
(3.6.15) bz _llkl'(l m)_ ’mll(l =)
where
(3.6.16) 1 i‘k'p_/-/_
Iy

Thus, | — 1 is the product of fact
* ors of the form | -- | —
the number of such factors, so oiorl — p. Let n be

(3.6.17) n ok i 1,
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Since |

(3.6.18) St e 420 2= 5
YL

we have

n oSk S k@ - = k2 N
¢ 0 i-1 i-0
Thus, we have N factors of the form | —g,and | — p,.Sincea, = 0, we have

(3.6.19) o<t<1=(—p)""

where p, = r™'?” 1 This is exactly the same bound wc.‘: had in (}.6.3) for the
relative error ¢ when we used the repetitive multiplication nlgomhm._

With either of these algorithms, we obtain a formula for lhc. r'clmlvc error
which has the form of (3.6.1) or (3.6.15), but with the rf:pctnllvc sq.uar(nln’g
algorithm there are only a few different values 1 - p, which are repeated /,
times. Using (3.6.16), we sec that

1 & L B <N
/, 5 ‘Z. k2 7(N ko) 5
Similarly,

|z

Thus, if the first two squarings produce bad relative 'cr.ror.‘it is as |f(llh|;:c‘;
fourths of the multiplications in the repetitive multiplication method ha
produced bad relative error.

Nested Squaring

In this algorithm, we again use the binary rf:prcsen(alion of N giycn by
(3.6.5) and (3.6.6) and the representation of Y given by (3.6.8). This time we

define

so ¥ = @, Now Q, = X*= = X, and

~ Jarm IR} ' k.2 "
Q-1 ,,,!,Xk X illlx
SO
(3.6.20) 0,-, X"Qi.

In this approach, we first determinc the value of m satislying (3.6.6). We llhc(;l
set 0, - X and compute Q, from (3.6.20)forj m L.m- 2,.... L0

)
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Then Y : : Q. The following FORTRAN program assumes only that we arc
given an integer L with 2 > N,

Y =1

LL = 2«L
DOI100I=1,L

Y =YY

N = N=2

IF (N.LT.LL) GO TO 100
Y =YX

N = N-LL

100 CONTINUE

This approach requires L -I- k floating-point multiplications, where k is given
by (3.6.10), and even if we take L = m +- 1, we find that this is one more
floating-point multiplication than the repetitive squaring method required.
But if we knew the value of m satisfying (3.6.6), we could initialize with ¥ == X
instcad of ¥ = [, and go through the loop only m — 1 times. In this case we
would use only k + m — 1 floating-point multiplications, which is one fewer
than we required for the repetitive squaring algorithm. Thus, this algorithm
is attractive when it is easy to find m, that is, to find the location of the high-
order one bit in the binary representation of N. As before, the fixed-point
arithmetic is easy to perform on a binary machine.

In our computation, instead of computing Q, given by (3.6.20), we
compute an approximation @, obtained by setting ,, == X and using

3.6.21) Q,-, = Xk (Q/ * Q/)

As belore, we may write

(3.6.22) 0, = (1 = g, )1 — p,_ JOIX*,

where 0 < g,_,, p,-, < r~'»"1", Proceeding by induction, one proves that

U | Ry Fo

and

o 50 fu=er e - e

Using (3.6.8), (3.6.23) may be written as

o0 7 afifo oo ar

[}
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(3.6.25) Y =(1 — o),

where

(3.6.26) 1l — ¢ = [’:f!: (- Ul)z'k‘][ﬂ a- p‘)z']_

Let n’ be the number of factors of the form 1 — g, 0or 1 — p, in (3.6.26).
Then

m-1 m=-1
(3.6.27) n= 3 k2 52

Using (3.6.5), (3.6.18), and the fact that k,, = 1, (3.6.27) reduces to n' ==
N — 1. Then, setting p, = r~**~"’, we have

0<p<!—(l—p)

which is the same bound we obtained for the relatiye error in the 'othcr two
algorithms. As with the repetitive squaring algorithm, the relative errors
from the first few multiplications have a large effect on the final answer when
: IsEl:err?ethc nested squaring algorithm does not necessarily minimize the
number of floating-point multiplications needed to com?ule X#»N. For
example, Exercise 13 illustrates a faster method for computing X++| 5..F9r a
detailed discussion of the problem of minimizing the number of multiplica-
tions in the computation of X++N, see Knuth (1969).

3.7. CONDITION

In studying the propagation of error, we are often confronted with the
question of how an error in the input x affects th'e answer. For exam['):e;
suppose that we want to compute xV for some posu.lve_mtcger N, but lha
instead of x we are given an approximation X for x with ¥ = (1 |- @)x. Then
we ask how close ¥V is to xV. Now

3.7.1H) == (14 o)x",

so Theorem 3.5.3 allows us to translate bounds for g into b‘o‘unds for the
relative error in the approximation ¥V = x". Indeed, comparision of (3.7.1)
with Section 3.6 shows that the way in which errors inx z}chct the ans“(e( o
this problem is quite similar to the way in which crrors in the computation
X#+N_affect the answer.
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In general, we shail say that the problem of computing
(3.7.2) y= f(x)

is well conditioned if small changes in x produce only small changes in f£(x),
while it is ill-conditioned or poorly conditioned if small changes in x can
produce large changes in f(x). This is still rather vague, because we have not
specilied the meaning of small and large. In some cases we are interested in
absolute changes, while in other cases we are concerned about relative
changes.

The condition of the problem (3.7.2) may depend on the data x as well as
the function f(x). Thus, for a given function f(x), the problem of computing
»  f(x) may be well conditioned for certain values of x, but ill-conditioned
for other valucs of x.

The computation in (3.7.2) may be generalized to the case in which we use
(3.7.3) Yo Ll x), i=12...,m

to compute m values v, from ninput values x,, . . ., x,. In this case, it is often
convenient to measure the size of a change in the x's or »'s by a norm for a
vector space. Using this approach for the problem of finding a solution of a
system of simultancous equations

(3.7.4) Ax - b,

where the right-hand-side b is arbitrary, one can assign a condition number (o
the matrix A representing the extent of the ill-conditioning of the problem
(3.7.4). [See Wilkinson (1963) or Forsythe and Moler (1967).) As Wilkinson
points out, the fact that a matrix is ill-conditioned for the problem of finding
the solution of (3.7.4) does not imply that it will be ill-conditioned for the
prablem of finding its eigenvalues or eigenvectors. Thus, we should speak of
the condition of a problem, not a matrix.

We shall now consider the condition of the problem (3.7.2) in more detail.
Suppose that we have a program or subroutine to perform the computation in
{3.7.2), but that instead of x we are given only an approximation ¥ for x. In
place of x, our program sees only ¥, so it tries to evaluate f(¥) instead of
[(x). We now ignore the errors in computing £(X) and ask how different f(¥)
can be from f(x). That is, we ask how much the error in the approximation
¥ = x would damage the answer if no further errors were made. This is
exactly the question of how well conditioned the problem (3.7.2) is.

We let

(3.1.5) F oxe

and we assume that f(x) is continuous and possesses a derivative at every

)
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point between x and x |- €. Then, by the thcorem of mean value,

r(t’ | €) — .f(-") .- f'(ﬁ)v
€

where £ lics between x and x 1 €. Thus,

(3.7.6) f(x 1 €) — fix) = €' Q)

If € is small enough so that f'(r) does not change very much between .x and
x + €, we have

3.1.7) flx 1 €)—fx)=€ef'(x)
Alternatively, suppose that we have a bound M such that
(3.1.8) VARG

holds for all ¢ between x and x -+ €. Then

(3.7.9 | f(R) — f()] < |eM].

In many cases (3.7.7) provides an adequate warning .whcn the uns;v;r is
sensitive to errors in the data, but when a bound is requt_rcd we usc (?. - d). ‘

When f(x) is not zero, we may prefer to use relative error instcad o
absolute error. From (3.7.6) we obtain

f(%) = J(x) _ €£Q),
f(x) f(x)

Now if ¥ = (1 -I- p)x, we may take px as the value of € in (3.7.5), so (3.7.10)
becomes

(3.7.10)

(%) — J(x) __ px['(Q).
(3.7] l) LTm— == f(x)
As before,

(%) —f(x) . px/f ‘(x)
(3-7.'2) LW j'(x)

if £'(r) docs not change much between x and ¥, and il £'(r) satisfics (3.7.8),
we have

(3.7.13)

(%) — f(x) pxM
55 é|f(x)

i : dition of the prablem (3.7.2).
These results then give us a measure of the con ) .02
We may think of x/'(x)/ f(x) in(3.7.12) and xM/f(:f) in (3.7:!3) us magnifica
tion fuctors indicating how the relative error pin x 15 magnified.
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As an example, we may consider the function f(x) -: e*. Then (3.7.11)
becomes

.f("‘) f(") _— p\-_c ’
j(") i ! e*
ﬂnd (3.7.'2) ylcld\'

() = f(x)
7 px-

In place of (3.7.13), we may use the fact that ¢¢/e* < ¢!**! to obtain

[(%) — f(x)
G

The results in (3.7.6) through (3.7.13) may be extended to a function
(3.7.14)

pxe'**!

.

Y :’tf(xvo--)x.)

of several variables. If f(x,, ..., x,) has continuous partial derivatives with

. respect to x,, . . ., x,, which we denote by /, (x,, ..., x,), then

(3.7.]5) f('\’l - 6',...,,\‘"1 f")—f(xl,..-,x")'zkilfkfx.(fla---’cn)a

where cach €, lies between x, and x, -} €,. From (3.7.15) we find that if
X oo (0 I p)x, k== 1,...,n, then

3.7, FRye o ®) = f(x0een X))
( 16) j'(xn-..,-\’,:) S flxpeoaxy)

- i kagL..('fp IR ) f,,),

provided f(x,. ..., x,) is not zero. As ubove, if the partial derivatives do not
change too much, we may write (3.7.16) as

[(E X)) —fx o x) S xS X)),
B.7.17) X ~ BT

Usually it suflices to consider the size of each of the magnification factors
X Sodxy oo X)X, x)in(3.7.07).
Finally, this approach may be extended to functions defined implicitly.

If p*, x¥, ..., x* satisfies

(3.7.18) FUpy Xpeeren X)) = 0,

and if F, does not vanish at (p*, x¥, . .., 87), then (3.7.18) defines y implicitly
as a function f(x,,...,x,) in a neighborhood of (x¥, ..., x*). Hete

X 1 KTV Jh NS 2% B |
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and

—F (rx...0x)
3.7.19) Suxyh. i, x,) = !

F(y.x,....x,)

We may then use (3.7.15), (3.7.16), or (3.7.17) to study f(x,...., x,). .

We shall illustrate this approach by considering the p'mb!cm of compt!ung
the roots of a polynomial. This problem has been studied in more detail by
Wilkinson (1963). We let

- 3 k
plx) == kz;) a,x
and study a simple root e of the equation p(x) == 0. Let
F(x,ay...,a)= Y a.x*
k-0

so Fla, a,. ...,a,) = 0. Now F,(x,a,,...,a,) = x* :md. Fix,ag... ,‘a,,)
== p'(x). If a is a simple root, then p'(a) 7 0, so we may write o as a funcuqn
fla,, ..., a,) of the coeflicients. By substituting these values for F, and f in
(3.7.19), we have

da = f,(a a)"—‘-:zg—k"
(3.7.20) 5‘;;— ally...va, P

Now suppose that we change only one cn.eﬂ‘lcicnt a,, replacing it by (1 | p’"f‘:
and let & be the new valuc of a. If p is small enough so that we can use
(3.7.17), we have
&—-—a_ —paa*'

a @

(3.1.21)

Here we see that the scnsitivity of the root to changes in a cocﬂicicnf chcnds
on both which coefficient is changed and which root we are consndcr‘mgﬁ

A striking example of this sensitivity was given by Wilkinson (1963). He
considered the polynomial

3.7.22) plx)=(x—1)x—2)---(x - 20)

and studied the effect on the roots of changes in a, ,. The roots near | z}t‘cI?u:e
insensitive to such changes, but the roots near 16 are chungcq drumn‘llu z _“)1/
small changes in a,,. In fact, he showed thfnt a chal:ngc of 1in th.e sn;(tll)]/;tr(l’m
bit of a,, can produce a change of almost | in the thirty-second bit o.h‘ o
16. A change of | in the thirty-first bit of a,, produces so large a ¢ .m% o
the roots that the approximation (3.7.21) cannot be uscd,'and some o ‘
roots become complex with imaginary parts as large as 2.8i. For a thoroug

)
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study of the condition of polynomials, the reader js referred to Wilkinson's
book.

3.8. ERROR ANALYSIS OF A PROGRAM

To illustrate the error analysis of a program, we shall consider a very
simple problem, namcly finding the value of a linear function. Here we are
given a, b, and x, and we are asked to compute

y=ax+b.

We write a subroutine LIN whose input is a, b, and x and whose output is y.
The FORTRAN program for LIN js

SUBROUTINE LIN(A,B,X.Y)
Y Bl A*x "B :
RETURN

END

We shall assume that the input A, B, and X are all normalized floating-point
numbers, and we shall ignore overflow and underflow.

Suppose that we have written this program as a library subroutine and
that we want to tell the user what accuracy he can expect from it. What can
we say?

Before trying to answer this question, we shall consider an example.
Suppose that we are using an eight-digit decimal machine and that the com-
putation is performed in FP(10, 8, o). Let

(3.8.1) Y AX | B
and
(3.8.2) Y (Ad+X)&$B.

Suppose that the input to the routine is

A 56785679
(38.3) X .54325433

B —.30849066,
S0

AX 3084 9065 9987 4007

)

and 4 * X is .30849065. Then

Y - (.00125993).10 @,
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while ¥ == —10 2. If

is the relative error, we find that p is about 792.64.

Clearly, our program is capable of producing very bad relative crror. Since
we are exposed to a relative error of several hundred, there is no meaningful

bound on relative error that we can state to the user.
We note that for this particular set of data the absolute error is quite
small. In fact, |V -~ Y| = 10~°. However, we might have had data with a

much larger characteristic. For example, suppose that

A == (.56785679)- 104
X = .54325433
B = —-(.30849066)- 10¢.

Then |¥ — Y| = --(.99874007)- 102, so the program may produce large
absolute error. Indeed, the only bound for the absolute error is about 10 *°

times the overflow threshold Q.
Thus, there is no meaningful bound that we can state to the user for either

the absolute error or the relative error.
We note that in the examples we have considercd the error was small with

respect to B. We ask whether we can promise the user that this will always be
the case. But if the input to the program consists of 4 and X given by (3.8.3).
while B =: 10-4°, then we find that

|7 — Y| = (:99874007)-10"% | 10°*°,

which is not small with respect to B.
Next, we ask whether we can promisc the user that the error will always be

small with respect to AX. Butif 4 and X have the values given in (3.8.3) and
B = 12345678, we find that ¥ = B,so|¥ — Y| = AX, and the crror is not

small with respect to AX.
In summary, these attempts to bound the error have yielded the fi ollowing

information:

1. Absolute error: no reasonable bound.

2. Relative error: no reasonable bound.

3. Error always small with respect to B: false,
4. Error always small with respect to AX: false.

As a final attempt, we might make the following rather vague statement:
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The error is always small with respect to some quantity which appears in the
calculation either as initial data, as an intermediate result, or as the final
answer,

There are two objections to this statement. First, it is of no help to the
user, who may be unfamiliar with the algorithm being used and who never
sees ll!e'intermediate results. Second, this statement can be made about some
very ‘sn.ck" programs, such as the program discussed in Section 4.2 for
cpmpulmg e™* or sin x using the power series when x = [28, or the calcula-
tion considered in Section 3.10 for computing sinh x from the formula

e*—e*

smn x p)

when x is small.

‘ Thus, fl" the aboye attempts to bound the error in our program have
fanlgd to yield a meaningful statement that can be made to a user. In the next
section, we shall see that a backward error analysis will provide such a
statement.

3.9. BACKWARD ERROR ANALYSIS

Suppose that we want to compute y == f(x), and instead of y we have
cpmpulcd a value y with y = y. A forward error analysis attempts to bound
cither the absolute error  — y or the relative error (¥ — y)/y. A backward
error analysis seeks a number X with y = f(¥) and attempts to bound either
the absolu.te difference ¥ — x or the relative difference (¥ — x)/x.

Thus, instead of asking how well we have solved the problem, we try to
fjnq out what problem we have solved. There may be more than or’ie value of
X with y == f(%), in which case we choose one close to x. Our objective is to be
able to make a statement of the following form: “We have found an exact
SO}U(IOII of the problem y = f(X) for some value of ¥ with [¥ — x| < or
[(X — x)/x| < p. Wedo not know the specific value of ¥, but we have a bound
(0 or p) for how far it can be from x.”

th this approach, we view the errors in the computation as being
equivalent to a perturbation of the data. That is, the computation is equiva-
lent to first perturbing the data to produce ¥ and then computing 7 from ¥
exactly. The user must then assess the effect that this perturbation of the data
has on the answer, But the user already had to worry about how the answer is
affected by noise in the data which arose because of the inaccuracy of
{:eaksurements or even Pecause of radix conversion in the input program. The
: ;'cs :f'r‘::::.error analysis merely magnifies the importance of his considering

The idea of a backward error analysis is easily extended to a function of
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several variables. If we wish to computc y = f(X,s ... X,), and instcad we
have computed y, we seek ¥,,..., X, with

(39.1) F=L(Frre s X

In this case there are likely to be many vectors (X,,....%) salisfyi'ng (3.9..1).
We may try to bound ¥, — x, for each i or (¥, - x,)/x, for cach i. In m:my
applications in matrix theory, we select a norm || x| for the vector space and
try to bound || ¥ - x]|. . ’

g To illustrate a backward error analysis, we shall consider our FORTRAN
program LIN(A,B.X,Y) discussed in Section 3.8. Wc wanted to compute .Y
given by (3.8.1), and instead we computed ¥ given by (3.8.2). Now in
FP(r, p, ) or in FP(r, p, clg) with g > 1, we have

(AsX)DB (14 a4 X) 1 Bl lal< rotent

and o
A= X (1 — pAX, 0-lp-rtet
Then .
Y = (11 o)l - p)AX + Bl,

S0 we may wrile

Y AX 1 B,
where _
A (o)
B=(1 o)B
X--( - pX
Alternatively, we could write
Y Ax4 B
where
A= ol —pA
B-=( to)B

Thus, a backward crror analysis shows that we have solved a pr‘o.blcmdd::z

to the problem specificd, so we can promise the user thfu the crrors. "?”f)n: "
in the calculation are cquivalent to a small perturbation of tl?fzid.‘ua, a 1
can give bounds for the perturbation. é\ ba'lckv;a;d error analysis has pro
an : he question posed in Section J.8. )
" ‘::lscwscerer:)hratt th(c] subrout?ne LIN provides good inswers for some mlr:u!h
but the error may be very large for. other input. In fact, lh.osc c:'xs;s Al; :/n (;LB
LIN produccs large relative error (Y - Y)/ 'Y are the cases in v;:hnc A u;a(ion
have opposite signs and magnitudes approximately equal, so the comp

)
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AX -|- Binvolves the loss of several leading digits. But this is exactly the case
in which the answer Y is extremely sensitive to changes in the input, that is,
the case in which the problem (3.8.1) is ill-conditioned.

This situation is quite typical. It rather often turns out that a program
produces good answers for some input and poor answers for other input. If
we can perform a backward error analysis, we can view the computational
errors as equivalent to perturbing the data, so the quality of the answer will
depend on the condition of the problem. Since the condition of the problem

may depend on the data, it is up to the user to worry about the condition of
the problem he has posed.

3.10. EXAMPLES

In this section we shall consider two examples; one is ill-conditioned and
the other is well conditioned.

First, consider the problem of computing cos x for x close to z/2. Now
cos x - sin(r/2 — x), so if x = 7/2 we have cos x =~ /2 — x. Suppose that
we are working in FP(10, 8, a) and x agrees with /2 to six digits. Then a
change of | in the eighth digit of x produces a change of about | in the second
digit of cos x. Thus, a slight change in x produces a large relative change in
¢o0s X, so the problem is ill-conditioned from the point of view of relativeerror.
This could also be verificd from (3.7.12), which shows that the relative error o
in cos x due to a relative error p in x is approximately

(3.10.1) o = pxtanx.

By means of a backward error analysis, any errors introduced in computing
cos v can be viewed as being equivalent to perturbing the argument x by a
relative error p, and (3.10.1) shows that p will be magnified by approximately
xtan x. -

We could compute cos x with good relative error even when x is close to
n/2 if we were willing to use higher-precision arithmetic in the calculation.
Thus, suppose that we are given an eight-digit number x in S(10, 8) with
n/4 - x -7 m/2. We could use double-precision arithmetic to subtract it from
a 16-digit representation of /2, producing a value for #/2 — x which is good
to at least eight digits. Then sin(z/2 -~ x) can be computed to about eight-
digit accuracy in FP(10, 8, ), so we can produce a value for cos x with good
relative error.

A typical cosine program first reduces the problem to the problem of
computing the sine or cosine of an angle y with | y| - a/4. [See Fike (1968) or
Cody (1971a).) If this reduction is performed using double-precision arith-
metic, the program can produce good relative error, even for the cosine of an
angle close to #/2. Since this reduction of the angle is a small part of the total

)
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work involved in computing the cosine, onc might be willing to use dogl?lc-
precision arithmetic for the argument reduction and use single-precision
arithmetic for the rest -t the calculation. In this case, we can pr_oduce an
answer with good relative error for the problem of ﬁnding lh? cosine of the
argument x which was supplied to the cosine routine, but il x is cl()§c to 1:(2.
the answer is still sensitive to any errors in x. Since most ﬂoa'lmg-pmm
numbers that arisc in computation are only approximations, one might argue
that in those cases in which the problem is ill-conditioned it is not worthwhile
doing extra work 1o produce a good answer for the cosine of the argument
supplied to the routine. Which of these approaches one takes often (!cpcnds on
how easy it is 1o use double-precision arithmetic in the re.duclmn of the
argument. In the manufacturer-supplied subroutines for.ll.le FORTRAN and
PL/1 libraries in the IBM System/360, the single-precision SIN and COS
routines use double-precision arithmetic in the reduction of the _argumf:nl. bl{l
the double-precision routines do not use higher-precision z!mhmcuc. This
decision was clearly based on the fact that it was easy to include d_oublc-
precision arithmetic in the single-precision program because the machine has
double-precision operation codes, but on many moslells of. the ‘IBM
System/360 there are no operation codes for extended-precision aruhmcu‘c.. S0
it is not as easy to perform arithmetic with more than double-precision
accuracy.t o

As a second example, we consider the problem of computing sinh x for x
close to zero. In many of the early implementations of FORTRAN, th'c
function sinh x was not in the library, so the user had to compute it himself if
he wanted 1o use it. He was likely to use the formula

Ly

(3'02) sinh X = _e;__z__-..

which could be handled nicely as a statement function in FORTBAN. But
when x is close to zero, both e* and ¢ * are close to |, so many digits are lost

in the subtraction in (3.10.2). For example, suppose that we are working in
FP(10, 8, a) and that

(3.10.3) x = 1073 X .12345678.

Thene'* = 1 x,80
e* ~ 1.0000012

e~* =~ .99999877.

TCody (1971a) describes a way to produce higher-precision ac?uracy'in lh.c argument
reduction when the hardware does not provide higher-precision 'aruhmcllc.. .Hns approac:h
uses techniques similar to those discussed in Chapter S for using sm{;lc-prccusn.on arithmetic
to program higher-precision arithmetic, but he simplifies the calculation by taking advanlage
of special features of the argument reduction prablem.
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Then (3.10.2) would yield the value

(3.10.9) sinh x = .000001215. .
But for x in (3.10.3), the approximation

(3.10.5) sinh x = x

is good to almost 12 decimal digits, so the answer in (3.10.4) is only good to
about two decimal places. However, the situation here is different from the
situation with the cosine problem. We have a formula (3.10.5) which produces
a good answer for small x, and this formula shows that the problem is well
conditioned. Alternatively, we could use (3.7.12), which shows that the
relative error o in sinh x due to a relative error p in x is approximately

~ ny COshx

For small x, cosh x = 1 and x/sinh x = 1, so the problem is well conditioned.
Thus, we cannot blame the problem; rather, it is the algorithm (3.10.2) which
is at fault. A typical program for sinh x might use a polynomial approxima-
tion for small | x| and (3.10.2) when | x| is large enough so that no digits are
lost in the subtraction. [See Fike (1968).]

It is interesting to compare these two examples. In each case we could
blame the poor relative error in the answer on a subtraction in which many
leading digits were lost. But we found that the cosine problem was ill-
conditioned and we either had to accept the poor relative error or use higher-
precision arithmetic. On the other hand, the computation of the hyperbolic
sine was well conditioned, and it was the algorithm which was at fault. It is
typical that the condition of the problem can give us insight about whether
or not it is worthwhile to seek another algorithm,

3.11. CHANGING THE PROBLEM

Suppose that we want to use a subroutine which requires us to supply the
cocflicients a and b of a linear function, written in the form

a.aLn f(x) - a(x |- b),

which is to be used for | x| <7 1. But shppose that we have been using f(x)
in the form

3.11.2) f(x):=ax | ¢,
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and we have approximations @ and ¢ for a and ¢. Let

& = .00000056
¢ = 54325432,

(3.11.3)

and suppose that @ and ¢ are each in error by less than .5 > 10 *. 'l"hcn (.:"h;:z

two significant digits, while ¢ has eight. But, for .| x| - ' l.- __f(x) can s_u

computed from (3.11.2) to an accuracy of about eight significant digits. o
We have to supply a and b to the subroutine, but we do not know the value

of b — c/a. The best that we can do is to supply d and b, where

5 iz @ 2= d,

3.11.4)

so the subroutine will evaluate the function f(x) dcfined by

(3.11.5) Fx) = as(xDb)

Now & is accurate to about two significant digits, anc! sipfzc bis fllfllost 108
while |x] << 1, 6@ x is also only accurate to two sngmh(fant. digits. Then
J(x) is the product of two factors, @ and x @ b, each 9!' which is -.uccuratc' to
ahout two significant digits, so we might expect th:'n J(x) would bf’ accurate
to only two significant digits. We shall see that this .bfndly. overestimates the
error. Also, it would suggest incorrectly that the division in (3.11.4) nced be

rformed only to about two-digit accuracy. ‘

P We shall suppose that the computations in (3.11.4) and (3.11.5) are per-
formed in FP(10, 8, ¢). From Theorem 3.4.5, we know that (3.11.5) may be

written in the form

(3.11.6) Jx) (1 — placx 1 b)), 0--p-22:107,

or
@11 J (L —px | (11 pyb.

Also, (3.11.4) may be written as

b —-a)i, 0:- ¢-°107,

(3.11.8) G

so (3.11.7) becomes
(3.1.9) fo o A o-pax 1 (- pXl - o)

Thus,

)

flx) dx ¢

)

sec. 3.11 CHANGING THE PROBLEM 11

where

a. -(l - p)a

(3.11.10)
¢ - (1 — pX!l — a)

The bounds for o and pin (3.11.10) show that f(x) is accurate to almost seven
digits. In fact, for the data in (3.11.3), f(x) is accurate to a few units in the
eighth place.

Had we performed the division in (3.11.4) to only two digits of accuracy,
the bound for ¢ in (3.11.8) would be 10! and f(x) would be accurate only to
about two digits. In fact, if we had used b instead of 6 in (3.11.5), then (3.11.7)
would read

F(x) = (1 = pax - (1 — p)ab.

But @b would agree with ¢ only to about two digits, so f(x) would be good
only to about two-digit accuracy.

Here a backward error analysis has shown that the computation in
(3.11.4) and (3.11.5) produces a result f(x) which is quite close to

3.11.11) S(x)=dx | ¢,
and this was already found to be a satisfuctory approximation for f(x). Thus,
we have changed the problem from (3.11.2) to (3.11.11) and then to (3.11.5)
and have found that the answer f(x) was a good approximation for f(x). But
a typical analysis based on significant digits would compare (3.T1.5) with
(3.11.1), and, finding that @ and & agree with a and b only to two significant
digits, it would conclude that f(x) is good only to two-digit accuracy. This is
a drawback of an analysis based on significant digits. A backward error
analysis shows that (3.11.5) corresponds to a slight perturbation of the
original data, and the fact that 6 is not a good approximation for b is simply
irrelevant.

As a sccond example of this situation, we shall consider the problem of
finding the real root & of the equation
(3.11.12) px)- ax’ | bx | ¢:=0,
where a, b, and ¢ are all positive, a and b are approximately 1, and ¢ x> .1.
Since ¢ and b have the same sign, it is easy to see that p'(x) does not vanish
for any real x, so (3.11.12) has exactly one real root. Also, if @ and & are
approximately | and ¢ x .1, it is apparent that this root will be approximately
~.1. We can see from (3.11.12) that p(x) is not sensitive to changes in a when
[ x| = .1, and we could usc this to show that the root a is not sensitive to
changes in a. Alternatively, we could use (3.7.21) to see that « is well condi-
tioned with respect to changes in a, b, and ¢ and that it is much less sensitive to

)
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changes in a than it is to changes in b or ¢. Thus, if we are given approxima-
tions & and ¢ for b and ¢ which are accurate to cight significant digits and an
approximation d for ¢ which is accurate to two significant digits, the root &
can be determined to almost eight significant digits.

Now suppose that we want to use & root finder which requires that the
lead coefficient of the polynomial be 1. We want to find the roots of the

equation

(3.11.13) g(x):=x7 | dx | e:= 0,

where d == blaand ¢ - cla. Naturally, we would compute
(3.11.14) d=b-a é=¢c--a,

and attempt to solve the equation

(3.11.15) g(x)=x" |-dx  &~0.

Now d and é agree with d and e only to about two places, and an analysis of
the sensitivity of the root of (3.11.13) would lead us to expect that the root
& of (3.11.15) would agree with & only to about two places. But if the arith-
metic in (3.11.14) is performed in FP(10, 8, ¢), we may write

i-a-pk e-0-a%

where 0 < p, 0 < 10-7. Then (3.11.15) has the same roots as
(3.11.16) . p(x) e dxT bx 4 é=0,

where .
b= —p, ¢=(1-0a)X

Since b and ¢ are only slight perturbations of b and ¢, we conclude that the
root & of (3.11.15) and (3.11.16) aprecs with & to seven or cight places.

The situation described here arises rather often. There are many cascs in
which the solution to a mathematical problem P involves transforming the
problem into another problem P’ which has the same answer. But if we know
the data in P only approximately, we obtain # transformed problem P, which
we hope has approximately the same solution as P. Often this can he guar-
anteed by a backward error analysis which shows that P has the same solutjon
as a problem obtained by a slight perturbation of the data in P. Qur primary
concern is how close the solution to the problem 7 is to the solution to P. The
fact that the data in P differ from the data in P’ is not important if we can
guarantee that we have not changed the answer much. Unfortunately, the fact

)
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:!mt ll:,c data in P are not good approximations for the data in P’ has some-’
;lmca een used erroncously to try to justify using less accurate arithmetic in
the solution of P, thereby ncedlessly contaminating the answer.

3.12. STATISTICAL ERROR ANALYSIS

' So fu‘r. we have }ricd to produce bounds for the error. But sometimes it is
tnppropr.late to consider the average error instead of the maximum error. Asan
illustration, consider the computation of

(.12.1) x=3a

fn FP( !0. 8,‘ a). S~uppose that the a, are all positive and that we are given
approximations @, for the a,, where the 4, are three-digit integers. Then

» ] 1 u t the arest

(3.12.2) @ =a | € _'i <6< i

Then in place of (3.12.1), we attempt to compute
(3.12.3) =3
x ‘Z‘ a.

Unless n is so large that ¥ > 108, the computation of X in (3.12.3) will be
exact, so we shall compute ¥ == x - €, where

(3.12.9) e=3Y e,
i

Clezlxrly, we have the bound |e| < n/2.
n a statistical error analysis, we assume that th i
random variables. Unless we have additional informtateio:ll aal:zu:nlcll:?;ndif?:
cl:lt:stf)mary to assume that the ¢, are selected from a uniform distributil;)n in
. :lmll:l::;\rr:l i'-“-l . ;.e, L #] Then the expgcted vilue for € in (3.12.4) is zero.
I'um‘:l' . 'por..mf, .t e ra‘ndom variable € has a probability density
o ton with a peak at zero. For example, the density function fore, |- ¢, is
fndeeli lbgil;[lwf:;irnl x‘l o:_;hl, The 'gru'ph. of p(x) is shown in Figure 3.12.1.
e G;-a v (w.(, " g ! e central limit theorem. [see. for example, Mood
. ay 3)] we conclude that the probability density function for ¢
-lppronche_s that of a normal distribution as » -+ co. Even for modest values
of n, l!lc distribution for ¢ is close to a normal distribution. In fact whe;\ the
€, arc independent and uniformly distributed, the distribution of € a'pproach'es
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|-
-1 (o] 1

Figure 3.12.1

a normal distribution so rapidly that some of the early random number
generators designed to produce numbers drawn at random from a normal
distribution merely added 10 or 12 numbers selected independently from a
uniform distribution. [See Muller (1959).}

Since the distribution for € is approximately normal, the value X computed
in (3.12.3) is likely to be much closer to x than it is to either of the bounds
x | nf2. (Sec Exercise 18.) In fact (sce Exercise 17). it can be shown that if
the ¢, arc independent and uniformly distributed on the interval (-4, ), then
the standard deviation of € is ./n/12. Therefore, for large n we would expect
€ to be much closer to zero than to -{-n/2, so the error bounds are likely to
give a severe overestimate of the error actually incurred. In addition to the
crror bounds (or perhaps instead of them) we might like to be given the
expected value and standard deviation of e.

Now suppose that the & are produced by chopping the a, instead of
rounding them. Instead of (3.12.2), we have

d:-.a-€ 0<e <,

and we write ¥ -: x - ¢, where € satisfies (3.12.4). Clearly, the bounds for ¢
are given by 0 - ¢ -2 n. But now the expected value for € is n/2 and the
probability density function for ¢ has a peak at n/2. Consequently, we might
wish to add n/2 to ¥ as a correction. But if we do not use such a correction, €
is likely to be on the order of n/2, that is, on the order of one-half the bound.
Then using the bound instead of the average produces a difference of only one
bit in our estimate of the error. _

In general, when we use rounded arithmetic we may hope that the value
we have computed is close to the expected value of the answer and that the
error produced is considerably smaller than the error bound. Of course, we
cannot guarantee that this is the case, but the discussion above suggests that
this is very likely to occur. [See, however, Hartree (1949).] On the other hand,
if we use chopped arithmetic instead of the rounded arithmetic, then we may
expect the error to be within about one bit or so of the bound. For this reason,

)
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statistical analysis of error enjoys far more favor when the arithmetic used is
rounded than when it is chopped. .

We indicated that it is customary to assume that the error incurred when
numbers are rounded is 4 random variable which is uniformly distributed
bf:tween —4 and § units in the last place and that the errors incurred at
dlffcr?nt steps in the calculation are independent. This has been supported by
expertments; see, for example, Hull and Swenson (1966) and Henrici (1959)
()n.the other hand, Hartree (1949) shows that this assumption is not alway;
vnhfj. His results have sometimes been cited as a reason for not using the
statlsl.ical approach to error analysis, but even in the case he considers, the
error incurred is still substantially smaller than the bound. .

We: have seen that in many cases it is relative error that is propagated
Thus, in Section 3.5 we found that for the calculation of ‘

(3.12.5) x =1 x,

we produced a value ¥ which satisfied

¥ ox ‘]"[‘(1 | p).

where the p, are the relative errors introduced by the #n multiplications. The
bounds for the p,are 0 -~ —-p, << r*»* 1 when the arithmetic is performed in
le(r, poc)and |p]<74r " when it is performed in FP(r, p, R). Then
X - (1 ++ a)x, where the relative error g satisfies '

(3.12.6) Iia: I a4 p).

Since the p, are small, we may study the approximation é for ¢ given by

(3.12.7) B A 3N
pIy R
First, we must consider the probability distribution for the p.- Tothisend,
let y be any nonzero real number and let Fbe either 7 or ¥°. We shall consider
the relative error p given by p (F - »)fy. Write

yYoorm, ot eTm <t |,
and § - r9i. Here
m:o-m | €
and
(3.12.8) - £
p m
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As above, it is customary to assume that the absolute error ¢ is a uniformly
distributed random variable. We usually want to perform an error analysis
without looking at the intermediate results, so we would like to give an
estimate for o in (3.12.6) without having to look at each of the intermediate
products developed in the evaluation of (3.12.5). Therefore, it is customary to
assume that the mantissa m is also a random variable. Another justification of
this point of view is based on thinking of the computation as being performed
many times with different sets of data. Then we need to know the probability
distribution for a random mantissa.

There is general agreement that the mantissas of floating-point numbers
are not uniformly distributed. [See Hamming (1962), Pinkham (1961), or
Knuth (1969).] Instead, it is customary to assume that they are distributed
logarithmically, that is, that the probability density function is
r'<m< .

(3.12.9) f(m) =

mlog, r’

This assumption is based on the following observations: First, this distribu-
tion reproduces itself under multiplication, but a uniform distribution does
not. [See Hamming (1962) and Exercise 20.) A second justification is based on
the fact that many of the numbers that arise in computation represent
measurable quantities such as lengths, forces, etc., and it is reasonable to
believe that the distribution of the mantissas of such quantities is independent
of the units in which they are measured. Pinkham (1961) shows that this leads
to the conclusion that the distribution of mantissas must be logarithmic. As
indicated below, there is also empirical evidence to support this view. (Also,
see Exercise 23.)

Let k be a positive integer which is less than r. The probability that the
leading digit of m is less than k is the probability that r=' =< m < k/r. If we
assume that (3.12.9) is the probability density function for m, we find that the
probability that the leading digit of m is less than & is

k/r dm _ og k
qomlog,r log r

(3.12.10) = log, k.

Thus, in the decimal system the probability that the leading digit is | is about
.3, and the probability that it is 1, 2, or 3 is about .6. Hamming (1962) gives
frequency counts for the leading digits of dimensioned physical constants he
selected at random from the Handbook of Chemistry and Physics. His data
agree quite well with (3.12.10).

In FP(16, p, a), we are sometimes interested in the number of leading
zeros in the binary representation of m. If we take & cqual to 2, 4, 8 in
(3.12.10), we find that the probabilities of having 0, 1, 2, or 3 leading zeros in
the binary representation of m are all equal. This is validated by the experi-
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mer}ls of Azen and Derr (1968), in which they analyzed samples of hexa-
decimal mantissas resulting from computation. (They also propose a simpler
distribution for hexadecimal mantissas which has this property of producing
a unif"orm distribution of the number of leading zeros in the binary repre-
sentation of m.) Thus, we may expect that hexadecimal mantissas arising in
computation will have three leading zeros in their binary representation about
one-fourth of the time, whereas this would happen only about one-fifteenth of
the time if they were uniformly distributed.

The importance of the distribution of mantissas lies in its effect on the
relative error in (3.12.8). Since the probability density function in (3.12.9) has
a peak at r', random mantissas are much more likely to be close to r~! than
close to I. Then for any absolute error € in m, the relative error p is much
more.likely to be close to re than close to €. Thus, we are more likely to
experience the worst case for the relative error than we would be if the
mantissas were uniformly distributed. (See Exercise 22.) This will affect our
estimate of a quantity such as & in (3.12.7).

-EXERCISES

1. Show that even if the approximations x =~ 10.13 and y =~ .9523 are each ac-
curate to within one-half a unit in the fourth digit, the approximation xy =~
(10.13)-(.9523) may be in error by more than five units in the fourth digit.

2. In FP(r, p, cl1), show that in the subtract magnitude case we may indeed have
a®b =+ pXa -+ b),

where p is positive and close to r-t#-1,

3. Show that in FP(2, p, ¢) for nontrivial values of p, the numbers a¢ (b @ ¢)
and (a ¢ b) (P (a * o) can differ by two units in the last place, even if b and ¢
have the same sign.

4. In FP(r, p, ¢), find a bound for the relative error of the approximations

(@aeh) ~a=b
as(b-a)=b.

5. Show that the following statements hold in FP(r, p, R) for interesting values of
rand p,
a. The associative law of addition does not even hold approximately.
b. If a, b, and c all have the same sign, then

aDb®e) =+ pPla®b) Dl

where | p| < r-tem,
c.as(bec)=:(1 + pl(asb)sc], where|p| < 2r=t=1)(1 4- 2r-to=1),
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d.Maeb -ascanda 0, thenb = (1 I pl, where
[p] < Foo=(1 | rtemh),

e. The distributive law does not even hold approximatcly.
f. Foranya,b,c

as(b@ o) = (0 + pilatb + o),

where [ p} << r=2 (0 | e ),
g. If b and ¢ have the same sign, then

(aeb)yD@ec) = (I +plas(b® o)l

where | p| < 2r=o= V(1 - 2r=te= 1),

Suppose that x and y are numbers in S(r, p) and that we want to compule
z = x2 — y2, performing the arithmetic in FP(r, p, clq) with ¢ >> 1. Show that
the calculation

2z (xBP) e (x2))

produces a value z with good relative error but that there is no reasonable
bound for the relative error if we use the formula :

z:=:(xex))(yey)

Which formula is more efficient from the point of view of computer time on the
machine you are using?
Suppose that wc are given a number x in S(r, p) with 0 < x < | and that we

want to computc
y =1 —x

performing the arithmetic in FP(r, p, cly) with g = 1. Assume that we havea
library program SQRT which produces good relative error for the square root
computation. Show that the formula

y =1 —SQRT(l — x)

may produce bad relative error when x is closc to zero. By reversing ‘hf’ usulz‘ll
process of simplification of algebraic expressions, we may rationalize the
numerator of | — 4/T — x to produce

YETF M=%
Show that the coding
y =x = (1 + SQRT(! — x))

always produces good relative error.
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8. Supposc that we have N observations x,, x,, ..., xy. We definc the sample

mean M and variance V by

N
M §&x

v 1Y My
N ‘2}‘ (x; — M)~
One readily shows that V is also given by

V= i ﬁ xt — M?

TN&ET )

This formula is particularly convenient when we do not want to store all the

x's. Unfortunately, it is much more sensitive to rounding crror than the first

formula is, particularly when V is substantially smaller than M2,

a. Explain why the second formula for V is more sensitive to rounding error
than the first formula is.

b. Perform the following computations for N -: 100 and 1000 and & - 0,
1000, 2000, 3000, and 10,000. Let x; == & -} ifori :1,2,..., N. Compute
M and V in both FP(16, 6, c/1) and FP(16, 14, ¢/1), using both formulas
for V. Comparc the results with the results obtained analytically from

L NN
I 2
)’:: it N(N | |(:(2N -1y

¢. Perform the following computations for N = 100 and 1000 and & : 500,

100, 20, 10, 2, and 1. Use a random number generator to generate N values
x; sclected from a uniform distribution on the interval 500 -- k to 500 - k.
Compute M and V¥ in both FP(16, 6, c/1) and FP(16, 14, c/1) using cach of
the formulas for V. Explain the behavior of the results.

d. As above, supposc that we have N values x; with sample mean M and

sample variance V. Let
¥ x—a, i—=12,...,N.

Then the y, have a sample mean M -- a and a sample variance V. If a is

close to M, using the second formula to compute V as the variance of the »'s

may be almost as attractive as using the first formula to compute V as the

variance of the x's. (Why ?) In part c, we would expect M 1o be close to 500. -
Repeat the computations in part ¢ computing V as the variance of the y's,

where

Y xg — 500, i=12,...,N,

and comparc with the results of the previous computation.

)
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Letx -~ BN xand x =~ TN, %, where
=04 pd)x, i=1,2,...,N
Suppose that all the x, are positive. Prove that
=4 px,
where | p| << max,.on | pi)

Suppose that we want to compute § = Y,V | x,, where the x; are positive real
numbers. Let X; be x; chopped to S(r, p), and sct

S| ":'i]

SNI = Sl @ Xiars

where the arithmetic is performed in FP(r, p, ©) or FP(r, p, cly). Let § = S,
Clearly § << S. Prove that S excceds S by less than N units in the last place of

i=12...,N—1,

Let A, and B, be positive numbers in S(r,p) fori = 1,2,..., N, and let
N
S= z A(B[.
-1

To compute an approximation 8 for S, we set §; = 0 and let

S$,=8_.,®(4,+B) i=1,2,...,N,
where all operations are performed in FP(r, p, clg) with ¢ >> 1. Then we set
8 -=: 8y and note that § < S. Using the result of Exercise 8, prove that S
exceeds S by less than N units in the last place of $. Show by an example that
S may exceed S by almost N units in the last place of §.

Let X be a number in S(16, 6), so X is also in S(16, 14). Let Y = XV, where N
is a positive intcger, and suppose that we compute ¥ -~ XssNin FP(16, 14, c/1).
Let ¥ and ¥ be the values of ¥ and Y chopped to S(16, 6). For cach of the
three methods for computing X se N given in Section 3.6, find a bound for the
relative error in the approximation ¥ ~ Y and give an estimate of how large N
must be before ¥ and ¥ can differ by more than one unit in the Jast place.

If you have access to a machine which performs arithmetic in FP(16, 14, c/1),
select several values of X and N and compare the results obtained by computing
XeeN in FP(16, 14, c/1) using each of the three methods described in Section
3.6.

In Scction 3.6 we gave a method for computing XV requiring m + k — 1
floating-point multiplications. Show that X' can be computed using only five
floating-point multiplications, although m + k — 1 - 6.

Suppose that we want to compute Y = X-¥, where N is a positive integer and
X s in S(r, p). Find bounds for the relative errors in the approximations 4 = Y

15.

16.

17.
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and B =~ Y, where A and B are computed from the FORTRAN statements

A = |.[XeeN
B = (1./X)e«N

Assume that the arithmetic is performed in FP(r, p, clg) with q> 1.

Suppose that we want to compute the value of p(x), where
N
p(x)= 3, ax*.
k-0
It is customary to evaluate p(x) using Horner's method:
p(x) == ag - x(a, + x(ay + --- + x(ay-, + x-ay))): - ).
To code this in FORTRAN, we might store the coefficients in an array A,
storing ay in A(k -I- 1), k =: 0, 1,..., N. Then we would use the FORTRAN
coding
P = A(N+1)

DO 100 K = IN
100 P = PeX+A(N+1-K)

Suppose that a, and x arc in S(r, p) and that we perform all the arithmetic in
FP(r, p cly) with ¢ > 1. Using a backward error analysis, show that we have
computed

N
Blx) = 3 dixk,
k-0

where @, = (1 |- p)ag. Find the bounds for the Pr. If each a, > 0, show that
forx>0

() = (1 -+ pip(x),
and find a bound for p.

Prove that if € is a random variable which is uniformly distributed on the
interval - § = € < ], then the variance of € is Y.

Suppose that € - 317 | €; and that the €; arc independent random variables
which arc uniformly distributed on the interval —4 <€, < . Using the result
of Excrcise 16, show that the standard deviation of € is 4/n/T2.

Write a program to perform the following calculations for N = 1000, 5000,
and 10,000 and & = 2, 10, 20, and 100. Use a random number generator to
gencrate N random numbers selected from a uniform distribution on the
interval —} <7 x <} and treat these numbers as N/k obscrvations of k
random variables €,, €,, ..., €,. Form € = k., €,50 we have Nfk values for
€. Computc the sample mean and standard deviation for €. Divide the interval
~(k2) < x < k/2 into 100 equal subintervals and obtain frequency counts
for the number of values of € which fall into each subinterval,
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Let €, and €, be independent random variables which are uniformly distributed
on the interval -} << x <}, andlct € - €, I €,. Prove that the probability
density function for € is p(x) =1 — |x|for |x]| < 1.

Let z -~ xy, where x and y are independent random variables.

a. Show that if the mantissas of x and y have a logarithmic distribution, so
does the mantissa of z.

b. Show that if the mantissas of x and y have a logarithmic distribution, then
the probability that postnormalization will be required in computing x » y
is .5.

c. Find the probability density function for the mantissa of z if the mantissas
of x and y are uniformly distributed on the interval r=' < ¢ < |.

It is often convenient to think of the mantissa of a floating-point number as a
random variable. Find the mean and standard deviation of a random
variable m, where

a. m is uniformly distributed on the interval r-t < x < 1.,

b. m has a logarithmic distribution on the interval r-t < x < 1.

In (3.12.8) we saw that the relative error p introduced by rounding or chopping
a number to p digits is of the form € /m. Supposc that € and m are independent
random variables and that p - €/m. Find the mean and variance of p if

a. € is uniformly distributed on the interval ~r-7 <2 x <0 and m has a
logarithmic distribution on the interval r-' < x < 1.,

b. € is uniformly distributed on the interval —}r-# < x < }r=7 and m has a
logarithmic distribution on the interval r=! <{ x < 1,

c. €isuniformly distributed on the interval —r-? < x < 0 and mn is uniformly
distributed on the interval r-' < x < 1.

d. € is uniformly distributed on the interval —}§r=? < x < }r-7 and mis
uniformly distributed on the interval r-' < x < I,

e. To assess the importance of the distribution of the mantissas, compare the
mean and variance computed in part a with the ones computed in part c.
Similarly, compare the mean and variance computed in part b with the ones
computed in part d.

Using the techniques described in Scction 4.4, modify a matrix inversion
program to extract the mantissa of every number which arises in the calcula-
tion. Divide the interval r=' < x < 1 into 20 subintervals and obtain frequency
counts for the number of mantissas which fall in each subinterval. Compute the
sample mean and standard deviation of the mantissas. Run the program for
several matrices whose order is about 10.

4 EXAMPLES

41. QUADRATURE

In this chapter we shall consider some examples of floating-point computa-
tion, _Thesc examples will be referred to elsewhere in the book to indicate why
certaun approaches have been taken to implementation of features such as
rounding, double-precision arithmetic, etc.

The first example we shall discuss is a quadrature problem. Suppose that
Wwe want to use Simpson'’s rule to compute an approximation for the value of

I'= f : S(xX) dx.

Select an even positive integer N and set /f = (B— A)N.Letx, = A-- kM
Kk 0,1,2,..., N. Then the approximation for / given by Simpson’s rule is

@rny s, gilf(xu) A1) 1 2£(x) 1 4F(x)) -+ 2f(x) | -+ -

L af(en ) 1 flxp))
Il £(x) has a bounded fourth derivative on A <. x << B, it can be shown that
(4.1.2) 18,1 O(HY).

[See. for example, Hildebrand (1956).]
For our example we shall try to compute

4.1.3) . I == J‘:l sin x dx.

123 )
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Clearly I = 1, and we shall observe how well S, approximates /as Nincreascs.
We shall perform the indicated computation using floating-point arithmetic,
and we shall print Sy for N=2% k = 1,2,...,16.

For our first attempt we shall usc the following rather naive FORTRAN

program:

B = 1.570796
DO 100 K = 1,16
N = 2K
H = B/N
X=0
S = SIN(X)
NN=N-3
IF(K.EQ.1) GO TO 200
DO 100 1 = 1,NN,2
X = X+H
S = S+44.+SIN(X)
X = X-+H
100 S = S+2.4SIN(X)
200 X = X+H
S = S$+4.4SIN(X)
X = X+H
S = S+SINX)
SIMP = S«H/3.

1000 WRITE ( ) K,N,SIMP

This program was run in FP(16, 6, ¢/1), and the output is shown in Figure
4.1.1. The results are disappointing. The first three lines produce the sort of
behavior we expected, but then the answer drifts below 1, with the error
becoming worse and worse as the value of N increases.

To see how the precision of the arithmetic affects the result, the entire
calculation was performed in FP(16, 14, c/1). For the IBM System/360, this
meant that the variables had to be typed as double-precision, SIN had to be
changed to DSIN, and B had to be set to 1.5707963267948966D0. The results
of this run are shown in Figure 4.1.2. This is clearly an improvement, but we
still observe the annoying drift of the answer below 1. The output suggests,
correctly, that if we took still larger values of k the answer would continue to
degrade. One might be tempted to dismiss this behavior with some vague
comment about the growth of rounding error as the number of operations
increase, but the regularity with which the answer degrades cries out for an

explanation.
It turns out that the error which causes this systematic drift in the answer

)
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x

SIMp

N
2 1.00227833
4 1.00013256
8 1.00000668
16 0.99999714
0.99999583
64  0.99999392
128  0.99999267
256 0.99997008
512 0.99994499
10 1024 0.99992907
11 2048 0.99990132
12 4096 0.99954379
13 8192 0.99926186
14 16384 0,99897254
15 32768 0.99887526
16 65536 0.99309123 Figure 4.1.1

XNV PLr N~
w
~N

K N SIMp
1 2 1.002279877492210
2 4 1.000134584974193
3 8 1.000008295523968
4 16 1.000000516684706
5 32 1.000000032265000
6 64 1.000000002016128
7 128 1.000000000126000
8 256 1.000000000007869
9 512 1.,000000000000481
10 1024 1.000000000000017
131 2048 0.999999999999983
12 4096 0.999999999999901
13 8192 0.99999999999948135

14 16384 0.999999999999747
15 32768 0.999999999999477
16 65536 0.99999999999g39g Figure 4.1.2

arises in the accumulation of the sums S and X, In our program, X has been
ud\fanccd by eretitivcly adding M, and S is the sum of terms of the form
2 sin x and 4 sin x. First, consider S. For the final value of S, we have

n'2
S-L{-k"‘ sin xdx =1,
. ]

50 S = 3/H. Since H = (B ~ A)/N, this yields

S&M
n
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so the final value of S is about 2N. Our last value for N was 2's, so 2N
20000,,. Since S must grow to about this value, for many of the additions the
six-digit hexadecimal number S will have the form xvxxx.x,. But the terms
added to § do not exceed 4, so the alignment of the radix points produces the
situation

XXXxx.x
X.XXXXX

XXXXX.X

Since the numbers are positive, it is immaterial whether the low-order four
digits of the number added to S are chopped before or after the addition --
that is, it makes no difference whether the computation is performed in
FP(16, 6, ¢), FP(16, 6, cl1), or FP(16, 6, c/0). Thus, we may view the computa-
tion as first chopping the terms 2 sin x or 4 sin x, and then performing the
addition exactly. This in turn may be viewed as using Simpson’s rule to
compute the integral of a function f(x), where f(x) drifts farther and farther
below sin x as x increases, and it is obtained by chopping the low-order bits from
sin x. Since the discrepancy between f(x) and sin x increases as N increases,
this explains the systematic drift of the answer. It also shows that our program
should not be sensitive to small errors introduced by the SIN routine. (See
Exercise 2.)

A similar situation arises in the computation of X. X increases from 0 to B,
and B : N, so X will get to be substantially larger than /7. As above,
this means that the computed value for X will drift farther and farther below
the correct value. Since sin x is monotone increasing in the interval, the error
in X will tend to make the computed value for sin x too small, and this
amplifies the effect of the errors in S. (Sce Exercises 2 and 8.)

The computation of X is easily corrected. Instead of advancing X by
adding H, we may compute X as a multiple of /{. For example, inside the
loop we would use X - I« Hand X -- (7 |- 1)« H, and similar computa-
tions can be used at the other places where X appears.

The computation of S is more troublesome. One approach is 1o accumu-
late the sum in double-precision. This could be coded so that S is the only
double-precision variable in the program, and the only place where double-
precision arithmetic is used is in the addition of single-precision terms such as
4 sin xand 2 sin x to S. Figure 4.1.3 shows the results obtained by making this
change along with the change in the computation of X mentioned above. This
shows that we have isolated and corrected the cause of the drift in the answer.
Exercise 4 suggests explanations for the small error still remaining in these
results, but we have clearly corrected the major source of error which was
responsible for the continual degradation of the answer as N increases.

Correcting the computation of S in the double-precision version of our

)
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K N SIMP

1 2 1.00227833
2 4 1.00013256
3 8 1.00000668
4 16 0.99999869
5 32 0.99999809
6 64 0,99999809
7 128 0.99999839
8 256 0,99999809
9 512 0.99999809
10 1024 0.99999809
11 2048 0.99999839
12 4096 0.99999809

13 8192 0.99999809
16384 0.99999809
32768 0.99999339
65536 0.99999809 Figure 4.1.3

-
own s

program is not as simple, unless we have still higher-precision arithmetic
available. However, it may be accomplished either by using the results of
Section 4.3 or by exploiting our knowledge of the size of the numbers in the
problem. (See Exercise 7.)

We shall now look more carefully at the computation of the sum of terms
having the same sign. Suppose that we have N |- | terms t,, which we may
assume are all positive, and let

s, 'z;l,. n -0,1,...,N.

We actually compute §, instead of s,. where 5, = 1, and

Sort = Sy (D oy ys n 01,...,N -1
Write

S,z rm,, rrt<lm, <.
We shail assume that the computation is performed in FP(r, p. clq), sowe have
(4.'.4) j'f| e jn I 'u’-l o Gnol’

where 0 < €,,, -< re=r-2. It can be proved by induction that

where

@.1.5) 5, =3 €.
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Since the ¢, are all positive, we have e,., > €, for all n. Then
b, < nr?,

$0 sy is larger than §y by less than N units in the last place.
This bound may be sharpened. Let / = ey — ¢ and suppose that for
i-=0,1,...,1there are k, values of n with e, = ¢, |- i. Then

(4.1.6) Sy < 1 olky |- kpyrtt b e b kor™)

This shows that we want s, to grow as slowly as possible. Thercfore, it is
desirable to arrange the order of the terms so that the smallest terms are added
in first. 1dcally, we would like to have

(4~|-7) ’o£'|S’IS“'.(_\’N'

In our problem we do not satisfy (4.1.7), because we alternate between the
terms 4 sin x and 2 sin x. However, since sin x is increasing as x varies from 0
to n/2, we do have some of the effect of starting with smaller terms and
proceeding to larger ones. Exercise 3 suggests some experiments which show
the effect of the order in which the terms are added.

The program we have been considering so far is quite inefficient. One qf
the nice features of Simpson’s rule is that when the number of intervals is
doubled, we need not recompute f(x) at the points already used. Forany value
of Nin (4.1.1), let

E= f(A-1 f(B)
N2

Fy:= ‘Z; Sf(x2-1)
(N2 -1

Ty = S S(x2)

-1

Then the formula for Simpson’s rule is
Su="1E + aF, 42T

But when we double the number of intervals, each of the points prcviqusly
used will have an even subscript, while the new points will have odd subscripts.

This yiclds
(4'.8) TZN == TN "" FN‘

Thus if we want to compute Sy, it costs only a couple of extra multiplics ung
adds to compute Sy as well. The following program takes advantage of this

fact:

SeC. 4.1 QUADRATURE 129

It

1.570796
= SIN(0)-+SIN(B)
0

B

E

T
DO 1000 K = L16
N = 2+£K

F =20

DO 100 I = I,N,2
X = I«H

F = F-+SIN(X)

S = (E-F4.4F1-2.4T)xH/3.
T = T+F

1000  WRITE ( ) K,N,S

100

Figure 4.1.4 shows the output from this program, and Figure 4.1.5 shows
the output from a double-precision version of this program. Not only is the
program more efficient, but we see that it produces somewhat better results
than our earlier program. The results of Exercise 6 will show that most of this
improvement is due to the change in the way the terms are added to S. Other
ways to rearrange the addition of the terms in S are also explored in Exercise 6.

Quadrature problems often require the addition of many terms having the
same sign, and the behavior we have observed is quite common. The problem
stems from the fact that we are using chopped arithmetic, so all the errors ¢,
in (4.1.5) have the same sign. This suggests that it might be advantageous to
use rounded arithmetic. Then the ¢, in (4.1.5) would tend to compensate, so
we would hope that § would be close to zero. (See Section 6.2.) To investigate
the effect of rounding, the original program was run with all calculations
performed in FP(16, 6, c/l1) except for the addition of the terms 4 sin x and
2sin x to S. These additions were performed in FP(r, p, R). (The way this may

=

SIMP

N
2 1.00227833
4

1. 00013256
8 1.00000572
16 0.99999809
32 0.99999774
64 0.99999714

128  0.99999458
256 0.99999237
$12 0.99999076
1024 0. 99997044
2048 0.99993259
4096 0.99990082
8192 0.99987566
18144 0,99954891
32768 0.99892169
65536 0.99839622 Figure 4.1.4

= S g g s P
PRAPUN=OIDNFPVNSWN~
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K N StMP

1 2 1.002279877492210
2 4 1.000134584974193
3 8 1.000008295523968
4 16 1.000000516684706
5 32 1.000000032265001
6 64 1.000000002016128
7 126 1.000000000126000
8 256 1,000000000007873
9 512 1.000000000000490

10 1024 1.000000000000024

11 2048 0,9999999999999a7

12 4096 0,999999999999978

13 8192 0.999999999999972

14 16384 0,999999999999906

15 32768 0.999999999999763 !

16 65536 0.999999999999642 Figure 4.1.5

K N SIMP

1 2 1.00227833
2 4 1.00013256
3 8 1.00000668
3 16 0.99999934%
5 32 0.99999809
6 66 0.99999678
7 128 0.999995%3
8 256 0.99998885
9 512 0.9999R218

10 1026 0,99997073
11 2048 0.99995357
12 4096 0.99992019
13 8192 0.999864580
14 16384 0.99969101
15 32768 0.99969035
16 65536 0,99992716 Figure 4.1.6

be coded is discussed in Section 6.3.) The results arc shown in Figure 4 1.6. By
comparing Figure 4.1.6 with Figure 4.1.1, we sec lhat' rounded arlthTeuc
produces significant improvemcnt‘i)n this problem, particularly when a large
terms are used in (4.1.1). .

nu"}‘\be‘;“?:; run of the original program was made us:lng the bias removal
described in Section 6.4, and the results are shown in anure 4.1.7. As above(i
the only changes from the original program were that bias removal was usc
in the addition of the terms 2 sin x and 4 sin x to S.

4.2. POWER SERIES

ope p . " e d
Power series are familiar to anyone who has taken a course in c.nlculus: an
they )n to provide a means of compuling many important functions.

SEC. 4.2 POWER SERIES 13

K N SimP

1 2 1.00227833
2 4 1.00013256
3 8 1.00000668
4 16 0.99999934
S 32 0.99999839
6 64 0,99999714
7 128 0.99999583
f 256 0,99999428
9 512 0.99998093

10 1024 0.99997294
11 2048 0.99995232
12 4096 0.99992943
13 8192 0.99985152
14 16384 0,99969864
15 32768 0.99969608
16 65536 1.00030041 Figure 4.1.7

Naturally, we would be concerned about whether the series converges, and we
may have learned that some series converge so slowly that we would not want

to usc them directly for computational purposes, even with the aid of a digital
computer. An example of such a series is

— (=D
log, 2 = k; —

But the numerical problems involved in using power series are often ignored.

To illustrate the numerical difficulties, we shall consider the following prob-
lem:

PROBLEM
Use the power series to compute e*, e~*, and sin x for x —= 1, 2, 4, 8, 16,
32, 64, and 128.

We recall that the power series for e~ is

X == 3 S:v
4.2.1) e* == kz‘ok!
and that the series for sin x is
5 . . [ (_,l)kxlkfl.
4.2.2) sin x =+ g YV ER

It is well known that these series converge for all values of x.

The output for this computation is shown in Figure 4.2.1. We have printed
the values produced when the functions were computed by using the power
series in both single-precision and double-precision. Here single- and  ¥Yle-
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16
32
64
128

-1
-2
-4
-8
=16
-32
-64
-128

>

DEN~

16
32
66
128

)
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CNMPUTATION OF E TO THE X BY POMER SERIES
SINGLE DOUBLE LIBRARY
0.27182789F 01 0.27182818284590430 01 0.271828108284590450D
0.73890495€ 01 0.738905609A9306480 01 0. 73890560989306510D
0.54598007F 02 0.5459815003314419D0 02 0.5459815003314424D
0.29R09497F 04 0.2980957987041726D 04 0.29A09579870417280
0.8AB6CADE a7 0.8886110520507864D 07 0.88861105205078 720
0.78962152F 14 0.78962960182680480 14 0.7896296018268069D
0.62349A41¢ 28 0.62351490808115610 28 0.62351490808116170

0.38RT5452F 56 0.3887708405994546D S6 0.38877084059945970

0.367879441171464230
0.13533528323661270

0.3678794411 T1 44220 00
0.13533520323661260 00
0.1A315638088733920-01
0.33546262792152410-03
0.1125300367023338D-06
~0.143569684864922200-03
0.26988919172475200 11
~0.34752508146162216D0 38

0.36787921E 00
0.13533521€E 00
0.1A314630€-01
0.41966909€-03
~0.35498%99€-02
~0.672R063I31E 06
0.32R587T73F 20
N.13160663E %A

COMPUTATION NF SINIX) B8Y POWER SERIES

SINGLE DOUBLE LI BRARY
0.841647N96€ 00 0.84147098480789650 00 0.8414709848078965D
0.90929759F 00 0.90929742682568170 00 0.90929742662568170

-0.7568023AR€ 00 -0, 75680249530792830 00 ~0.75680249530792020
0.98923141€ 920 0.98935R246662335310 00 0.9893%5824662338180
-0.34140092F 00 -0.26790331667472630 00 -0.28790331666506360
0.2AT6T7938F 06 0.5516431151002459 00 0.55142668124168990
0.20672729F 21 0.10791053277194050 11 0.92002603819679010
0.25310AS0F 47 -0.27842086001817330 38 0.72103771050173190

Figure 4.2.1

precision refer to FP(16, 6, c/1) and FP(16, 14, cl1), respectively. For com-
parison, we have also printed the values produced by the corresponding
FORTRAN library routines, that is, by EXP(X) and SIN(X). In each case we
terminated the calculation when the term added did not change the sum, To
avoid overflows in the factorials involved, each term was computed from the
preceding one. For example, in the series for e* the kth term is given by

k
Ik:'_." 'v

b

4.2.3)

o

x

[ 1}
ol
02
0
o7
14
28
56

0o
[11]

0.18315638888734180-01
0.335462627902%1180-03
0.11253517471925910-08
0.12664165549094170-13
0.16038108905486380-27
0.25722093726424 15D-55

00
00
00
a0
0)
00
00
00

)
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and we compute 1, ,, from

(4.2.4) oy = k_x:a_l

A similar procedure is used in the series for sin X.

In Figure 4.2.1 we see that the results are quite good for small x and that
the‘ results for ¢* are reasonably good for all the arguments tested. But the
series computations for ¢~* and sin x produced ridiculous answers when x
was large,

To try to understand what happened, we shall consider the computation

of = and e-*. In each case, the terms added or subtracted are of the form
(4.2.3). For x == 128, the first few terms are

1.

128.

8193.
349525. 33333 . ...
11181477. 33333 . ..

We sce that these terms grow quite rapidly. In fact, (4.2.4) shows that they will
continuc to grow until k - | = x. Thus, the terms with largest magnitude
are f,;; and 1,,,. When k > x, the terms decrease in size. Schematically, this
growth of the terms when x is large may be shown by ’

L.
xx.

XXXX.
XXXXXX.XXXXXX

XXXXXXX ¢+ XXXXXX.XXXXXX + o
XXXXXX +* ¢ XXXXXXXXXXXX *++

.

.000000 - - - 000000xxxxXX - - -

But we have retained only the high-order p digits of each term. In fact, in
the computation of the terms the error may grow to a point where the last
two or.lhrcc digits in the term are in error. Thus, instead of 1, we have an
approximation {,, where we may write

4.2.5) i~ 1, + €,
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or

(4.2.6) i, =1 p.

Then we attempt to compute

(4.2.7) S=Yi, =3t + e

Even if we ignore the additional errors introduced bccauf;e we used ﬂol::n :1:‘;;
point arithmetic to add the i,’s in (4.2.7), our answer will be in Frror yl h
sum of the ¢,’s. In the computation of e* for posmv? X, z'nll the ¢, are posi .:1 a[i
Then the fact that each ¢, is small with !'espcct to 1, implies thaht Y€, iss
with respect to 3 ¢,. In fact, by Exercise 9 of Chapter 3 we have

Zik=(l - p)sz'

i i ted using only 2k — 2
here < max, |p,|. Since i, has been compu %
:oatingl-’;’)clﬁnl muftipl;c:ltions, the results of Section 3.5 show that if the
arithmetic is performed in FP(r, p, /1), then

|24l < @k — 2)r=te=1.

Thus, our computation should produce rcasonably good values for ¢* when
g >T‘c)>. illustrate the problems which arise in the computation of c:-‘l \:l}zr:
x < 0, we shall consider the case in which x = —128, Th.e correct lva |‘-1:c x
e~'?% is about 2.57 x 10-3¢, so the number we are trying to. calcu dhich
extremely small. But the ¢, in (4.2.3) with large_st absolu‘te v.a.lue iS 1,24 w'ltCl
is approximately 1.37 x 10%4. In he)-mdcmmal, }hls is app;:oxlm(.j i;);
.E4D, x 16*3. Since our single-precision calgulatlon was 'pe(;-.ql;m(c)r o
FP(16, 6, cI1), we retained only the high-order six hexadecimal :gl ls ' ne
terms 7,. In fact, as we indicated above, the errors €, may aﬂ‘cctll] c chr e
or three digits of these terms, so we may expect the ¢, to be (;mhl -cd(:jl;[ion in’
say, 16°° or 16*°, (Sec Exercise 9.) Thus, even if we pcr!'ormc t el:; ditien 1o
(4.2.7) exactly instead of using floating-point arithmetic, we would still h

an error
(4.2.8) €=Yéw

where some of the ¢,°s have a magnitude as large as lf.’”. \;c Fn:\:ﬁeuic:
chopped arithmetic, so all the p,’s in (4.2.6) are negzl}lve: u}lt_.:us ! c,.rc
alternate in sign, this implies that the ¢,’s also alternate in sign. we,w e
may be some tendency for the ¢, s in (4.2.8) tocompensate. l:lowe\'tcrt.hc st
still expect € to be of more or less the same or.dc‘r Qf magmtudf:. as {

€,, say 16°® or 16°°. Fxercise 9 shows that this is indeed the casc.

)

SEC. 4.2 POWER SERIES 135

Thus, we see that when all the 1,’s are positive, the errors may accumulate,
but they will affect only the low-order digits of the answer. But when the
presence of terms of opposite sign produces an answer which is many orders
of magnitude smaller than the largest term, we can expect our error to be
larger than the answer. The only way we can produce a good result in this
case is to keep enough digits in each term so that each €, is small with respect
to the final answer. Since the sixth hexadecimal digit of the answer for ¢-'2* is
the ninety-seventh hexadecimal digit of the largest term, and since the ¢, may
affect the low-order two or three digits of ,, this means that if we wanted our
answer for e~'?* to be good to about six hexadecimal digits, we should
perform the calculation in FP(16, 100, cit) instead of FP(16, 6, cil).

The situation for sin x is similar, since |sin x| < | while the term with
largest magnitude is the same as for e=.

We shall next consider the way the library programs compute these func-
tions. For e* it is Customary to begin by dividing x by log, r (or multiplying x
by log, ¢). Let

4.2.9) y=_x

log, r
SO
(4.2.]0) e* = (eloln)v =
If we write
Yy 11— F7

where 7 is an intcger and 0 < F <1, we have
e* = rlp-F, riP<rf<l,

Then 7 is the exponent of the answer and r-* is the maatissa, so we have
reduced the problem to the computation of r-* with 0 < x < |. [Further
refinements are possible. See, for example, Fike (1968) and Clark, Cody and

Kuki(1971).) Naturally we shall usc foating-point arithmetic in this computa-
tion, so we set

4.2.11) yoix--L, L ~ log, r,
and
(4.2.12) y <J—F,

where J is an integer and 0 << £ -~ 1. Then we compute r-# and insert the
exponent J in the answer. (For 0 - - f* — I, r ¥ can be computed from the
power series or from a polynomial or rational approximation.)
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Similarly, we may reduce the argument of the sine function by using the
fact that it is periodic. A crude approach would be to write

- X
Y
Then if y = I -{- F, where I'is an integer and | F| < 1, we have
sin x = sin(2nl 4+ 2nF) = sin(2nF),

so we can reduce the problem to the computation of the sine of an angle with
absolute value less than 2z. A better approach is to divide x by /4, writing

_ X

Y=z
and

y=1I4F,

where I is an integer and 0 < F < 1. We then write
I=28I +1,

where 1, and 7, are integers and 0 < I, < 8. (/, is particularly easy to obtain
if 7is written in binary.) Then, depending on the value of /,, we may reduce the
problem to the computation of either the sine or the cosine of an angle with
absolute value less than n/4.

There are other functions for which it is easy to reduce the arguments.
{See, for example, Fike (1968).] But if no such techniques are available, the
power series may be quite treacherous.

The reduction of the argument avoids the pitfalls we have just observed in
trying to use the power series for ¢~* and sin x, and it also reduces the number
of terms needed. After reducing the argument, most library programs will use
a polynomial or rational approximation instead of the power series, but the
primary motivation for doing so is to make the routines slightly faster. Once
the argument has been reduced, the use of the power series would be feasible.

Power series arise in many places in applied mathematics. For example,
there are techniques for obtaining a series solution for a differential equation.
But we can see that we cannot use these power series blindly for numerical
calculation, and it is quite annoying that so powerful a mathematical tool can
misbehave so badly.

We shall now consider the opposite situation—the case in which the power
series can help us avoid numerical difficulties. Suppose that we want to find
the value of

4.2.13) F(x) = f(x) — g(x)
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for small values of x and that S(0) = g(0). If £(x) and g(x) are continuous,
then as x — 0 we have F(x) — 0. If the common value of f(0) and g(0) is
¢ # 0, then for small values of x both JS(x) and g(x) will be approximately c,
) (4..2.13) will involve cancellation of leading digits and it will produce bad
relative error. In this situation, we find it very hard to compute F(x) with good

!-elative error using (4.2.13). We have already seen an example of this problem
in the discussion of
. h - X — e *
sinh x = ———
in Section 3.10.
We shall consider an alternative to (4.2.13) to be used when x is small.

Suppose that f(x) and g(x) can be expanded in power series about the origin:

(4.2.14) fx) = g;oakx*
4.2.15) g(x) = kf;o byx*.
Then
(4.2.16) F(x) = ﬁ:oc,,x",
where

c=a,—b, k=0,1,2,....

If the radii oI: convergence of the series in (4.2.14) and (4.2.15) are R, and R,,
then the series in (4.2.16) surely converges for |x| < min(R,, R,). Since
J(0) = g(0), we see that ¢, = 0. Then

4.2.17) F(x) = ,ﬁ: Cox*,

Where x is small enough, the series in (4.2.17) will converge very rapidly and
the first few nonvanishing terms in (4.2.17) will be a good approximation for
F(x). In fact, if x is small enough, the first nonvanishing term in (4.2.17) is a
good .approximation for F(x). Examples of this approach are given in
Exerc1§e 15, and Exercise 18 gives examples of the use of the Taylor series
¢xpansion about a point other than the origin.

4.3. EXACT SUMS AND DIFFERENCES IN
FP(r. p, clq)

In this sgction_ we shall cansider the problem of trying ta produce exact
sums and differences. That |s, given 4 and B in S(r,' ), we would like to
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produce 4 + B and A — Binstead of A@ B and A © B. As a first step 1n
this direction, we shall prove the following theorem:

THEOREM 4.3.1
In FP(r, p, clg) withg > 1, if
‘ A=B=5>0,

then 4 © B is exact. That is,
4.3.1) A©B=A—B.

Proof. Let
A=rm, ri<m<l

B=1"¢n, rt<n<l

Since 4 > B, we have e > /. Clearly (4.3.1) holds when e = f, so we may
assume that e > /. But
A<2B< rrin< 1,

soe=f+1and B= ren’, where o’ = r7'n. Since g > 1, to perform the
floating-point subtraction 4 © B, we first form

w=m-—n'.

Let k be the number of leading zeros in y'. Then AQ B=ru, ;vgar;

g=e—kand u= r*u'. (See Section 1.8.) Now B > A'/2, s0 A—B<

< /. Then ' has at least one leading zero, so k > 1. This yields
p=ru=ru

and (4.3.1) follows.
Then one readily proves

COROLLARY .
In FP(r, p, clg) withg > 1, if 4 and B have the same si1gn and

A
244121814

then the operations A © B and B © A are exact.

We shall now address the more complicated problem of trying ‘tg ‘riilzrg
sent the exact sum of two floating-point numbers 4 and B. We wou
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represent this sum by two floating-point numbers S and T, where S contains
the high-order p digits of A + B and T contains those digits of 4 + B which
do not fit in S. Thus, we would like to find S and T'in S(r, p) such that

.A+B=S+T. ,
2. S and T are nonoverlapping numbers. That is, if 7 = 0 then

(characteristic of T) < (characteristic of S) — p.
3. If T+ 0, then S and T have the same sign.

But we may not be able to achieve all three of these objectives. For
example, suppose that we are using an eight-digit decimal machine and that
we have A = 1 and B = —1073° Then

A+ B = 999999 ... 999,

so it would require 50 digits to represent A + B. But if S and T are two
positive numbers in S(10, 8), they can hold only 16 of these digits. Therefore,
we cannot find S and T satisfying 1, 2, and 3. Butifweset S=1and T =
—10-5°, then S and T will satisfy 1 and 2.

Our approach will be to try to find S and T satisfying 1 and 2, and to see in
what cases we can also guarantee that 3 holds. Throughout, we shall assume
that

4.3.2) |4]>|B].

In some cases this causes no difficulty because we know which of the numbers
has the larger absolute value. In other cases, we would have to perform a test
and interchange 4 and B if (4.3.2) fails to hold.

We shall study the FORTRAN coding

S=A+8B
T=8—(S— A)

and we shall assume that we do not encounter exponent overflow or under-
flow. Thus, we shall assume that (4.3.2) holds and set

S=A®B
4.3.3) C=504
T=B0OC,

where we assume that the arithmetic is performed in FP(r, p, clg) withg > 1.
Itis clear that S and T satisfy 1, 2, and 3 if Bis either 0 or — A4, so we may
assume that neither B nor S vanishes. Also, changing the sign of both 4 )B
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will simply change the signs of both S and T, so it suffices to consider the case
in which 4 is positive. We shall write

A=rm, rt<<m<l1
B=rn, r'<|nl<l
s="ﬂ’ "-lgﬂ<'.

Here (4.3.2) implies that e > f. .
We shall first consider the case in which 4 and B have the same sign.

THEOREM 4.3.2

Suppose that 4 and B are numbers in S(r, p) having the same sigp and }hzft
|A|>|B|. Let S=A®Band T = B O (5 © A), where the arithmetic is
performed in FP(r, p, clg) with ¢ > 1. Then

1,S+T=A4+ 8.
2, If T+ 0, then

(characteristic of T) < (characteristic of §) — p.
3. If T 5 0, then S and T have the same sign.

Proof. We may assume that 4 > B > 0. If e —f>p, then S = A4 and
T = B and the theorem follows. Therefore, we may assume that e = f<p.
Let B = B, + B,, where B, contains the high-order p — (e — f) digits of B
and B, contains the remaining digits of B. We saw in Section 1.8 that when A
and B have the same sign the operation 4 @ B produces the same result in
FP(r, p, cl0) as it does in FP(r, p, clg) for g > 0. Thus, B, has no effect on
A® B, so

4.3.4) S=A®B,.

The characteristic g of S is either e or e - 1, depending on whether or not a
high-order carry is produced in the addition in 4.3.4). First,. suppose that
g = e. Then no digits are lost in chopping 4 + B,, so the addition in 4.3.49)
is exact. That is, S = 4 + B,. Since S and 4 have the same exponent, the
computation § — A is exact. Thus, S© 4 = B,,so T = B,. But these values
of S and T satisfy 1, 2, and 3, so the theorem holds ifg=ce. .

Suppose that g = e + 1. Then the low-order digit qf the (p + 1)-digtt
sum A + B, had to be chopped to produce 4 (D B,. Write

A+B|=S+Dv

where D = dr*-? and d is a single-digit number in the base r. Clearly
A < § < 24, so by Theorem 4.3.1

C=SOA=B,—D.

)

SEC. 4.3 EXACT SUMS AND DIFFERENCES IN FP(r, p, clg) 141

If D is not zero, it is a single-digit number within the p digits spanned by B, so
C may be represented as a p-digit floating-point number with the same
characteristic as B, although it may be unnormalized when it is written in this
form. Then the operation B © C is exact, so

T=B—C=B,+ D,

and 1 holds. Clearly T is nonnegative, so 3 holds. Finally, D < (r — 1)r¢-?
and B, < r¢?, so

T<yrep=yrpe»
and 2 holds. This completes the proof of Theorem 4.3.2.

We shall now consider the case in which 4 and B have opposite signs. As
we saw above, we cannot demand that S and T have the same sign. To simplify
the statement of the theorem, we shall restrict our attention to FP(r, p, c/1).
THEOREM 4.3.3

Suppose that 4 and B are numbers in S(r, p) having opposite signs and
that|4| > |B|. Let S =A@ Band T = B O (S © A), where the arithmetic
is performed in FP(r, p, c/1). Then

I.S+T=A+4 B.
2, If T# 0, then

(characteristic of T) <C (characteristic of S) — p.

Proof. As above, we may assume that A >—B > 0. If e = f; we find that
S = A+ Band T =0, and the theorem follows. Also, since we have only
one guard digit, ife — f>p + 1, then S= 4 and T = B, so 1 and 2 hold.
Therefore, we may assume that

4.3.5) I<e—f<p+l

Let B, be the high-order p 4+ 1 — (e — f) digits of B, and let B, be the
remaining digits of B. If B, 0, then B, is negative and

(4.3.6) | By| < re-to+h,
Clearly S = A @ B,. Let
3.7 A+ B, =S+ D,

where D contains those digits of 4 4+ B, which must be dropped when 4 + B,
is chopped to p digits. Here D > 0. Let k be the number of places we must
left-shift 4 + B, to postnormalize it. Theng = e — k, and if D # 0, we have

43.8) D < pemtorh),
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Now if k > 1, we know from Theorem 1.8.2 tha}t A@DB=A4+ B,so
T = 0 and the theorem follows. This is also the case if k = e — f = 1. Then
we may assume that we have

4.3.9) k<2
(4.3.10) k<e—1,
and that (4.3.5) holds.

We shall begin by showing that the computation C = S © 4 is exact;
that is,

4.3.11) C=SQA=S5S—A

If k = 0, this follows from the fact that S and 4 have the same charactensrtlcz:.
If k = 1, then by (4.3.10) we have e —f>2,50A=r"" and |B| < re 2.
But then 4 > S > A/2, so (4.3.11) holds by Theorem 4.3.1.

Now (4.3.11) and (4.3.7) yield

“4.3.12) C=B8,—D.
First, suppose that
(4.3.13) e—f<p+k

Then f> e — (p + k), so (4.3.8) shows that D < | B|. Since B, is negative
and D is positive, we see from (4.3.12) that

|C|=|B,|+ D<2B,|<2B|
and

B
ic1=18,1> 3.

Therefore, by the corollary to Theorem 4.3.1, the floating-point subtraction
B O C is exact, s0

(4.3.14) T=B—C=B8,+D.

Then 1 follows from (4.3.7) and (4.3.14). Since D 2 0 > B,, the charac':[t';rls-
tic of T cannot exceed the larger of the characteristics of B, and D. Then,

ince k < 2, 2 follows from (4.3.6) and (4.3.8).
o Finally, we suppose that (4.3.5), (4.3.9), and (4.3.10) hold but that (4.3.13)

does not. Then

)

ptk<e—f<p+l
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so k = 0 and

(4.3.15) e—f=p.

Thus, the mantissa of B is right-shifted p places before its absolute value is
subtracted from the mantissa of A4, and no postnormalization is required.
This implies that

S=AOB=A—r°
and that

C=SOQA=—r"
Then

T=BOC=r>@B,.

Here B is negative, and from (4.3.15) we see that f = ¢ — p. Then the com-

putation of T'is exact, and T < r*~#, so | and 2 hold. This completes the proof
of Theorem 4.3.3.

We shall also need the following result:

THEOREM 4.3.4

Suppose that 4 and B are numbers in S(r, p) and that |4| > | B|. Let
S=A® B and T = BO (S @ 4), where the arithmetic is performed in
FP(r, p, cl1). Then the characteristic of T does not exceed the characteristic
of B.

Proof. Let the characteristics of A and B be e and /| respectively. Clearly,
e > f. First, suppose that 4 and B have the same sign. If f < e — p, then
S = A and T = B, so the theorem holds. Suppose that /> e — p. The
characteristic of S is at most e + 1, so by Theorem 4.3.2 the characteristic of
Tis at most e + 1 — p < f, as asserted. Next, suppose that 4 and B have
opposite signs. If e — f>p + 1, S = A and T = B, so the theorem holds.
Suppose that /> e — p. Then the characteristic of S is at most e, so by
Theorem 4.3.3 the characteristic of T is at most e — p, and the theorem
follows.

4.4. DISMANTLING FLOATING-POINT NUMBERS

The floating-point number is comprised or three parts: the sign, the
characteristic, and the absolute value of the mantissa. From time to time we
want to dismantle the number into these parts so that we can work with them
separately. If we are coding in Assembler language, this is usually quite easy,

)
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since we can use a logical AND or shifts to remove those parts of the number
which we do not want. But if we are using a higher-level language, such as
FORTRAN or PL/L, it is often harder to obtain the parts of the number. We
can always test the sign of the number with an IF statement, but these
languages do not provide direct access to the mantissa or the characteristic,
(In Chapter 11 we shall suggest that it would be desirable for higher-level
languages to allow us to extract these parts of the number.)

Since the representation of the floating-point number varies from machine
to machine, any FORTRAN or PL/I coding used to extract the characteristic
or mantissa will be machine-dependent. We shall describe the coding for the
IBM System/360, but the modifications necessary for other machines should
be quite clear. We recall that the representation of the floating-point number
on the IBM System/360 consists of the sign bit, followed by the characteristic,
followed by the absolute value of the mantissa. Suppose that

“4.4.1) x = 16°m,

where {m| < |. The absolute value of the mantissa m is a fraction which
occupies either 24 bits or 56 bits, depending on whether the number is in
single-precision or double-precision. The characteristic is defined to be the
exponent e plus 64, and it is stored as a seven-bit nonnegative integer.

To begin with, we shall consider the form in which we would like to obtain
the characteristic and the mantissa. Usually we would like to have the
characteristic represented as an integer. It is quite easy to obtain the exponent
if we have the characteristic, and vice versa, so we shall address the problem
of finding the characteristic. When we are coding in FORTRAN, we might
want to represent the mantissa m as a floating-point number. That is, if x is
given by (4.4.1), we might want to obtain

(4‘4.2) y= 16°m.

Alternatively, we might want to represent 23*m as an integer /. If we are
coding in PL/I, there is also the possibility of representing the fraction m as
a fixed-point binary number.

We shall consider the FORTRAN coding first. The basic approach is to
use the EQUIVALENCE statement to allow us to treat the floating-point
number as an integer or as a logical variable. Suppose that 1 and A are typed
by default, so 1 is an integer and A is a single-precision floating-point number.
Write

(4.4.3) ' EQUIVALENCE (A,l)

which means that A and [ refer to the sume word in storage. If we write
A = X, then X will be stored in this word and we can refer to it as I. A
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glmcult! flrises because the 1BM System/360 represents floating-point num-
€rs as “sign and true magnitude,” but it uses the 2's complement representa-

tion for negative numbers in fix i i
' ed-point. If we are inter ]
characteristic, we may write ested only in the

(4.4.9) A = ABS(X)

Then I will refer .to.a 31-bit positive integer in which the high-order seven bits
a'nI: the charactenst.:c of X and the low-order 24 bits are 224 times the absolute
value of the mantissa of X. We may store the characteristic of X in J by

writing
(4.4.5) J = 1/2+»24
If we use this value of J and write
(4.4.6) K = 1—J*2+%24
the value of K will be 2%4|m|. By testing the sign of X, we can use K to obtain

the appropriate representation f. i
: | or the mantissa of X. For exam i
to obtain y in (4.4.2), we may write ple, ifwe want

4.4.7) I = 2%+304-K
(4.4.8) Y=A
(4.4.9) IFX.LT.0) ¥ = —Y

[In l;;lz;ze of (4.4.9) we could have used the SIGN function.]
is a double-precision number, we can still ‘
! 1n s use (4.4.3), (4.4.9), ¢

:243) to obtain the characteristic of X. since it is only necessar3 tc() worl)c \::t‘:
nue b|gh-or'der worq of X. -But on the IBM System/360, double-precision
Thm Frs h"nve 56-bit mantissas, while integers are restricted to 32 bits
nuerlt: ore, if we want to work with the mantissa m of a double-precisior;
" ;nz er X, we §hall.'usc the floating-point representation for m shown in
4. ) To obtain this representation for m, we type X, Y, and A double-
g;ccmon. Then (4.4.3) mcans_ that I would refer to the high-order word of A.
(43 q;u(s‘: :l;;) c}:langedABS in (4.4.4) to DABS. With these modifications
*2-(4.4.9) will produce the desired representati antissa of the
double-pratioion moroduce presentation for the mantissa of the
e V\Lc r\jio not need to employ the sume subterfuge in PL/I. Instcad'. we may
SO B SPEC to convert the floating-point number to a bit string and
BSTR to extract the substring we want. Thus, L

Su BSTR(UNSPEC(X),2,7)
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is a bit string seven bits long beginning at the sec9nfi bit of X, so it is & bit
string comprised of the seven bits in the characteristic of X. To.make it into
an integer, we may concatenate it with enough zeros to make it the proper
length, and then store it in the appropriate location in storage.'For example,
if I is typed by default as FIXED BINARY(15,0), we may write

UNSPEC(I) = '000006000'B || SUBSTR(UNSPEC(X),2,7);

As a second example from PL/I, suppose that we \.vant to construc'l a
floating-point number Y having the same mantissa (and.sngn) as X but having
as its characteristic the low-order seven bits of I. To |!Iust(ate a somewhat
different approach, suppose that B is declared to be a bit string of length 32.
We may write

B = UNSPEC(X);
SUBSTR(B,2,7) = SUBSTR(UNSPEC(1),10,7);
UNSPEC(Y) = B;

Of course many other approaches are possible in PL/I, all making use of the
fact that we may treat the number as a bit string.

EXERCISES

1. To assess the effect of the rounding errors in the accumula}ion of the sum Sin
the quadrature problem of Section 4.1, perform the following calculauons:, ona
machine which performs arithmetic in either FP(r: p, c) or FP(r, p, c{q).

a. Perform the entire calculation in double-precision, except that S is typed

ingle-precision. '

b. :":rgfl:r; the entire calculation in single-precifion, except that S IS'!prd
double-precision. Use the original program whlf:h a('!vances X by a(!dlng H.
Compare your results with the results shown in Figure 4:I:3, which were
produced by a program in which S was typed double-precision, but X was
computed using 7« Hand ({ 4 1) » H inslead‘o'f X+ H. .

c. Perform the entire calculation in single-precision, but compute X using
I+ Hand (I 4+ 1) « H instead of X 4 H.

2. To study whether the quadrature program in Section. 4.1is se‘nsitive to I'IO.ISC in
the SIN routine, perform the following cxpcrlmcn.ts in FP(f, r:j ()bl(:
FP(r, p, clq). Use a version of the quadralgre prograrp in which § is o;n‘ -
precision but everything else is single-precision, and X is computed using

and (/ + D)+ H. )
a. Run the program three times with SIN(.X) replaced by SIN(X) -+ Kr-?,

K=123. .
b. Run the program three times with SIN(X) replaced by (1 — Kr~?) SIN(X),
K=123.

)
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3. To study the effect of the errors in computing X in the quadrature program of
Section 4.1, use the program to compute the following three integrals. Per-
form the calculations in FP(r, p, ¢) or FP(r,p clg). Use a version of the
program in which S is double-precision but everything else is single-precision.
Run each program twice, the first time computing X using / « H and ({ -}- )=

H, and the second time computing X using X -- H. The integrals to be com-
puted are

/2 .
a. f sin x dx.
]

b. I: ? cOs x dx.

I; e~ dx.
[N

57
d. . tan x dx.

Explain the behavior of these programs.

C

4. The results in Figure 4.1.3 show that we have identified the major source of

error in the quadrature program of Section 4.1. These results were produced

by a program in which all calculations were performed in FP(16, 6, c/1)

except for the accumulation of S, which was done in double-precision. In this

program X was computed using /+ H and (I 4- 1) » H. We shall now try to

identify the source of the small error still remaining in the calculation.

a. Because we used only a seven-digit representation for ®/2, and because of
the error introduced by conversion from decimal to hexadecimal, the value
of B which is used by the program is not exactly /2. Let § be the value of B
which is actually stored in the machine. Then our program is trying to

8 . L . .

compute I sin x dx instead of j sin x dx, so the error in Bintroduces
] [}

an error of

n?2
J. sinxdx=2 _ 3
3 2

in the final answer. First, obtain a bound for this error analytically. Then
find the error in the approximation § ~ 7/2 on the machine you are using

by writing a simple FORTRAN program which obtains B from the state-
ment

B = 1.570796

and subtracts this value of & from a double-precision representation of nf2.
b. In our program, H was obtained by dividing B by N. Since Nis a power of
2, this division would be exact on a binary machine. But our runs were
made in FP(16, 6, c/1), s0 the operation B — N need not be exact. Now B
docs not enter the program directly, so our program is really trying to

NH .
compute L sin x dx. Thus, the error in H produces the same effect as the

error in B studied above. Find a bound for the error in the answer due to

)
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the error in the division B — N. By looking at the value of Binour problc.m,
determine whether the division by N is exact, and if it is not exact, determine
what the error in the division B + N actually is.

c. In order to use double-precision only in the accumulation of the sum S, S

was declared to be double-precision and the FORTRAN statement which
produces SIMP was changed to

SIMP = SNGL(S)+H/3.

If we had left the right-hand side of this statement as S«H/3., thfg multlphcz}-
tion and division would have been performed in double-precision. .Obta?n
a bound for the error introduced by perfonming' these two operations In
single-precision. Run a version of the program which perf(?rms these opera-
tions in both single-precision and double-precision aqd !)rm.( both answers.

d. As a final source of error, we consider the multiplications _ln-'H ?nd
(I + 1) » Hused to produce X. In our computation, these mquPIxcatnons
were performed in FP(r, p, cl1). Rerun the program perfor'mmg !he§e
multiplications in FP(r, p, R). [The ]coding to produce arithmetic in

is discussed in Section 6.3.

e. f)l;(:l’\: 'pﬁlsizle sources of error listed above, which had the largest effect

on the answer?

Run the second version of the quadrature problem \\thich exploits the 'rcla-
tionship (4.1.8), but compute X by setting X = H initially and advance it by
X = X + 2.«H.

ection 4.1, S is the sum of N terms tyyd =
I|n 2th.e . ??z;w(li.r‘a\:’:l:o:;i(:lt:: ?I:eoefﬂ'zct on the final answer of breaking up thf: sum
S’ ir;to several smaller sums. In each case, make the indicated changes in the
original version of the program given in Section 4.1.
a. Let N > 8 and write

=, j=01234
Then we may write
S=8,+ 8+ 8-+ S
where S| is given by

)
S = 2

i=np bl

j=1273,4

Run the program accumulating these four sums S; and then adding them

roduce S.

b. tli)e‘:n'ogram the problem to first compute and store lhc' N values of ’;1\%
adding f2_ 0 f2 i = 1,2, .0, N/2, we may reduce S'to the sum or i
terms. By combining pairs of these terms, we rcduc? S to the sum 0 v
terms. Continuing in this way, we compute S. Run this program to sc¢ wha

7.

)
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effect it has on the final answer. Restrict the value of N to whatever storage
size is convenient.

c. Reprogram the computation in part b to avoid having to precompute and
store all the terms #,.

d. Using Eq. (4.1.6), explain why these rearrangements of the computation of
S improve the final answer.

We shall now try to produce good results with a double-precision version of the
quadrature program of Section 4.1. For the computation of X, we can use
I«Hand (I+1)s H But S is more difficult, since many versions of
FORTRAN do not provide more than double-precision arithmetic. We shall
suggest two different treatments of S below.

a. We think of S as the sum of N terms r,, and we write each 1, as

h=1un+1,

where ¢/ represents the high-order digits of ¢, and 7;’ is the rest of r,. This

may be accomplished by setting BIG = r’ for a suitable value of / and
setting

t; = (4, @ BIG) © BIG
=401

By a suitable choice of BIG,

and
N
S" =31
=1

may be computed exactly. Determine the value of BIG to use and run the
program in double-precision, computing $’ and S” and adding them to
produce S.

b. First determine the exponent of 4 SIN(H). By exploiting the monotonic
behavior of S as more and more terms are added, it is relatively easy to
keep track of the exponent of S after each addition. Then we may accu-
mulate the values of the &, in Eq. (4.1.6). If we assume that the average error
in the addition of a term to S is one-half a unit in the pth position of the
new value of S, the expected value of the error is one-half of the value of
Jx given by (4.1.6). Run the program computing this correction andadding
it to S before S is multiplied by H/3.

We shall study the effect of the computation of X on the results of the quadra-~
ture program of chion 4.1. Let X be the value of X computed by repetitively
adding H, and let X be the value of X computed using / + Hand (/ 4- 1) = H.
Run the original version of the quadrature program modified to compute X
in the following ways;
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. X = X. (This is the program shown in Section 4.1.)

. X=X )

c. Use X = X for the first half of the points, and then X = X for the rest of
the points. .

d. Use X = X for the first half of the points, and then X = X for the rest of
the points.

Explain the results.

o P

Write a program to use the power series to compute e~* for x = i,2,4,8,. e
128 without reducing the argument. For each valuc of x, print the following
information in addition to that shown in Figure 4.2.1:

a. The number of terms used. el bsolute value

T of the term ¢, with the largest absolu . :

: '\l;‘eer:llglyu:slimate the error € by comparing the resqlt produced by the series
with the resuit produced by the library routine. Print € = T, where T'is the
absolute value of the largest term found in part b. )

d. Let p be the relative error in the result prodyccd by the power series. “—/f
may estimate p by dividing the € computed in p.art c 'by the value for Ie
produced by the library routine. For each x, print this value for p. Also,
proceeding analytically, find a bound for p for each x.

Another way to compute e* for x < 0 is to represent it as /et Fgr x ;
1,2,4,8,..., 128, use the power series to compute e* without red:f:mg t Ic:
argument. Using this value for e*, calculate 1 -- e* and compare this resu
with the result produced by the library program for e~*,

Suppose that we want to compute e~!3° and e~!'7° from the power series
without reducing the argument and that we want the answer to be accurate to
six hexadecimal digits. By computing the term 7, in (4.2.3) with the: largest
absolute value and computing e~* from the library program, dete]'mlne .how
many hexadecimal digits of precision would be needed in the arithmetic to
produce this result.

Write a program to compute e~* using the power series without reducing the

argument. ) ]

a. Use single-precision arithmetic to compute the terms ¢,, but use t.ioublc
precision arithmetic to accumulate the sum of these terms. That is, type
SUM as double-precision and add the single-precision values of the terlms
1, to the double-precision value of SUM. Does this improve the value
of e~* when x is large?

b. Use double-precision arithmetic to compute the values of lh(.: t?rms trs b:t
accumulate the sum of the terms in single-precision. Does this improve the
value of e when x is large?

We shall explore the error in the terms ¢, in (4..2.3). First, proccedmg z:)nalﬁ:
ically, obtain a bound for the relative error P in (4.2:6).. Then use this 0;1’
to obtain a bound for the €, in (4.2.5) in terms of Enmls in th_e-last place obh:
Write a program to compute the terms 7, in both'smgle-prc.c!swn and goublc.
precision for x == 128. Let T and TT be the‘ single-precision and’ 7(3; p
precision values for 1, respectively. Then T(D TT and (T TT) + al

)

14.

15.

16.

17.
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estimates for €, and Pi in (4.2.5) and (4.2.6) for the single-precision com-
putation of r,. For each of the terms I, used in the single-precision calculation
of e=128_ print this value for P« and print this value for €, expressed in units in
the last place of 7. (To find the value of a unit in the last place of T, use
techniques discussed in Section 44)

Write a program to perform the argument reduction for sin x. That is, your

program should take a single-precision floating-point number x and reduce the

problem to the computation of the sinc or cosine of an angle z with iz| < n/4.

Perform the following computations for x = 2% k = 1,2,...,20:

a. Reduce the problem to the computation of the sine or cosine of an angle z
with |z| < #/4, and compute this sine or cosine using the power series.

b. Reduce the argument as in part a, but compute the sine or cosine of z using
the library program.

¢. Use double-precision arithmetic in the reduction of the argument, but
compute the sine or cosine of z using the power series and single-precision
arithmetic,

d. Use double-precision arithmetic in the reduction of the argument, but com-
pute the sine or cosine of z using the single-precision library program.

€. Compute sin x using the library program directly.

Write a program to compute the following functions for small values of x, both
by using the formulas directly and by using the power series. Compare the
results for x = 10~% k = |, 2,...,25. (Depending on the machine you are
using, you may have to include tests to avoid underflows in the evaluation of
the power series.) Also, for each function determine how small x must be before
it suffices to use only the first term in the power series,

a. e* — 1T+ x.

b. xcos x — sin x.

ex — e~
2

For what values of x will the formula

C.

X_e"‘

sinhx = ¢ >

give a good relative error for sinh x?

Writc a program to compute the value of the following functions for x = 1074,
k =1,2,...,25. Each function should be computed in three ways: first, by
using the formula directly; second, by using the power series; and third, by
rationalizing the numerator as discussed in Exercise 7 of Chapter 3.
al—/TTx

b. VT+x -1 —x

Write a program to compute the value of the following functions, both by

using the formula directly and by expanding the function in a power series
about x -: 1. Test the program for values of x close to 1.

n
a. x -- tan —x.
ta 4,\'

)
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b. log TI\:' 4- x cos -nz-x.
19. Show that Theorem 4.3.3 need not hold when the arithmetic is performed in
FP(r,p,ch)withq>landp+k£e—-f<p+q. .
20. Give an example to show that S and T in Theorem 4.3.3 may have opposite
sign and that

(characteristic of T) = (characteristic of S) — p.

21. Suppose that 4 and B are in S(r, p) and that we perform all arithmetic in
FP(r, p, cl1). Asin Section 4.3, set

S=A®B

T=BO (O A
To avoid the situation described in Exercise 20, we perform the following
cleanup:

S=8S®T

T'=TOE OS)

Prove that S’ and T satisfy
a. '+ T'=A4+8B.
b. If T’ # 0, then

(characteristic of T) < (characteristic of §°) — p-
c. If §’ and T have opposite signs, then

(characteristic of T') < (characteristic of §) — (p + 1).

Also, show that if we repeat the cleanup by setting
SII - SI@ Tl
TN — T/@( rr @ S’).
then S” =S'and T" =T". .
22. Show by an example that Theorems 4.3.2 and 4.3.3 may fail to hold if

|A4] <|B|. . .
23. Suppose that we want to find the intersection of the circles

x4y = A2
(x — O +y* = B,

whereA28>0andC>0.lf
C—B<ALBAC

26.

27.
28,

29,

)
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then the circles intersect and the coordinates of the intersections are given by

_A*— B2 4 C?
- 2C
y = +/AT = X2

When the circles are nearly tangent, the value of y may be quite sensitive to
errors in A, B, and C. However, we can produce a good solution for the prob-
lem if we assume that A, B, and C are given exactly as numbers in S(r, p). x
may be computed with good relative error by using the approach described in
Exercise 6 of Chapter 3. To compute an accurate value for y, we must compute
A? — x? with good relative error. First, show that

gtz A+ BHCHA+B—CYA+C—BYB+C—A)
ac:

Then, using Theorem 4.3.1, show how the right-hand side of this expression can
be evaluated with good relative error whenever the circles have an intersection.

Write a FORTRAN program which will add a single-precision number to a
double-precision number and produce a double-precision answer. Use only
single-precision arithmetic to accomplish this.

Use the technique developed in Exercise 24 to modify a double-precision
version of the quadrature program of Section 4.1 so that the sum S is accu-
mulated in twice double-precision arithmetic.

Suppose that X is a single-precision floating-point number with exponent e
and mantissa m. That is, X = rem, where |m| < 1. Write a FORTRAN
program to store the value of the exponent e in J. If the value of L is an integer
in the range 0 < L < 128, form the floating-point number Y whose charac-
teristic is L and whose mantissa (including sign) is the same as the mantissa of
X.

Solve Exercise 26 when X and Y are double-precision numbers.

1f we are using FORTRAN on the IBM System/360, we can gain access to the
eight-bit bytes of a number by using EQUIVALENCE statements with vari-
ables typed LOGICAL+1. Writea FORTRAN program using this approach to
extract the characteristic of a floating-point number.

Let x be a positive number in S(r, p), and let x” be the next larger number in
S(r, p). That is, x’ is the smallest number in S(r, p) that is greater than x.
Write a program in FORTRAN or PL/I to produce x’,
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We have been considering calculations performed in a system FP(r,' P a),
but from time to time we want to perform part or all of a Fomputg:;or: in
higher-precision. Most computers used for scientific computing provi de wo
or more different precisions, either through .hardw?rc': o?eratnon codes o:
through subroutines. Thus, we may perfon:m am'ht'neuc in either F P(rz, D, ta;e(;e
FP(r, p', a), and since the higher-precision p’ is usuall){ ‘about p,‘. |
systems are referred to as single-precision and double-precision, res;:ec .we‘ lfe
In fact, these terms are used even if p’ is not exactly. .":p. For examp e,l ;n "
IBM System/360, FP(16, 6, cll) is called sm.gl.e-preclsmfl apd F-P(l6l,1 . :ms
is called double-precision. The actual p_recmon'assoclated with the tehine
single-precision and double-precision varies Fonsndferably from one mac .
to another. For example, double-precision arithmetic _on.the iBM Sysl:em/' o
is performed in the system FP(16, 14, cll),' but lhlS.lS rough!ylt ¢ sathe
precision as the system FP(2, 48, a), which is called single-precision on

0. ‘
CD](\:dgfl?ines designed for scientific computing usually have hardswarz
operation codes to perform arithmetic in at least one system FP(r, p', a). 0::; ¢
machines, such as the IBM 7094 and System/3§0, also have hardware f)pc .
tion codes to perform double-precision arithmetic. In oth‘er cascs,.f'or. exan:);; e;
the 1BM 7090 and the CDC 6600, the hardware 'p'rovudes.s opcr.'luorl; (; o
which are helpful in programming double-precision :.mthmenc. tl'lne
double-precision arithmetic is actually pe'rl'ormcd by callmg a subro:; :cn. "

Still greater flexibility has becn provided by some vanable‘wor desgw
machines. For example, the 1BM 1620 had hardware opcrutlondcct)) .
perform floating-point arithmetic in FP(10, p, ), where p could be an)

intep~~{rom 2 to 100.
154
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5.1. PROGRAMS USING DOUBLE-PRECISION
ARITHMETIC

As we saw in the quadrature program discussed in Section 4.1, it is often
desirable to perform one or two arithmetic operations in a program with
greater precision than is used in the rest of the program. In other problems,
one may decide at the outset to perform all calculations in double-precision,
so the problem will be solved in FP(r, 2p, a) instead of FP(r, p, a).

There have been a few implementations of FORTRAN, especially those
for variable word length machines, in which one can specify at the outset the
precision to be used in the whole problem. But the situation in which we want
to insert a few double-precision operations in a program which is otherwise
single-precision arises often enough so that languages such as FORTRAN
and PL/I usually implement double-precision in a manner designed to
support this use. The commonest approach [see American Standards Associa-
tion (1964)] is for each variable to have its precision defined independently,
either by default or by an explicit declaration. The precision of a constant is
determined by its appearance. In FORTRAN, any constant which contains a
decimal point is considered to be a floating-point number. Its precision can be
specified explicitly by writing it with an E or D exponent, where E designates
single-precision and D designates double-precision. Thus, 2. and 2.E0 are
single-precision numbers, while 2.D0 is a double-precision number. With
many FORTRAN compilers, the precision of a constant which is written
without an E or D exponent is determined by the number of digits it has.
There is a number N, which depends on the machine, such that the constant
will be considered to be a single-precision number if it has N or fewer digits,
but it will be considered to be a double-precision number if it has more than
N digits.t (Compilers may differ as to whether or not leading zeros should be
counted in applying this rule.)

The precision of the operands determines the precision of the floating-point
arithmetic which will be used. If both operands have the same precision, this
precision will be used in the arithmetic and the result will have the same
precision as the operands. But if one of the operands is single-precision and the
other operand is double-precision, the single-precision operand will be
extended to double-precision by appending zeros to it, the arithmetic will be
performed in double-precision, and the result will be typed as double-
precision.

There are slight differences in the details of the implementation of

1The original versions of the manufacturer-suppliecd FORTRAN compilers for the
IBM System/360 used N - - 7. However, fater versions of these compiters consider any
floating-point constant written without an exponent to be a single-precision number. The
only way to make a constant double-precision is 1o use a D exponent. )
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compilers for different machines. We shall discuss the problems associated
with writing double-precision programs for the manufacturer-supplied
FORTRAN for the IBM System/360. Other compilers may treat these
problems in a slightly different way.

To illustrate the problem of converting a program from single-precision
to double-precision, we refer to the program for the quadrature problem
discussed in Section 4.1. First, we must type each of the floating-point
variables as double-precision. This means that each floating-point variable
must appear in either a DOUBLE PRECISION statement or a REAL#8
statement. Here we are immediately faced with the clerical problem of
assuring that we have not accidentally omitted a variable. It is very easy to
slip up and produce a program in which almost everything is done in double-
precision but which produces results that are good to only single-precision
accuracy because we forgot to type one variable as double-precision. For
example, suppose that we want to interchange A and B. This might be coded
as

TEMP = B
B=A
A = TEMP

If TEMP is not used elsewhere in the program, we might overlook it and
forget to type it as double-precision. Then this coding would store the high-
order digits of B in A and store zeros in the low-order digits of A.

Many compilers produce a list of the variables used in the program. This
list should be consulted to see if there are any variables which we forgot to
type as double-precision. It would be convenient if the compiler provided a
list of the variables sorted by type, so that we could easily spot any single-
precision variables.

Next, we have to worry about converting the constants from single-
precision to double-precision. This may require us to look up some constants
again to find their values more accurately. For example, in the quadrature
problem in Section 4.1, the value for 7/2 had to be changed from 1.570796 to
1.5707963267948966. A more annoying situation concerns constants which
can be specified with fewer than N digits. For example, if a formula cails for
23/17, instead of computing this fraction by hand we might write the statement

(5.1.1) C = 23/17.

and let the computer do the division. This takes a little more computer time,
but if the computation is not inside a loop, it is not very expensive. But
according to the rules of FORTRAN, the numbers 23. and 17. in (5.1.1) are
single-precision numbers, so the division of 23 by 17 wiil be perfarmed in
single-precision. If C is typed double-precision, this quotient will be extended

)
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to double-precision by appending zeros to it before it is stored in C. Thus
even thoug_h. C is typed double-precision, its value will be accurate only t(;
single-precision. To produce a value for C which is good to double-precision
accuracy, one of the constants in (5.1.1) must be changed to a double-

precision number. The easiest Wway to accomplish this is to use a D exponent ;t
for example, we may write ,

C = 23.D0/17.

As the expressions become more complicated, the pitfalls become more
subtle. For example, suppose that we want to set Y = 23X/17, where X and Y
are typed double-precision. We might code this as

(5.1.2) Y = 23/17.4X

SlnFe t!le impliec! order of the operations is left to right, 23 will be divided by
17 in supgle-precusion, and then the quotient will be extended with zeros and
mult.q?hed by X in double-precision. Thus, Y will be accurate to only single-
precision accuracy. But if we had written

(5.1.3) Y = Xx23./17.

.the entire calculation would have been performed in double-precision. That
is, 23 would have been extended to double-precision and multiplied by X in
double—precfsion, and then the result would have been divided by 17 in
double-precision. Thus, (5.1.3) produces double-precision accuracy, while
(5.1.2) produces only single-precision accuracy. In either case the r’ules of
FORTRAN allow us to determine how the calculation will be performed
But, becz.ause we can use single-precision constants in expressions such as.
(S.I.'3). without ill effects, we often neglect converting constants to double-
precision when it is necessary. It might be better to discipline oneself to
convert all floating-point constants to double-precision.
A final problem with constants concerns statements such as

(5.1.9) X =

FORTRAN considers .1 to be a single-precision number, so the conversion
fr0n3 fiecimal to the radix r of the machine will be performed to only single-
pI‘CCISIOI! accuracy. If X is typed double-precision, this single-precision value
for .1 will be extended with zeros and stored in X. Although .1 may be
expressed with one decimal digit, it requires infinitely many digits it‘; the base

tWith many FORTRAN compilers, we can force
TWI -on s a constant to be double-precision b
appending epough zeros 1o the right of the decimal point so that it has more th‘;n N digil:
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r if r is a power of 2. For example,

A, = 1999999999 - -,

Thus, the FORTRAN statement in (5.1.4) produces only single-precision
accuracy on a machine such as the IBM System/360, even if X is typed double-
precision. The obvious correction is to write .1 as .ID(?.

Next, we have to worry about the functions used in the program. 1f we
have used any FORTRAN functions, the names must be changed to refer to
the double-precision versions of these f unctions. For example, in the qugdra—
ture problem in Section 4.1, we must change SIN to DSIN. (SomF compilers,
such as WATFOR, even require that the name DSIN appear in 2 dou!)le-
precision statement.) Since a fl unction such as SIN may appear at many pom?s
in the program, it is often simpler to do this conversion by using an arithmetic
statement function such as

(5.1.5) SIN(X) = DSIN(X)

at the beginning of the program. '
We also have to worry about user-supplied functions. Suppose that we

have coded a subroutine to compute a function F(x), using the statement
(5.1.6) FUNCTION F(X)

i a double-
Clearly, the function subprogram must be changed to compute a
precision value for F(X). In addition, we shall change the FUNCTION

statement in (5.1.6) to

DOUBLE PRECISION FUNCTION F(X)

This tells the subroutine that it is to return a double-precision value as the
answer. However, it does not tell the calling program to look for a (:lc?ublf,-
precision value for F(X). To do this, F must be typed as double-precision in
the calling program by means of a DOUBLE PREC]SI(:)N or REAL#*8
statement. Otherwise the calling program would take the high-order part of
F and extend it with zeros. Similarly, if we have used (5.1.5) to change SIN to
the double-precision sine routine, then SIN must appear in either a DOUBLE
PRECISION or REAL*8 statement. N .

All subroutines called must be replaced by double-precision versions.
Naturally, the appropriite variables in the subroutines must be typed double-
precision, but this is especially important for arrays. Suppose .that an array
A which is typed as double-precision in the calling program is passed to a
subroutine as an argument. If we neglect to type this array as double-
precision in the subroutine, the subroutine will treat the low-order part of
A(l) (2), etc., which is likely to produce a ludicrous answer.
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Similarly, a floating-point variable or array which appears in COMMON
must be given the same precision in all programs which refer to COMMON.
Failure to do so would change the layout of COMMON. For example,
suppose that we have used

COMMON A(4),B(10)

where A and B are typed double-precision in the calling program. If a
subroutine uses the same COMMON statement but types only B as double-
precision, then A will be allowed only four words instead of eight words (four
double words). Then the subroutine will think that B starts four words (two
double words) earlier, so when it tries to refer to, say, B(6) it will actually be
referring to B(4). This is likely to produce disastrous results. Thus, by
affecting the layout of COMMON, the precision of A may affect a subroutine
which does not use A explicitly.

Changing the layout of COMMON is one of several ways in which
converting a program from single-precision to double-precision may affect
the management of storage. A similar situation concerns the use of the
EQUIVALENCE statement. For example, suppose that we have written

DIMENSION A(10),I(10)
EQUIVALENCE (A,l)

Then, for example, A(6) and 1(6) occupy the same location. But if A is
declared to be double-precision, then I(5) and I(6) occupy the same location
as A(3). This change may cause the program to fail to execute correctly.

But by far the most serious problem with the management of storage
arises if the conversion of the program from single-precision to double-
precision causes us to use so much storage that the data no longer fit in main
memory. In some cases, in a multiprogramming environment, this may be
remedied by requesting more storage. But in other cases it may mean that the
problem must be partitioned, using auxiliary storage such as tape, disk, or
drum. This may change the flow of the problem, and it certainly is not a
trivial change. In this case the management of storage might be a major
reason for trying to avoid the use of double-precision. This is particularly true
with some of the very fast machines which provide double-precision arith-
metic that is almost as fast as single-precision. Indeed, on the IBM System/360
models 91 and 195, most of the double-precision operations take about the
same amount of time as the single-precision operations do, and on the model
85, double-precision addition is faster than single-precision addition. With
these machines, we might very well plan at the outset to use double-precision
unless it would require us to use too much storage.

Thus, even though the language supports double-precision arithmetic, it
may be a nontrivial task to convert a program from single-precision to double-
precision. For the most part, the individual changes are easy enough Mjake,
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the only difficulty being that we may overl(?ok a chan‘ge that is necessary. I.Sut
the problem becomes more formidable if converting to do.uble-prec!s!on,
changes the management of storage, or if we fu.we used_ some smgle.-?relms:on
library subroutines for which no double-precnsnoq versions are availab e'.l.

We shall now turn to the problem of inserting a few double-precision
statements in an otherwise single-precision program. In the qua_d.raturc
problem in Section 4.1, we saw the advantage of using double-precision to
accumulate the sums. This is easily accomplished. If we type S as double-
precision, then a statement such as

S = S+SIN(X)

compiles a single-precision evaluation of sin x, then ez&tends l.h.is number to
double-precision, and adds it to S using double-precngon addlt.lon.
A more annoying problem concerns the accumulation of an inner product

(x, y) defined by
(5.1.7) (x, ) = ,Z“; XY

This is an extremely important operation, which constitutes the.inner loop of
many matrix operations. There are sound reasons for FYaluatmg (5.1.7) bzll
forming the double-precision product of the snr_lg’le-prcmsnon numbers x, an

y, and performing the addition in double-prfzmsnon. In_ fact, there are sorr:je
aigorithms for which it is absolutely essen.nal t.ha} this approach be used.
[See the discussion of iterative refinement in Wilkinson (1963) or Forsythe

and Moler (1967).]
First, consider the coding

S$=0
DO 100 1 = I,N
100 S = S+X()+Y()

where S is typed double-precision. The result prodqced will depcnq on thlc
particular implementation of FORTRAN we are using. !n many cases, X
would be multiplied by Y(I) using singl&prccnspn multiplication, and tl'.len
the result would be extended to double-precision and added to S using
double-precision addition. It is then a question o!‘ how the product X( l)*Y(l\l/[)
is extended to double-precision. On many machines—for example, the 'I P"

7094 and System/360—the single-precision mult.iply comn_u.md autt)mzllfcrl ();
produces the double-precision product of the smgle-precnsupr, operands an

stores it in two registers. When we are working in single-precision, we _lukc.thc
high-order part of this product and ignore the low-order part. Th(.jn. in st.atc-
ment 100 above, we would like the compiler to add the double-precision value

)
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of X(I)-Y(I) to S using double-precision addition. (This is what the
manufacturer-supplied FORTRAN for the 7094 did.)

The manufacturer-supplied FORTRAN for the IBM System/360 uses a
different approach. Evoking the rule that the product of two single-precision
operands is single-precision, it interprets X(I)xY(I) to mean the high-order
part of the product X(1-Y(I), and it extends this with zeros before adding it
to S with a double-precision add operation. Ironically, it takes two or three
extra instructions to replace the low-order digits with zeros,

To produce the answer we want on the IBM System/360, we have to force
one of the factors to be double-precision. This may be done by replacing
statement 100 with the statement

(5.1.8) 100 S = S+DBLEX(I)+Y(l)

Then X(I) and Y(I) will be extended to double-precision by appending zeros,
the product X(I)+Y(1) will be computed using a double-precision multiply
command, and it will be added to S in double-precision. This produces the
answer we want, but it requires the execution of unnecessary instructions.
This loss of efficiency is annoying because the calculation of an inner product
(5.1.7) appears in the inner loop of many matrix programs.

A common mistake is to use the coding

100 S = S+DBLE(X(I)+Y(I))

instead of (5.1.8). This produces exactly the same result as we produced with
our original coding. That is, the single-precision number X(M*Y() isextended
to double-precision by appending zeros to it before it is added to §.

Thus, we find that the rule that the result is single-precision whenever both
operands are single-precision may be troublesome. It would be much more con-
venient if the rule stated the following: When the result of a single-preci-
sion operation is to be extended to double-precision, if the single-precision
operation automatically produces a double-precision result, then the low-
order digits are to be retained instead of being replaced by zeros.

Finally, we note that PL/I solves some, but not all, of the problems
discussed in this section. The variables must still be converted to double-
precision, but the concept of generic functions eliminates the problem of
changing the names of functions. We do not have to change SIN to DSIN as
we did in FORTRAN, because PL/I does not use the name DSIN. Instead,
SIN(X) will call either the single-precision or double-precision sine routine

depending on the precision of X, and the result will have the same precision
as X has.t

tSome FORTRAN compilers also provide gencric functions. The FORTRAN H
Extended compiler for the 1BM System/360 has a GENERIC statement which can be used
to specify that the common function names are o be treated as generic names.
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Converting the constants is still a problem in PL/I, and tht': prol;lem I'S
amplified by the fact that PL/I has no D exponent. The oply way to' orce a
constant to be double-precision is to use more than N digits. But lpfs;o(me
respects, the way PL/I treats constants is helpful. For example.t i e 1:
double-precision, then .1+X produces the resul} we want. Th{: c'ons an 1 s
treated as a fixed-point decimal number. Wlfen itisto be us'ed in an operati "
where the other operand is a double-precision ﬂqatmg—pomt number, it \;1
be converted to a double-precision floating-point number, and the ra :3
conversion will be good to double-precision accuracy. FORTRANbewou y
have converted .1 to only single-precision accuracy, SO .1xX would be goo

ingle-precision. .
© ol?il:ai;y,g wepnote that PL/I presents the same problem FORTRAN does in

the computation of inner products.

5.2. IMPLICIT TYPING OF NAMES

We have seen that compilers provide us vyith the facml)f to. product:e
double-precision calculation wherever we \»{ant it, thereb)! ma!(mlg it ea§:i0?l
insert a few double-precision operations in an qtherwnse sing c:p:jecn on
program. But when we wanted to perforfn the entu:e calculauo'n in ¢ outhat
precision, we found that we were faced with the clerical task of asts‘u.rn:‘g that
all floating-point variables had been declzfred to be dquble-pre:j.!;l‘ou.h °
IMPLICIT statement in FORTRAN is deflgned to alleviate this di 1: ' );n "
allows us to establish different conventions for the da_ta type O ' :itlbleg
beginning with certain letters. Thus, if we wanted all ﬂoatlng-Ponnl variables
to be double-precision on the 1BM System/360, we would write

(5.2.1) IMPLICIT REAL#8 (A—H,0-7)

This means that variables or functions whqse names begin with ont:j of [::"i
letters A through H or O through Z Wl!l be typed RE.A.LI‘8 I( (-n:'oﬁ
precision), unless this implicit typing is overfl(_iden by an explicit .eti ara :) in;
If we wanted, say, TEMP to be single-precision but all other QOdtmg-p
variables to be double-precision, we would use (5.2.1) along with

REALx4 TEMP

Similarly, if only a few variables were to be typed doub.le-pl:ecision, vlz’e Tlg:;
decide that we wanted all variables whose names begin with D to be typ

double-precision. Then, in place of (5.2.1) we would use
IMPLICIT REAL+«8 (D)

! )early casier to use (5.2.1) than to type each double-precision variable
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explicitly by including it in a DOUBLE PRECISION statement. But by far
the most important advantage of the IMPLICIT statement is that it eliminates
the careless clerical errors of forgetting to type a variable as double-precision.
Those FORTRAN compilers which have implemented the IMPLICIT
statement make it much easier to perform the entire calculation in double-
precision, although the IMPLICIT statement does not handle all the problems
discussed in Section 5.1. We still have to change the names of the library
functions, replacing SIN by DSIN, etc., and we still have to worry about the
constants and the layout of storage. However, the IMPLICIT statement
removes one common source of errors.

The DEFAULT statement, which has been implemented by some PL/I
compilers, is similar to the IMPLICIT statement in FORTRAN. It allows us
to specify the default attributes of variable names, so we may specify that all
names beginning with A through H or O through Z are to be double-
precision.

The FORTRAN H Extended compiler for the IBM System/360 provides
even greater assistance when we want to write the entire program in double-
precision. It has a feature called automatic precision increase which allows us
to specify that everything that appears to be single-precision is to be
“promoted” to double-precision. When this feature is used, the floating-point
variables will be typed double-precision, the floating-point constants will be
treated as if they were written with D exponents, and double-precision
versions of the FORTRAN library programs will be called. While this
approach is not foolproof, it eliminates most of the clerical problems that
arise in the conversion of a single-precision program to double-precision.

5.3. ROUTINES TO PERFORM
DOUBLE-PRECISION ARITHMETIC

We shall now consider how we can write subroutines to perform double-
precision arithmetic on a machine which does not have double-precision
operation codes in hardware. For example, in Section 5.4 we shall discuss a
subroutine to multiply two double-precision numbers to produce a double-
precision result. One approach would be to use only fixed-point arithmetic in
the subroutine, just as we would if we wanted to program floating-point
arithmetic in a machine which did not have any floating-point operation
codes. This is a distinct possibility, and on some machines it might be the best
way to proceed. But in this book we shall discuss only the programming of
double-precision arithmetic using the single-precision operations. Thus, we
shall assume that we have operation codes to perform arithmetic in FP(r, p, a)
and that we want {o write subroutines to perform arithmetic in FP(r, 2p, a).

At this point we shall introduce abbreviations for certain operatiors. For
each of the arithmetic operations (P, ©, *, and -, there are two )nds
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and one result. We shall use the letters S and D to indicate whether these
numbers are to be single-precision or double-precision. Thus single-precision
operations in FP(r, p, a) will be called SSS operations, and full double-
precision arithmetic in FP(r, 2p, a) will be referred to as DDD arithmetic.
However, we may want to refer to an operation which, say, multiplies two
single-precision numbers to produce a double-precision product. This will be
called an SSD multiply. Similarly, an SDD add is an operation which adds a
single-precision number to a double-precision number to produce a double-
precision result.

When we use floating-point arithmetic to code the double-precision
operations, we represent a double-precision number as the sum of two single-
precision numbers.t Thus, the double-precision number A is given by

5.3 A=4,+ 4,

where A, and A, are numbers in S(r, p) and are usually stored in consecutive
words in memory.t :

In the representation of A in the form (5.3.1), several decisions must be
made. First, since we are thinking of 4, and A4, as the high-order and low-
order digits of 4, it is common to require that they not overlap. That is, we
require

(5.3.2) .characteristic (4,) < characteristic (4,) — p.

Some implementations have required that equality hold in (5.3.2) unless
A, = 0. If we make this requirement, 4, may be unnormalized. Other
implementations have required that 4, be normalized, so the inequality may
hold in (5.3.2). Also, we might wish to require that 4, and 4, have the same
sign unless 4, = 0, although some implementations have allowed 4, and 4,
to have opposite signs.

After these decisions about the representation of A4 have been made, we
may assume that the input to our routines has these specifications and we
must guarantee that the output does also. Thus, the specifications for the
representation of A4 in (5.3.1) represent a trade-off between the advantages of
requiring, say, sign agreement in the input and the extra work required to
produce this feature in the output. In discussing the programming of double-
precision arithmetic, we shall often be rather vague about the exact specifi-

tEven when the subroutines for double-precision arithmetic are coded using only fixed-
point operations, we slill usually use two words to store double-precision numbers. But
in this case, we might elect not to store a characteristic with the low-order digits, so the
mantissa might be more than twice as long as the mantissa of a single-precision number.

$In Section 5.7, we shall discuss how the compiler can be cocrced into handling these
numbers if it docs not support the double-precision data type.

)
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cations of A, and A,, because the - i
single-precision arithnzwtic available tt;a::. o1 depend on the detils of the
An annoying problem related to the representation in (5.3.1) arises when
A, underflows but 4, does not. If the double-precision arithmetic were
Pcrformed by hardware, it might be implemented in such a way that it would
ignore the ch.ar‘:icteristic of A,. Then underflow in A, would not present a
prf)blem: This is also possible when the subroutines for double-precision
amhmetxf: use only fixed-point operations. But when floating-point operations
are lfsed in the routines for double-precision arithmetic, 4, must be a valid
ﬁoatmg-ppnpt number. One approach would be to give 4, azwrapped-around
charficterlstlc when it underflows and modify the double-precision arithmetic
routines to hafldle operands of this sort. But it is far more common to set 4
to zero when it underflows, thereby giving up double-precision accuracy. ’

5.4. DOUBLE-PRECISION MULTIPLICATION
Suppose that we are given double-precision representations

(54.1) A=4A,+4,
B=B, + B,

for 4 and B and that we want to produce a double-precision representation
C = C| + Cz

l'o‘r1 the product of 4 and B. For simplicity, we shall assume that if the low-
2rder part ofdAhor B does not vanish, then it has the same sign as the high-
rder part and that the characteristics differ by at least p. We
: . We sh
that we have available an SSD multiply. ? wllalsoassume

Since double-precision multiplicati i i
: plication presents no difficulty if e
B vanishes, we shall assume that AB # 0. Clearly Y i either 4 or

(54.2) AB = A\B, - A,B, - A8, + A4,8B,,
and each of the four terms on the right-hand side can be computed exactly

}xsnnlg an SSD multiply. Moreover, our assumption about sign agreement
implies that the nonzero terms in (5.4.2) all have the same sign. Write

(5.4.3) Av=rme < im <1
Then B, :=r'n, < n | < 1.
(5.4.9) r <A B | < et
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and A4,B, may be represented as a 2p-digit number with ef(ponent e +.f.
(Although it may be unnormalized when it is written with this exponent, its

mantissa has at most one leading zero.)
We may write

Ay = r"%m,, |m,| <1

B, = r'"?n,, Inyf < 1.

Then we can represent 4, B, and 4, B, as 2p-digit nu:r!bers with exponent at
most e +-f— p, and A4,B, as a 2p-digit number with exponent at most

e+ f—12p. . ‘
To illustrate the alignment of the terms on the right of (5.4.2), we take
p = 6 and show AB,fre*!. In each case we show the minimum number of

leading zeros:

A, B, = .XxxXxXXX XXXXXX

A,B, = 000000 xxxxxX NXXXXX

A,B, = 000000 xxxxxx XXXXXX

A,B, = 000000 000000 xxxxyx XXXXXX

(5.4.5)

We must combine these four terms and preserve the high—o.rc!er 2p digitg of the
product. Since mn, > r~, we want either the first 2p digits to the right l(:l'
the radix point in this sum, or else digits 2 through' 2p + L. Inany eventl, the
low-order p digits of the 2p-digit produc; A,B, will not affect the result, so
SS multiply to form 4,8,. N

" rxago:::nz:ls used apgrjc{)ach is to develop oply the first 2p digits to t}?e
right of the radix point in the products show_n in (?.4.5)‘. We shall ca.ll this
“coarse double-precision” multiplication. With t!us. approach, we .|gn:re
A,B, and compute 4,8, and 4, B, using SSS multiplies. Our answer is SlDeIr)\
produced by adding these two products to the SSD product 4, B,, using S

adds. The digits dropped from each of the products 4,B,, A,B,.and 4, 2
have an absolute value less than r¢*/-2#, so the absolut.e value of the error is
Jess than 3r¢*/-2?, Thus, if the product does not require postnormz}hzz}lnol'\.
the error is less than three units in the last place. But if postnormalization is

required, the bound for the error is 3r units in the last place. Similarly, we

could define coarse triple-precision multiplication or coarse“n.-fold-precnsut)n

multiplication. In general we shall cu:il the arithmetic “coarse” if.the error can
i s a few units in the last digit or two.

b aBs):d:gfnz:ast, “clean double-precision mu|'li;?licz|tion" would dcvelos an

answer in which the error is less than one unit in the.la§t place. To pro u;e

this result, we would not only have to use SSD muluplfc.s to compute A4, ;

and A4,B,, but we would also have to perform the addition of the terms 1

)
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(5.4.2) in such a way that we achieve this accuracy. This can be accomplished
by using the procedures for double-precision addition; they will be described
in the next section, so we shall leave the details of the program to Exercise 3.
An annoying problem that may arise in this program is that 4,8, and the
low-order parts of 4,8, and 4,8, may underflow even though C, and C, do
not. One way to handle this problem is to multiply 4 or B by a suitable scale
factor before computing the product and then divide the answer by the scale
factor. If we choose the scale factor be to a power of r, the scaling will not
introduce any error and it can be performed by adjusting the characteristics
of the numbers.

We often find that the work required to produce clean double-precision
multiplication lies more or less midway between the work required for coarse
double-precision multiplication and the work required for coarse triple-
precision multiplication. That is, it may require a significant amount of extra
work to gain a few extra bits of accuracy. This has often led the developers of
routines for double-precision arithmetic to provide coarse double-precision
arithmetic rather than clean double-precision arithmetic.

When double-precision arithmetic is provided by the hardware, the
trade-offs may be quite different. In many cases, clean arithmetic may be
produced at little extra cost. But on some machines, the hardware performs
double-precision arithmetic using an algorithm similar to the one described
above for programming it. In this case, the hardware designer may elect to
provide coarse double-precision arithmetic.

We note that the crucial point is the availability of an SSD multiply and
either an SSD or an SDD add. In some cases these operations are available in
hardware, but in other cases they may have to be programmed. The opera-
tions which are available in hardware vary substantially from one machine to
another. The IBM System/360 provides a full set of DDD operations for
double-precision arithmetic. [Here double-precision means arithmetic in the
system FP(16, 14, c/1).] On the other hand, most models of the IBM
System/360 do not provide extended-precision arithmetic—that is, arithmetic
in FP(16, 28, c/1). If we wanted to program extended-precision arithmetic, we
would use the approaches discussed here, thinking of FP(16, 14, ¢/1) as single-
precision and FP(16, 28, c/I) as double-precision. In this sense, we would have
only SSS operations available. But the models 85 and 195 of the IBM
System/360 have DDD operations for addition, subtraction, and multiplica-
tion in FP(16, 28, ¢/1). On the IBM 7090, the single-precision operations (),
™, and * were really SSD operations. One simply ignored the low-order word
of the answer when arithmetic was.to be performed in FP(2, 27, ¢i27). The
CDC 6600 uses a somewhat different approach. To produce an SSD add,
subtract, or multiply, one must execute two instructions—one to produce the
high-order part of the answer and the other to produce the low-order part of

)
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the answer. Thus, an SSD multiplication requires two multiplications. But
this is a pipeline machine with two multipliers, so we may be able to perform
the two multiplications simultaneously.

Only rarely have machines provided an SDD add, although the IBM 7030
did. But it is quite common to have an SSD add.

5.5. DOUBLE-PRECISION ADDITION AND
SUBTRACTION

We shall discuss only the programming of double-prccisiop additic.)n.
Double-precision subtraction may be performed eilhe!' by ?hanglng the sign
of one of the operands or by making the obvious modifications in the proce-
dures described below. However, we shall distinguish between the add
magnitude and subtract magnitude cases. N

We shall describe the use of SSD addition to program double-precision
addition. If an SSD add operation is not provided by the hardware, i.t must be
programmed. When the arithmetic is performf:d in FP(r, p, cl1), this may be
accomplished by the coding described in Section 4.3. N

The details of a routine for double-precision addition depend' on the
representation of double-precision numbers and on the manne.r.in which SSD
addition is performed. We shall assume that the double-precision number A
is represented as
(5.5.1) A=A4,+ 4,
where 4, and A, are two nonoverlapping, normalized, s.ingle-precision
numbers. We shall also assume that arithmetic is performed in FP(r, p, c:l 1)
and that SSD addition is performed by using the coding described in Section
4.3. That is, to compute the SSD sum of A and B, we first interchange A and
B, if necessary, to make | 4| > | B|. Then we use the formulas (4.3.3). Thus
SSD addition produces the results described in Theorems 4.3.2, 4.3.3, and
4.34. 3

We shall begin by discussing the programming of SDP_ addition. Let A
have the representation (5.5.1) and let B be a single-precision number. We
would like to produce a double-precision number
(5.5.2) S=8,+S,
which contains the high-order 2p digits of 4 + B. But since we do not require
sign agreement in (5.5.1), this is hard to attain. Instead, we shall require that
the error in the approximation S, -- S, ~ 4 -+ B be less than onc unit in the
last place of S,, but we shall not require that|S, + S,| < |4 -+ Bl

We shall first consider the special case in which we assume that the

)
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characteristic of B is at least as large as the characteristic of 4, and B = —A.
Let C, -I- C, be the SSD sum of B and 4,. Since 4, and A, do not overlap,
there will be no overlap of 4, with nonzero digits of C,. Let D be the SSS
sum A, D C,,and set S, = C, and S, = D. Then the SDDsumof 4 and B
is given by S in (5.5.2).

Next, we consider the add magnitude case, which we define to be the case
in which 4, and B have the same sign. For this case, we can use a special
algorithm which is slightly simpler than the general procedure for SDD
addition. If the characteristic of B is less than the characteristic of 4,, the
coding described above might produce an overlap of 4, with nonzero digits
of C,. Then there could be a high-order carry in the addition 4, & C,, and
this carry could make S, and S, overlap. The overlap of S, and S, could be
cleared up by combining S, and S, with an SSD add, but then we would have
only 2p — 1 digits of the answer. Although this answer might be acceptable
for coarse SDD addition, we shall try to produce a cleaner result.

PROCEDURE |
To produce the SDD sum of A and B, when A4, and B have the same sign,

1. Let C, + C, be the SSD sum of B and 4,.

2. Let D, + D, be the SSD sum of C, and 4,.

3. Let E be the SSS sum D, @ C,.

4. LetS, = D,and S, = E. Then Sin (5.5.2) is the SDD sum of 4 and B.

To show that this procedure produces the desired result, we shall consider
two cases. First, suppose that the characteristic of 4, is at least as large as the
characteristic of B. The first step reduces the problem to computing the SDD
sum of C, + C, and A,, where the characteristic of A4, is at least as large as
the characteristic of C,. This is the special case considered above, and steps
2 and 3 are exactly the approach we used there. On the other hand, suppose
that the characteristic of B is greater than the characteristic of 4,. Then the
characteristics of B and A, differ by at least p + 1,50 C; = Band C, = 4,.
Again, this is the special case considered above, and the arithmetic in steps
2 and 3 is exactly the computation used there to add B to A4. Thus, the proce-
dure handles the add magnitude case.

But Procedure 1 is not adequate for the subtract magnitude case. Suppose
that

A, =r(l —r>)
Ay = ro(l — r?)

B = —r*'(rt | rP),

With our assumption” about the way SSD addition is performed, step 1 in
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Procedure 1 would produce C, = Band C; = 4,. In step 2 we would obtain
D, = A, + Band D, = 0, so step 3 would produce E = A4,. But then

S, =4+ B = —ret22(r-1 4 r°?)

and S, = A,,sothe characteristics of S, and S, differ b)'( 2. T}mt is, S, and .sz
overlap unless p << 2. (Further complications would arise with other defini-

tions of SSD addition.) ‘
For the general case, we usc the following procedure:

PROCEDURE 2
To produce the SDD sum of A and B,

Let C, 4 C, be the SSD sum of Band A4,.
Let D, + D, be the SSD sum of C, and A,.
Let E, - E, be the SSD sum of C, and D,.

. Let F be the SSS sum of E, and D,. '
Let S, = E,and S, = F.Then Sin (5.5.2) is the SDD sum of 4 and B.

wh =D

Clearly, the first two steps of Procedure 2 reduce the problem to cs)n?puung
the SDD sum of C, and D, + D,. Unless B = — A,, the characteristic of C,
is at least as large as the characteristic of D,, so steps 3 anq 4 produce th.e
desired result in either the add magnitude or subtrz'ict m?gmtude case. It is
easy to see that this procedure also handles .thc case in wh!ch B = .—A 1» SO it
is a general procedure for SDD addition. It is (.;1.nte expensive, since it r.eqmrte)s
four additions, three of which are SSD ad;ijl(;lons. Therefore, we might be

illi accept a coarse version of SDD addition.
Wl"lvl;i ;:all noF:v consider the programming of DDD addition. Ifthe hardwar.e
provides SDD addition, it would be natural to use two SDD adds. But if
SDD addition must be programmed, it is preferable to program DDD

addition directly. -
Suppose that B = B, + B; is a double-precision number.

PROCEDURE 3
To produce the clean DDD sum of A and B,

I. Let C, + C, be the SSD sum of 4, and B,.
2. Let D, -+ D, be the SSD sum of A, and B,.
3. Let E, -+ E, be the SSD sum of C, and D,.
4. Let F, + F, be the SSD sum of C, and E,.
5. Let G be the SSS sum F, @ E,.
6
7
m

. Let H be the SSS sum G (b D,. . '
. Let S, + S, be the SSD sum of F,and H.Then Sin (5.5.2) is the DDD

su )A and B.
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We shall now show that this procedure produces the desired result.
Clearly steps 1 and 2 reduce the problem to computing the DDD sum of the
double-precision numbers C, 4+ C, and D, + D,. Also, it follows from
Theorem 4.3.4 that D, does not overlap with either D, or any nonzero digits
of C,. Similarly, E, does not overlap with E, or C,. Then the first four steps
reduce the problem to finding the sum of four nonoverlapping numbers F,,
F,.E,;, and D,. This is accomplished by steps 5, 6, and 7. Inthe add magnitude
case, we would not need to perform the addition in step 7. It would suffice to
set §; = F, and S, = H. But in the subtract magnitude case, F, and H might
overlap, so the SSD addition in step 7 is needed to clean up the answer.

A subject closely related to addition and subtraction is the comparison of
two double-precision numbers 4 and B. One approach would be to use a
DDD operation to compute 4 — B and then perform a test to see whether
A — B s positive, negative, or zero. But other approaches may be used if we
make certain assumptions about the representation of double-precision
numbers. We have required that the high-order and low-order parts of the
double-precision number be normalized and nonoverlapping. Suppose that
in addition we require that the two parts of the number have the same sign
unless the low-order part vanishes. Then the comparison may be simplified.
We first compare the high-order parts of 4 and B. If they are unequal, the
number with the larger high-order part is larger. If the high-order parts are
equal, we compare the low-order parts. The result of this comparison deter-
mines whether the numbers are equal and which number is larger when they
are unequal.

Of course, one reason for using a comparison is that it is likely to be faster
than DDD subtraction. But another advantage is that on many machines it
may be performed without underflow. The subtraction exposes us to under-
flow when 4 and B are both small and nearly equal.

5.6. DOUBLE-PRECISION DIVISION

If the hardware provides some, but not all, of the double-precision opera-
tions, division is likely to be omitted. For example, on the models 85 and 195
of the IBM System/360, there are hardware operation codes for extended-
precision addition, subtraction, and multiplication but not for division. Thus,
it is quite common to have to program double-precision division. We shall
assume that the arithmetic is performed in FP(r, p, ¢/1) and that SSD addition
produces the results described for the coding in Section 4.3.

We shall begin by discussing SSD division. That is, we want to develop the
double-precision quotient of two single-precision numbers A and B. We use
SSS division to compute @, = A4 -+~ B. The remainder, which was discussed
in Section 1.10, is given by

(5.6.1) R — A — BQ.. )
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In Section 1.10 we saw that R can be represented as a single-precision number.

On some machines, for example the IBM 7090, the single-precision divide .

command produces R as well as Q,. But if the hardware does not provide R,
we must compute it. To do so, we first let C;, + C, be the SSD product BQ,.
Theorem 1.9.3 shows that C, can differ from A4 by at most r — | units in the
last place, so we may use an SSS subtraction to compute the one-digit number
D = A © C,. Since we know that R can be represented exactly as a single-
precision number, we can compute R by using an SSS subtraction to form
R=DOC,. Let Q, = R+ B. Then Q, and Q, are nonoverlapping num-
bers, so Q, + Q, is the desired representation for the double-precision
quotient.

We shall now extend this approach to produce DSD division. Here DSD
division means the division of a double-precision number A4, - 4, by a
single-precision number B to produce a double-precision answer. We shall
consider clean DSD division first, and then we shall see how this procedure
can be shortened to produce a coarse version.

Let C, be the SSS quotient 4, — B, and compute the remainder R’ =
A, — BC, as above. Let R = A — BC,, so

R=R + 4,

It is possible that we may require more than p digits to express the sum of R’
and A,, so we let R, + R, be the SSD sum of R’ and A4,. Let C, be the SSS
quotient R, — B. Unlike the situation in SSD division, C, and C, may
overlap, so we may have fewer than 2p digits of the quotient. (The extent of
this overlap will be studied below.) We continue the process by computing the
remainder R” =R, — BC,. Let S be the remainder 4 — B(C, + C,). Clearly

S= R - BCz,
SO
S=R'+R,

If we wished to compute a triple- or quadruple-precision answer, we would
compute S exactly and continue this process. But for DSD division, we
merely compute S, == R"” @ R, using SSS addition, and then we form the
quotient C; = S, + B. To produce the answer, we form the double-precision
sum of C,, C,, and C,.

We shall now study the extent of the overlap of the C,'s. Without loss of
generality we may assume that A, and B are positive. Let

A, = r'm, ri<m<l|

B =r'n, rit<<n<l.

We saw in Section 1.10 that the exponent of the quotient C, is e — f + k,
where kis 0if m < nand 1 if m =: n. The remainder R” may be written in the
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form

R = pevkosp,

Here /" may be unnormalized, but it is a p-digit fraction and 0 << I’ < n. It
follows that Q, and Q, in our procedure for SSD division do not overlap.
Butin our procedure for DSD division, the addition of 4 2 to R’ may make the
mantissa of R’ greater than n. In fact, the exponent of R, might be
e+ k — p - 1. But the largest R can be is

rRRl (] — pmR) < prekeai(pmt Py < perkepe2y,

It follows that the exponent of C, is at most e + k — P + 2 — f, so there is
at most a two-digit overlap of C, with C,. Similarly, there is at most a
two-digit overlap of C, with C,.

We shall now prove that there cannot be both a two-digit overlap of C,
yvith C; and a two-digit overlap of C, with C;. To this end, suppose that there
is a two-digit overlap of C, with C,. Clearly, this implies that A, is positive.
Let A, =r*m,, where r-' <m, < 1. Since g<e—p, we may write
A, = re**"?m’,. Here nr, is positive and less than 1, but it may have more
than p digits to the right of the radix point. Then

R =rko(l' 4 my),
and since there is a two-digit overlap of C, with C,, we must have
(5.6.2) '+ my, >

Then n + m} > rn, so my > (r — 1)n. Thus, the exponent of A, must be
e+ k — p, so we must have k = 0 and g =e — p. But then R can be
re;?resenled as a (p + 1)-digit number, so R, is a one-digit number. We may
write R, == re<-2¢*\J where d is either zero or a one-digit number in the range
r=' < d < I. From (5.6.2) we see that the mantissa of R, is at least n, so we
may write R’ = re*2-20" where I < n. Then

(5.6.3) S = prn( i),

so either § < re*2-2# or else S < r**3-22/"", But in either case there can be at
most a one-digit overlap of C; with C,. Therefore, the sum C,+C,+ G,
spans at least 3p — 3 digits.

To see how large the error in the approximation C, + C, + C, ~ A/B
may.be, we shall consider what would happen if the division process were
continued to produce C,. There can be at most a two-digit overlap of C, with
C,, so the error in C, + C, + C, is less than | in the (3p — S)th digit. To
obtain a better bound for this error, suppose that C, + C, - C, spans only
3p — 3 digits. If there is a two-digit overlup of C, with C;, there can be at
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most a one-digit overlap of C, with C,. Suppose that there is a two-digit
overlap of C, with C, and a one-digit overlap of C, with C;. Then S is given
by (5.6.3), and it may be expressed as a (p + 1)-digit number. Proceeding as
above, one may show that there is at most a one-digit overlap of C, with C,.
Thus, in all cases the error in the approximation C, + C, + C; = A/B is
less than one unit in the (3p — 4)th digit.

The final operation in clean DSD division is combining C,, C,, and C,.
We use SSD addition to combine C, and C,, and then we add C, to this sum
using SDD addition. This is the special case of SDD addition in which the
characteristic of the single-precision number is at least as large as the
characteristic of the double-precision number.

For coarse DSD division, it is typical not to develop C,. We first compute
C, and R’ as above; then C, is computed as (R' @ A4,) = B using SSS
operations. Our answer @, + Q, is the SSD sum of C, and C,. There may be
a two-digit overlap of C, and C,, so we may have developed only 2p — 2
digits. Moreover, if we were to develop C,, it might overlap with C,. Proceed-
ing as above, it is easy to show that the error in the approximation
Q, + @, = A/B s less than one unit in the (2p — 3)rd digit.

We now turn to DDD division. There are several ways in which this can
be programmed, and we begin by discussing two approaches often used for
coarse DDD division.

The first of these methods is based on the power series

1
l +x

(5.6.4) =] —xJxt—x3- +--.
This series converges when | x| < 1, and it converges very rapidly when x is
small. Write

A4, - 4, — A+ A4, .

Bl -+ Bz Bl[l -+ (leBl)]

Using x = B,/B, in (5.6.4), we have

so9 - SAL g -]

If B, and B, do not overlap and B, is normalized, we have
B —tp-
22 p-1
IBn | <r .

Then we may surely ignore the terms in (5.6.5) after (B,/B,)*, and we usually
ignore this term as well. Thus, we use DSD division to divide A4, + 4, by
B,, and then we multiply this quotient by 1 — B,/B,. -
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Let .C., ‘+ C, be the result obtained when 4, + 4 ; is divided by B, using
DSD division, and let D be the SSS quotient B, - B,. We form an approxi-
mation for

€+ CXl = D)=C, + C,— C,D~ C,D

by ignoring the term C, D and using SSS multiplication to form £ = C, » D.
Then our answer will be obtained by subtracting £ from C, + C, using an
SDD operation.

A second method sometimes used for coarse DDD division first computes
the reciprocal of B and then multiplies this reciprocal by 4 using DDD
multiplication. We compute the reciprocal of B by using Newton's method to
solve the equation

(5.6.6) 1 _s-o0
X

Newton’s method for solving an equation

(5.6.7) fx)=0

requires us to select a first approximation x, and form Xyy X3y . . . USING
5.68 = x, — L),

(5.6.8) Xrv = x, — )

Suppose that x, is a solution of (5.6.7), and let €, = x, — x,. Itis well known
that if f(x) is twice differentiable, then

i)
A+l Zf'(X,,)

for some { lying between x, and x,. [See, for example, Hildebrand (1956).]
If p, is the relative error €,/x,, we have

(5.6.9) Doy = L2XaL"Q)
! 2f'(x,)

Applying this method to Eq. (5.6.6), we obtain from (5.6.8)
Xns1 = xn(z - an)'

We §hall use | = B, for our first approximation x,, so x, is a good approxi-
mation for 1/B. From (5.6.9) we find (see Exercise 12)

(5.6.10) Pory = pl.

)
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Since x, is accurate to almost single-precision accuracy, x, will be accurate to
almost double-precision accuracy. We shall take x, to be our approximation

for 1/B.
We now consider the details of this computation. Let C be the SSS

quotient | = B,, so
(5.6.11) x, = C(2 — BC).

Here BC = 1, and this approximation is good to almost p digits. Then it is
reasonable to approximate the expression 2 — BC by 1 + D, where D is a
single-precision number. We want

14+ D=1+ (1 — BC),

so we take D to be the high-order p digits of | — BC. Let E, + E, be the
SDD product of B and C. Then we need an SDS operation to compute D.
This is accomplished by the SSS operations

D=l @E.)@Ez-
We now replace (5.6.11) by
x, =C(l+ D)=C+ CD.

Our approximation for 1/B will be the SSD sum of C and F, where Fis the
SSS product C « D. The analysis of the accuracy of this operation forms
Exercise 12.

We now address the problem of producing clean DDD division. Our
approach will be based on the procedure used above to produce the clean
DSD quotient. In general terms, our procedure for the clean division of the
double-precision number 4, + A, by the double-precision number B, + B,
will be

1. Let C, be the SSS quotient 4, = B,.
2. Compute the remainder

R= (Al + Az) - (Bx + Bz)Cn-

3. Let R, be the high-order word of R.
4. Let C, be the SSS quotient R, - B,.
5. Compute the remainder

S=R—(B, + B,)C,.

6. Let S, be the high-order word of S.
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7. Let C, be the SSS quotient S, + B,.
8. Let Q, + Q, be the double-precision approximation for
C, '{‘ Cz '{' C’.

If R and S were computed exactly in steps 2 and 5, this process could be’
continued to produce a triple- or quadruple-precision answer.

In considering the details of this procedure, we may assume that 4, and
B, are positive. Let

A, =r‘m,, rt<<m <l,
B, = r'n,, it <n <l

As we saw in the case of DSD division, there may be an overlap of C, with
C; and of C, with C;. But DDD division differs from DSD division in that B,
may be less than B, so we may have C, :> A/B. If this happens, R will be
negative.

We shall now consider the computation of R in step 2. First, let D, + D,
be the SSD product of B, and C,, and let E be the remainder A, — B,C,.
This is exactly the computation used in DSD division, so we know that E may
be represented as a single-precision number and that it may be computed as

E=(A,@D,)—-Dz

using SSS operations. Now C, has the exponent e -+ k — f, where k is 0 if
m < nand k is | if m > n. Then E may be written as r***-2m’, where m’ is a
fraction with 0 << m’ < n. Now

R=FE+{ 4, - B,C,.
Here A, has an exponent g <~ ¢ — p, and the exponent of B,C, is at most
e - A =S4 (f—p)=e -k — p. Since we want only 2p digits of the
quotient, we develop only a double-precision representation for R. Thus, we

let F, -+ F, be the SSD product B,C, and ict R, -|- R, be the double-precision
representation for E + 4, — F,. Then

R=R,+R,—F,

We use this value of R, in step 4 to compute C,.
To compute S in step 5, we form the remainder

G=R, - C,B,
as above. Then

S=R'—'.C38::G'l’ RZ_FZ_CZBI‘



178 DOUBLE-PRECISION CALCULATION CHAP. §

Let H be the SSS product C, x B, and let S, be thesum GO R, 0O F, © H
computed with SSS operations. We use this value of S, to compute C; in
step 7.

With this procedure we cannot guarantee that we shall produce the prop-
erly chopped answer, since the remainder at the ﬁna‘l step may be negatlve.
The analysis of the overlap of C, with C; and of C, with C, form§ lji)sermsc 14,
and the shortening of this procedure to produce coarse DDD division forms
Exercise 16. . ‘ .

One problem that arises in this computation is underflow in the remamfie!'.
The characteristics of R, and S, are about p and 2p less thaq the characteristic
of A,. In fact, they may be even smaller unless the remainders are unnor-
malized. Then if A is small, these remainders may underﬂova. But if Bis also
small, the quotient may be on the order of 1, so it is annoying nqt to be able
to compute it. We note that the quotient will underflow when | A | is small a‘;]d
| B|is extremely large. This suggests that we can perform a lc.st.' zfnd when the
quotient does not underflow we can scale 4 and B before division.

A minor irritant is that we may have |4, =~ B,| > Q > | A/B|. Then the
quotient A/B does not overflow, but the computation of C, = 4, <~ B, does.
For a coarse division routine, we might allow the answer to overﬂow'when
this happens. But for clean DDD division, we would have to test for this case
and introduce scale factors. .

Finally, we repeat our earlier warning. The details of a program to perform
double-precision arithmetic will depend on the representation of thg doubl:-
precision numbers and on the results produced by the SSD operalnpns. T e
procedures discussed here show the genera] approaches, but modifications
may be necessary for a specific implementation of them.

6.7. WRITING DOUBLE-PRECISION PROGRAMS
WITHOUT LANGUAGE SUPPORT

We shall now treat the problem of writing a program using highe‘r—
precision arithmetic than the compiler supports. To be specific, suppose that
we are using FORTRAN and that the compiler does not support the double-

precision data type. (More generally, we may interpret double-precision to

mean twice the highest precision supported by the compiler.) )
We shall have to have subroutines which we can call to_perform the

. . " i ‘e
double-precision arithmetic. For each arithmetic operation we shall write
call, such as

(5.7.1) CALL ADD (Al1,A2,B1,B2,CI,C2)

To avoid having to write six arguments in each of these calls, the subrou.ti:le:
might require that the double-precision number be thought of as a subscrlptf] °
vari:"\jwith dimension 2. Then instead of (5.7.1), the call would have
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form
(5.7.2) CALL ADD (A,B,©)

With this approach, the subroutine would require that the high- and low-order
parts of the double-precision number be stored in adjacent memory locations.
If we wanted A, B, and C to be 10-by-10 matrices, we would have to make
them three-dimensional arrays dimensioned (2,10,10). The subscript which
determines which part of the double-precision number we are referring to
must be the first subscript, so that the two parts of the number are stored in
adjacent locations. To add the (i, /) elements of 4 and B and store the result
in the (i, j) position of C, we would have to write

CALL ADD (A(L,L)),B(1,1,)),C(1,1,)))

It is clear that our program will be more tedious to write and more
difficult to read than it would be if we could use the double-precision data
type. In fact, the “higher-level language” no longer seems to be as high-level.
But we can still use its indexing capabilities, and we can use DO loops and IF
statements to control the flow of the program.

The introduction of an additional subscript to handle double-precision
numbers may make the program rather cumbersome. There is a trick which
can sometimes be used to simplify the representation of double-precision
numbers. Suppose that we are using a version of FORTRAN which
suppose the COMPLEX data type and that our program uses only real
numbers. If we type our double-precision numbers as COMPLEX, the
proper storage will allocated and the right arguments will be passed to
subroutines. Since we are not using complex arithmetic in the program, we
may be able to exploit the COMPLEX data type still further. Complex multi-
plication and division are often performed by subroutines, so the opera-
tions * and - are compiled as subroutine calls. We could replace the
routines which perform complex arithmetic by new routines which have the
same names but which perform double-precision arithmetic. The double-
precision multiplication could be coded as C = AxB instead of using a CALL
statement. Unfortunately, complex addition and subtraction are so simple
that they are usually compiled directly, so we would still have to code double-
precision addition and subtraction in the form (5.7.2).

A more serious problem arises when we want to enter constants to double-
precision accuracy. For example, suppose that we want to enter z to 32
decimal places but that the version of FORTRAN we are using supports only
arithmetic in FP(16, 14, a). Suppose that we wrote

Al
A2

if

3.141592653589793

(5.7.3
) .2384626433832795E-15 )

i
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and then set
(5.7.9) Pl = Al -} A2

Here PI would be accurate to only 14 hexadecimal digits, because the conver-
sion of Al is performed to that accuracy. To see that this is so, we shall
consider the simpler case of a statement such as B = .2. The hexadecimal
equivalent of the decimal number .2 is .333 - - -, so the statement B = .2 will
produce a value of B which is accurate to only 14 hexadecimal digits. Thus,
the addition of A2 to Al in (5.7.4) cannot compensate for the fact that the
value of Al produced by (5.7.3) is accurate to only 14 hexadecimal digits.

Instead of using (5.7.3) and (5.7.4), our approach will be based on the fact
that integers less than 16'4 may be entered exactly. Now 16'4 ~ 7.206 x 10'¢,
5o we may enter any 16-digit integer exactly. In place of (5.7.3) we write

Al = 3141592653589793.
A2 = 2384626433832795.

Then the number we want to store in PI is
X = (A14+A2/10'9)/10'3

We compute X using double-precision arithmetic and store the value in PI.

The same approach could be used for input. Fortunately, the treatment of
input is usually simplified by the fact that the numbers are shorter. Counted
numbers seldom involve more than 10 or 12 digits, and measured quantities
are usually known to only a few digits of accuracy. Mathematical constants,
such as z, are usually entered as constants at compile time rather than entered
as input.

For output, the problem is more complicated. We may want to print our
answers to double-precision accuracy, either for use in some other program or
for testing the program. One approach is to print them without converting
them. (We could use the Z format with the FORTRAN compilers for the
IBM System/360.) This is often the best approach for numbers to be used as
constants in another program. But if we want to print the double-precision
representation for a number A, we first find an integer k such that

10% > | A] > 10+,

and then we reverse the process described above for input.

§.8. USES OF DOUBLE-PRECISION

As we have mentioned, some machines have hardware operation codes to
perform double-precision arithmetic, while other machines use subroutines
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to perform these operations. Regardless of how the arithmetic is performed,
it may or may not be supported by the higher-level languages. There are many
machines on which FORTRAN supports the double-precision data type even
though the hardware has no operation codes for double-precision arithmetic.
On the other hand, there are machines on which the hardware can perform
higher precision arithmetic than that supported by the compilers. We would
prefer to have the double-precision arithmetic performed by the hardware,
because it is significantly faster. Also, we would find it much more convenient
to have the compilers support the double-precision data type. In some
situations, the manner in which double-precision is supported is crucial; in
other cases it is more a matter of convenience. In this section we shall discuss
several different situations in which we would want to use some double-
precision arithmetic. In each case, we shall consider how important it is to
have the arithmetic performed by the hardware and to have the double-
precision data type supported by the compilers.

1. Development and Testing of Single Precision

Subroutines .

Here we consider single-precision subroutines which are used as library
programs. They may be part of the compiler or they may be programs written
at a given installation, but because of their extensive use, we would like them
to be both fast and accurate. They are expected to be carefully written and
carefully tested.

a. Development of an Approximation

Consider the problem of developing a library program to compute a func-
tion f(x). For example, we might want to write a single-precision exponential
routine. It is typical to begin by reducing the range of the argument to some
interval @ << x < b and then use a polynomial or rational approximation g(x)
for £(x) in this interval. Thus, we seek a function g(x) with
(5.8.1) o(x) = f(x) fora < x <b.

Our program for f(x) will evaluate p(x) using single-precision arithmetic, so
the value it will produce for f(x) will be §(x) instead of g(x), where

(58.2) F(x) =~ p(x).

Typically, we would like the approximation (5.8.1) to be good to, say, two or
three bits beyond the word length, so that the error in (5.8.1) is small with
respect to the error in (5.8.2).

We usually have té write a program to compute the coefficients of g(x).
Since our objective is to produce an approximation @(x) which is good to at
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least single-precision accuracy, we use higher-precision arithmetic to compute
these coefficients. They will then be rounded to single-precision and used as
constants in our program for f(x).

Thus, as part of the development of a single-precision program to compute
Jf(x), we have to use a double-precision program to compute the coefficients
of our approximation. We may want our final program which computes f(x)
to be very efficient, but the speed of the program which computes the
coefficients of @(x) is not important. This program is run only once as a
development tool, so it is acceptable to have the double-precision arithmetic
performed by subroutines. In fact, there have been cases in which the coe.ﬂi-
cients of ¢(x) were computed on a different machine from the one for which
the program for f(x) was being written.

In developing the approximation, it would be extremely convenient to
have a compiler which supports the double-precision data type. But these
approximations have often been computed without such support. Indeed, the
approximations in the library routines for the highest precision supported by
the compiler have to be produced without such support.

b. Testing a Single-Precision Subroutine

To test a subroutine which computes the value of a function f(x), we
generate some test values for x and use the subroutine to compute f(x). One
of the best ways to test these results is to extend each test value of x to
double-precision by appending zeros and then compute f(x) using a double-
precision routine. (See Chapter 10.) Then we can estimate the error by
comparing these values for f(x). Since we are interested in only the first two or
three decimal digits of the error, the double-precision program for f(x) need
be accurate to only two or three digits beyond single-precision. This accuracy
is usually quite easy to achieve.

Since our double-precision program will be run for many different test
cases, the speed of the double-precision arithmetic is a little more important
than it was under heading g. The time required for each test case may
determine how extensive our testing will be.

As under heading a, it is convenient, but not mandatory, to have the
compiler support the double-precision data type.

2. Inserting a Few Double-Precision Operations
in an Otherwise Single-Precision Program

There are many programs in which it is desirable to perform a few opera-
tions in higher precision than that used in the rest of the program. One
example of this situation is the quadrature problem discussed in Secuon.4.'l.
There we saw that it was quite attractive to use higher-precision arithmetic in
the accumulation of the sum. Another well-known example is the use of
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higher-precision arithmetic in the accumulation of inner products in matrix
programs.

These examples are quite typical. We can often produce a more accurate
answer by the judicious use of a few double-precision operations. Then we
have a trade-off between speed and accuracy, and the speed of the double-
precision arithmetic may determine whether or not we shall perform these
operations in double-precision. It may be crucial to have the double-precision
arithmetic performed by the hardware.

For example, in writing a library subroutine for a function such as sin x
or ¢*, we might want to use double-precision arithmetic in the reduction of the
argument. [See Cody (1971b) or Kuki (1971).] If the double-precision arith-
metic is performed by the hardware, this may produce better accuracy with
negligible loss of speed. But if the hardware does not provide double-precision
arithmetic, we may be unwilling to accept the degradation in speed. In other
situations, we might be willing to have the program run significantly slower
if it will produce better accuracy, so it would be acceptable to have the
arithmetic performed by subroutines.

When the double-precision arithmetic is performed by the hardware, it
can be used in programs written in Assembler language, even if the compilers
do not support the double-precision data type. This can be of benefit to the
user of higher-level languages by providing him with more accurate single-
precision library programs.

However, a great many of today’s programs and subroutines are written
in higher-level languages, and we would like to have these programs use
double-precision arithmetic where it is appropriate. Some of them may do so
by calling subroutines, as described in Section 5.7, but the use of double-
precision will be much more extensive if the compiler supports the double-
precision data type.

3. Increasing the Precision of a Program To
Determine Its Accuracy

It is quite common for a subroutine intended to be used as a library
program to be subjected to the testing described under heading 1.5. But such
testing is less often applied to an application program; the user is more
likely to wait until he has reason to question the accuracy of the results
produced. Then he would like to run the program in higher-precision to assess
the accuracy of his single-precision program. Usually the objective is to
determine whether single-precision arithmetic will suffice, so only modest
changes will be made in the mathematics.

The doublc-precision program is being used for test runs rather than
production runs, so the speed of the double-precision arithmetic is usually
not vital. It is acceptable to have the arithmetic performed by subroutines.

)
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But the conversion of the program from single-precision to double-precision
may be a formidable task, so compiler support for the double-precision data
type is often crucial.

4. Programs Requiring Double-Precision
Calculation

There are some programs in which the calculation must be performed in
double-precision in order to produce a good answer. Since this situation is
commonly misunderstood, we shall discuss the way it can arise. One often
hears the comment that high-precision arithmetic is unnecessary because the
data are known to only a few digits of accuracy and we want only a few
digits of accuracy in the answer. To be specific, suppose that the data are
accurate to 1 part in 10,000 and that we want to know the answer to within
1 part in 1000. That is, we hope that neither the errors in the measurement of
the data nor the errors in the calculation will produce an error in the answer
greater than 1 part in 1000. To have any hope of achieving this result, the
problem must be well conditioned. A relative error of .000! in the data must
produce a relative error less than .001 in the answer. But even though the
problem is well-conditioned, we may be using an algorithm which is not.
Consider the use of the power series in Section 4.2 to compute e~ * and sin x.
These problems were reasonably well conditioned, but as the value of x
increased, the precision needed to produce a good answer grew rapidly.
Another example of this situation is the use of the formula

. er —e™*

sinh x = 3

when x is small. (See Section 3.10.) Thus, even though the problem is well
conditioned, the algorithm we are using may require that we use high-
precision arithmetic.

In the examples mentioned above, it is easy to see how to revise the
algorithm so that the calculation can be performed in single-precision. This
might suggest that when high-precision arithmetic is needed for a well-
conditioned problem, one should look for a better algorithm instead of
increasing the precision. This approach should certainly be considered. But
an appropriate algorithm may be far from obvious, and the user is interested
in getting an answer to his problem. Therefore, he would often prefer to
increase the precision and use the algorithm at hand rather than undertaking
the research necessary to discover a better algorithm.

When one realizes that more than normal precision is required for his
calculation, he will do whatever is necessary to produce the answer. Except
for extremely large problems, he will usually not demand that the arithmetic
be performed by hardware. While he would like to have the compiler support
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the double-precision data type, he will usually do whatever coding is necessary
to solve his problem.

5. Programs Requiring Calculations in
Higher-than-Double-Precision

In Section 4.2 we saw that the use of the power series to compute sin x
when x is large is an example of an algorithm which is so sensitive to rounding
error that more than double-precision accuracy is required. Higher-precision
arithmetic will be discussed in the next section.

5.9. HIGHER-PRECISION ARITHMETIC

Of the uses of double-precision considered in the previous section, those
discussed in Sections 5.8.1, 2, and 3 involved the use of double-precision
arithmetic to support programs written primarily in single-precision. Now the
meaning of single-precision varies considerably from one machine to another.
But if a significant number of problems are run in a given precision, the
discussion in the previous section shows the desirability of hardware and
software support for arithmetic at twice that precision. Experience shows that
if single-precision is on the order of 20 or 25 bits, there will be a significant
number of programs which will be run in double-precision. But if single-
precision is on the order of 50 bits, the vast majority of today’s programs can
be run primarily in single-precision. Thus, precision on the order of 50 bits
seems to be adequate as the normal precision for most of todays programs,
and precision on the order of 100 bits is desirable as support for programs
written primarily in 50-bit precision.

As we mentioned at the end of the previous section, the algorithm we are
using might be so sensitive to rounding errors that we would have to use more
than 100 bits of precision. But if a problem requires more than this precision,
it may require substantially more, so it does not seem necessary to support
any specific precision beyond about 100 bits. Instead, we would like to have
subroutines to perform N-fold-precision arithmetic, where the user can
specify N.

Suppose that we want to perform 16-fold-precision arithmetic on the IBM
System/360. That is, we want to perform arithmetic in a system FP(16, 96, a).
If our representation of these numbers were a generalization of the one we
used for double-precision numbers in Scctions 5.3-5.7, each part of the
number would have its own characteristic and mantissa, Suppose that X is on
the order of 1. Since the smallest normalized positive number on the 1BM
System/360 is 16753, the low-order parts of the representation of X would
underflow. Therefore, it is not reasonable to require that each part of the
representation of the N-fold precision number be a valid floating-point num-
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ber. Also, consider the case in which we want to compute X (P Y, where X is
on the order of 1 and | Y| < 16743, Then replacing Y by zero would damage
about one-third of the digits in X @ Y. Thus, as our precision increases, we
also want to increase the range of the characteristic.

It is common for N-fold-precision subroutines to use fixed-point opera-
tions instead of floating-point operations to produce arithmetic in
FP(r, Np, a@). Then the parts of the N-fold-precision number need not be
valid floating-point numbers, so we can use, say, a full word to represent the
characteristic.

Suppose that the machine we are using provides fixed-point arithmetic
operations which handle signed p-digit integers in the radix r. Except for the
pre- and postshifts, we can think of each word as a digit and perform the
arithmetic in the radix r2. [If N is extremely large, it might suffice to normalize
in the radix r». That is, we might be willing to perform the arithmetic in the
system FP(r®, N, a).]

EXERCISES

1. Show that the number 1/(r — 1) has the representation .111111 - .. in the base
r. Use this result to find the hexadecimal representation for the decimal num-
bers .2 and .1.

2. Write a FORTRAN program for the double-precision version of the quadra-
ture problem in Section 4.1. For the computation of X use X == /«H and X =
(I + 1)sH. Program SDD addition to accumulate the sum S in twice-double-
precision.

3. Assume that we are given SSD operations for addition and multiplication.
a. Program coarse DDD multiplication.
b. Program clean DDD multiplication.
c. Program coarse triple-precision multiplication.
d. Program clean triple-precision multiplication.

4. To test the programs written in Exercise 3, we need SSD operations. If we have
a version of FORTRAN which provides clean double-precision arithmetic, the
following FORTRAN programming will produce SSD multiplication. Let
A, B, C1, and C2 be typed single-precision, and let D be typed double-
precision. Write

D = DBLE(A)+B
Ct =D
C2 = D-ClI

Then CI, C2 is the SSD product AB. For SSD addition, we may use cither this
approach or the coding described in Section 4.2.

Using these SSD operations, test the programs written for Exercise 3. What
assumptions do you have to make about the representation of double- and
triple-precision numbers?

)
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In Section 5.4 we saw that clean DDD muttiplication could be produced by
combining the four products in (5.4.5). Here the first three products are com-
puted using SSD multiplication, but we may use $SS multiplication to form
A * B,. If single-precision multiplication takes a long time, we can use a
different approach which requires only three SSD multiplications. We assume
that our representation of double-precision numbers requires that if the low-
order part of the number does not vanish, it has the same sign as the high-order
part and its characteristic is exactly p less than that of the high-order part.
(Then we cannot require that the low-order part be normalized.) Let 4 and B
be given by (5.4.1), and set

C'—“I‘_pA] — A,
Dﬁ’-pB| "‘Bz.

We assume that multiplication by a power of r can be performed rapidly by
adjusting the characteristic. Now

AB = A\B, — (r’CD — r~PA\B, — r?A;B,) + A,B;.

Then we need only three SSD multiplications to form 4,8,, CD, and 4,B,.

a. Show that C and D can be represented exactly as p-digit floating-point
numbers.

b. Assume that we have SSD operations for addition and multiplication.
How should the terms in the above formula for 4B be combined to produce
the clean DDD product A8 of A and B?

¢. Program the approach devised in part b and use the method described in
Exercise 4 to test the program.

What changes must be made in Procedures 1, 2, and 3 of Section 5.5 to produce
subtraction instead of addition?

Suppose that we have an SDD add operation available and that we want to
program DDD addition. Let 4 and B be given by (5.4.1). We consider coding
the DDD addition as either

B DB A)
or
B, ® (B DA,

where (P denotes SDD addition. Which of these formulas is better in the add
magnitude case? Which is better in the subtract magnitude case? How much
difference does it make which formula we use?

Consider Procedure 3 in Section 5.5. We observed that the SSD addition in
step 7 was unnecessary in the add magnitude case, since it would suffice o set
S, - Fyand S, - H.Show by an example that F, and A might overlap in the
subtract magnitude case, so step 7 is nceded to clean up the answer.

What simplifications can be made in Procedure 3 of Section 5.5 if we are willing
to accept coarse DDD addition? )
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10.

11.

12.

13.

14.

15.
16.
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Write a program to compare two double-precision numbers. The program
should determine whether or not the numbers are equal, and if they are
unequal, it should determine which number is larger. You may assume that the
representation of double-precision numbers requires that the two parts of the
number do not overlap. However, the program should work even if the high-
and low-order parts of the double-precision number have opposite signs. It
should also work when the high-order part of the number is not normalized.
You may assume that underflow does not occur during the execution of the
program.

Suppose that we use the method of coarse DDD division based on the power
series. Let C, - C, be the result obtained when A4, -|- 4, is divided by B,
using DSD division, and let D be the SSS quotient B, -~ B,. Let E be the SSS
product C, « D, and let Q, -+ Q, be the SDD sum of —Eand C, -+ C,. How
accurate is the approximation Q; + Q, = A4/B?

Suppose that we use the approach based on Newton's method to compute the

reciprocal of a double-precision number B. Let x, be the SSS quotient | - B,.

a. Show that (5.6.10) holds.

b. Suppose that x, is computed exactly as x4(2 — Bx,). How accurate is the
approximation x; =~ 1/B?

¢. To produce a coarse reciprocal, we let C be the single-precision number x,
and let E, + E, be the SDD product of B and C. We then compute D
using the SSS operations

D=(1QE)QE,

and let F be the SSS product C « D. Our approximation for 1/8 is the SSD
sum of C and F. How accurate is this approximation for 1/B?

Consider the procedure for clean DDD division given in Section 5.6. Let

A and B be positive numbers.

a. Show by an example that it is possible for 4, - B, to overflow even though
A/B < Q.

b. Show by an example that it is possible for R, to underflow even though
A/B > 1.

c. Devise a strategy to avoid spurious overflows and underflows in this pro-
cedurc by testing and scaling. If A/B < Q, the program should not
overflow. There should be no underflows unless one or both parts of the
answer underflows.

Consider the procedure for clean DDD division described in Section 5.6.

a. Show by an example that there may be a two-digit overlap of C, with (.
b. What is the minimum number of digits spanned by C, | C, | ;?

¢. How accurate is the approximation C, -} C; + C; = 4/8?

Write a program to perform clean DDD division and test it.

How can the procedure for clean DDD division in Section 5.6 be shortened
to produce coarsc DDD division? Estimate the maximum crror for your
procedure.

)

6 ROUNDING

6.1. GENERAL CONSIDERATIONS

For any real number x, the values < and x° obtained by chopping or
rounding x to p digits in the base r were defined in Section 1.5. In Section 3.2,
we saw that

0 p< e
|p| S *’.-(p—n_

x=(l-pkx,

6.1.1 —o
( ) X =(l 'l‘ P)x’

Thus, with rounding we have a smaller bound for the relative error, but we do
not know its sign. For binary systems FP(2, p, a), we note that }r-»-1 = p-»,
so the bound for the relative error introduced by a single operation is the
same in FP(2, p, R) as it is in FP(2, p -+ 1, ¢). From this result we might be
led to think of rounding as having the same value as adding a bit to the
precision and using chopping. However, there are distinctions between
FP(2, p, R) and FP(2, p 4 1, c), and depending on what we are doing we may
have a decided preference for one system or the other.

Let a = r°m be a positive, normalized number in S(r, p), and suppose that
a is not a power of r. Then x = g if and only if x lies in the interval I :
a<<x<a-res, while x’ = awhen x isin the interval I;: a — }re-? < x <
a -+ §re-?. Thus, either chopping or rounding maps an interval of length r<-#
into a number in S(r, p). (A slight modification of /, is necessary if a is a
power of r, and the obvious modification of /, and I. must be made if a is
negative.) We may think of x” as representing the interval /, by its midpoint,
while x represents /. by the end point closest to the origin. Thus, if we are
given either £ or x°, we know only that x lies in a given interval of length r*-?,

189
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so either % or x_ gives us the same amount of information about x. Similarly,
the bounds for the relative error given in (6.1.1) for either rounding or chop-
ping restrict p to an interval of length r~t>-1,

The distinction between rounding and chopping is twofold. First, rounding
gives us a smaller bound for the absolute value of the relative error introduced
at a given stage in the calculation. This, in turn, may lead to a smaller bound
for the error in the answer. The other distinction is that chopping always
decreases the absolute value of x, while rounding may either increase or
decrease | x|. In some situations, consistently chopping numbers may intro-
duce a bias in the results which rounding would eliminate. (See, for example,
the quadrature problem in Section 4.1.) In other situations, the errors
introduced by chopping may compensate.

However, even in the case in which the errors introduced by chopping tend
to compensate, chopping usually will not produce a smaller bound for the
error than rounding would. For example, suppose that we have a and b in
S(10, 6), and that

x =~ a = 6.54321
y=b=111IL

Suppose that we want to compute x — y, so we form
a®@b=a— b=>543210.
If a and b are x and y, respectively, we find that
(6.1.2) a@Qb—105<x—y<a®b-+ 103
But we find that (6.1.2) still holds if @ and b are X° and 3°. Thus, even though
the errors introduced by chopping tend to compensate while the errors
introduced by rounding might add, we still obtain the same bounds. On the
other hand, if we had been interested in x - y instead of x — y, we would
have formed a @ b = 7.65432. In place of (6.1.2) we would find
aPpb<x+y<a®b-2.10%

if a = x and b = §, while

aPb—-103<x+y<adb4 103
if a=Xx"and b =". In each case x -}- y is known to lie in an interval of

length 2. 1073, but rounding produces a smaller bound for the absolute value
of the error.

)

sec. 6.2 USES OF ROUNDING 191

6.2. USES OF ROUNDING

There are several ways in which rounding might be used in a program. In
some cases, we might perform the entire calculation in FP(r, p, R). In other
cases, we might perform most of the calculation in some other system
FP(r, p, a), with an occasional arithmetic operation performed in FP(r, p, R).
Finally, we might use rounding when we shorten a number from double-
precision to single-precision. The way in which rounding is used will depend
to a large extent on what is provided by the hardware and software.

We are likely to perform almost all our floating-point arithmetic in
whatever system FP(r, p, a) is supplied by the hardware or software of the
machine we are using. This system probably will not be exactly FP(r, p, ¢) or
FP(r, p, R), but it is more likely to be a variant of chopping than rounding—
particularly when the floating-point arithmetic is performed by the hardware.
There have, however, been a few machines which provided a form of rounded
arithmetic. For example, the CDC 6600 has operation codes which preround
the operands. This produces a system FP(2, 48, a) which is different from
FP(2, 48, R) but which does provide some of the effects of rounding.

Rounded arithmetic is somewhat more common when the floating-point
arithmetic is performed by software instead of hardware. Again, there are
many variations in the details of the implementation of rounding but in some
cases software has actually provided arithmetic in FP(r, p, R).

We have seen that the advantages of rounded arithmetic are that it tends to
produce smaller error bounds and that it tends to reduce bias. Although we
shall use whatever system FP(r, p, a) is provided by the machine we are using,
we would probably prefer FP(r, p, R) to FP(r, p, ¢) if we were given our
choice. The principal reason for the prevalence of chopped arithmetic is that
it is easier to implement and it will probably be a little faster. Of course, in
considering a given implementation of either rounding or chopping. there are
other questions which must be considered. For example, we would have to
explore the question of whether there are any anomalies in the arithmetic and
the question of how it can be used for operations such as FLOAT to FIXED
conversion and programmed double-precision arithmetic.

We shall now consider using rounding selectively. Suppose that we per-
form almost all our arithmetic in FP(r, p, c/g) but that we want to use rounded
arithmetic in a few operations in the program. An example of this is the
quadrature problem discussed in Section 4.1. In that section we discussed the
idea of performing the entire calculation in FP(16, 6, c/1) except for the
accumulation of the sum S. The only difference between the programs which
produced the output shown in Figures 4.1.1 and 4.1.6 was that in the latter
program the addition of terms to S was performed in FP(16, 6, R). From

)
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these results we can see the advantage of inserting rounding at a few crucial
points in the program. It is particularly advantageous on a machine on which
it is easier to produce rounded results than to perform double-precision
arithmetic. (This is not the case with the IBM System/360.)

Finally, we consider the problem of shortening a number from double-
precision to single-precision. This situation arises when double-precision
arithmetic is used selectively at a crucial point in the program. Suppose that
X is typed single-precision, and we write

(6.2.1) X=--

where the expression on the right-hand side of (6.2.1) produces a double-
precision result D. With many FORTRANS, including those for the IBM
System/360, this result D js chopped to single-precision and stored in X. That
is, X = D. But our use of double-precision in (6.2.1) suggests that we were
concerned about accuracy, so we might prefer to have the slightly more
accurate value X = D°. In the next section we shall discuss how this could be
coded.

6.3. IMPLEMENTATION OF ROUNDING

We shall now address the question of how one can incorporate rounded
arithmetic in his program. This will depend on the type of arithmetic provided
by the hardware, and it will also depend on whether or not the language in
which the program is being written provides a way to request rounding.

We have mentioned that the commonest situation is for the hardware to
provide some variant of chopped arithmetic. But some machines are more
versatile. For example, the CDC 6600 has one set of operation codes which
produce chopped arithmetic and another set of operation codes which produce
a version of rounded arithmetic. With such a machine, the programmer who
is using Assembler language has his choice of which arithmetic to use,
although this is not necessarily true for the programmer who writes his
program in FORTRAN.

To produce a rounded result, we must look at the digits discarded. Sup-
pose that we are using a machine which performs arithmetic in a system
FP(r, p, clg) and produces only the high-order p digits of the result. Unfor-
tunately, there is no way we can use this number to produce the correctly
rounded result. Somehow we must gain access to the digits discarded to find
out whether or not what we discarded is as large as half a unit in the last place
retained. We shall assume that r is even, since this is true on all machines
currently in use. Then we need look at only the first digit discarded to see
whether it is as large as r/2. Thus, if the hardware makes available one or more
extra digits, we can program rounding—at least in Assembler language.

)
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Indeed, arithmetic in FP(r, p, R) can be produced by performing arithmetic in
FP(r, p -I- 1, ¢) and then rounding the result to p digits.

Thus, if we want to perform rounded arithmetic on a machine which
provides only chopped arithmetic, we are faced with the requirement of
developing at least one extra digit in the result and then rounding the result to
p digits. Usually this means that we have to develop the result in double-
precision and then round it to single-precision. For example, suppose that we
have a machine which performs arithmetic in FP(r, p, ¢) and that we want to
compute

(6.3.1) X==A®B

in FP(r, p, R). We first use an SSD add to produce the double-precision sum
of the two single-precision numbers A and B, and then we round this sum to
single-precision. There are some machines, for example, the IBM 7090, on
which many of the single-precision operations are really SSD operations.
Then rounding can be programmed quite cheaply—at least in Assembler
language. But on other machines, for example, the IBM System/360, most
single-precision operations produce only single-precision results, so rounded
arithmetic takes longer than double-precision arithmetic. In that case, arith-
metic in FP(r, p, R) usually would not be used for computational purposes,
although it might be used for study purposes, as in our study of the quadra-
ture program in Section 4.1.

As we saw in Chapter 5, the FORTRAN coding to produce the SSD add
needed in (6.3.1) would be

(6.3.2) D :- DBLE(A)|-B

where D is typed double-precision. To complete the operation in (6.3.1), D
must be rounded to single-precision and stored in X. We saw in Section 6.2
that rounding a number from double-precision to single-precision is of
interest in itself.

Suppose that S and D are typed single-precision and double-precision,
respectively, and that we want to round the value of D to single-precision and
store it in S. First, we write the FORTRAN statement

(6.3.3) S=D

and we assume that this statement will store the high-order digits of D in S.
(This will usually be the case, but it may not be true if the double-precision
arithmetic is performed by software and the routines do not guarantee sign
agreement between the high-order and low-order parts of the double-precision
number.) Then the FORTRAN expression D— 8 produces the remaining
digits of D, and if it does not vanish, it has the same sign as D and 8, If
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| D—S] is less than one-half a unit in the last place of [ S}, S is the correctly
rounded result; otherwise the absolute value of S must be increased by I in
the last place. Thus, we want to increase the absolute value of S whenever
2.|D—S]isat least | in the last place of | S |. This may be accomplished by the
following FORTRAN statement:

(6.3.9) S = S+2.4D-S)

Since S contains the high-order digits of D, in place of (6.3.4) we could use the
FORTRAN statement

(6.3.5) S = D+(D-S)

If we are writing the program in Assembler language, we might use this
same approach. On the other hand, some machines, such as the IBM 7090 and
the IBM System/360 models 85 and 195, have an operation code which rounds
a double-precision number to single-precision.

We shall now consider the question of how rounding can be supported in
higher-level languages when we are working on a machine which does not
perform its arithmetic in FP(r, p, R). First, we should have in the language a
function ROUND(D) whose argument D is a double-precision number and
whose value is D rounded to single-precision. The result should be typed as
single-precision. Since the coding for this function is so simple, it should be
incorporated as an in-line subroutine rather than as a call to a subprogram.
PL/I has the syntax for such a function, but instead of rounding D it uses the
bias removal operation B(X) discussed in Section 6.4.

Performing all arithmetic in FP(r, p, R) is more difficult. If the hardware
provides only chopped arithmetic and delivers only the high-order p digits of
the result, there is really no way to produce rounded arithmetic short of
producing the double-precision result and rounding it to single-precision. On
the other hand, suppose that the hardware operations for single-precision
arithmetic are really SSD operations. We would like to be able to write

(6.3.6) ROUND(expression)

and have the compiler round the double-precision number produced by the
expression in the parcntheses in (6.3.7) whenever the last operation used in
producing this expression was an SSD operation. This facility was provided
by the modifications to the FORTRAN compiler for the IBM 7090 made at
the University of Toronto. [See Kahan (1965a, 1966).]

6.4. BIAS REMOVAL

We shall now turn to a procedure which we shall call bias removal. Another
name ff\)lhis procedure is the statistical round. When we compared rounding
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with chopping in Section 6.1, we noted that rounding had two effects—
reducing the size of the maximum error and eliminating bias. The bias removal
feature which we shall discuss here does not reduce the size of the maximum
error, but it does tend to reduce or eliminate bias.

We shall assume that the radix r of our floating-point number system is
even. The bias removal procedure performs an operation which replaces a
floating-point number x by a number which we shall designate by B(x). If
x = 0, B(x) = 0. For x 0, B(x) forces the low-order digit of x to be odd.
Thus, B(x) = x if x is zero or if the low-order digit of x is odd. Otherwise,
B(x) is obtained from x by increasing the absolute value of x by | in the pth
digit of the mantissa. If the radix r is a power of 2, this simply means that the
low-order bit of the mantissa is set to | whenever x 7 0. Similarly, if we used
the binary coded decimal representation for decimal digits in FP(10, p, a),
then whenever x # 0 we produce B(x) by setting the one bit of the low-order
digit of the mantissa to 1.

When the computation of B(x) is performed by hardware, the operation
usually turns out to be very fast because it does not propagate any carries.
Also, the operation is sometimes quite easy to perform in software. For
example, suppose that r is a power of 2 and that negative numbers are stored
as sign and true magnitude. To compute B(x) we would first perform a test to
see that x is not zero; then we would OR x with a word which is all zeros
except for the low-order bit which is |—at least if this operation is available
on the machine.

In using bias removal, the basic approach is that instead of doing arith-
metic in either FP(r, p, c) or FP(r, p, R), one uses bias removal in conjunction
with chopping. That is, if we are given a real number x, then instead of form-
ing either % or x , we form B(x). Now there are two different ways in which
bias removal may be used. First, we might decide to use it in every arithmetic
operation. Thus, we might define a system FP(r, p, B) where the arithmetic is
defined by

a@®db=Ba-tb)

a®b = Bla—b)
a x b = B(ab)
a = b = B(afb)

and perform all arithmetic in FP(r, p, B). On the other hand, we might want
to use bias removal selectively. That is, we might decide to perform most of
the arithmetic in, say, FP(r, p, cly) but perform a few specific operations in
FP(r, p, B).

Unless bias removal is used selectively, some care must be taken in its
implementation. If every number x which arises in the problem is replaced by
B(%), it is impossible to represent small integers exactly. (See Exercise 10.)
This is extremely annoying. An alternative is to use a function B’ fined
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for all real numbers x by

Bx)=x if x is in S(r, p)
B'(x) = B(x) if x is not in S(r, p).

That is, we shall represent x exactly if possible; otherwise we shall use B(x).
We could then define a system FP(r, p, B') by setting x @ y = B'(x - »), etc.
Such a system was implemented in hardware on the NORC ¢Naval Ordnance
Research Calculator) built in the early 1950s. [See Eckert and Jones (1955).]
NORC performed arithmetic in roughly the system FP(10, 13, B’).

It is far more common for bias removal to be used selectively, performing
an occasional operation in FP(r, p, B). We have noted that if we want to
produce x°, we have to see the first digit discarded. If the hardware provides
some variant of chopped arithmetic and produces only the high-order p digits
of the result, we cannot use this number to program arithmetic in FP(r, p, R).
The advantage of bias removal lies in the fact that we do not have to look at
the digits discarded. Thus, if the hardware performs an arithmetic operation in
FP(r, p, c) and produces a result x, we can perform the operation in
FP(r, p, B) by forming B(x).

The implementation of the ROUND function in the PL/I compilers for
the IBM System/360 uses bias removal whenever the argument is a floating-
point number. Thus, ROUND(x) will form B(x). When this is used in con-
junction with the chopped arithmetic of the IBM System/360, it allows us to
perform arithmetic in (approximately) the system FP(r, p, B). Since bias
removal will be performed only when we write ROUND explicitly, there is no
danger of changing numbers we wanted to be exact.

Let x be any real number and set £ = B(x). If we write

x=rm, rit<Iml <1,
then we also have

E=ram, rt<|ml<l.
Here | #i1| is either |m| or |m| 4 r=?, so |/t — m| < r~2. Then we may write
2=(N+px |pl<reon,

We see that this provides the same bound for | p| that we would have had with
chopping, but we no longer know the sign of p. Unlike rounding, bias removal
does not reduce the size of the error produced by shortening x to p digits. In
fact, the representation of x by B(x) gives us less information about x than £
does, because it only restricts x to an interval of length 2,<-»,

The advantage of B(x) is that its absolute value may be either too large or
too small, so we tend to reduce bias. As an illustration of the effectiveness of

| )

SEC. 6.5 OTHER “ROUNDING” PROCEDURES 197

this approach, we refer to the quadrature problem discussed in Section 4.1.
We encountered difficulties there because we were adding a large number of
terms of the same sign, so the sum got to be much larger than the terms. We
saw that chopped arithmetic introduced a bias in the sum, so the sum con-
sistently drifted below the correct value. In Figure 4.1.6 we saw that rounding
produces a significant improvement in the answer. Similarly, in Figure 4.1.7
we saw that bias removal produces about the same improvement. We conclude
that the improvement produced by rounding was primarily due to the
tendency to reduce bias. The fact that it introduced smaller errors was of less
importance. Thus, this is an example of a problem in which we would have a
decided preference for performing arithmetic in FP(2, p, R) instead of
FP(2, p + 1, c), even though the two systems produce the same bound for
the absolute value of the error introduced in any operation.

The improvement produced by bias removal in the quadrature problem of
Section 4.1 is typical of many quadrature problems and of some differential
equation problems. In problems of this sort, the tendency to reduce bias is
the most important aspect of rounding, and forming B(x) may be a satisfac-
tory substitute for rounding. On the other hand, there are problems in which
the smaller error bounds in FP(r, p, R) are used to produce highly accurate
results. For example, the program SQRT written by W. Kahan for the 7090
at the University of Toronto claims that the error is never more than
.50000163 units in the last place. Such accuracy could not be achieved without
judicious use of rounding, and bias removal would be no substitute.

6.5. OTHER "ROUNDING” PROCEDURES

When we define the floating-point arithmetic operations, we are faced
with the problem of approximating a real number x by a number ¥ in S(r, p).
By far the commonest approaches in digital computing are forms of chopping,
rounding, or bias removal. That is, the commonest choices for X are ¥, X, or
B(x). However, there are other approaches that could be used, and they might
be useful in special situations.

First, we note that x° has a slight bias because we round the magnitude
upward whenever the digits discarded are exactly one-half a unit in the last
place kept. There is a slight modification of our rule for rounding which is
quite popular for hand computation. This approach defines ¥ to be x° unless
there are two numbers in S(r, p) which are equally close to x. In that case, we
let ¥ be the one in which the low-order digit of the mantissa is even. This
eliminates the bias introduced in our definition of x°. Although this rule is
well known, it has seldom, if ever, been used for machine computation.

For any real number x, let x, and x; be the left and right neighbors of x in
S(r, p). That is, x, is the largest number in S(r, p) which is <x, and x, is the
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smallest number in S(r, p) which is >x. Then x, << x <{ x, and x, < x,
unless x is in S(r, p). We almost always want our approximation ¥ to be one
of the numbers x,, x,. Our definition of rounding specifies that x° is the
neighbor closest to x, with a special convention to handle the case in which
x, and x, are equally close to x. Similarly, our definition of chopping
specifies that % is the neighbor with smaller absolute value. This suggests
other rules for selecting the neighbor we want. For example, we could define
a rule antichopping which would always select the neighbor with larger
absolute value. Similarly, we could define rules chop left and chop right which
would always select the neighbor x, and x,, respectively. (x, and x, are often
referred to as the floor and ceiling, respectively.) These rules could be uscful in
certain cases in which we want the error (or the relative error) to have a speci-
fic sign. Another example of their use arises in the definition of interval
arithmetic in Section 7.4. There, we shall want to round an interval outward.

In Section 6.4 we discussed the possibility of performing bias removal
after chopping by forming B(x). Similarly, we can perform these other
operations after chopping, although this will introduce additional error when
x is in S(r, p). To facilitate these operations, it would be convenient to have
the compilers support functions such as AUGMENT, DECREMENT,
AUGMENT ABSOLUTE VALUE, and DECREMENT ABSOLUTE
VALUE. These operations can also be useful in testing programs.

EXERCISES

1. Write a program to shorten a double-precision number D to single-precision
using the following rules. (In some cases you may have to use techniques
discussed in Section 4.4.)

a. Rounding.
b. Antichopping.

. Chop left.

. Chop right.

. B(D).

B'(D).

2. Let D and S be typed double-precision and single-precision, respectively, and

suppose that we want to round D to single-precision and store itin S. InScction
6.3 we suggested the FORTRAN coding

mo0 a6

S D
S :: S 12.4(D=-S8)

What can we say about the result stored in S if our representation of double-
precision numbers does not require sign agrecment between the high-order and
low-order parts?

3. There are other ways to round a double-precision number to single-precision.
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Suppose that D and S are typed double-precision and single-precision, respec-
tively, and that we want to store D'inS.IfD = 0,set S = D. If Dis not zero,
construct a double-precision number X having the same sign and characteristic
as D, having a mantissa which is all zeros except for the (p -I- 1)st digit, which is
r/2. (Clearly X is unnormalized.) Form

S=D® X,

where the operation @ is performed in double-precision. If*our representation
of double-precision numbers requires sign agreement and requires that the two
parts of the number be nonoverlapping, this coding will store D’inS.

a. Will this coding store D’ in S on the machine you are using?

b. Why must zero be handled specially?

c. Write a program to perform these operations. If you wish to write the
program in a higher-level language, use the techniques described in Section 4.4.
Suppose that we want to form 4 + B, where 4 and B are in S(r, p). We first
perform a test and interchange 4 and B if |B|> |4|. Then, using the
FORTRAN coding studied in Section 4.3, we write

S=A®B
T=BO(S — A)
S=S@®2sT

We consider different systems in which the operations @, ©, and + may be
performed. In which of the following systems will this coding produce 4 B
a. FP(r, p, cll).

b. FP(r, p, ©).

c. FP(r, p, cl0).

d. FP(r, p, R).

e. The floating-point number system provided by the machine you are using.

Suppose that we want to perform addition using bias removal. Write a
program to produce the following quantities:

a. B(X+ Y).

b. B(X + Y).

Write a program to solve the quadrature problem discussed in Section 4.1.
For the computation of X use IsH and (14-1)¢H. Perform the addition of
terms to S in the following systems:

a. FP(r, p, R).

b. FP(r, p, B).

Convert the programs written for Exercise 6 to double-precision.

Write a program to solve the quadrature problem discussed in Section 4.1.
Compute X by repetitively adding H. Perform both the addition of terms to
S and the addition of H to X in the following systems:

a. FP(r, p, R).

b. FP(r, p, B).
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9.
10.

12.
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Convert the programs wrilten for Exercise 8 to double-precision.
Consider the system FP(r, p, B).
a. If we represent the integer # by B(n), show that

112

b. Suppose that x = B(2). Is x & x the same as x @ x?

Let x be a real number and let £ be the number in S(r, p) obtained from x by
one of the following rules: chopping, antichopping, chop left, chop right. Let

X=x-1€
and

x =4 px.
Which of the rules will guarantee that
a. € >0.
b. € <0.
c. p=0.
d. p<0.

Write a program to use the Runge-Kutta method to solve the differential
equation y’ = y for 0 < x < I. Take »(0) = | and print only ¢(1). Run the

program using 2V steps, for N == 0,1, 2,..., 12. Run three versions of the"

program, performing the arithmetic in the following systems:
a. FP(r, p, c).
b. FP(r, p, R).
c. FP(r, p, B).

AUTOMATIC ANALYSIS
OF ERROR

7

7.1. INTRODUCTION

In this chapter we shall study several approaches which have been used to
try to let the computer assist us in the analysis of error. With these approaches,
we ask the computer to produce both an answer and an indication of how
accurate the answer is. As we shall see, none of these approuches is a panacea.
They have not yet reached the point at which we can recommend that they be
used in place of floating-point arithmetic as the normal computing procedure.
But each of these approaches has its advocates, and they have succeeded in
producing reasonable error estimates.

Getting the computer to give us an indication of the accuracy of the
answers it produces is a major problem facing the computer profession. There
are a few subroutines for which detailed error analyses have been performed
manually, but such programs are distressingly rare. Far too often, we have
little idea of how accurate the answer is. Since the difficulty of performing an
error analysis increases as the complexity of the problem increases, this
situation is not likely to change. It appears that our only hope is to get the
computer to produce a reliable error estimate.

At first glance it might appear that we are carrying so may extra digits in
the calculation that we could ignore the loss of accuracy. But, as we saw in
Section 5.9, we may produce bad results if we are using an algorithm which is
sensitive to rounding crror. In Section 4.2 we studied the use of the power
series to compute ¢~ and sin x, and we observed extreme loss of accuracy in
a reasonably well-conditioned problem. We would like to be warned of this
loss of accuracy by an error analysis.

Another reason for the importance of an error analysis is that we do not
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observe what is happening in the calculation. Suppose that our algorithm

requires us to form ¥ — 3, and for one set of input data ¥ and 7 are nearly

equal. Then errors in ¥ and y may produce large relative errorin ¥ — y. If we
were performing the calculation by hand, we would observe this loss of
accuracy and know that we have to worry about the accuracy of the answer.
But when the calculation is performed by a machine, we do not see the
intermediate result, so we do not get any warnings.

It seems likely that this problem will be magnified as time goes on. The
use of formula manipulation languages, such as FORMAC, is growing. It is
reasonable to expect that the ability to manipulate formulas will be incor-
porated into some future compilers. Then we might code a formula for a
function f(x, y)and ask the compiler to produce the code for, say, d*//(dx? dy).
Since we would not see the formulas the computer was using, we could not be
expected to know whether the formulas were sensitive to rounding errors.
Our only hope would be to have the computer estimate the error.

Thus, the problem of producing an automatic error analysis is extremely
important. We shall discuss some of the approaches which have been used in
attempts to solve this problem, and we shall try to show the difficulties
inherent in each approach.

None of these techniques can be used blindly. Rather, they are tools that
we can use to try to write programs which will give us both numerical results
and a reasonable estimate of their accuracy. In many cases, we shall have to
modify the algorithms we are using in order to produce good results with these
tools. Unfortunately, we are not yet able to produce reliable error estimates
automatically and painlessly.

In Sections 7.2, 7.3, and 7.4, we shall discuss three different techniques
which address this problem. Each of these techniques involves replacing the
standard floating-point arithmetic by slightly different operations. The modi-
fied arithmetic is usually performed by subroutines, but there have been some
machines on which it was performed by the hardware. For example, the 1BM
7030 provided noisy mode, and the Maniac 11l provided significance
arithmetic.

7.2. SIGNIFICANCE ARITHMETIC

Significance arithmetic is a technique for the automatic analysis of
rounding error which has been studied by Metropolis, Ashenhurst, and
others. Its best known implementation was in the Maniac 111, where one had
the option of using either significance arithmetic or normalized arithmetic.
[See Ashenhurst (1962).] But it has also been provided on other machines. For
example, it was implemented on an 1BM 7090 at New York University by
installing a special feature. [See Goldstein (1963).]
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With significance arithmetic, we use unnormalized numbers throughout
the calculation. The objective is to represent each number with enough
leading zeros so that the remaining digits will be significant. Then the appear-
ance of the number will tell us how many significant digits it has. The
arithmetic operations must be modified so that they will produce an unnor-
malized result with the correct number of leading zeros. This is fairly easy to
implement for addition and subtraction, since it merely means that we omit
postnormalization. For multiplication and division, the rules are based on the
idea that the answer should have as many leading zeros as the least significant
operand. Naturally there are slight variations in the way these rules have been
implemented on different machines, but they usually require only modest
changes in the way floating-point arithmetic is performed.

Ashenhurst (1964) discusses the design of function subroutines to be used
with significance arithmetic. The objective is to produce an answer whose
significance is determined by the significance of the input and the condition of
the problem. For example, suppose that we want to compute e*. As we saw in
Section 3.7, the relative error in e* due to a relative error p in x is approxi-
mately px. We may use the number of significant digits in x to estimate p, and
then use the value of px to determine how many significant digits e* has. A
similar approach may be used for other functions. We would also want
special programs for radix conversion. They should produce an unnormalized
result with the correct number of significant digits. [See Metropolis and
Ashenhurst (1965).]

Thus, to use significance arithmetic, we want to change both the arithmetic
and the library programs. Following this approach, the advocates of signifi-
cance arithmetic have produced good results.

Unfortunately, significance arithmetic has several drawbacks. Indeed, the
objections raised in Chapter 3 to the use of significant digits as a measure of
accuracy apply here. First, as we saw in Section 3.1, the discreteness of the
number of significant digits poses a problem, and this is particularly pro-
nounced when the radix is large. As a consequence, most implementations of
significance arithmetic have been on binary machines.

A second drawback is that there is no guarantee that the estimate of
accuracy produced by using significance arithmetic is correct. Thus, if our
answer is .00054321 x 10¢, there is no guarantee that five (or even two) of the
digits are significant. (Of course standard floating-point arithmetic gives us no
indication at all of the accuracy of the answer. But since the objective of
significance arithmetic is to tell us how accurate the answer is, it is disap-
pointing that it cannot guarantee that the digits it produces are accurate.)
However, experiments such as those described by Ashenhurst (1965b) show
that when significance arithmetic is used carefully, it will often give a good
indication of the accuracy of the answer.

The exact behavior of significance arithmetic will depend on the details of

)
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its implementation. But if it used chopped arithmetic, it would almost surely
fail to assess the decay of the answer to the quadrature problem of Section 4.1.
The answer would not be as accurate as significance arithmetic would lead us
to believe.

A more serious disadvantage of significance arithmetic is that it causes us
tointroduce larger errors at each step in the calculation. Depending on whether
we use chopped or rounded arithmetic, the error introduced by an arithmetic
operation is bounded by either one unit or one-half a unit in the last place
kept. Since we retain fewer digits of the answer when we use significance
arithmetic, the errors are larger. Indeed, the new error introduced at each
step is of more or less the same order of magnitude as the inherited error.
Thus, significance arithmetic uses the rule mentioned in Chapter 3 which
suggests that we should develop only those digits that we can guarantee are
significant. In Section 3.5, we considered the computation of

(7.2.1) x =TI~

for large n. We saw that if we shortened the precision as the propagated error
increased, we would needlessly damage the answer. But significance arith-
metic must shorten the precision in this way if it is to estimate the error in the
computation of (7.2.1). Therefore, we may expect it to produce a less accurate
answer. This is the price we pay for getting an estimate of the error.

* Although we may be willing to sacrifice a little accuracy to get an indica-
tion of how accurate the answer is, we would like to limit this loss of accuracy.
One way to do this was proposed by Gray and Harrison (1959).1 They use
normalized floating-point numbers, but along with each number they carry an
index of significance which indicates how many of the digits are significant.
With this approach, we would set aside a few bits in the word for the index of
significance, and we would modify the floating-point arithmetic so that it
would produce both the answer and its index of significance. Thus, if we were
using a machine which performed arithmetic in FP(2, 48, a), we would set
aside six bits for the index of significance and perform arithmetic in
FP(2, 42, a). This would sacrifice six bits, but never more than six bits.

A final difficulty with significance arithmetic arises in situations such as
those described in Section 3.11. In that section, we considered the transforma-
tion of a problem into another problem having the same answer. The crucial
question was whether the answer to the new problem was close to the answer
to the original problem. We discussed two problems in which it was important
to compute the new coefficients to full precision, even though this involved
the division of a number with eight significant digits by a number with two
significant digits. We could compute a good answer to these problems with
normalized arithmetic but not with the unnormalized form of significance

1This was implemented in FLIP at Argonnc National Laboratory.
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arithmetic. We could also compute a good answer by using the version of
significance arithmetic based on an index of significance, but the index of
significance would mislead us by indicating that the answer was rather poor.

Finally, we point out that significance arithmetic suffers from the simul-
taneity problem, which wiil be discussed in Section 7.4.

7.3. NOISY MODE

Some machines, for example, the IBM 7030, have provided noisy mode in
addition to the normal floating-point arithmetic. Performing the floating-
point arithmetic in noisy mode changes the digits which will be shifted into
the answer when postnormalization is required. To use noisy mode, we per-
form the calculation twice, first in the normal mode and then in noisy mode.
The extent to which the two answers agree is taken as an indication of the
accuracy of the answer.

The details of the implementation of noisy mode may vary from machine
to machine. Usually, noisy mode changes the answer only when postnor-
malization is required. To illustrate a typical implementation of noisy mode,
we shall consider an example in FP(10, 8, a). Let

(1.3.1) x = 1234.5678
y = 1234.4321

and suppose that we want to form z = x 3 y. In either FP(10, 8, ¢) or
FP(10, 8, R), the value of z would be .13570000. Here the result had to be
shifted four places to the left to postnormalize it, and we shifted in four zeros.
If x and y are known only approximately, we really do not know what digits
should be shifted in. In noisy mode, we shift in 9s instead of zeros, so the
value computed for z would be .13579999. Thus, the idea of noisy mode is to
insert “noise” when we are uncertain of what the digit should be. We hope
that this noise will propagate in about the same way that the errors introduced
by normal floating-point arithmetic do, so the change in the answer will give
us an indication of how accurate our answer is.

If the subtraction described above had been performed in the base r, the
digits shifted in would have been (r — 1)s instead of 9s. In general, when the
arithmetic is performed in noisy mode, the digits shifted in during postnor-
malization are the (» — 1)’s complements of the digits that would have been
shifted in by the normal floating-point arithmetic. This definition can also be
used for multiplication and for addition and subtraction when the operands
have different characteristics. The effect of noisy mode on division may vary
considerably from one implementation to another. One approach is to extend
the dividend by appending several digits of (r — 1)s to it before dividing.

When noisy mode is provided by the hardware, there must be a way to
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specify whether we want noisy arithmetic or normal arithmetic. If there were
separate operation codes for noisy arithmetic, we would have to change the
floating-point instructions in order to rerun the program in noisy mode. It
would be much more convenient if we could simply specify that the machine
should operate in noisy mode until we tell it to change back to normal mode,
Thus, we would like to tell the computer to “enter noisy mode” and have it
perform all floating-point arithmetic in noisy mode until we tell it to “leave
noisy mode.” (This is approximately the way noisy mode was handled in the
I1BM 7030.)

The cost that we pay for using noisy mode is running the problem twice.
But the results produced by the normal run of the program have not been
damaged.

Unfortunately, there is no guarantee that the true answer lies between the
results produced in noisy arithmetic and normal arithmetic. As a simple
example, consider the computation of z = x © y, where x and y are given by
(7.3.1). For these data, the result produced for z using noisy mode is ¥ — y,
where ¥ = 1234.56789999. However, it is possible that the correct value for z
is x — 3, where y = 1234.43219999. But in this case, the correct value for z
would be .13560001. Thus, we may have inserted noise in the wrong direction.
Indeed, experiments show that noisy mode may either overestimate or
underestimate the error. Nevertheless, it has been used successfully to produce
an indication of the accuracy of the answer.

If noisy mode is supported by the hardware in the manner described above,
it is quite easy to control the mode of the arithmetic. Suppose that we are
coding in FORTRAN. We would want a subroutine NOISY which we could
call when we wanted to enter or leave noisy mode. This subroutine would
have to be written in Assembler language, but it could be called by FORTRAN
programs. The call would have the form

CALL NOISY (J)

where J is an integer. Then NOISY would enter noisy mode if J is | and leave
noisy mode if J is 0. If J is neither 0 nor 1, NOISY would not change the mode,
but it would set J to 0 or 1 to indicate which mode the machine is in. With
such a routine it would be easy to rerun the problem in noisy mode, and we
could even write a DO loop to execute the program twice, first in normal mode
and then in noisy mode. Then we could compare the answers before printing
them.

If noisy mode is supported in this way, it is easy to incorporate it in a
program. But we may have to exercise care in using it. The difficulties which
can arise depend on the details of the floating-point arithmetic and on how the
compiler handles various operations. As an illustration, consider the
FORTRAN statement

) X =1

)

SEC. 7.4 INTERVAL ARITHMETIC 207
This requires that the integer I be converted into a floating-point number and
stored in X. There are various ways to do this, but a common approach is to
begin by constructing an unnormalized floating-point number whose
exponent is p and whose mantissa is r~?I. (On many machines this can be
accomplished by inserting the appropriate characteristic in the high-order
digits of the word.) Then this number is normalized by adding zero to it.
Suppose that this approach is used on an eight-digit decimal machine. If I has
the value 2, we first construct the unnormalized number .00000002 x 108,
and then we add zero to it. But when the addition of zero is performed in
noisy mode, it will produce the number 2.9999999. Since the integer I is
usually exact, this value for X is unacceptable. It can lead us to produce a
ridiculous answer when the problem is run in noisy mode. Thus, noisy mode
does not always give us a good indication of the accuracy of our answer,
Noisy mode cannot be used blindly. We must examine the library to see
whether the library subroutines will produce acceptable results when they are
run in noisy mode, and we must understand when the compiler will compile
floating-point instructions. It is quite likely that we shall encounter difficulties
unless the compiler was specifically designed to compile programs that will

_ run in both the normal mode and noisy mode.

7.4. INTERVAL ARITHMETIC

The use of interval arithmetic has been studied extensively by R. Moore,
E. Hansen, and others. [See Moore (1966).] Although it has been used on
many different machines, it has been implemented by calling subroutines
instead of by hardware operation codes. The basic idea is that each number x
in the calculation will be represented by an interval (x,, x,), where x, and x,
are chosen in such a way that we can guarantee that x, < x < x,. Thus, if we
have an approximation ¥ for x with |¥ — x| < ¢, we would represent x by
the interval (X — ¢, X -I- €) instead of by the number X. We shall require that
x, > x,, but we shall allow the use of the degenerate interval (x, x) to
represent a number which is known exactly.

Throughout the calculation we deal with intervals instead of numbers. Our
objective is to represent the answer y by an interval (y,, y,) with y, <y < y,.
If the interval (y,, y,) is small enough, the midpoint of the interval provides a
good approximation for y. For example, if y were represented by the interval
(1.2345612, 1.2345678), we could approximate y by y = 1.2345645. Then we
would have | 5 — y| <7 .33 x 107¢. If the interval were large, say (7, 29), we
would get little information about y, but we would know that we did not have
a good approximation for y. By contrast, if we were using normal floating-
point arithmetic, we would produce a number, such as 12.345678, and have
no indication of its accuracy.

In Sections 7.2 and 7.3 we saw that both significance arithmetic = ’)-oisy
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mode might overestimate the accuracy of the answer. But when interval
arithmetic is carefully implemented and carefully used, it is possible to
guarantee the result. That is, we can guarantee that if the answer p is repré-
sented by the interval (y,, ,), then y, < y < y,. In this respect it is superior
to either significance arithmetic or noisy mode, and this is one of the reasons
for its receiving wider use.

When we use interval arithmetic, we perform arithmetic operations on
intervals instead of on numbers. For example, instead of adding two numbers
x and y, we “add” the intervals (x,, x,) and (y,, y,) to produce an interval
(24, z,) such that z, < x + y < 2, holds if x, < x < x,andy, <y <y,.
The natural definitions for addition and subtraction are

(x,, x,) + Ony)= (xy + 0 x, +,)
(74.1) —(xp Xx,) = (—x;, —x,)
(x5 ) — (0, Vi) = (X, — ys X, — y)).
Similarly, the natural definition for multiplication is
(X, X)) (. y) = (z,2,)
(74.2) z, = min(x, y,, Xy Va2 X3 V15 X3 )3)

Zy = MAaX(X, ), X, Vg0 X3 V15 X2 V3).
For example, if x, and y, are positive, we have
(0 x2) (01, ¥2) = (x, 9, X,0,),
and if x; <0 < x, but 0 < y,, we have
(X0 X)) (71, ¥2) = (%, 3, X, 3,).
Similar definitions hold for the other cases. We do not define the division of

(x,, x,) by (y,, y,) if zero lies in the interval (y,, y,). Otherwise, we would like
to define division by

(xpx)) (24, 2,)

1, 2)
(7.4.3) Zl = min(ﬂ’ x.._lr :‘;L’ f&)
Yo Y2 e 0N
X X X X
.z, == max{=t, =1, =2, 2.
: (."l Y2 0 J'z)

But we cannot use the definitions (7.4.1)-(7.4.3) directly, because the
number of digits required to represcnt the end points of the intervals would
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grow too rapidly. Instead, we shall use only intervals whose end points are
floating-point numbers. Since we want to be able to guarantee that the answer
lies in the interval we have produced, the arithmetic operations will be defined
by rounding the intervals on the right-hand side of (7.4.1)~(7.4.3) outward.
For example, in place of (z,, z,) in (7.4.2) we use the interval (w,, w,), where
w, is the largest number in S(r, p) which is < z,, and w, is the smallest
number in S(r, p) which is > z,. The other operations are defined similarly.

We shall now consider the library programs which compute functions such
as sin x or e*. When we are using interval arithmetic, the argument will be an
interval (x,, x,), and the answer will be an interval (y,, y,). For the function
f(x), we would like to have y, and y, defined by

yy= min f(x)
xSxSxe

Y, = max f(x).

X1SxSxy

(1.4.49)

As above, the interval (y,, y,) is rounded outward to make the end points
floating-point numbers. If the function f(x) is monotonic, the numbers in
(7.4.4) are quite easy to compute. For example, for the function e* the result is
the interval (e*, e*). But when the function f(x) is not monotonic, the
calculation of y, and y, in (7.4.4) may be more complicated. If the argument
for the sine function is the interval (1.5, 1.6), we would like to produce the
interval (sin 1.5, 1) as the answer. Thus, even for simple functions we may have
to perform some tests to compute the values in (7.4.4). We would like to have
an interval library which would contain function subroutines which would
produce these values.

The principal problem with interval arithmetic is that we may produce
intervals which are so large that the midpoint is not a good approximation for
the answer. If we want four decimal digit accuracy in the answer, we have to
produce an interval (y,, y,) whose end points y, and y, differ by at most 1 in
the fourth digit. But as we shall see below, there are situations in which we
may produce a very large interval, say (.5, 2), even though normal floating-
point arithmetic would produce a good answer.

Interval arithmetic suffers from some of the same problems that arise in a
manual error analysis. The bounds we obtain for the errors are based on the
assumption that we have incurred the worst possible error at every step. But
in practice we are usually more fortunate, so the bounds tend to be larger
than the errors we produce in a typical calculation. This is an inherent
property of a rigorous error analysis.

A much more serious problem is that we may produce a bound which is
larger than it need be. The objective of an error analysis is to produce a bound
which is reasonably close to the smallest rigorous bound. Unfortunately,
interval arithmetic has a tendency to produce intervals which are larger than
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necessary. Suppose that a quantity x enters the calculation in more than one
place and that the errors it introduces tend to compensate. Interval arithmetic
usually does not recognize the fact that x must have the same value at every
point in the calculation, and this makes it produce too large an interval for
the answer. This is known as the simultaneity problem.

To illustrate this problem we shall consider an example. Suppose that we
want to compute

(7.4.5) w=X*tJ)
X+ z

and that x, y, and z are represented by the intervals (x,, x,), (»,, »,), and

(z,, z,), respectively.
Then (7.4.5) will be replaced by

7.4.6 = x)+ (L)
( ) (Wn Wz) (x“ xz) ¥ (Z“ Z,_) »

Suppose that the data are

(7.4.7) (xn xz) = (]a 2)
W, y2) = (01, .02)
@, 2,) = (001, .002).

Then the numerator of (7.4.6) is the interval (1.01, 2.02), and the denominator
is (1.001, 2.002), so

74, oy (101,202)
749 W12 W2) = (17501, 2.002)°

Then (w,, w,) is the interval

(702 Four)

rounded outward. If we use eight-digit decimal arithmetic, this yields
(7.4.9) (w,, w,) = (.50449550, 2.0179821).
But if we write (7.4.5) in the form

co LAyl
A R

our interval formulation becomes

7.4.100 . (LD ey, xy),
( ) (" 1 ‘vz) (]’ l) I- (z:, z:)/(.\"l, x:)
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Here (y,, y2)/(x,, X,) = (.005, .02), so the numerator is the interval (1.005,
1.02). Similarly, the denominator is (1.0005, 1.002), so (w,, w,) is the interval

rounded outward. This yields ‘

(7.4.11)  (w,, w,) = (1.0029940, 1.0194903),

which is a much better answer than (7.4.9).

When we used (7.4.6), we first reduced the problem to the calculation
(7.4.8). The upper bound for w was obtained by dividing the largest numera-
tor, 2.02, by the smallest denominator, 1.001. If the numerator in (7.4.8) is
2.02, x must be 2. But if the denominator is 1.001, x must be 1. Clearly x
cannot have these two values simultaneously, so it is impossible for the worst
case in the division in (7.4.8) to arise. Since our interval formulation of the
problem (7.4.5) discarded the fact that x must have the same value in the
numerator as it does in the denominator, we really computed

(xp x3) + ()’nlzl,
(uy, u,) - (24, 22)

(wy, wy) =

where (u,, ;) = (1, 2) and the other intervals are given by (7.4.7). Even the
formulation in (7.4.10) suffers slightly from the simultaneity problem, because
we do not use the fact that x must have the same value in the two places it
appears. Therefore, (7.4.11) does not yield the best bounds for w.
Unfortunately, it is not simply a matter of finding the best formula to use.
Suppose that we want to solve the same problem, but with the data

(x,, ;) = (.001, .002)

(14.12) . y2) = (1001, 1.002)
(2,, 2,) = (1.001, 1.002).

Then both the numerator and the denominator of (7.4.6) are represented by
the interval (1.002, 1.004), so (w,, w,) is the interval

(roos” Tom)

rounded outward. This yields

(w,, w;) = (.99800796, 1.0019961).

But if we use the formulation (7.4.10) with the data in (7.4.12), we 'j that
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1, ¥2)/(x;, x;) = (500.5, 1602), so the numerator is the interval (501.5,1003).
We get the same interval for the denominator, so

.y (5015 1003} _
1 w3) = (o3 5073) = 5.2

For these data, (7.4.6) gives a much better answer than (7.4.10) does.

Thus, we cannot reject (7.4.6) and always use (7.4.10). Which of these
formulations we should use depends on the data, and if we select the wrong
one, we may produce an interval which is very much larger than necessary.

If the calculation of w in (7.4.5) were the crucial point in the program, we
might use the approach we discussed for the function subroutines in the
library. This would be more work, but it would overcome the simultaneity
problem. We would set

Xty
S(x,3,2) Yrz

and write a program to compute w, and w,, where

(7.4.13)  w, = minf(x, y, 2), XN SxZ X0 Sy <y 2 <zLg
(14.149)  w,=maxf(x,y,2), X <x<xWy,<p<y,z,<z<z,

As an illustration, we shall consider the case in which x,, i, and z, are all
positive. (Programming the general case forms Exercise 3.) Then

w, = min X0
nsxzxe X -F 2,

wy == max -1"J2 1),

xcxzxe X -} Z,
Since the derivative of (x + a)/(x - b) is (b — a)/(x 4 b)?, it follows that
T
w, P ify, <z,
) - :ﬁ_"l;__‘;z i » hd
Wy Tz ify, > z,.
We may use a similar approach to find w,. For the data in (7.4.7), this yields
the interval
(w,, w,) = (1.0039960, 1.0189811),

This shows that even the interval in (7.4.11) was larger than necessary.
Thus, although interval arithmetic gives us guaranteed bounds, it has a
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tendency to produce intervals which are too large. When it is used carefully,
it can be quite effective. [See Moore (1965a).] However, it does not appear to
be a panacea which will replace floating-point arithmetic as the standard
computing procedure. :

We need two floating-point numbers to represent an interval, so interval

- arithmetic doubles the storage required to hold the data. It also makes the

arithmetic more complicated. In these respects it is quite similar to double-
precision arithmetic. Indeed, when we use interval arithmetic we are faced
with the same programming problems that face us when we use double-
precision arithmetic with a compiler which does not support the double-
precision data type. Therefore, we can use the techniques discussed in Section
5.7. Arithmetic statements must be replaced by subroutine calls, and we must
use some technique to allocate two words for every variable. It is often
convenient to use an additional subscript for this purpose, or we may be able
to use the COMPLEX data type. A few compilers have supported the data
type OTHER, which has proved to be very effective for interval arithmetic.

7.5. RERUNNING THE PROGRAM IN
HIGHER-PRECISION

Each of the approaches to automatic error analysis discussed in Sections
7.2, 7.3, and 7.4 has been used successfully, but none of them has acquired
wide usage as yet. As we saw, they had to be used with care. It is to be hoped
that we shall learn more about the use of techniques such as these, so that it
will be easier to use the computer for the automatic analysis of error.

Presently, the commonest way to use the computer to study the accuracy
of our answers is simply to rerun the program in higher-precision. Suppose
that our original answer was y,, and that when we reran the program in
higher-precision we produced an answer y,. Our objective is to determine the
accuracy of y,, and for this purpose we need to know only the first two or
three decimal digits of the error. Therefore, if y, is accurate to at least two or
three more decimal places than y, is, we can use y, — y, and(y, — y,)/y, to
estimate the error and the relative error in y,.

The use of this approach is based on the assumption that running the
program in higher-precision will produce a more accurate answer. While this
will generally be true, there are several situations in which it may fail to hald,
First, the error In the answer may be due primarily to errors in the data. Then
the answer would not be improved by increasing the precision of the calcula.
tion. By contrast, both significance arithmetic and interval arithmetic offer us
a way to study the cffect that noise in the data has on the answer. Another
reason that increasing the precision might not increase the accuracy of the
answer is that our program might have used approximations which are not

—P
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accurate to higher-precision. Increasing the precision cannot correct errors
due to such approximations. Rather, it is a technique for studying the effect
that rounding error has on the answer. The question of whether this approach
will provide a good measure of this effect will be discussed below.

A second assumption is that it is easy to rerun the program in higher-
precision. This may or may not be true. The conversion of a FORTRAN or
PL/1 program from single-precision to double-precision was discussed in
Section 5.1. We saw that it is easy to overlook one variable or constant in the
program and produce a result which is good to only single-precision accuracy.
A more difficult problem arises if the compiler does not support the high-
precision data type. Then we have to use the techniques discussed in Section
5.7.

We shall now turn to the question of whether rerunning the program in
higher-precision will produce a more accurate answer. To avoid the problems
described above, we shall assume that the data are known to as many places
as we need and that any approximations used in the program are accurate to
the highest precision we use. Then increasing the precision of the arithmetic
will usually increase the accuracy of the answer, but we cannot guarantee that
it will do so. Indeed, we shall give examples of situations in which it does not.
Fortunately, such situations are quite rare. In most instances, rerunning the
program in higher-precision will provide a good estimate of the effect of
rounding error.

To study the effect of precision on the accuracy of the answer, we shall
select a problem whose answer is known and solve it in FP(r, p, ¢) for several
values of p. The accuracy of the result y produced by the program will be
determined by comparing it with the correct answer y. We shall plot d versus
p, where d is the number of correct digits in y. )

There are several ways to perform such experiments. On some variable
word length machines the number of digits in the floating-point numbers can
be specified at the beginning of the compilation. Then we cansimply recompile
the program specifying different values for p. But more often we have to use
subroutines to produce results we want. For example, we can code subroutines
to perform addition, subtraction, multiplication, and division in FP(r, p, ¢),
where p is specified by the user.

We shall adopt a somewhat different approach. Suppose that FP(r, p.,.x
clg) is the highest-precision arithmetic supported by the machine. We shall
perform the arithmetic operations in FP(r, p_..,, clg) and then.chop the results
to p digits. Then we are really performing the arithmetic in FP(r, p, clg’),
where g’ = ¢ + p... — p. All variables will be declared to have the precision
Pmaxs and we shall have to write a special subroutine CHOP which will chop a
number X to p digits, replacing the low-order p.,, — p digits by zeros.
Instead of writing a FORTRAN statement such as X = A + B ++ C, we
must write

)
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X = A+B
CALL CHOP (X)
X = X+4C

CALL CHOP (X)

CHOP should be written in such a way that the value of p can be specified by
calling it with a different entry point.

The subroutine CHOP can also be used to handle input data. We may
enter numbers with an accuracy of p.,x and then chop them to p digits. We
can even use this approach for library programs such as SIN(X) and
SQRT(X). To avoid having to write p-digit versions of these subroutines, we
shall simply call the version of the subroutine for the precision p,,, and then
chop the result to p digits. Since the subroutine used arithmetic with the
precision p.,.,, this may produce a slightly better result than we would expect
to produce on a p-digit machine. But it will be a reasonable result, and with
this approach we do not have to rewrite the library for each precision p.

Our objective is to plot d versus p, where 4 is the number of correct digits
in the answer. We would expect to produce a graph such as the one shown in
Figure 7.5.1. For each digit we add to the precision of the arithmetic, we
expect to get one more digit of accuracy in the answer, so we expect the points
to lie on a straight line with a slope of 45°. If the x intercept of this line is a,
we have lost a digits of accuracy in the calculation. This is a measure of the
condition of the problem.

However, the points will not fall exactly on a straight line. One reason for
this is the discreteness of the number of correct digits in the answer. To
overcome this difficulty, we shall use a continuous measure of accuracy.

o
o
o
o
d o
o
o
o
]
| | 1 1 A1 1 1 1 ] | 1 1 |
o] 2 q 6 8 0 12 14
[
Figure 7.5.1
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Suppose that the correct answer is y and that we have produced a value j.
We let
(7.5.1) e=|j—yl

and note that —log, ¢ has the property that it is increased by 1 when ¢ is
divided by r. To produce a measure of the number of correct digits in 7, we
determine e such that

re>|y|l >t
and set

(1.5.2) d=e+log, .5 — log, ¢.

If € is one-half a unit in the ith position of y, we have € = }r*~/,sod = i. Then
the integer part of d is the number of correct digits in y, and (7.5.2) gives us a
continuous measure of the accuracy of j.

The question of how to measure the number of digits of accuracy in the
answer becomes more complicated when we consider a program whose output
is several numbers instead of one. For example, a matrix inversion program
produces n? numbers, and some of these numbers will be more accurate than
others. Usually it is best to use an appropriate norm to measure the accuracy
of the answer. In our discussion here, we shall consider only programs that
* produce a single number as the answer.

We first consider two simple problems to illustrate the way our results may
depart from the behavior shown in Figure 7.5.1. Let y = gy and j = | = 47.
When the arithmetic is performed in FP(16, p, ¢), we produce the results
shown in Figure 7.5.2. This is about the sort of behavior we would expect. The
points do indeed follow the line quite well, but they do not lie exactly on the
line. The variations from the line are due to variations in the digits chopped.
The sixth hexadecimal digit of ;}; is zero, so we produced the same results
using six digits as we did using five digits. Thus, we cannot guarantee that
increasing the precision of the arithmetic will increase the accuracy of the
result.

We next consider a problem in which the behavior is a little more erratic.
Let

(1.5.3) ¥ =3P — (FENFH).

To compute ¥, we set

=1=17
B = 68 - 483
C =70+ 483

F=A*xA)O(B*C).

)
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Figure 7.5.2

Figure 7.5.3 shows the results produced when this calculation was performed
in FP(16, p, ¢). The numerical values for d were

p d
4 42
5 2.64
6 2.64
7 4.00
8 6.37
9 5.38
10 6.47
11 8.11
12 8.48
13 9.96
14 12.46

Of particular interest is the fact that we lost one digit of accuracy by increas-
ing the precision from eight digits to nine digits.

To see how this loss of accuracy can happen, we examine the calculation
of 3 more closely. Let

u=(})
Y= (46583)(4750 3 )
S0y = u — v. Also, let

= A »
=B

LR ]

A
G
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Figure 7.5.3

so y = it © 9. We have used chopped arithmetic in the calculation of # and
¥,s0 &t < uand ¥ < v. Write

u=i- €, €6=>0
v=0+¢ €>0.
Then

(1.54) e=15—yl=le — €l

We expect the number of digits accuracy in # and ¥ to behave more or less
like the graph in Figure 7.5.2. When p is increased by 1, we expect ¢, and ¢, to
be decreased by about a factor of 16. This does indeed happen when p is
increased from 8 to 9. But the errors ¢, and ¢, are both nonnegative, so they
tend to compensate. For p = 8, ¢, and ¢, are nearly equal, so |e, — ¢,] is
about x5 as large as either €, or €,. When p is increased to 9, €, is decreased
by more than a factor of 16, so € = |¢,|. Even though ¢, has been decreased
by a factor of almost 16, it is still about 16 times as large as € was for p = 8.
Thus, the decrease in accuracy when p is increased from 8 to 9 is due to the
fact that the errors ¢, and ¢, in (7.5.4) almost compensate when p is 8, so the
answer is more accurate than we would expect it to be.

In spite of the unexpected behavior when we increased p from 8 to 9, the
results shown in Figure 7.5.3 do not invalidate the approach of increasing the
precision to test the accuracy of the answer. But they suggest that increasing
p by one or two digits will not suffice. Since we normally increase the precision
from single-precision to double-precision or from double-precision to triple-

)
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precision, it is typical to increase p by several digits rather than one or two
digits. We hope that this is enough to overcome such local anomalies.
Increasing p by five or six digits would allow us to produce a good estimate of
the error in the computation in (7.5.3).

The results shown in Figure 7.5.3 displayed a slight irregularity because
the answer produced when p = 8 was more accurate than we expected it to be.
But this discrepancy can be much larger. Suppose that we want to compute
y = A — B, where

A = 2.3456110000000234567

and
B = 1.1111109999999111111.

Figure 7.5.4 shows the results produced when this computation is performed
in FP(10, p, c). The answer produced using five- or six-digit arithmetic is far
more accurate than we expect it to be. In fact, it is more accurate than the
answer produced using 13-digit arithmetic. Thus, we cannot guarantee that
increasing the precision by five or six digits will increase the accuracy of the
answer.

The anomalies we observed in Figures 7.5.3 and 7.5.4 were due to the fact
that we produced an unusually good answer for certain values of p. Our next
example shows a different way in which increasing p can fail to produce a more

Figure 7.5.4
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accurate answer. Let

(7.5.5) y=x+ A sin Bx,
where

x=4

A=10"8

B = 10's,

Figure 7.5.5 shows the results produced when the computation is performed
in FP(16, p, ¢). The numerial values are shown in the following table:

P d
1 1.20
2 1.59
3 2.1
4 4.20
5 4.58
6 5.66
7 6.13
8 6.20
9 6.21
10 6.30
11 6.54
12 6.67
13 6.79
14 7.40
15 8.54
16 9.47
17 10.36
18 11.54
19 12.47
20 13.36

The flat part of this graph ranging from p == 7 through p = 13 differs drama-
tically from the behavior we expect.

To see what happens in the calculation of (7.5.5), write z = Bx. If
Bx > 16, our approximation 2 for z is likely to have an error of several
radians. Then the result computed for sin z is pure noise. Now 16'° > 101¢/7
> 162, so when p == 13 the error in 2 is less than 1 radian. Increasing p
beyond 13 produces the sort of behavior we expect. For p <17, the contribu-
tion of 4 sin Bx is negligible, so this part of the graph is also normal.

Figures 7.5.4 and 7.5.5 show that we cannot guarantee that increasing the
precision will improve the answer. These examples may appear to be rather

)
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pathological, but that is because increasing the precision by five or six digits
usually does increase the accuracy of the answer. The behavior shown in
Figures 7.5.2 and 7.5.3 is much more typical.

To illustrate the effect of precision on a less trivial computation, we
consider the two problems discussed in Sections 4.1 and 4.2. Figure 7.5.6
shows the result produced when the quadrature problem of Section 4.1 was
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run in FP(16, p, ¢) with N = 2!3, Similarly, Figure 7.5.7 shows the results
prf)ducec'l when we use the power series to compute e~7 and perform the
arithmetic in FP(16, p, clg’), where ¢’ = 15 — p.

EXERCISES

1 W‘rite a_subroutine to perform the operation of multiplication in interval
arithmetic. That is, the subroutine should compute the values of z; and z, in
(7.4.2) and round the interval (z,, z,) outward.

2. Write a sine routine to be used with interval arithmetic, The input is the interval
(xy, x7), and the routine should compute

Y1 = min sinx
X1SxSxy

y2 = max sinx
xSxSXy

. and round the interval (,, y;) outward.
3. Let

=Xty
f(»\‘.}',z)—x_l_z'

Write a subroutine. which can be used to compute this function when we are
using interval arithmetic. The input will be the intervals (x,, x,), (, »;), and
(23, z2). Assume that the interval (x,, x;) -+ (z,, z,) does not contain zero. The
output will be the interval (w,, w,) rounded outward, where w, and w, are given
by (7.4.13) and (7.4.14).

) )
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Let X bein S(r, p) and let N be a positive integer. Select several values of X close
to 1 and compute X 1923 using one of the algorithms described in Section 3.6.
(The value of X must be close enough to 1 so that you do not encounter either
overflow or underflow.) Perform the calculation using both interval arithmetic
and normal floating-point arithmetic. Compare the interval produced with the
error bound obtained in Section 3.6.

Compute 4l in hexadecimal and show that the sixth hexadecimal digit is zero.
Verify that the points in Figure 7.5.2 are above or below the line depending
on the size of the first digit dropped.

Write the subroutine CHOP described in Section 7.5 and perform some experi-
ments of the sort described there.



8 RADIX CONVERSION

8.1. EQUIVALENT NUMBER OF DIGITS

Unless we are using a decimal machine, we are faced with the problem of
radix conversion for both input and output. These conversion programs will
be the subject of this chapter, but before discussing the conversion techniques
themselves, we shall try to determine the number of decimal digits needed to
produce an accuracy which is “equivalent” to the accuracy we are using inside
the machine. We suppose that we are using a machine which performs arith-
metic in a system FP(r, p, a), where r 5= 10. Then we want to know the number
of decimal digits needed to produce the same accuracy as p-digit numbers in
the radix r. This will not depend on the sign of the numbers, so we may
restrict our attention to positive numbers.

Consider the set S(r, p) of p-digit floating-point numbers in the radix r.
The numbers in S(r, p) which lie in the interval re-! < x < r© are uniformly
spaced at a distance r<-? apart. We shall designate this distance by § and we
note that  changes as we go past a power of r.

We shall now consider two systems FP(r,, p,, ¢) and FP(r,, p,, ¢) with
r, # r,. Unless one of the radices is a power of the other, the spacing of the
numbers in the sets S(r,, p,) and S(r,, p,) will change at different points.
Consider an interval /: @ < x < b which is large enough to contain at least
two points of each of the sets S(r,, p,) and S(r,, p,). Suppose that

8.1.1) ' ml<a<b<ry
rl<<a<b<ry,

and let §, = r{*~* be the distance between consecutive points of S(r,, p) in .

224
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For any real number x in /, the bound for the error incurred by chopping x to
S(r,, p,) is 6,. Then the system with the smaller §, is the more accurate in I'in
the sense that the maximum error incurred by chopping a number to S(r., p)
is smaller. This will be our criterion for comparing the systems, so we shall
say that FP(r,, p,, c) is more accurate than FP(r;, p;, ) if 8, < d,, thatis, if

(81'2) "l'-" < ,ll:“m_

[We would also arrive at the criterion (8.1.2) if we compared FP(r,,p,, R)
with FP(r;, p,, R).]

This criterion depends on /, so it suggests that we might prefer one of the
systems FP(r,, p,, ¢) in some intervals and the other system in other intervals.
This is often true. As an illustration, we shall compare FP(16, 6, ¢) with
FP(10, p, ¢). In the interval .1 < x < I, the value of o is 16-¢ = 2724 for
FP(16, 6, c), and it is 10-7 for FP(10, p, ¢). Now 1077 > 27%¢ > 10-%, so in
this interval we find that FP(16, 6, ¢) is more accurate than FP(10, 7, c) but
not as accurate as FP(10, 8, ). Indeed, 2-2¢ =~ .6 x 1077, sofor.l < x < i
the six-digit hexadecimal machine is more accurate than a seven-digit decimal
machine by about one bit.

Now suppose that 1 < x < 10. The values of § for FP(16, 6, ¢) and
FP(10, p, ¢) are 2°2° and 10-*~", respectively. Since 2-20 = 954 x 1076,
FP(16, 6, ¢) is only slightly more accurate than FP(10, 7, ¢) in this interval.
Next, suppose that 10 < x < 16. The value of § for FP(16, 6, ¢) is still 272°,
but the decimal representation of x requires two digits to the left of the decimal
point, so & is 10?2 for FP(10, p, ¢). Then FP(16, 6, ¢) is slightly more
accurate than FP(10, 8, ¢) in the interval 10 < x < 16.

Finally, suppose that 16 < x < 100. The hexadecimal representation of
x requires two digits to the left of the radix point, so the value of § for
FP(16, 6, ¢) is 2-15. But § is still 10-t>-2 for FP(10, p, c), so FP(10, 7, ¢) is
more accurate than FP(16, 6, ¢) for numbers in this interval.

Thus, the number of decimal digits needed to produce the same accuracy
as FP(16, 6, ¢) depends on the size of the numbers considered. The accuracy of
FP(16, 6, ¢) may lie between that of FP(10, 6, ¢) and FP(10, 7, c), between
that of FP(10, 7, ¢) and FP(10, 8, ¢) or between that of FP(10, 8, ¢} and
FP(10, 9, ), because the spacing of the numbers in S(r, p) changes when we
go past a power of r, so the spacing of the numbers in S(16, 6) and S(10, p)
changes at different points.

To establish bounds for the variation in the equivalent number of digits,
we shall consider the relative error. Let x = rem, r-' < m <1, and let x be x
chopped to S(r, p), so % = r*m. Then & = (I — p)x, where
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Write € = m — m, so

8-].3 = e € =P,

(8.1.3) P=mTe 0<e<r

Let @ = r*m and b = a + r*-». Then (8.1.3) holds for any x in the interval
a <\ x < b. Let f be the least upper bound for the relative error p introduced
by chopping a number x in the interval a < x < b to S(r, p). Since
dp/de > 0,

andsincer'<m<1—r-2
-(p-1)
8.1.9 ,--nsﬂgl_.;__m.

Thus, if I is any interval containing at least two points of S(r, p), the least
upper bound for the relative error introduced by chopping numbers in 7 to
S(r, p) is at least r=2 and at most r~*2-Vf(1 4 p-t2-1),

Instead of using the bound for absolute error as the criterion for deciding
which of the systems FP(r,, p,, ¢) is the more accurate, we could use the bound
for the relative error. Let 7 be an interval which contains at least two points of
each of the sets S(r,, p,) and S(r,, p,), so the bound for the relative error
introduced by chopping a number in I to S(r,, p,) is at least r;# and at most

"“Pl"' 1)
If
=(pr=-1
8.1.5) ]:L_'rl(,_,, <ry,

we always get a smaller bound for the relative error by chopping the numbers
in I to S(r,, p,) instead of S(r;, p,). Since (8.1.5) does not depend on /, this
would lead us to say that FP(r,, p,, ¢) is always more accurate than FP(r,,

P2, €) when (8.1.5) holds. It is sometimes convenient to write the criterion

(8.1.5) in the equivalent form
(8.1.6) AR B Cee

We shall now show that when (8.1.5) holds we would also say that
FP(r,, p,, ¢) is always more accurate than FP(r,, p,, ¢) if we used the criterion
based on absolute error. Suppose that (8.1.5) holds and consider an interval /
which contains at least two points of each of the sets S(r,, p,) and whose end
points a and b satisfy (8.1.1). Since / contains at least two points of S(r,, p,), it

)
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follows from (8.1.1) that

rg = r(rt - r?)
With (8.1.5), this yields
";("-”

— e = (T,
| -} r;lpn-l)

I‘?-p’ = ,-;2,-29: > rfll(r‘l - r'P) ‘
Thus, (8.1.2) holds, so we conclude that FP(r,, p,, ¢) is always more accurate
than FP(r,, p,, ¢) when (8.1.5) holds.

We again compare FP(16, 6, ¢) with FP(10, p, ¢). The values of r? and
r*-t for FP(16, 6, c) are 22¢ and 22°. Now 10¢ < 22° and 22¢ < 10%, so
FP(16, 6, c) is always more accurate than FP(10, 6, ¢) but less accurate than
FP(10, 9, ¢). '

When we say that a system FP(r,, p,, ¢) is more accurate than a system
FP(r,, p,, ¢), we are referring to the bounds for the error due to chopping.
This does not mean that for every number x, less error will be introduced if we
chop x to S(r,, p,) instead of S(r,, p,). For example, the decimal number .1 is
in S(10, 3) but not in S(2, 100), so we introduce more error by chopping it to
S(2, 100) than we do by chopping it to S(10, 3). Nevertheless, the comparison
based on error bounds appears to be a reasonable way to compare the
accuracy of systems with different radices.

Some slight variations of the criterion (8.1.6) are useful. For example,
(8.1.6) follows from

(8'.7) e L i,
and (8.1.7) is often easier to remember. We might also use the criterion
(8.1.8) <t 4 1.

If equality holds in (8.1.7), FP(r,, p,, ¢) is always at least as accurate as
FP(r,, p,, ¢), and there are some intervals in which it is more accurate. The
criterion (8.1.7) was obtained by Goldberg (1967), and (8.1.8) was obtained
by Matula (1968b). Each of them arrived at the criterion by considering the
effect of conversion and reconversion.

Comparisons of the accuracy of systems FP(r,, p,, ¢) are fundamental to
many aspects of our programs. For instance, they are often the basis for our
decisions about the number of decimal digits we should specify in our input
and output formats. They also affect the decisions made by the compilers
about the typing of variables and constants. For example, in the implementa-
tion of PL/1 for the IBM System/360, a floating-point constant will be treated
as single-precision if it has at most six decimal digits, but it will be treated as
double-precision if it has more than six decimal digits. This decision is based
on the criterion (8.1.5).
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When we want to compare the overall accuracy of two different machincs,
there is another viewpoint we may take. Suppose that we are asked whether
we would prefer to have the arithmetic performed in FP(r,, p,, ¢) or
FP(ry, p,, ). The question is easily answered if rgr<{ro-t -1 or if
rft < rf7' - 1. But if neither of these relations holds, which of the systems
is the more accurate may depend on the size of the numbers we are working
with. In that case, it is reasonable to base our decision on the bounds for the

relative error. Then we would select FP(r,, p,, ¢) in preference to FP(r,, P2, €)
if

8.1.9 ry ryeet
1 I r,"’""’ ] ' '.z(p|~l)
This criterion is equivalent to
et <t
or
(8.'.!0) r;(ﬂn-l) < ’i(pn-l)_

When we use this criterion, we are comparing the worst case for the relative
error in FP(r,, p,, ¢) with the worst case for the relative error in FP(r,, p,, ¢).
This appears to be a reasonable basis for comparing the accuracy of the
systems FP(r,, p,, ¢) over a wide range of problems. On the basis of (8.1.10),
we would prefer FP(16, 6, c) to FP(10, 7, c), but we would prefer FP(10, 8§, ¢)
to FP(16, 6, c).

8.2. PROPERTIES OF CONVERSION
TRANSFORMATIONS

When we write input or output statements in a language such as
FORTRAN or PL/I, there are various formats we may usc for floating-point
numbers. But it is usually quite easy to change a number from one of these
formats to another, so we shall consider only the E format. Then the problem
becomes one of converting a floating-point number in S(r,, p,) to a floating-
point number in S(r,, p,). One of the sets S(r, p,) is the sct.of decimal
floating-point numbers, and the other is the set of floating-point numbers
handled by the machine we are using. By considering the gencral case, we may
discuss input and output conversion simultaneously.

Mathematically, the conversion program is a rransformation t of the set
S(r,, p\) into the set S(ry, p,). To each element a in S(r,, p,), T assigns an
element 1(a) in S(r,, p,), called the image of a. It is convenient to use the
standard terminology for transformations to describe propertics of conver-
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sion programs. The transformation 7 is said to be well defined if the image 1(a)
is independent of the represcntation of a. We note that there are many
different ways to represent an input number in an E format, for cxample,

27.E0, 2700.E-2, .G027E4, 2.70El,

cte. If 7 is well defined, all these representations of the number 27 will be
converted into the same number. For some conversion programs, the trans-
formation t is not well defined.

Suppose that 7 is a transformation of S(r,, p,) into S(r,, p,). We say that
7 is a transformation of S(r,, p,) onto S(r,, p,) if for every element b in
S(ry. p,) there is at lcast one element a in S(r,, p,) with b = 7(a). Thus, the
stutement that t is onto S(r,, p,;) makes the additional assertion that every
element in S(r,, p,) is the image of some element in S(r,. p,) under 1.

The transformation 7 is said to be one to one if distinct elements of
S(r,, p;) have distinct images. Thus, the assertion that the transformation z is
onc to one means that for a and b in S(r,, p,), t(a) = t(b)ifand onlyif @ -~ b.
The statement that 7 is one to one makes no assertion about whether or not ¢
is a transformation onto S(r,, p,).

We shall say that the transformation t is monotone provided that t(a) <<
7(h) holds for every pair of elements a, b in S(r,, p,) witha < b. If t(a) -2 T(b}
holds for every pair of elements in S(r,, p,) with a << b, t is said to be strictly
monotone. 1t follows at once that z is strictly monotone if and only if it is both
monotone and one to one.

Since we have both input and output conversion programs, we also have a
transformation o of S(r,, p,) into S(r,, p,). We define a transformation ot of
S(r,, p,) into itself by setting

o1(a) = a(t(a))

for all @ in S(r,, p,). 1t is natural to ask whether g1(a) == a holds for all ¢ in

Stry. p)).
We may also define a transformation (at)? of S(r,. p,) into itsclf by setting

(a1)¥a) = otlot(a)]

for all @ in S(r,. p,). This definition is easily extended to (a1)" for cvery posi-
tive integer n. We shall be interested in the behavior of (a1)", that is, in the
cffect of converting and reconverling a number n times.

The terminology we have introduced is the standard mathematical
terminology for properties of transformations. But a conversion program has
the additional requirement that for each a in S(r,, p,), 7(a) must be approxi-
mately a. For any real number a, let @, and a, be the left and right neighbors
of @ in S(ry. p;). That is, a, is the largest number in S(r,, p,) which is <~ @, and
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a, is the smallest number in S(r,, p,) which is ;> a. Il a is in S(r,, p,), a, ~
a, = a. We shall say that 7 is a neighbor transformation if T converts cach a in
S(r,, p,) into one of its neighbors a,, a,. Any conversion transformation which
is not a neighbor transformation introduces unnecessarily large error. There
are two neighbor transformations which are of particular interest. We say
that z is a truncation conversion transformation if t(a) is the number g obtained
by chopping a to S(r, p,). Similarly, t is a rounding conversion transformation
if 7(a) is the number a° obtained by rounding a to S(r,, py).

There are some numbers which belong to both S(r,, p,) and S(r,, p,). For
example, this is true of small integers. It is extremely desirable for t to have
the property that t(a) = a whenever a is in both S(r,, p,) and S(r,, p,). This
always holds for a neighbor transformation.

Consider an interval 7 which does not contain a power of either r, or r,.
For i =1, 2, let S, be the set consisting of those points in S(r,, p,) which lie
in 1. The spacing of the numbers in S(r,, p,) is uniform in any interval which
does not contain a power of r,, so the points in each S, are uniformly spaced.
Let 7 be a transformation of S(r,, p,) into S(r,, p,) such that t(a) =~ a holds
forall ain S(r,, p,). If aisin S,, we would expect 7(a) to be in S,. This need
not always be true, because points near the ends of / might have images
outside of 7, but it should hold for almost all g in S,. Similarly, if an clement
bin S, is the image t(a) of some element a in S(r,. p,), we would expect ¢ to be
in §,. Again, this may not always be true, but it will be truc for points that
are not too close to the ends of /.

Now suppose that the transformation 7 is onto. Then every point in S, is
the image of at least one point in S{(r,, p,), and most of the points in S, are
images of points in §,. If every point in S, were the image of some point in
S, we would conclude that S, must have at least as many points as S, docs.
Clearly S, cannot have very many more points than S, does. Therefore, we
expect the points of S, to be closer together than the points of S, are. We saw
in Section 8.1 that this will be true for all such intervals 7 if (8.1.8) holds. Thus,
if T is onto, we expect that

(8.2.1)

et L

Similarly, if  is one to one, the images of the points in S, are all distinct,
and almost all of them lie in ;. Therefore, we expect S, to have at least as
many points as S,. This will hold for all such intervals I if

(8.2.2) <<t )L

The statements we have made arc rather vague. We have said that we
expect (8.2.1) to hold if 7 is onto and we expect (8.2.2) to hold if 7 is one to
one, but we have not stated that they must hold, because we have considered
the general case in which we know only that t{a) = a. Much stronger state-
m"*jc:m be made if we are more specific about 7. Matula (1968b) considers
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the case in which £,  r} for any positive integers i and j, and he shows that
if 7 is either a truncation conversion transformation or a rounding conversion
transformation, then (8.2.1) is necessary and sufficient for 7 to be onto and
(8.2.2) is necessary and suflicient for 7 to be one to one.

Consider a machine which performs arithmetic in FP(r, p, ¢), and suppose
that we usc E formats for input and output with p’-digit decimal numbers.
Then we are working with the sets S(r, p) and S(10, p’). If

(8.2.3) 107" < ro? 4 1,

the points in S(r, p) are always at least as close together as the points in
S(10, p’). Then the input conversion can be one to one, and the output conver-
sion can be onto. On the other hand, if

(8.2.4)

PP 10P7Y

the input conversion can be onto and the output conversion can be one to one.

I neither (8.2.3) nor (8.2.4) holds, we would expect that neither the input
conversion nor the output conversion would be onto and that neither of them
would be one to one. (Matula's results show that this is the case for either a
truncation conversion transformation or a rounding conversion transforma-
tion.) Of course, if one of the relations (8.2.3) or (8.2.4) does hold, it does not
guarantee that the corresponding conversion transformation will be onto or
one to one. This depends on the quality of the conversion program.

We are gencrally given the system FP(r,p, a) in which the machine
performs arithmetic, so we are given the set S(r, p) of floating-point numbers
handled by the machine. We must decide how many digits to use for input
and output, 50 we must sclect the length p’ of the numbers in S(10, p’). In
some cases, such as the PUT DATA statement in PL/I1, the compiler selects
p' for us. PL/1 bases its decision on (8.2.3), so it guarantees that the floating-
point numbers in the machine will be more closely spaced than the decimal
numbers arc. The use of the criterion (8.2.3) is based on the view that the
programmer will think of his computation as being performed in FP(10, p’, a),
so the arithmetic in the machine should be at least this accurate. When two
decimal numbers are different, they should still be different after they are
converted to S(r, p). That is, the input conversion should be one to one. The
usc of the criterion (8.2.3) for determining the number of digits to be printed
on output is based on the idea that we should print only those digits that are
significant. We would not expect the answer to have p’ significant decimal
digits if the numbers in S(10, p) are closer together than the numbers in
S(r, p) are. This suggests that the selection of p’ should be based on the crite-
rion (8.2.3). Also, if we expect p’ decimal digits of the answer to be signifi-
cant, we would want to be able to produce every number in S(10, p), so we
would want the output conversion transformation to be onto.

But there is another point of view we may adopt in selecting - j\ many



)

232  RADIX CONVERSION CHAP. 8
carefully written programs it is essential that we write the program with the
realization that the computation will be performed in FP(r, p, a). Suppose
that we want to enter a constant such as /2. We would like to produce the
number in S(r, p) which is closest to n/2, so we want the input conversion
transformation to be onto. This suggests that we use the criterion (8.2.4) for
the selection of p’. With this criterion, we can also hope that the output
conversion transformation will be one to one. Then when the same value is
printed for two numbers 4 and B, we would know that 4 and B were cqual
before they were converted. This is quite helpful in debugging programs,
because it helps us determine which branches were taken in the program.

Thus, we would use the criterion (8.2.3) for the selection of p’ if we want to
think of the calculation as being performed in FP(10, p’, a). But if we program
with the realization that the calculation will be performed in FP(r, p, a), then
(8.2.4) is the natural criterion to use for the selection of p’.

Finally, we shall consider the effect of conversion and reconversion. This
was studied in detail by Matula (1968a). First, suppose that our conversion
programs produce a truncation conversion transformation for both input and
output. For any positive number a in S(r,, p,), we have

ot(a) < t(a) < a.

Then each conversion and reconversion decreases the number until we reach
a number which belongs to both S(r,, p,) and S(r,, p,). If the number is
converted and reconverted many times, this downward drift can be quite
annoying.

Matula (1968a) considers the case in which r| # r} for any positive
integers i and j. He shows that if ¢ is a rounding conversion transformation
and 7 is a truncation conversion transformation, then gz(a) == a holds for all
ain S(r,, p,) if and only if

gt > 2re — |,

He also shows that if both ¢ and t are rounding conversion transformations,
then gt(a) = a holds for all a in S(r,, p,) if and only if

gt >,

8.3. CONVERSION TECHNIQUES

We shall now consider several techniques which can be used to convert a
number from one radix to another. To discuss input and output conversion
simultaneously, we shall consider the general case of converting a number
from S(r,, p,) to a number in S(r,, p,). Since the sign of the number is casy to
handle, it suffices to consider the conversion of positive numbers.

)
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It is easy to change a number in S(r, p) from the form

(8.3.1) x=r'm, rrt<m<l|,
to
(8.3.2) x=r'l,

where 7 is an integer less than r». We shall discuss the conversion of numbers
written in cach of these forms.

Many machines are able to perform arithmetic in only one radix. Then
for the input conversion we want to perform the arithmetic in the radix r,
which we are converting to, and for the output conversion we want to perform
the arithmetic in the radix r, which we are converting from. The techniques
we shall use will depend on whether we perform the arithmetic in the radix
r, or r,. But we shall still discuss the general case of converting a number
from S(r,,p,) Lo S(r,, p,), because there are some machines, the .lBM
System/360, for example, which can perform both decimal and binary
arithmetic.

Some aspects of the conversion programs are dependent on the represen-
tation of the decimal numbers. We shall assume that the decimal numbers are
represented as a string of decimal digits.t We shall also assume that it is easy
to convert one-digit integers from one radix to the other. For example,
suppose that we are using a four-bit binary-coded decimal representation for
decimal digits. Then it is easy to convert a decimal digit to binary or to con-
vert a binary or octal digit to decimal, but converting a hexadecimal digit to
decimal requires a little more work.

We shall first consider the conversion of a positive integer / from the radix
r, to the radix r,. This is part of the problem of ‘converting a number in the
form (8.3.2), and it is also of interest in its own right for handling | formats.
We shall assume that 7 < rp* for i = 1, 2, so that / can be represented exactly
in both systems. We may write

(8.33) l H a’l . Irfn“ 1
(8.34) y bm e -1

I @par? 2 b e a4

I- bm-l’f'-l b oo e b byry A bos

where 0 <2 a, < r, and 0 < b, < r,. Then we are given the a, and we want to
find the b,. .
We begin by considering techniques which allow us to perform the arith-
metic in the radix r,. One approach is to divide / by rg*~' to geta quotient @,
and a remainder R, less than r¢'. Then b, ., == @,, and we may continue

tOccasionally other representations have been used. An example was the card image used
on the IBM 704. We shall not discuss the conversion of data represented in this way.
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the process by dividing R, by r£*-? to get the next digit. This procedure
requires p, — | divisions, each division producing one more digit b. The
final remainder is b,. There are two disadvantages to this approach. First, we
still do about the same amount of work if / is small. (We may save a little time
by comparing the powers of r, with 7 and not performing the division unless
ry -7 1) A second disadvantage is that we must store the representation of
each of the p, - | numbers #; in the radix r,.

We may overcome both of these disadvantages by developing the digits
b, in the opposite order. Divide 7 by r, to get a quotient @, and a remainder
R, less than r,. Then b, = R,. Then divide Q, by r, to get a quotient Q, and
a remainder R, -- &,. Continuing in this way, we may develop the rest of the
digits b,. We terminate the procedure whenever the quotient @, is zero, so less
work is required when / is small. With this procedure we need to store only
the representation of , in the radix r,. With either of these procedures we
develop the b, in the radix r,, so each digit must be converted to the radix r,.

Next, suppose that we want to use arithmetic in the radix r, to convert /.
Let f(x) be the polynomial

Sf(x) - ‘:Zo' ax',

so ! = f(r,). We first convert each digit g, to the radix r,. Then we compute
f{r,) from the formula

Sr) ag | ria, | rya, | | rda,,., | ra, D) ---)
where the arithmetic is performed in the radix r,. This requires at most
p, — | multiplications and additions, and it is casy to shorten the procedure
when the representation of 7 in the radix r, has fewer than p, digits.

With any of these techniques for the conversion of /, it is often convenient
to perform the radix conversion in fixed-point arithmetic and then convert
the result to floating-point. In particular, this is the natural way to proceed
if the machinc has a convert instruction for the conversion of fixed-point
integers. But the word length for fixed-point numbers may be shorter than
the precision of the floating-point numbers we are using, so we may have to
partition /. In this case, we select an integer & such that integers less than r}
can be converted directly, and then we write [ as a polynomial in r¥. For
example, if / -2 r}*, we can write

I-co | ik | e,yrt%,

where the ¢; arc less than £ It is casy to obtain the ¢, from the representation
of 7in (8.3.3), and we can convert the ¢; to loating-point numbers in S(r,, p.).
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Then we form the floating-point representation of 7 by computing

I-2co |- frinfe, | (r§ » 1)l

in FP(ry, p,, a).
Next, we shall consider the conversion of a fraction F. We are given the

representation
PA,
F: i a,ry’,
=1

and we want to convert Fto
F - f,‘ bri'.
i1

It may be impossible to represent Fin the radix r, with p, digits, so we want
F’ ~ F. We shall try to produce the value F of F chopped to S(r,, p,). First
suppose that we can perform arithmetic in the radix r,. We multiply F by r,
and note that b, is the integer part of r, F. Let F, be the fractional part of r, F.
Then we multiply F, by r,, and let b, be the integer part of r,F,. Continuing
in this wiy, we obtain the first p, digits of F, so F' = F,

Suppose that we want to use arithmetic in the radix r, to convert the
fraction F. Let

f(x) = l;il a,x',

s0 F-- f(r,'). Then we could compute F’ by evaluating f(r;') in the radix
r,. Unfortunately, it may be impossible to represent r; ! exactly in the radix r,
with p, digits, and the crror in the representation of ;' may introduce more
crror in F’ thun we would like. One way to overcome this difficulty is to use
more than p, digits in the evaluation of f(r;'). But it is usually easier to
convert F by converting the integer r£*F exactly and then dividing the result
by r5vin FP(r,, p,. a).

We shall now consider the conversion of a floating-point number x = r{m
from S(r,, p,) to S(r,, p,). First, suppose that we can perform arithmetic in
the radix r,. We adjust the exponent e so that m is either an integer or a frac-
tion, and then we convert m to the radix r,. Call this value m’. Then we
complete the conversion of x by multiplying m’ by r in the radix r,, and this
is often done by performing the arithmetic in the system FP(r,, p,, a). To do
this, we need a representation of r§ in the radix r, for all values e which can
arise without producing overflow or underflow. We can reduce the number of
different powers of r, that have to be stored by dividing by r\"' when e is
negative. But if the range of the exponents is large, it may require too much
storage to store even the positive powers of 7,. One way to save storage is to
compute rl! using one of the techniques described in Section 3.6 for the
computation of X++N. Alternatively, we might store a few powers of r, and

)



)

236 RADIX CONVERSION CHAP. 8

compute the others. For example, we could store 7% and r}* fork 1, 2,3,
..., 9. Then it would be very easy to compute r§ for any positive integer ¢
less than 100,

The accuracy of the result produced by this technique depends on the
accuracy of the multiplication and division and on the accuracy of the
representation of r¢. Unfortunately, we may need more than p, digits to
represent r; when e is large. (Sce Exercise 9.) By using only p, digits in the
representation of 75, we may introduce an error in the answer which is larger
than the error introduced by the multiplication or division. If r, - 10 and r,
is a power of 2, S(r,, p,) does not contain r; ! but it does contain 75 for small
positive integers ¢. This provides an additional motivation for dividing by
r'r! when e is negative.

Finally, suppose that we want to perform the arithmetic in the radix r,.
We first find the integer e for which

> x| =",

and then we divide x by r§ to produce a number y. Clearly r;' <~ y < 1, s0¢
is the exponent of the answer. To obtain the mantissa of the answer, we con-
vert the fraction y using the technique described earlier.

With either of these techniques, we need to store or to compute the repre-
sentation of the powers of one radix in the other radix. We are concerned with
both the conversion of decimal numbers to the radix r and the conversion of
numbers in S(r, p) to decimal. If we store the representation of powers of 10
in the radix r, then we can use arithmetic in the radix r for both of these
conversions. Alternatively, we could store the decimal representation of the
powers of r and use decimal arithmetic for both conversions.

If we are using chopped arithmetic and we want the conversion program
to produce a rounding conversion transformation, we usually try to produce
the first p, -- 1 digits of x and then round the result to p, digits. The round
operation requires us to perform an addition in the radix r,.

The various techniques described above will differ in speed, accuracy, and
the storage required. We shall not discuss the speed or the storage required,
because they depend on the machine we are using. But we shall consider a few
of the problems related to accuracy. We shall assume that the machine per-
forms arithmetic in the system FP(r, p, ¢), where r is a power of 2. '

We shall first consider input conversion. Suppose that we begin by chang-
ing the decimal number to the form (8.3.1) and that we then program the
conversion using chopped arithmetic. Let

x = 10°m, d<m<|,
and let /2" = i be the fraction m converted to the radix r. To complete the
conversion of x, we multiply or divide m’ by 10" in FP(r, p, ¢). Supposc that
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x - 2, s0 x will be changed to the form 10! » .2. Since r is a power of 2, .2is
not in S(r, p). Then m’ will be less than .2, so 10 « m’ < 2. Thus, 2 will be
converted into a number less than 2, so we do not have a neighbor transforma-
tion. The fact that small integers are not converted exactly is quite annoying.
A possible remedy is to use higher-precision arithmetic in the conversion and
then round the result to S(r, p).

Another approach is to begin by changing the decimal number to the form
(8.3.2). so we convert the integer / instead of the fraction m. If / does not have
too many digits, it can be converted exactly. Similarly, if |¢| is not too large,
10*! is in S(r, p). If both I and 10'*! are in S(r, p), then the multiplication or
division of 7 by 10*! in FP(r, p, c) will produce the correctly chopped answer
1. This means that small integers will be converted exactly. In fact, we can find
a wider class of numbers for which this procedure will produce the correctly
chopped answer. Let & be the integer for which

(8.3.5) 10% < 72 < 10%+1,

and let é be the largest integer such that 10 is in S(r, p) for all integers e with
| <~ e < é. Then this conversion procedure will produce the correctly chopped
answer ¥ whenever the decimal representation of x in the form (8.3.2)
satisfics both

(8.3.6) le| <2 é
and
8.3.7) 1] < 10,

The condition (8.3.7) means that 7 has at most & decimal digits. Once we have
determined & and é, it is easy to see whether the conditions (8.3.6) and (8.3.7)
hold. These conditions are satisfied by many of the numbers we usc in our
programs, so there is a significant class of numbers for which this conversion
procedure will produce the correctly chopped answer. But if either (8.3.6) or
(8.3.7) fails to hold, we may not even have a neighbor transformation. In fact,
the transformation might not even be monotone.

We may encounter the same sort of problems with the output conversion
program. Suppose that we begin by determining e such that

(8.3.8) 10 > | x| > 10°-".

Then we divide x by 107 in FP(r, p, ¢) to produce a fraction y. (I ¢ is negative,
we can multiply x by 10'.) Here ¢ is the exponent of the answer, and the
mantissa of the answer is obtained by converting the fraction » to decimal,
We assume that the conversion of y produces the vilue § of y chopped to
5110, p’). Consider the case in which x = 2, Here ¢ - 1, s0 p == 2 10,
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Since .2 is not in S(r, p), y < .2. Then when y is converted to decimal we
produce the value j <!y -2.2. We again have the problem that small
integers are not converted exactly.

One remedy for this problem is to change the approach so that we convert
integers instead of fractions. We begin by finding e satisfying (8.3.8) and &
satisfying (8.3.5). Instead of dividing or multiplying x by 10!, we divide or
multiply x by 10 *!. This produces a number z in S(r, p) with

10 > | 2] > 10 1.

The integer part of z may be converted exactly. We convert the fractional part
of z independently, producing the chopped result z. With this approach, we
can guarantee that small integers are converted exactly.

EXERCISES

1. Consider the conversion of decimal numbers into numbers in S(16, 14),
Suppose that the conversion program transforms the decimal number x into
the value 7(x) of x chopped to S(16, 14). Answer the following questions for
x = nf4, n/2, n, 2n, and 47,

a. What is the value x" of x rounded to S(16, 14)?

b. Find a decimal number y for which 7(y)  X". Usc as few decimal digits a:
possible in the representation of y.

¢. In some implementations of PL/I for the IBM System/360, we were allowed
a maximum of 16 decimal digits to specify a floating-point constant. Find
the 16-digit decimal number y for which () is closest to x . By how many
digits in the last place do 7(y) and X’ differ?

2. Let S(r, p) be the set of floating-point numbers handied by the machine you are
using. Find the largest integer p” which satis(es (8.2.3), and find the smallest
integer p’ which satisfies (8.2.4). What are these values for p’ if S(r, p) is the sct
of double-precision floating-point numbers on the machine you are using?

3. Let 7 be a transformation of S(r,, p,) into S(r,, p,), and let & be a transforma-
tion of S(r,, p,) into S(ry, p,). Find a bound for the relative error in the
approximation ¢t(x) = x if both ¢ and T are ncighbor transformations.

4. Lct 7 be a rounding conversion transformation of S(r, p,) into S(r;, p2) and
let o be a rounding conversion transformation of S(r,, p,) into S(r,, p;). Prove
that if r; 7 > r;'#-1) then o1(x) - x holds for all x in S(r\, p,).

5. Let T be a truncation conversion transformation of S(r,, p;) into S(ry, p2),
and let o be a rounding conversion transformation of S(ry, p,) into S(ry, p1).
Prove that if r§=' > 2r{r — 1, then a1(x) = x holds for all x in S(ry, py).

6. Let 7 be a rounding conversion transformation of S(16, 6) into S(10, 8).
a. Prove that T cannot be a transformation onto S(10, 8).

b. Find a number in S(10, 8) which is not the image of any number in S(16, 6)

under T.

10.
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Let T be a truncation conversion transformation of S(16, 6) into S(10, 9), and

let-@ be a truncation conversion transformation of S(10, 9) into S(16, 6).

a. Write a program which will produce the transformations ¢ and T for num-
bers in the interval 16 < x < 100.

b. Select a number x which is in S(16, 6) and lies in the interval 16 << x < 100,
Convert and reconvert x several times. That is, form (g7)*(x). How many
times must the conversion and reconversion be repeated before you reach a
number y in S(16, 6) with (at)(y) = y?

c. Repcat part b for several other values of x.

Let 7 be a truncation conversion transformation of S(16, 6) into S(10, 9), and

let g be a truncation conversion transformation of S(10, 9) into S(16, 6). Let x

be a positive number in S(16, 6). Suppose that we convert and reconvert x

many times, That is, we form (a7)"(x) for large n.

a. If16 << x < 100, what is the maximum number of units in the last place by
which x and (a1)*(x) may differ?

b. If x lics between } and 1, what is the maximum number of units in the last
place by which x and (7)*(x) may differ?

c. Find a value of x such that the downward drift of (67)"(x) will never stop.
That is, we shall never reach a number y with (7)(») = y.

Let S(r, p) be the set of floating-point numbers on the machine you are using.
Find the largest integer € such that 10¢ is in S(r, p) for every integer e with
1 < e < é. Is it possible for 10¢ to be in S(r, p) for some integer e > é?

Let S(r, p) be the set of floating-point numbers on the machine you are using.
Suppose that you have an input conversion program which begins by changing
the decimal number to the form (8.3.2). Then it converts the integer 7/ to S(z, p)
and multiplies or divides 7 by 10l¢! in the system FP(r, p, c). If I is not in
S(r, p), assume that / is converted into the properly chopped value Lo
is not in S(r, p), then I is multiplied or divided by the number P = 101
obtained by chopping 10t to S(r, p).

a. When can you guarantec that this program will produce the correctly
chopped answer. [That is, find the values of k and é to use in (8.3.6) and
8.3.1.]

. Is the input conversion transformation t well defined?

. Is the input conversion transformation monotone ?

d. Suppose that the input conversion program converts x into X. Find a bound

for the relative error in the approximation £ = x.

(-2

Change the specifications of the conversion program described in Exercise 10
by changing the number P used as an approximation for 10!, Let P be the
number 107 obtained by rounding 10'! to S(r, p). Answer all the questions in
Excrcise 9 for this conversion program.

Suppose that you can perform arithmetic only in the radix r,. How would you
program a rounding conversion transformation of S(r,, p,) into S(r,, p,)?

)



9 CAREFULLY WRITTEN
PROGRAMS

9.1. INTRODUCTION

In this chapter we shall illustrate some of the problems that face us when
we try to produce high-qualiiy programs. We shall refer to these programs as
carefully written programs in contrast to “quick and dirty” programs. Care-
fully written programs are typified by library routines, although not all library
routines have achieved high quality. Since a library program will be used
extensively, its author is usually willing to devote a great deal of time and
effort to the program. His objective is to produce a high-quality program
rather than a quick and dirty program.

To write a good program, we must have a thorough understanding of the
problem we are solving. In fact, writing the program often forces us to study
aspects of the problem which we would not have considered otherwise. This
suggests that our illustrations of carefully written programs should deal with
problems which are extremely familliar. We shall discuss the solution of a
quadratic equation and computing the average of two numbers. By consider-
ing these simple problems, we hope to show why it takes so long to write a
high-quality program.

We shall not discuss either the speed of execution of the program or the
amount of storage it requires, although both of these affect the quality of the
program. Instead, we shall restrict our attention to the quality of the answers
produced by the program.

9.2. AVERAGE PROBLEM

As our first illustration of a carefully written program, we shall consider a
program which computes the average of two normalized floating-point
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numbers. We could begin by specifying the accuracy we expect in the
answer—say an error of less than one unit in the last place. But it might turn
out that the accuracy we have specified is extremely difficult to achieve
without resorting to higher-precision arithmetic and that we could produce a
much more efficient program if we relaxed the accuracy criterion slightly.
Instead of specifying the accuracy of the program in advance, we shall try to
produce as accurate an answer as we can without degrading the speed of the
program too much. However, we shall require the write-up of the program to
provide the user with a bound for the error.

The accuracy of our answer may depend on the precision of the arithmetic
uscd in the program. If we performed the entire calculation in higher-precision
arithmetic and then rounded the result to single-precision, we would expect
to produce a very accurate answer. But this seems to be a very high price to
pay, so we would not be willing to use this approach if it produced only a
slight improvement over a single-precision version of the program. We usually
start with the hope that we can write the entire program in single-precision.
As we saw in the discussion of the quadrature problem in Section 4.1, it is
sometimes highly advantageous to perform a few operations in a precision
which is higher than that used in the rest of the program. Whether this
approach is reasonable often depends on whether the hardware and software
support double-precision arithmetic. For the average problem, we shall
assume that double-precision arithmetic is extremely expensive, so we shall
require that only single-precision arithmetic be used.

When we use a library program to compute a familiar function, we expect
the program to preserve many well-known properties of the function. For
example, we would be quite annoyed if a cosine routine produced an answer
greater than |, or if it failed to produce the value | for the cosine of zero.
Similarly, the average of two numbers has several familiar properties, and we
shall demand that the program preserve them. For example, the answer
should be independent of the order of the arguments. Another requirement is
that the average of A4 and B should be zero if and only if B = —A. Also, we
would be annoyed if the average failed to satisfy

9.2.1) min(A, B) < average(A, B) < max(4, B).

We note that equality can hold in (9.2.1) if A = B. When 4 # B, we would
like to have

(9.2.2) min(A4, B) < average(A4, B) < max(4, B).

But if 4 and B were consecutive floating-point numbers, we could not satisfy
(9.2.2), so we shall require only that our program satisfy (9.2.1).

Finally, consider the problem of overflow and underflow. The input
numbers A4 and B are floating-point numbers, and their average cannot exceed

J—
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the larger of them. Therefore, the correct answer does not cxceed the largest
floating-point number Q. If overflow occurs, it is the fault of the algorithm,
not the problem. We shall require that the program never overflow.

The situation with underflow is different. If we are asked to compute the
average of zero and the smallest normalized positive number w, the answer
underflows. We shall require that no underflows occur unless the answer has
an absolute value less than w.

Based on these ideas, we give the following specifications for the program.

Specifications for the Average Problem

1. The program may be written as either a function subprogram or as a
subroutine subprogram. The input 4 and B may be assumed to be normalized
floating-point numbers, and the result produced for the average must be a
normalized floating-point number. Only single-precision arithmetic may be
used.

2. Accuracy: The value produced for the answer must be approximately
(A - B)/2, and it must have the correct sign. The write-up must contain a
reasonable bound for the error. The error bound may be given either in terms
of units in the last place or as a bound for the relative error.

3. Properties: The program must produce a value for the average which
has the following properties:
a. min{(4, B) -~ average(4, B) < max(A, B).
b. average(A4, B) == average(B, A).
c. average(A, B) =0 ifand only if B = —A.
d. average(— A, —B) = —average(A, B).
(Property c may be modified if the average underflows.)

4. Ol't'rjlo;s-/Uit(Iérﬂo;t': The program should never produce an overflow,
and it should not underflow unless

9.2.3) 0< (4 B)2| < .

There should be a reasonable strategy for handling the case in which (9.2.3)
holds. The write-up should tell the user what happens in this case and what
number will be returned as the answer. It should also tell him how to find out
whether this case arose.

The reader is invited to stop here and write a program meeting these
specifications. We shall discuss some aspects of the problem, but part of the
problem will be left as exercises. Since the details of the problems we encoun-
ter will depend on the floating-point arithmetic we are using, we shall assume
throughout that the arithmetic is performed in the system FP(r, p. ¢).

)
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The natural formulas to consider using for the average of 4 and B are

(9.2.4) AV = (A@B) + 2
(9.2.5) AV = (4 = 2)® (B = 2)
(9.2.6) AV = AD[B — 4) + 2]

We shall discuss some of the problems that arise with the use of each of these
formulas.

If A and B have the same sign, then formula (9.2.4) might produce over-
flow. Similarly, formula (9.2.6) can produce overflow if 4 and B have opposite
signs. Then one way to avoid overflow is to test 4 and B for sign agreement
and use one or the other of these formulas depending on whether they have
like signs or unlike signs. Indeed, we shall see that many aspects of the behavior
of formulas (9.2.4)-(9.2.6) depend on whether or not 4 and B have the same
sign, so it is quite natural to use one formula when they have the same sign
and another formula when they have different signs.

It is easy to show that (9.2.4) cannot produce underflow unless (9.2.3)
holds. The division by 2 in formula (9.2.5) will not underflow unless 4 or B
has an absolute value which is positive but less than 2w. Even if | 4| and | B|
are both ;> 2w, the addition in (9.2.5) can underflow if 4 and B have opposite
signs. (Sec Exercise 6.) With formula (9.2.6), we have to worry about under-
flow both in the computation of

(9.2.7) C=(BOA) =2
and in the addition of C to 4.

One way to avoid underflow with any of these formulas is to scale the
problem when A4 and B are both small. We shall illustrate this approach by
considering the computation of C in (9.2.7). Suppose that 4 = r*m, where
rrellm| <1 If|[BEO A|#0, we have |BOA|=re#7' > |Aljre+). It
follows that (9.2.7) cannot underflow unless both

(9.2.8) |A| < re*2g
and
9.2.9) |B| < r#*2e.

When both (9.2.8) and (9.2.9) hold, we can scale the problem by multiplying
A and B by r2*2. This will not produce overflow so long as the machine pro-
vides a reasonable range of exponents. The advantage of scaling by a power
of r is that it does not introduce any error. We compute a value D for the
average of r**24 and r?*2B, and then we divide Dby r#*2. Beforedividing D

)
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by r»*2, we can perform a test to see whether | D} = r**2@. If 0 < | D| <
rotig, we can omit the division by r »*? and provide whatever trcatment we
have decided on for the case in which the answer underflows.

Another problem with formula (9.2.6) is that it is not symmetric in 4 and

:B, so it might produce a different result if the arguments 4 and B were
interchanged. To overcome this difficulty, we could require that, say,

(9-2.10) |41<B),
and interchange 4 and B if (9.2.10) does not hold.

_Next, we shall consider the properties listed under heading 3 in the specifi-
cations. To see how these properties can fail to hold, we shall consider some
examples in FP(10, 6, ). It is easy to modify these examples so that they apply
to FP(16, p, c), but they are not applicable to a binary machine.

First, suppose that

A = .500001
B = .500003.

Then A - B = 1.000004,s0 A@B=A+ B=1.Then(4A® B) + 2 =5,
so formula (9.2.4) can produce a result which is smaller than min(4, B). It
can be shown that the value produced by formula (9.2.4) in FP(r, p, c)
satisfies (3a) if and only if r = 2.
Similarly, if

A = .500001

B = —.500003,
then BE& A = —1, so formula (9.2.6) produces the answer .000001. But the
correct answer is —.000001, so formula (9.2.6) failed to produce the correct

sign.
We even find difficulties with formula (9.2.5). Let

A = B = 500001,

Then 4 = 2 = B - 2 = 25, so formula (9.2.5) produces the value .5, which
is smaller than min(A, B). Similarly, if

A = .500001
B = —.500000,
then (9.2.5) produces the value zero even though B = —A. It can be shown

that l!1ese two examples represent the only cases in which the result produced
by this formula fails to have the properties listed under heading 3 in the

)
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specifications. That is, it fails to satisly (3a) if and only if A =B and
A = 2 # AJ2, and it fails to satisfy (3c) if and only if A =- 2 = —B -~ 2and
A # —B. If we want to use formula (9.2.5), we can provide special treatment
for these cases.

It can be shown that formula (9.2.4) produces a result which has all the
properties listed under heading 3 in the specifications if A and B have opposite
signs. Similarly, it can be shown that the result produced by (9.2.6) satisfies
(3a), (3¢c), and (3d) when 4 and B have the same sign. We may use these
observations to devise a strategy for selecting the appropriate formula based
on the signs of 4 and B.

We shall now turn to the question of the accuracy of the answers produced
by these formulas. To sce how the error behaves, we shall consider some
examples in FP(10, 6, c). The first example uses formula (9.2.5) for the data

A = 2.00001
B = .0000199999.
Here
= 1.000005

A
3
gl ~= .00000999995.

Then (9.2.5) produces the answer 1.00000 instead of 1.00001499995, so the
error is almost 1} units in the last place. It can be shown that if A and B have
the same sign, then (9.2.5) always produces an error of less than 1] units in
the last place.

Now suppose that 4 and B have opposite signs. We have seen that (9.2.5)
can produce the answer zero even though B = —A. Even if we provided
special treatment for the case in which 4 = 2 .= B -= 2, the formula can
produce large relative error if | A | is close to | B|. Suppose that

A = 2.00004
B = —2.00001.
Then (9.2.5) would produce the answer .00002 instead of .000015. Since this is

a relative error of }, we would not use this formula for the case in which A4

and B have opposite signs.
Next, we shall consider formula (9.2.4). Let

A = 1.00002
B -~ —.000001.

Then A @) B == 1.00001, so (4 (N B) =- 2 - .500005. The correct answer is



246 CAREFULLY WRITTEN PROGRAMS CHAP, 9

.5000095, so the error is 4] units in the last place. It can be shown that if r is
even and A4 and B have opposite signs, then the error produced by (9.2.4) is
less than /2 units in the last place. We shall not consider the error produced
by (9.2.4) in the case in which 4 and B have the same sign. because the formula
can produce a result which does not satisfy (3a).

For formula (9.2.6), we consider the example

A — 0000008
B = 1.00002.

Here B©® 4 - 1.00001, so (9.2.6) produces the answer .500005. But the
correct answer is .50000104, so the error is 5.4 units in the last place. It can be
shown that the error produced by (9.2.6) is less than #/2 {- | units in the last
place if r is even and 4 and B have the same sign. We have scen that when 4
and B have opposite signs the value produced by (9.2.6) might have the wrong
sign, which would produce a relative error greater than 1.

9.3. QUADRATIC EQUATION

Consider the problem of writing a subroutine to solve the quadratic
equation

9.3.1) Ax? -+ Bx |- C = 0.

The input will be the coefficients A, B, and C, and the output will be the roots
R1 and R2.1 We shall assume that 4, B, and C are real and that they are
normalized floating-point numbers. Three aspects of the problem will be
discussed: the form of the CALL, producing good accuracy, and avoiding
overflow and underflow.

First, consider the CALL. It would be natural to use

9.3.2) CALL QUAD(A,B,C,RI,R2,I)

where [ is an error indicator which would be set to indicate whether or not we
have been able to solve the equation. But what should the subroutine do if the
roots of (9.3.1) are complex? One approach would be to treat the case in
which the roots are complex as an error. On the other hand, it could always
return the roots as complex numbers, even when they are real. The CALL
could be written as

(9.3.3) CALL QUAD(A,B,C,RIR,RIILR2R,R2L])

tForsythe (1970) discusses the specifications for a good quadratic equation solver, and
he describes a high-quality program produced by Kahan.
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where, for example, RIR and RI1 are the real and imaginary parts of R1.
Another approach would be to use the CALL (9.3.2) and require that R1 and
R2 be typed COMPLEX. But there are many cases in which we know that
the roots of (9.3.1) are real, and in these cases it would be annoying to have to
type the roots COMPLEX in the calling program. If we forgot to do so, we
would change other variables in the calling program, producing disastrous

_results. Including the extra variables in the CALL statement (9.3.3) is a small

price to pay, since we do not have to look at the imaginary parts if we know
that the roots are real.

There is still another way to handle complex roots of (9.3.1). Since the
coeflicients of (9.3.1) are real, when the roots are not real they are complex
conjugates a |- bi. We could use the CALL (9.3.2) and store g and 4 in RI
and R2, using I to indicate that the roots are not real. From the point of view
of the author of the subroutine, this would appear to be an ideal solution. It
retains the simplest form of the CALL, and yet it provides complete informa-
tion about the answer. Unfortunately, experience shows that many users of a
subroutine such as this do not bother to test the error indicator. If the user
expected the roots to be real and did not test I, he would get a bad answer
when the roots are not real. For example, a slight change in the coefficients of
(9.3.1) could change a double root at 2 into a pair of complex roots 2 - 10~%i.
If we stored 2 in R1 and 10-® in R2 and the user thought that the roots were
real, he would be very dissatisfied with the value 10-® for a root of the equa-
tion. Exercise 12 gives an example of an equation in which a double root is
changed into a pair of complex conjugates by the error introduced by radix
conversion.

Based on these observations, it seems reasonable to accept the form
(9.3.3) for the CALL.

Another question related to the calling sequence is what the subroutine
should do when A == 0. If we were solving (9.3.1) by hand, we would never
consider using the quadratic formula

©3.4) . = =B+ /B —44C
o ; 24

when A4 -- 0. If we do try to use (9.3.4), we encounter division by zero and we
cannot find the root of the equation Bx + C = 0. One approach is to use the
error indicator I to indicate that 4 = 0,andset Rl = —C - BandR2 = Q.

The following example suggests that this might be a reasonable approachto
usc when 4 —= 0. Suppose that we want to find the maximum value of the
function

f(x) =ax* - bx* |- ex 4 d

in the interval 0 << x<_ 1. We would find the roots of the quadratic equation



248 CAREFULLY WRITTEN PROGRAMS CHAP, 9
J'(x) -= 0 and test the value of f(x) at 0, I, and any root of /"(x) : 0 lying
between 0 and |. Now suppose that for one set of data we have ¢ - 0, so
J(x) is linear. We want the root of /*(x) == 0, and any number the quadratic
equation solver produced for the second root would be acceptable. We would
reject the number if it did not lie in the interval 0 < x -Z 1, and if it did lie in
this interval, we would test it. But if the quadratic equation solver did not
produce the root of the linear equation /“(x) = 0, we would have to providc
special treatment for the case a = 0.

Similarly, if A = B = C = 0, the subroutine could return any values for
R1 and R2 and set I to indicate that every complex number satisfics the
equation. If 4 = B = 0 but C # 0, I should indicate that the equation has
no solution.

The way a subroutine treats degenerate cases such as these can be quite
important, because they arise in computing far more often than one might
expect. One reason for this is that we write the program to handle the general
case, but we often test the program on simple cases that can be handled
analytically. To find a problem which can be solved easily, we may simplify
the formulation, and this can easily result in a degenerate case for some
subroutine.

We shall now turn to the question of the accuracy of the answers. We
shall assume that the arithmetic is performed in FP(r, p, ¢) and that A # 0.
We shall also assume that the relative error introduced by the square root
program we are using is small. As we saw in Chapter 3, the result produced by
multiplication or division in FP(r, p, ¢) will have small relative error if the
operands do. This is also true of addition and subtraction when we have the
add magnitude case, so our primary concern is the subtract magnitude case.
The quadratic formula (9.3.4) will produce a small relative error if we do not
encounter this case.

First, suppose that B* — 44C > 0 and consider the addition of
-+ /BT —44C to — B. For one of the roots we shall have the add magnitude
case, and for the other root we shall have the subtract magnitude case. We
shall test the sign of — B and select the -|- or — sign in front of the square root
so that we first compute the root R1 for which we have the add magnitude
case. Since the product of the roots of (9.3.1) is C/ 4, we may compute R2 from

__C
9.3.5) R2 = TR

If we can compute B* — 4AC accurately, this gives us a way to compute both
roots of (9.3.1) with small relative error. [Another way to compute R2 is to
tationalize the numerator in (9.3.4).]

Now consider the computation of the discriminait B2 — 4AC. In Exercise
6 of Chapter 3 we saw that there is no teasoridble boutd foi the relutive griof
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produced by coding x? — y* as (X * x) O(y*y). Sin}ilarly‘ we may produce a
large relative error in the computation of B* — 4ACif B = 44C. Tosce how
this error will affcct the answer, suppose that B is slightly less than | and l.hat
.- 44C ~ 10-*. If we were using cight-digit decimal arithmetic, we might
obtain the value 2 + 10-® for B -- 4AC. Then Bt - 44C WOu.Id be
A/ 2 > 10 * instead of 1074, so the error introduced in the calculation of
B — 4AC has produced an error in digits near the middle of the answer.
When B? ~ 4AC, the roots of Eq. (9.3.1) are nearly equal. Consider the
cquation

(9.3.6) xt — 2ax 4 a* =0,

which has a double root at a. If we change the constant tcrm in (9.3.6) to
a? — €2, we have the equation

xt — 2ax + a* —€* =0,

whose roots are a |- €. Suppose that a is slightly less than 1 and that ¢ = 10-4.

Then a change of 1 in the eighth digit of the constant term in (9.3.6) produces

a change of | in the fourth digit of the roots, so the problem is not well

conditioned. By means of a backward error analysis, it can be shown lljat the
value we compute for ./B? — 44C is exactly o/ B* — 4AC’, wherc.C’a C.

But when the roots are nearly equal, this change in C can produce a significant
change in the answers. )

Thus, we want the value computed for /B* — 44C to have a small
relative error, and in the subtract magnitude case this requires us to use
higher-precision arithmetic. We shall use double-'prccision. :}rilhmcuc to
compute B2 — 4A4C, and then shorten the result to smglc-prec:snop and use a
single-precision square root program. The rest of the calculation can be
performed in single-precision.

If we compute the discriminant in this way and use the appmz_lch sug-
gested earlier for the calculation of R2, we can compute both roots with small
relative error.

Finally, we shall consider the problem of overflow and undgrﬁow. Our
objective is to compute any root of (9.3.1) whose absolute value lies b'ctween
 and Q. To simplify the discussion, we shall assume that we are using the
IBM System/360, where r = 16, Q = 163, and w = 167%%.

Since the quadratic formula requires us to compute B* and 4A4C, we can
encounter overflow even when the coefficients and the roots are substantially
less than €. An example of this is provided by the equation

(9.3.7) 16%0x2 ~ 3« 169% + 2+ 1640 = 0,

whicre Bt tnd 44€ overflow, but the roots wie | and 2. 1t is clear that we cin
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avoid this overflow by dividing (9.3.7) by 16*°. This suggests that we should
scale the cocflicients of (9.3.1) so that the coeflicient of x? is close to 1.
But consider the equation

(9.3.8) 16740x2 — 3x 4 2. 164° = 0,

whose roots are 16*° and 2 - 16*°. If we tried to scale the coefficients by
multiplying (9.3.8) by 1649, the constant term would overflow. For this
problem, it is convenient to introduce the scale factor in x instead of in the
coefficients. 1f we substitute x = 164°y, (9.3.8) becomes

(9.3.9) 16492 — 3. 1640y 4 2 - 16% = 0.

As above, we can solve (9.3.9) if we divide the coefficients by 164, Then the
roots of (9.3.9) must be multiplied by 164° to produce the roots of (9.3.8).

Our approach will be a combination of these two types of scaling. It will
require us to extract the exponents of the floating-point numbers we are using
and to change them. These operations can be performed by using the tech-
niques discussed in Section 4.4. All the scaling will be done by adjusting the
exponents, so it will not introduce any errors. We shall assume that neither
A nor C is zero, since the other cases arc easy to handle.

We shall scale the problem by substituting x - 16y and muitiplying the
coefficients by 16%. Then (9.3.1) becomes

(9.3.10) 16*% L4y -+ 16**LBy -+ 16"°C = 0,
which we write as
(9.3.11) Ay*+ By + C=0.

We shall select K and L so that the exponent of 4’ is zero and either B .= Q or
the exponent of B’ is zero. First, extract the exponents e, ¢, and ¢ of 4, B,
and C.If B=:0,set K = 0and L = —e,. If B % 0, the exponents ¢, ¢, and
e of A', B' and C’ are given by

er=¢,+2K+ L

en' = (’n '}' K *" L

e =ec |- L.
We want

2K+ L= —e,
K4 L= —e,

soweset K=¢; —e,and L = ¢, — 2¢,.

)
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We now construct the fioating-point numbers A’ and B’ by changing the
cxponents of 4 and B to zero. We would also like to change the exponent of
Ctoe~ = e, - L, but e may be outside the range of the exponents handled
by the machine. For example, this happens with the equation

16749x% 4 1674°x — 16*° = 0.

Even if |C'| < Q, the calculation of 44’'C’ might produce overflow. But with
our scaling of A’ and B, it is easy to see that we shall not encounter either
overflow or underflow in the solution of (9.3.11) if

(9.3.12) —63 < e < 62,

We shall first consider the case in which (9.3.12) holds. We can change the
exponent of C to ¢, and solve (9.3.11). Then the roots of (9.3.11) must be
multiplied by 16* to produce the roots of (9.3.1). Since these multiplications
can produce overflow or underflow, we might prefer to perform the multipli-
cations by changing the exponents. This would allow us to provide any
treatment we wanted to for the cases in which the answer overflows or
underflows.

Now suppose that (9.3.12) does not hold. We may write

(9.3.13) C' = 162MC”,

where the exponent of C” is 0 or 1 according to whether the exponent of C' is
even or odd. We form C” by changing the exponent of C, and we compute

s=+|%|

First, suppose that B = 0. If AC < 0, the roots of (9.3.11) are 4-16S. Then
the roots of (9.3.1) may be obtained by adding K 4- M to the exponents of §
and —S. Similarly, if AC > 0, the roots of (9.3.1) are 16%**Si. The real parts
are zero and the imaginary parts are obtained by changing the exponents of
Sand —S.

Next, suppose that ¢. < —63 and that B = 0. Then 16-' < | 8’| < 1 and
j44°C| -< 16 °%, so we may ignore the contribution of 44’C” to the discrimi-
nant of (9.3.11). For the add magnitude case, we takey, = —B’ +~ 4’,and to
compute the other root we form T = —C” = (4" » y,). To get the roots of
(9.3.1), we add K to the exponent of y, and 2M + K to the exponent of T.

Finally, suppose that ¢ > 62. Then we may ignore the contribution of
(B')? 10 the discriminant, so our formula becomes

(9.3.14) . oy= 'B'*ZVA,"“C :
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If AC < 0, the roots of (9.3.11) are real and we may ignore the contribution
of B’ in (9.3.14). This yields 4 16S for the roots of (9.3.11). But if AC > 0,
the real parts of the roots are — B’/(24’), and the imaginary parts are -1- 16S.
As above, the roots of (9.3.1) are obtained by changing the exponents of the
roots of (9.3.11).

EXERCISES

Find two floating-point numbers 4 and B such that

ADIBOA) -2 BOI40B) +2],

when the arithmetic is performed in the system
a. FP(10, 6, o).
b. FP(2, p, c).

Suppose that we use the formula
AV =(4 +2)@® B +2)

for the average problem. Assume that r is even and that the arithmetic is
performed in the system FP(r, p, ¢). Show that

min(A4, B) < AV < max(4, B)

failstohold ifand only if 4 = Bbut 4 + 2 # A/2,

Suppose that we use the formula AV == (4 @ B) = 2 for the average problem.
Assume that the arithmetic is performed in the system FP(r, p, ¢), wherep > 2.
Show that

min(4, B) < AV < max(4, B)

holds for all A and B in S(r, p) if and only if r = 2,

Show that if 4 and B have opposite signs, then formula (9.2.4) produces a
result which has all the propertics listed under hecading 3 in the specifications
for the average problem.

Suppose that we perform the arithmetic for the average problem in FP(r, p, ¢),
where r is even and p > 2. For which of the formulas (9.2.4)-(9.2.6) can we
assert that the result satisfies :

min(4, B) < AV < max(4, B)

whenever there is a floating-point number between 4 and B?

Suppose that we are using a machine on which the arithmetic is performed in
FP(16, 6, c) and that @ = 16-¢%. Find floating-point numbers A4 and B such

7.

10.

13.

14.
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that
RS /E

[4]|= 2w
I1B| = 2w

but (4 + 2) @ (B = 2) underflows.

In FP(10, 6, ¢), find an cxample of two floating-point numbers 4 and B for
which B -4 but

ADUBDA) -2]#0.
Write a program to solve the average problem on the machine you arc using.
It should meet all the specifications given in Section 9.2.

Suppose that we use formula (9.2.5) for the average problem, Assume that the
arithmetic is performed in FP(r, p, ¢), where r is even. Show that if 4 and B
have the same sign, then the error is less than 1) units in the last place.

Suppose that we use the formula (9.2.4) for the average problem. Assume that
the arithmetic is performed in the system FP(r, p, c¢), where r is cven. Show
that the error is less than r/2 units in the last place.

Suppose that we use formula (9.2.6) for the average problem. Assume that the
arithmetic is performed in the system FP(r, p, ), where r is even. Show that
if A and B have the same sign, then the error is less than »/2 | | units in the
last place.

Convert the cocflicients of the equation
103%9x2 — 2.10%9x { 1030 == 0

to S(16, 6) using a truncation conversion transformation. Show that the roots
of the resulting equation

Axt + Bx +C == 0
arc not rcal.

Supposc that you want to solve the quadratic cquation
Axt4-Bx +-C =0

without doing any scaling. Let ¢4, eg, and ¢. be the exponents of the floating-
point numbers 4, 8, and C. Find a number e such that you will not encounter
cither averflow or underflow on the machine you are using if |¢,|, | e, and jec|
are all less than e.

Find an example of a quadratic cquation

Ax* +Bx4 C-—=0
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whose cocefficients are normalized floating-point numbers on the machine
you are using, and :

a. One root overflows.

b. One root underflows.

¢. One root overflows and one root underflows.

15. Let Ax? - Bx |- C = 0 be a quadratic equation whose cocflicients arc nor-
malized floating-point numbers. Suppose that we usc the scaling described in
Section 9.3 and that (9.3.12) holds. Find examples to show that we may en-
counter either overflow or underflow when we multiply the roots of (9.3.11) hy
16X,

16. Supposc that we use the quadratic formula to solve
Ax2 + Bx — A = 0,

without providing any special treatment for the compwation of R2. Also,
assume that B? - 442 is computed using singlc-precision arithmetic. Let
B -: 1.23456 and A = .000123. Describe what happens when the calculation is
performed in FP(10, 6, c).

17. Consider the quadratic equation
Ax? + Bx = C-. 0

where A4 := 20000001, B = — 4, and C - .19999999. Usc the quadratic
formula to find both roots of the equation, performing all operations in
FP(10, 8, ¢). Assume that the square root routine produces the correctly
chopped result. What is the error in the answers? What is the error in the
answers if we perform the calculation of B2 — 4A4C in FP(10, 16, ¢), but
perform the rest of the calculation in FP(10, 8, ¢)?

18. Let 4, B, and C be in S(r, p), and suppose that we compute B2 — 44C in
FP(r, 2p, ¢). Show that we obtain the correctly chopped value B2 - 34C il
ris 2 or 4 but that we do not always obtain BZ - 4AC if r is 10 or 2% with
k > 2.Ifr # 3, show that we always obtain BZ -~ 44C when the calculation is
performed in FP(r, 2p + 1, ).

l o CHECKING AND
TESTING

10.1. RANGE CHECKING

We shall distinguish between the ideas of checking and testing. By testing
we mean running test cases to test the behavior of the program. Checking
refers to checks that are incorporated in the program to check the validity of
the answers that are produced.

One of the simplest forms of checking is to check that the numbers lie in a
prescribed range. For example, a statistical program can check that variances
are nonnegative and that the absolute values of the correlation coefficients do
not exceed 1. Then if one of these conditions is violated, the program can
print an error message instead of producing a ridiculous answer.

Many programs check the input data and print a message if they detect an
invalid character. In some cases, they also check the range of the numbers
read in. When an error is detected, the error message should indicate where
the error occurred, so we do not have to search through several hundred cards
to find the one that is mispunched.

It is quite common for a library subroutine to check the range of its
arguments. For example, square root programs usually check that the argu-
ment is nonnegative, an arcsine program may check that the absolute value of
its argument is at most |, and a matrix inversion program might check that
the parameter specifying the order of the matrix is a positive integer. A
subroutine to compute e* may check that x < log, © in order to avoid the
case in which the answer overflows. These checks are designed to detect cases
in which the problem is incorrectly posed or in which the program is unable to
produce a reasonable answer. We normally expect library programs to provide
us with this protection. )

255
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Some compilers provide us with a similar sort of protection. Programs
compiled by WATFOR check the range of the subscripts, and they print an
error message if we try to use a subscript which is larger than the dimension
of the array. PL/I provides a similar check on an optional basis. We can
specify whether or not we want the program it produces to check the range of
the subscripts.

10.2. MATHEMATICAL CHECKS

The most familiar form of checking pertains to the solution of an equation
JS(x) = 0. After we have solved the equation, we can check the answer by
substituting it into the equation. This concept is extremely familiar from
elementary courses in mathematics. Some algorithms for the solution of
f(x) = 0 use an iterative procedure in which the stopping criterion is based
on the size of f(x), so the procedure automatically includes a check.

When automatic computers were first used, it was quite common to spend
as much time and effort checking the answers as calculating them. But much
less checking is done today, and this may be attributed to several factors.
First, and probably most important, the hardware has become very much
more reliable. Also, the problems we solve have become more complicated,
so it is harder to find a satisfactory check. Finally, we have more confidencc in
our programs, because they are written in higher-level languages. (This
confidence may not be justified, but it seems to exist.)

Our experience with solving problems analytically suggests that it is much
easier to check the answer than it is to solve the problem. For example,
consider the equation

x6 4 2x% — 8x3 —4x? |- 6x — 15 = 0.

It is more difficult to solve the equation than it is to check the fact that ./ 3 is
a root. Even in machine calculation, we would rather find the value of a
polynomial p(x) than find the roots of p(x) = 0. This is also true of solving a
system of # linear equations. It requires about 4»#* multiplications and addi-
tions to solve the equations, but it requires only 7?2 multiplications and
additions to check the solution. For large values of n, checking the answer
requires much less machine time than solving the equations.

Another type of problem in which checking has been used successfully is
the solution of the partial differential equations that arise in hydrodynamics.
Here we often find that conservation laws, such as the conservation of energy
or the conservation of momentum, can be used as a check. But there are other
problems in which it is quite difficult to find a satisfactory check. This is true
of many problems referred to as simulation.

)
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The commonest form of a check is an equation such as
(10.2.1) flx)=0

which is satisfied exactly by the correct answer x for our problem. Unfortun-
ately, we usually have only an approximation ¥ for x, and we do not expect
J(X) to be exactly zero. Moreover, we usually cannot calculate f(X) exactly,
so we obtain an approximation f(¥) for f£(¥). We cannot expect f(3) to be
exactly zero, but we hope that | £(%)|is small. We are immediately faced with
the problem of deciding how large | £(¥)| must be before we should reject .

Often we do not have a clear idea about where the cutoff point should be
set, but the larger | £(X)| is, the less confidence we have in the answer ¥. This
suggests that we should select two criteria A and B. We would accept the
answer ¥ if | f(%)| <7 4 and reject it if | f(F)| > B. If A < | f(%)| < B, then %
is questionable. For this case, we might print a warning message and allow
the calculation to continue.

The criteria A and B cannot be chosen without some knowledge of the
function f(x). For example, suppose that we are working in FP(10, 8, ¢) and
weset A = 10 ® and B = 108, If

(10.2.2) S(x) = 10%0x2 — 3 . 10%°x - 2 - 109,

then either 7(¥) = O or else | f(¥)| > 105, Therefore we shall reject the
answer unless () is exactly zero. On the other hand, if

(10.2.3) J(x) =10730x2 — 3. 1073 |- 2. 1039,

| F(%)| will be less than 10-8 unless | | is extremely large. Thus, we need some
idca of the size of the numbers that will arise in the computation of f(¥)
before we sclect 4 and B.

The scaling of the cocfficients of f(x) is not the only source of difficulty in
the selection of 4 and B. Consider the polynomial

(10.2.4) f(x)=x"—-ox"! — x| a,

wheren - Janda - 8.76543,. Here f(x) -= (x — a)(x""' — ), so the roots
of f(x) -0 are a and the (n - I)st roots of unity. Suppose that we are
working in FP(16, 6, ¢) and have obtained an approximation & = 8.76544,,
for the root &. We would like to check & by computing f(&), and since &
differs from a by only one unit in the last place, we want to accept &.

The following table shows the true values of (&) rounded to four decimal
digits:
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n J@

k] 6734 x 10-4
5 4889 x 102
10 .2122 x 103

20 .3996 x 1012
40 1417 x 103
80 1781 x 1068

When we evaluate f(&) by performing the arithmetic in FP(16, 6, ¢), we shall
produce approximately these results. Although the coefficients of (10.1.4) are
of reasonable size, changing the root by 1 in the last place produces an
extremely large value for | /(%)| when # is large. We clearly cannot set A large
enough to accept the value & without accepting many very bad approxima-
tions for the roots of f(x) = 0. This behavior is not unusual for polynomials
of high degree.

For some problems, we may be able to write the check in the form

(10.2.5) F(x) = G(x),
where F(x) and G(x) can be computed with small relative errors. Then we can
basc our criteria for accepting the answer % on the relative difference

F) - 63
G(%)

Although we still have to decide on the cutoff points, the influence of the
scaling of the cocflicients has been eliminated.

It may be advantageous to change the check from the form (10.2.1) to the
form (10.2.5) by carrying some of the terms in f(x) to the right-hand side of
the equation. For example, if f(x) is given by (10.2.4), we could write

X" -Fa = ax" -} x.

We want to be able to compute F(x) and G(x) in (10.2.5) with small relative
errors, so we would usually try to carry out this rearrangement in such a way
that all the terms in F(x) and G(x) have the same sign. But the sign of a term
may depend on the value of x, so we might want to let the rearrangement
depend on x. We could compute each term in f(%) and let (%) be the sum of
the terms which are positive. While this approach is not foolproof, there are
times when it can be quite effective.

Other strategies for checking may be devised. If f(x) in (10.2.1) is a func-
tion of a single variable x, we may ask whether f(x) changes sign in the
neighborhood of ¥. That is, we could select a value p and compare the sign of

)
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f(%) with the signs of (% -I- p¥). Since f(x) may vanish without changing
sign, this check cannot be used indiscriminantly. But we could decide to accept
the answer ¥ when either | f(¥)| << 4 or f(x) changes sign in the neighbor-
hood of %.

10.3. TESTING

We shall now consider the problems involved in testing a program to
determine the quality of the answers it produces.t These tests may be
performed by either the author of the program or a user, but we shall assume
that the objective of the test is program evaluation, not debugging. Sometimes
the test merely verifies that the program produces reasonably good answers for
a few problems whose answers are known, but we would prefer to have a more
extensive test which would test the behavior of the program on a large number
of dilferent cases. We have seen that it is often difficult to perform an error
analysis and find a good bound for the error produced by a program. Instead,
we often try to obtain an estimate of the maximum error by testing the pro-
gram on a large number of cases. Resulls of tests of this sort are often
included in the documentation of the program.

Some guide lines for testing various classes of programs are beginning to
appear in the literature.? Both the formulation of a good set of test cases and
the evaluation of the results of the test require a detailed knowledge of the
problem being solved, so we shall make only a few general comments about
testing.

Since any test of the accuracy of the results produced by a program is
based on the comparison of these results with the correct answers, one of the
major difficultiecs we face is finding the correct answer to the problem.
Sometimes this leads us to test the program on problems which can be solved
analytically. Unfortunately, these cases may not be sufficiently general to
provide a good test. ,

Suppose that we are testing a subroutine rather than a complete program.
The data supplied to the subroutine will be floating-point numbers in S(r, p),
but we often find that the problems for which we know the answers have data
which are not in S(r, p). For example, consider a subroutine which computes
the value of a function f(x), where we know that f(]) -- a. The number }
will not be in S(r, p) unless r is divisible by 3. Suppose that we call the
subroutine with an argument ¥ = | and the subroutine returns the answer &.

+The algorithms section of the Communications of the ACM and the SHARE SSDs
publish reviews containing the results of such tests. An extensive review of the FORTRAN
library for the IBM Systcm/360 was published by Clark ct al. (1967).

1An example is the collection of guide lines published by Kuki et al. (1966). Usow (1969,
1970) published a bibliography of papers on the testing ol programs.
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The error introduced by the subroutine is the difference between & and £().
Probably the commonest mistake in testing programs is to compare & with a
instead of with f(X). The discrepancy between & and a is duc partly to the
crror introduced by the subroutine and partly to the change in the argument.
We cannot fault the subroutine for failing to guess the argument we had in
mind.

Thus, we have to be able to find the value of £(x) for x in S(r, p), and this
“often requires us to write a program to compute f(x) using higher-precision
arithmetic. Since we are interested in only the first two or three decimal digits
of the error, the answer produced by the higher-precision program has to be
accurate to only a few more than p digits. Even so, writing a program which
will produce answers that are this accurate may be a major undertaking. For
example, we may have to develop new approximations which are more
accurate than the ones used in the program we are testing.

When our test is based on a comparison of the results produced by a
subroutine with the results produced by a higher-precision program, we must
be careful about the way the arguments are generated. We should generate
the p-digit arguments for the subroutine and then extend them to higher-
precision by appending zeros. Then both programs are trying to compute f(x)
for the same value of x. A common mistake is to generate a higher-precision
number x for the argument of the higher-precision program and use € as the
argument of the subroutine. This contaminates the test because the two
programs will reccive different arguments.

There are several ways in which we might compare the answer y computed
by the subroutine with the correct answer y. For instance, we can compule
either the absolute error or the relative error. (Which of these is the appro-
priate measure of the accuracy of the result will depend on the nature of the
problem.) Instead of computing the relative error, we sometimes express the
error in terms of units in the last place. When the answer is a vector instead of
a single number, it is often appropriate to compute the norm of the error.

Instead of comparing 7 with the correct answer y, some tests have com-
pared 7 with the number y° obtained by rounding y to S(r, p). Then the
program is considered to be perfect if it always produces the answer ¥, and
the maximum number of units in the last place by which y and y” differ can
be used as a measure of the accuracy of the program. This leads to a descrip-
tion of the test results which is easy to understand. But suppose that we are
using an cight-digit decimal machine and that :

= 1.234567850000001.

Then )" == 1.2345679, but j is almost as good an approximation for y as 3" is.
If we compare y with y°, we shall consider 1.2345680 to be as good an answer
as j is, but it has about three times as large an error. Thus, we obtain a better
estimate of the error by comparing 7 with y instead of with y°,

)
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Our test of a program is often based on random arguments sclected froma
suitable distribution. Then we can compute the sample mean and variance for
the error as well as the maximum error observed. As we saw in Chapter 3,
there are problems in which the average error is more important than the
maximum error.

In addition to testing the program on a large number of typical problems,
we may want to devote part of our test to trying to determine the class of
problems for which the program will produce reliable answers. This leads us
1o test the program on some problems which are known to be difficult to
handle. For example, it is common for a test of a program for the solution of
simultaneous equations to include a few problems which are ill-conditioned,
and the test cases for a differential equation solver usually include some
“stiff” systems of differential equations. By testing the limits of the program in
this way, we hope to determine the type of problem for which the program
can be used with confidence. Also, tests of this sort will show us whether the
program can recognize the cases in which it is unable to produce a good
answer aad provide us with a suitable warning. However, these should not be
the only tests we perform, because our primary interest is in the behavior of
the program on the sort of problem for which it was designed. Most of our
test cases should be more typical of the use we expect to make of the program.

EXERCISES
1. Let & == 8.76543,, @ = 8.76544;, and B = & — 1. Let

px) = (x — @)(x"! 4 xm2 A oo 4 1),
SO
p(x) = xn — Bx=t — Bt — ..o = fx — 0.

Suppose that we obtain the approximation & for the root x = & of p(x) = 0.
Check & by computing the value of p(@) for n = 3, 5, 10, 20, 40, 80.

2. Let & be an approximation for the root & of
x—ax! —x+a=0,
where & = 8.76543,,. Take several values of & close to & and check them using
o =axt 4 x

for n = 3, 5, 10, 20, 40, 80,
3. Show that the root x = & of

—-xt —xt+a=0
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is well conditioned with respect to changes in the nonzero cocflicients of the
equation,

4. Lct & be an approximation for the root & of the equation
plx) = x» — @x"! — x + & =0,

where & - 8.76543,, and & == 8.76544,,. To check &, we sclect a value of p
and compute p(@ - pd) and p(& - p&). We shall accept & if these quantities
have opposite signs. Perform this check for 7 — 3, 5, 10, 20, 40, 80.

§. Let & be an approximation for the root & of
plx) == x" —ax!' —x +a::0,

where @ - 8.76543,, and & = & + 16-13. Then & differs from & by 1 in the
fourteenth hexadecimal digit. Check & by computing p(&) in FP(16, 14, ¢l1) for
n -: 3,5, 10, 20, 40, 80.

6. Letx - /6 and let & be a floating-point number which is an approximation for
7. To obtain an approximation & for x, we form % - # -- 6 using floating-point
division. Let j be the value produced for sin ¥ by the sine routine. How much
of the crror in the approximation § = sin x is due to the change in the argu-
ment?

7. Test the sine routine on the machine you are using.

3

LANGUAGE FEATURES FOR
FLOATING-POINT COMPUTATION

11

11.1. INTRODUCTION

We shall now turn to the question of the characteristics a higher-level
language should have to enable us to write programs for floating-point com-
putation. Some aspects of this question were considered in earlier chapters.
The treatment of overflow and underflow was discussed in Chapter 2, and the
language support for double-precision arithmetic was discussed in Chapter 5.
Consequently, these subjects will not be addressed in this chapter.

Many discussions of compilers stress fast compilation, fast execution,
machine independence, and case of writing programs in the language. These
objectives are desirable and widely recognized. Our intent is to discuss some
other objectives which are less often mentioned. We shall consider the
language from the point of view of the author of a carefully written program.
The principal question we shall address is whether the language gives us
suiflicient control over the calculation so that we can produce a high-quality
program.

The first properties we shall look for in the language are predictability,
controllability, and observability. Then in Section 11.3, we shall discuss some
operations that are often difficult to program in higher-level languages.
Finally, machinc independence will be discussed in Section 11.4. Many of our
comments will refer to the implementation of the language rather than the
language specifications themselves.

263 )
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11.2. PREDICTABILITY, CONTROLLABILITY,
OBSERVABILITY

Floating-point arithmetic usually produces only an approximation for the
correct answer, and rearrangements of the calculation which would be
mathematically equivalent if the arithmetic were performed in the real number
system may have a significant effect on the accuracy of the answer. Therefore,
we may want to know the sequence of operations which will be used to
evaluate the arithmetic expressions we have written.

In Chapter 1, we saw that the associative laws of addition and multiplica-
tion fail to hold in FP(r, p, ¢). Consequently, instead of writing

(.2.n X=A4AxB+C,

we should use parentheses to indicate the order in which the operations are to
be performed. But the compilers allow us to write expressions such as (11.2.1),
and this can be justified by the fact that the associative law of multiplication
holds approximately. (See Section 3.4.) Indeed, there are many cases in which
we do- not care whether the compiler treats (11.2.1) as (4% B)+ C or
A * (B » C). But there are other times when the distinction is important, so
we would like to know which form will be used.

Thus, one aspect of predictability is that we want to know what arithmetic
operations will be performed when we write a statement such as (11.2.1). This
is even more important with a statement such as

(11.2.2) X=4+4B-c,

because the associative law of addition does not even hold approximately.
The number (4 ) -B) @ C need not be close to A ®BOC).

Almost any compiler is deterministic in the sense that a given program will
always produce the same object code. But predictability means that the user
can predict the arithmetic operations that will be performed. This requires
simple rules, such as “the terms in a sum will be added from left to right.” It
also requires that these rules be communicated to the user.

There are times when we are uncertain about the way the compiler treats
certain statements, so we want to find out what arithmetic operations have
been compiled. We shall refer to this as observability. Many compilers provide
this capability by allowing us to request an Assembler listing of the object
code. This listing shows us the sequence of operations that will be performed,
and it provides a way to resolve any ambiguities in the description of the
language.

While predictability is desirable, controllability is essential, When we know
exactly the way we want the calculation to be performed, we must be able to
produce the desired sequence of arithmetic operations. This means that the
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compiler must honor our parentheses. While we would like to be able to
predict the way (11.2.2) will be evaluated, it is essential that the statement

X=U+B-C

produce (4 @ B)© C.

A second aspect of predictability and controllability concerns the conver-
sion of constants. When we write a statement such as X —= 2.1, will the
number stored in X be 2.1, 2.1°, or merely some number close to 2.1? If
the constant is a number C which can be represented exactly in S(r, p), will the
conversion program produce C exactly ? Here the predictability of the conver-
sion program depends on its documentation. Unfortunately, we are often
given little or no information of this sort. Even il we cannot have gomp{cte
predictability, it would be helpful to have a description of the cases in which
the result can be described easily. (For example, see Exercise 10 of Chapter 8.)

Since constants will be converted to the radix r before they are used in the
calculation, there are times when we want a constant to be converted to a
specific number in S(r, p). For example, we might want to pu:o_ducc thf:
corrrectly rounded value of #. This is another aspect of controllability, and it
means that the conversion transformation must be onto. That is, for any
number x in S(r, p), there must be a constant which will be converted into x.

Another way to produce a number we want in S(r, p) is to enter the num-
ber in the radix r of the machine. This is the natural way to express numbers
suchas | — r=2, 1 - r-»-0 @, Q etc. It is also an appropriate way to enter
constants which were computed by another program. For example, we may
write a program to compute the coefficients of a polynomial approximation
for a function f(x) and then use these coeflicients as constants in anqther
program which computes f(x). But converting these coeflicients to decn'mal
and then reconverting them to the radix r might introduce errors, so we might
prefer to print them in the radix r and then enter them in that form in our
program for f(x).t

Finally, since our calculation will be performed in FP(r, p, a), there are
times when we want to see the numbers in S(r, p) that arise in the calculation.
This is another aspect of observability, and it is another reason for our
wanting the language to provide us the option of printing numbers in the
radix of the machine.

11.3. EASE OF PROGRAMMING

The widespread use of higher-level languages for floating-point computa-
tion is due to the fact that they make it much easier to program many of the

1Some FORTRAN for the 1BM System/360 support the 2 format which provides this
capability,
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calculations we want to perform. Since the merits of these languages are
widely recognized, we shall not dwell on them here. Instead, we shall indicate
a few aspects of floating-point computation that are hard to program in many
higher-level languages. The criterion we shall adopt is that operations which
are casy to program in Assembler language should be easy to program in the
higher-level language. Fortunately, this is true of most of the things we want
to do with floating-point numbers.

However, in many higher-level languages it is difficuit to perform opera-
tions which make explicit reference to the representation of the number. For
example, in Section 4.4 we described ways to dismantle the floating-point
number. We succeeded in coding this operation in both FORTRAN and
PL/I, but the FORTRAN coding was quite devious and it obscured the
intent of the code. It would be much nicer if the language had functions which
would produce the parts of the number. We shall suggest four functions which
would enable us to perform operations like this that are often difficult to
program in higher-level languages. The names selected for these functions
follow the FORTRAN conventions.

First, we shall consider functions which would allow us to dismantle and
reassemble the floating-point number. We would like to have an integer valued
function IEXP(X) whose value is the exponent of the floating-point number
X. To reassemble the floating-point number, we would like to have a function
ASSEMB(1,X). The value of ASSEMB(I,X) would be a floating-point number
whose exponent is [ and whose sign and mantissa are the same as those of X.
This function would also allow us to extract the mantissa of X. If we sct

= 0, then the value of ASSEMB(1,X) is a floating-point number which is
equal to the mantissa of X.

Rounding is another operation that is often difficult to program in higher-
level languages. We would like to have a function ROUND(D) whose
argument is the double-precision number D and whose value is the single-
precision number D”.

Finally, it would be helpful to have a function AUG(X.I) whose value is
the floating-point number X augmented by | units in the last place. (When | is
negative, X is decremented.) This function would allow us to perform opera-
tions such as rounding the intervals outward in interval arithmetic. (Sce
Section 7.4.) It can also be useful in testing programs. In some tests we want
to use conscculive floating-point numbers as arguments to see whether the
answers are monotonic; in other tests we might want to step the argument by
a fixed number of units in the last place. [See Turner (1969b).]

Since all these operations are easy to perform in Assembler language, we
could produce the function subroutines described above and include them in
the library for the machine we are using. Even if these subroutines were coded
in Assembler language, they could have linkages which would allow them to
be called by programs written in the highcr-level language. But it would be
much more convenient if they were provided by the higher-level language
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itself. Since they are so short, they could be compiled as in-line code instead of
using subroutine calls. This would make the execution of these opcrations
much faster, so we would be more inclined to use them. Moreover, they are
especially useful when we are trying to produce a high-quality program, so we
would like to use them in programs which will be distributed to others. But
when we distribute a program, we would prefer not to have to distribute our
library subroutines along with it. Thus, it would be much nicer if these
functions were provided by the higher-level languages.

11.4. MACHINE INDEPENDENCE

We shall now ask whether a program can be written in a higher-level
language and run on two (or more) different machines. We often find that this
is not the case; the program must be modified to run on a second machine.
The basic question is how difficult it is to make these modifications. In
recognition of the fact that some modifications may be necessary, it is
becoming common to speak of the porrability of a program. Instead of asking
whether a program is machine-independent, we ask how much work will be
required to transport it to another machine.

We often find that the most serious problem we encounter in converting a
program from one machine to another is the incompatibility of the compilers.
Different compilers implement different language features, and in some cases
they handle the same statement in different ways. This is even true of dif-
ferent FORTRAN compilers for the same machine. One way to enhance the
portability of our programs is to restrict ourselves to the language features
common (o all the compilers we wish to use. But if we do this, we may have to
sacrifice some of the power of the language, and in some cases the quality of
the program will suffer. Since it is the high-quality programs that we are most
interested in converting from one machine to another, we usually will not be
willing to sacrifice quality to gain portability.

If a program must be modified to convert it to another machine, the first
problem we face is identifying the statements that must be changed. Cases of
obvious machine dependency, such as the use of UNSPEC in PL/I, are not
nearly as troublesome as hidden dependencies are. Similarly, the functions
IEXP and ASSEMB suggested in the previous section are easy to identify as
possible sources of machine dependency. By making the machine dependence
explicit. these functions would enhance the portability of our programs.

In Section 11.2 we mentioned the desirability of entering constants in the
radix r of the machine. This is another language feature which makes the
machine dependence clear. Since the constants which we would want to enter
in the radix r are very likely to be machine-dependent, writing them in this

form helps identify items that have to be modified. In addition to writing
constants in the radix r, we sometimes want to use the radix r in input and
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output formats. The most common use of this format occurs in test programs
and special-purpose programs which we are not interested in converting to
another machine. But if we do want to convert a program that uses this format,
the modifications that have to be made are usually quite clear.

After we find the items in the program that are machine-dependent, we
have to decide how to change them. To do this correctly, we must understand
the intent of the coding. But the intent of the coding is most easily understood
when the language allows the programmer to specify the operations he wants
to perform. For example, if the program uses the functions IEXP and
ASSEMB described in Section [ 1.3, it is easy to see what the programmer was
trying to do. By contrast, the FORTRAN coding for these operations
described in Section 4.4 completely obscures the intent of the code. While the
use of UNSPEC in PL/I indicates that the coding is machine-dependent, it
does not describe the intent of the coding as well as the functions IEXP and
ASSEMB do.

As we have seen, a carefully written program often uses constants which
are chosen for the specific machine on which the program is to be run. There
are several types of constants that are machine-dependent. First, there are
constants such as r, p, », Q, etc., which describe the characteristics of the
machine. Second, there are mathematical constants, such as x, e, log, 2, etc.
We would like to enter these constants in such a way that the number stored
in the machine is the correctly rounded value of the constant. Finally, there
are the coeflicients for the approximations we shall use for various functions.
Both the coefficicnts and the number of terms in the approximation will
depend on the word length of the machine we are using. It has been proposed
that the first two types of constants could be stored in a special subroutine
which could be called by programs that need the constant. Thus, by calling
this program and asking for the fourth constant we could obtain say, the
correctly rounded value of z/2. Each machine would have such a subroutine
with the constants arranged in the same order. To convert a program to a new
machine, we would change this one subroutine instead of changing the
constants in every program that used them. Here the price we pay for
portability is some extra subroutine calls. A variation of this approach is to
place the block of constants in COMMON, so that we can avoid the

. subroutine calls.

There are two different situations in which we are interested in the
portability of programs, and they present slightly different problems. The
first case is the one in which the machine we have been using is to be replaced
by a new machine, so we want to convert all our programs. The second case
arises when we have access to several different machines, and we want our
programs to run on all these machines. We shall call the first case conversion
and the second case the multiple-machine case. In the conversion case, once
the conversion has been performed we are no longer interested in the original
version of the program. But in the multiple-machine case, we want to avoid

)
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maintaining several different versions of the program, so we want to write the
program in such a way that it will run on all the machines we are using.

Conversion appears to be the easier case, since we can modify the program
in any way we want to. In fact, we can use a sift program to flag statements
that are clearly machine-dependent. But the conversion case may also present
some diffculties. We often find that the programs were written for the first
machine without any consideration of the problems involved in transporting
them to the new machine. (Some of the programs may have been wrilten
before we knew the specifications for the new machine and its compilers.)
Also, we may have to convert the programs at a time when we have had
little or no experience with the new machine, so we may be unaware of some
idiosyncrasies of the machine that can affect the programs.

The difficulties in the multiple-machine case stem from the fact that we
want genuine machine independence—that is, we want the same program to
run on several different machines. However, we shall assume that at the time we
write the program we are familiar with all the machines on which it is to be
run. In principle, it should be possible to write such a program. If we want to
use some coding that is machinc-dependent, we can perform a test to deter-
mine which machine the program is being run on and then branch to the
appropriate coding.t But the compilers sometimes make it quite difficult to
do this. Some of the statements in the program we compile on machine A will
be exccuted only on machine B, but the compiler for machine A may diagnose
them as errors. It is quite acceptable for the compiler to print warning mes-
sages for these errors, but it must not consider them to be so scrious that it
fails to compile the rest of the program. Of course, it is also vital that these
errors not contaminate the rest of the program.

If we use this approach, we must be able to perform a test to determine
which machine the program is being run on. We shall call this the machine
identification problem. We want to perform a simple computation which will
produce dilferent answers on two different machines. When the machines are
specified, such a test is usually quite easy to devise. In Exercise 7 we shall
address the more general problem of performing a serics of tests to identify the
system FP(r, p, a) in which the floating-point calculation is being performed.

EXERCISES

1. Another way 1o obtain the exponent of a floating-point number is to use
log, | v|, which we can compute by using

log, | x|
. log, | x| - o, ¥

1A slightly less elegant approach is to write the machinc-dependent statements as
comments. To convert the program to another machine, we only have to change a few
characters 1o change the appropriate comments to cxccutable statements,
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Write a program to use log, | x| to compute the exponent of x on the machine
you are using. Does this computation produce the correct exponent for all
floating-point numbers?

For mathematical constants, such as z and e, we want the number stored in the
machine to be accurate to the precision of the machine. Then the number of
digits used to represent the constant becomes a source of machine dependency
in the program. At the expense of execution time, we can sometimes overcome
this difficulty by using a standard library function. For example, we can compute
7/4 by computing arclan(l). What other constants can we obtain in this way?

Consider the function ASSEMB(I,X) described in Section 11.3. What should
this subroutine do when the value of I is outside of the range of the exponents of
the floating-point numbers on our machine?

Write Assembler language subroutines for the functions 1IEXP, ASSEMB,
ROUND, and AUG on the machine you are using.

How would you use the functions described in Section 11.3 to decide whether or
not X differs from Y by less than K units in the last place of Y ?

a. Use AUG.

b. Use IEXP and ASSEMB.

Suppose that you are writing a program which you intend to run on two different
machines. Devise a simple test to identify the machine on which the program is
heing run, if the systems in which the two machines perform floating-point
arithmetic are:

a. FP(2, 40, a) and FP(2, 48, a)

b. FP(16, 6, c) and FP(2, 24, ¢)

c. FP(16, 6,¢) and FP(10, 7, ¢)

d. FP(2, 27, ¢) and FP(10, 8, c)

FP(2, 27, R) and FP(2, 28, ¢)

Suppose that you are writing a program which is to be run on many different

machines. Devise a collection of tests which will identify the system FP(r, p, a)

in which the calculation is being performed. You may assume that all of the

machines on which the program will be run have all of the following five pro-

perties:

a. ris either 10 or 2% with 1 < & -7 6.

b, re 2> 1000,

C. ais R,c,orcly. Ifaiscly, thenqis 0, 1, or 2.

d. Q= rrand @ < ro2s,

c. If your program contains a constant which is a positive integer less than
1,000, then the compiler doces not introduce any error when it converts the
constant to S(r, p).

L

FLOATING-POINT
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12.1. CHOICE OF RADIX

The choice of the radix is the most basic decision to be made in the design
of the floating-point hardware. The criteria on which this decision is l':uased
are usually speed, cost, and ease of use. It is generally accepted that binary
arithmetic is faster than decimal arithmetic-—at least at the same cost—so
the very fast machines have seldom used the decimal ‘reprt':sgmation for
floating-point numbers. (The NORC was an exception.) Smce. itis as casy to
perform the basic arithmetic operations in the radix 2* as it is in binary,
several machines have been designed with a radix which is a power of 2.

We now have machines which are capable of performing floating-point
arithmetic at remarkably high speeds. For example, the execution time l'qr
single-precision multiplication on the model 195 of the IBM System/360 is
162 nanoseconds, which is less than one quarter of a memory cycle. Indeed, a
conditional branch may take longer than floating-point multiplication on
this model of the IBM System/360. Thus, the speed of the Iloming-pou.\t
arithmetic is no longer the major bottleneck, so the fact that binary uritl}mcllc
is faster than decimal arithmetic is not as decisive as it once was in the
selection of the radix. o

Another argument that is sometimes advanced for binary machines is that
they make more cfficient use of the storage. The decirqnl representation of
numbers requires more bits than the binary representation does to produce
the same accuricy, so a binary machine can have a shorter word length than a
decimal machine with comparable accuracy. This can reduce l'hc cost of l'he

memory. Alternatively, if it uses the same word length, the binary machine

can provide more accuricy.
n )
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There are several respects in which a machine with radix 2* differs from a
binary machine. One difference is that with larger values of & we may expect
that less shifting will be required in the operations () and . [See Sweency
(1965).] Therefore, these operations might be slightly faster on an octal or a
hexadecimal machine than on a binary machine. Another difference is in the
size of the exponent. As an illustration, we shall compare a binary machine
with a hexadecimal machine having the same word length and the same range
of floating-point numbers. Since 16* == 2%, the binary machine will require
two more bits for the characteristic. Then its mantissa will be two bits
shorter. Thus, to produce the same range for the floating-point numbers, we
need the same word length for the numbers in S(16, p) as we do for the num-
bers in S(2,4p — 2).

A machine with the radix 2* also differs from a binary machine in the
accuracy of the computation. We shall illustrate this by comparing FP(16, 6, ¢)
with FP(2, p, ¢). When we chop a number to S(16, 6), we retain the high-order
21, 22, 23, or 24 bits, depending on the leading hexadecimal digit. It follows
that the arithmetic operations in FP(16, 6, c) are at least as accurate as those
in FP(2, 21, ¢), and they are never more accurate than the operations in
FP(2, 24, ). The bounds for the relative error in a program are often the
same in FP(16, 6, ¢) as they are in FP(2, 21, ¢), so we should think of
FP(16, 6, c) as being roughly equivalent to FP(2, 21, ¢). [However, by exercis-
ing sufficient care, we can sometimes produce a slightly better result in
FP(16, 6, ¢) than we can in FP(2, 21, ¢).] But since 24 bits arc used to
represent the mantissas of the numbers in S(16, 6), it is easy to fall into the
trap of thinking of FP(16, 6, ¢) as being about the same as FP(2, 24, ¢). This
is a mistake, because we can seldom attain this accuracy.

The major advantage of decimal arithmetic is that it eliminates the need
for radix conversion. This affects both the speed of computation and the case
of use of the machine. We may think of the radix conversion as the price we
pay to use binary arithmetic instead of the slower decimal arithmetic. Il is
worth paying this price if the program does a lot of computation. But decimal
arithmetic could be quite attractive in a program that reads in a lot of decimal
input and performs relatively little computation on it. There might not be
enough computation to offset the time required to convert the numbers to
binary.

In many respects, decimal machines are easier to use than binary.machines
are. Many simple decimal numbers cannot be represented exactly in a binary
machine, and this can lead to programming errors. For example, if we want to
use the decimal number .1 in a double-precision FORTRAN program, we
may have to write it as .1 DO to force the compiler to perform the conversion
to double-precision accuracy. (See Section 5.1.) This problem does not arise on
a decimal machine. Also, since binary numbers are not as familiar as decimal
numbers are, many programmers find it much harder to understand what is

)
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happening in the calculation when they are using a binary machine. The
calculation is further obscured in a binary machine by the ﬁ.lct that tfle.oulput
is decimal, so we do not see the numbers the machine is using. Bu! itis thgn
necessary for the programmer to understand the deta.ils of the aml.lmeuc in
order to write a high-quality program. It is usually easicr to re:ach this Ier:l of
understanding when the calculation is performed on a (?emmal machine.

Finally, we want the representation of the ﬂqatmg—pom( numbers to be
compatible with the representation of the fixed-point numbers. .Numbcrs may
be converted from floating-point to fixed-point or from f.ix‘cd-poml to floating-
point numbers in the inner loop of the calculation, so it is lmportf\nt that thc§c
conversions be easy to perform. We would not want them t.o involve rafilx
conversion between decimal and binary, but we would not objeq to cl"nangmg
the radix from 2 to 2*. Since fixed-point numbers are used I'or. mdexl.ng and
address calculations, their representation must be compatible with the
addressing scheme of the machine. In many cases this produces a strong argu-
ment for making the fixed-point arithmetic binary. Anoth.er advamage.f of }hc
binary representation of fixed-point numbers is that any bit configuration is a
valid number, so we can accept any coding of the input data and use the
fixed-point operations to convert it to the form we want to use.

12.2. THE REPRESENTATION OF
FLOATING-POINT NUMBERS

We usually want to treat the floating-point number as a single cntity, so
it is convenicnt to have it stored in a single word of memory. Thep a basic
design decision is how to partition the word into the s.ign. chzlrzlcter!sllc, and
mantissa of the number. Also, the designer must decide ho.w negative num-
bers will be represented and how the sign of the exponent will be l'lal.\dled.

The signed exponent e will actually be stored as the Fharagtenstnc ey
(See Section 1.4.) If y =: 0, the exponent is stored as a slgped integer; other-
wise the characteristic is nonnegative. Many decimal machines have allo?:lted
two decimal digits for the characteristic and used y = 50. For .bmary
machines, the common choice for y is 2*~!, where k is the number of bits used
to hold the characteristic. But some binary machin}es have used y == 0, and
this approach has also been used on decimal machines when. l.h? representa-
tion of the decimal digits is such that we do not need an extra digit to hold the
sign. . '

In addition to selecting p. the designer must decide whe.re to p!ace the
characteristic within the word. Insofar as the floating-point instructions are
concerned, this decision can be made arbitrarily. Bu} if we want to use non-
floating-point instructions to manipulate floating-point numbers, thg location
of the characteristic may be important. For example, some machines have
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specia.l i.nstructions which manipulate subdivisions of the word called bytes.
Then it is easy to extract the characteristic if it occupies a byte. Also, when the
characteristic is placed in the high-order digits of the word, it may be possible
to use fixed-point instructions to compare two normalized floating-point
numbers.

Next, consider the representation of negative numbers. Throughout this
book we have assumed that the machine stored the sign and true magnitude
of the mantissa, but some machines have used either the r's complement or the
(r — 1)'s complement to represent the mantissa of a negative number. Agaiin
?ompatibilily with the representation of the fixed-point numbers may be zu;
important consideration in deciding which representation to use. Also, it may
be a little harder for the programmer to understand what is happening in the
calculation when the machine uses complements, becausc complements are
not as familiar as signed numbers are.

If the machinc uses the sign and true magnitude representation for
negative numbers, then the subtract magnitude case for the operations @) and
© is handled by complementing one of the operands and adding. I the
operand having the larger magnitude is complemented, the result will have to
be recomplemented.t One advantage of representing negative numbers by
cpmplemen(s is that this recomplementation is never required, so the opera-
tions () and @ may be slightly faster. However, it may make multiplication a
little more complicated. [See Flores (1963).]

"~ When we use complements to represent negative numbers, the mantissa m
of a number in S(r, p) will be represented by a positive number m’. If m - 0,
m =m. If m <0, then m" =r — |m| if we use the r's complement, and
m' =r —r-? — |m|if we use the (r — |)'s complement. The number m’ can
always be expressed with p 4 | digits in the radix », and 0 =Z i’ -~ r. The
leading digit of m’, which represents the sign of m, is usually required to be
either zero or r — 1. But this is wasteful unless r ~: 2. We could avoid using a
whole digit (o hold the sign by using a mixed radix representation for m’ with
one bit to the left of the point. Nevertheless, we are more likely to find
complements used to represent negative numbers on a binary machine than
on other machines.

Many machines have a minus zero which appears to be different from a
plus zero. With the sign and true magnitude representation of numbers,

. 1One way to reduce the frequency of recomplementation is to complement the operand
with the smaller exponent when the exponents are uncqual. Then recomplementation will
be required only if the operands have the same exponent. and the machine complemented
the pumbcr with the larger magnitude. Sweency (1965) reported the results obtained by
tracing seycral programs and counting the number of times the operands had the same
cx?oncnt in ll.nc subtract magnitude case. He also showed how often this situation would
arise on machines with different radices. As we would expect, increasing the radix increases
the number of times the operands have the same exponcnt.
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minus zero and plus zero have zero mantissas with different sign bits. We also
have two zeros if we use (r -— 1)’s complements, because the (r 1)’s com-
plement of zero is a number whose digits are all (r — I)s. When the machine
has both a plus zero and a minus zero, we would like to be assured that they
will both be treated as zero in all contexts. We seldom encounter difficulty in
the arithmetic operations, but we must be careful about the branching
instructions. For example, if the machine has a BRANCH ON MINUS
instruction, will it branch on a minus zero? Similarly, if the machine has a
COMPARE instruction and we compare a plus zero with a minus zero, will
they be treated as equal? When we write programs in Assembler language we
must know the answers to these questions to avoid taking the wrong branches.

Some machines guarantce that a minus zero will never be produced as the
result of a floating-point operation. This is usually enough to protect us from
encountering them, although we must be careful when floating-point numbers
arc produced by non-floating-point operations such as those described in
Section 4.4. We would also want to be assured that the library programs
never produce minus zeros.

We do not have a minus zero when we use r's complements, since the r's
complement of zero is zero.t But the number r/2 is its own complement, and
this may present special problems. For example, on a binary machine we can
represent the mantissa — 1 but not the mantissa -I- 1. This anomaly must be
accommodated in some way. We could allow the floating-point numbers to
have the mantissa — 1, but then changing the sign of x could change its
exponent. Alternatively, the arithmetic operations could be designed so that
they would never produce a result with m’ = 1. In either case, we cncounter
many of the problems presented by minus zero. Either the arithmetic opera-
tions must be designed to handle operands whose mantissas are - 1, or else
they must guarantee that the results they produce will never have this
mantissa.

Some machines have special bit patterns that will not be treated as valid
floating-point numbers. For example, the CDC 6600 represents INFINITY
and INDEFINITE by a zero mantissa with special values for the exponent.
The hardware must recognize these bit patterns whenever they appear as
operands in floating-point operations and set the result accordingly. (See
Section 2.2.) The 1BM 7030 had a different way to indicate that a number was
abnormal. Each floating-point number had three extra bits called flag bits.
The program could set these bits, test them, or use them to cause interrupts.

The CDC 6600 produces the bit pattern INDEFINITE as the result of an
indcterminant form. But if we think of this bit pattern as simply meaning that
the number is not a valid floating-point number, it has other uses. For
example, consider a machine which appends extra bits to the word for crror

{This is because we retain only onc digit to the left of the radix point in m".

)
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detection. If we want to proceed after a machine error has been detected in a
number, we can set the number to INDEFINITE. This approach can also be
used when a subroutine is unable to produce a reasonable answer for certain
input data. Similarly, in statistical programs it is desirable to distinguish
between missing data and zero. Missing data can be sct to INDEFINITE.

Thus, we would like to produce the value INDEFINITE whenever we are
unable to compute a reasonably good value for 2 number. To make this
approach feasible, there are two properties the hardware should have. First,
the result produced by a floating-point operation should be INDEFINITE
whenever one of the operands is INDEFINITE. Then we can let the calcula-
tion proceed, and those numbers which have been contaminated by the error
will be INDEFINITE, but the other numbers will be printed correctly. The
second requirement is that we must be able to test a number to determine
whether or not it is INDEFINITE. This may be necessary in order to avoid
infinite loops and to force the program to take the proper branches. It is also
essential if we want to use INDEFINITE to handle missing data. Even if the
hardware satisfies these two requirements, careful programming may be
necessary.

Next, consider the scaling of the mantissa. We have assumed that the
mantissa m is a p-digit number with the radix point at the left, sor=' < |m|
unless m = 0. But some machines store the mantissa as a p-digit integer with
the radix point at the right. Hamming and Mammell (1965) suggest placing
the radix point at the right of the leading digit of m. Then we would have
| < |m| < r unless m = 0, The scaling of the mantissa has no effect on the
operations (P and ©, and the only impact it has on the operations * and =- is
in the calculation of the exponent. But it may have an effect on the range of
the floating-point numbers. For example, consider a binary machine which
uses & bits to hold the characteristic. Suppose that the characteristic ¢ is the

exponent plus y and that 0 < ¢ < 2*¥ — 1. The commonest choice for y is
251 so the exponent e satisfies

X <eg 2 - L

If the mantissa is an integer, @ is several orders of magnitude larger than 1/Q.
Then there are many floating-point numbers in the machine whose reciprocals
cannot be represented. Unless the range of the exponents is extremely large,
this lack of symmetry can be annoying. We might prefer to use a different
value of y which would make the range of the floating-point numbers sym-
metric. (See Exercise 9.)

Still another variation in the representation of floating-point numbers in a
binary machine was proposed by Goldberg (1967) and McKeeman (1967),
Consider a machine which uses the sign and true magnitude representation
for negative numbers, and suppose that the characteristic is stored as a
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nonnegative integer. Since the high-order bit of the mantissa ofa normahze:.

nonzero number is always 1, it need not be stored. Instead, we can store t e
remaining p -- | bits of the mantissa, and the hardware can supply tht.a leading
bit when it is needed. The number zero requires special !reatment: we can
specify that a floating-point number is zero when all the bits appearing in its
characteristic and mantissa are zero. Then every nonzero number that appears
in the machine is normalized. This may make operations such as FLOAT TO
FIXED and FIXED TO FLOAT more difficult to program unlessthe mac_hmc;
has special instructions to perform them, but we obtain one more bit o

precision without increasing the word length.

12.3. FP(r. p. c) AND FP(r. p. R)

The advantage of the systems FP(r, p, ¢) and FP(r, p, R} is !hat t{ney a‘:e
quite easy for the user to understand. The system FP(r, p, a) in whlchht e
machine performs arithmetic often resembles one of these systc.ms, buI: t el:e
are usually some slight differences which the. user .must consider w.den he
wants to produce high-quality programs. In this sef:tlon we §hall consider t :
way the hardware can be designed to perl'or:; anlhme::; Ilir;e:;P(r, p, ©) an

. We shall assume that the operands are nor d.
FP(XI!i,;h’:r:elic in FP(r, p, ¢) can be produced by a slight modlﬁca.tlon of the
arithmetic operations in FP(r, p, clg) which was proposed l?y Harding (! |966a-\;
1966b). Floating-point division was defined to be the same in FP(r, P, cl .q) ?s i
is in FP(r, p, ¢), and we saw in Section 1.8 th.at ﬂoatnpg-pomt multiplication
produces the same result in FP(r, p, clg) as it do-es in FP(r, p, ©) whenev;:r
q > 1. Also, in the add magnitude case, the operations @and © Produce the
same results in FP(r, p, clq) as they do in FP(r, p, c). Therefore, it suffices to
consider a @ b, where we miy assume that a > b > 0. Let

a=rm, rrt<m<l1

b =r'n, rrt<n<l

< ren’, where n' ==r " 'n is
Since a> b >- 0, we have e > f. Now b -=r'n', W -
obtained by shifting n to the right ¢ —fplac‘cs.'Lel'q > land lel.n bithe
first p -1 ¢ places to the right of the radix point in 2" Instead of using ', as
we would in FP{r, p, clq), we use n'", where

"

H (——
(12.3.1) n' = n itn" =n
wtoont ety ifn" <n'

" - 1)-digit fr: d its last digit is nonzera if and
Thus, #'* is a (p | ¢ |- 1)-digit fraction, an |
only if nonzero digits of n" werc chopped to produce n”. We now let

e —
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uom —-’n"'. and we note that the first p |- ¢ digits to the right of the radix
point iy :mlz the same as those of m - . To complete the operation, we
normalize r'u’ and chop it to S(r, p). The analysis in Scction 1.8 shows that

this produces the result 7 — b as longasq > I.

The function of the (p ‘¢ |- Dst digit of n"" is to force a borrow from the

(7 1 gih digi . . .
u,;ed @)th digit of m whenever n” < n'. In place of (12.3.1), we could have

(12.3.2) n' = p ifn"
n' o 4 jp-terarn ifn"” -2,
wheri i is any integer in the range 1 <Ti<Tr - 1LIFr - 2% we can take
;o -1 : ' i
;{ 2. in (12.3:2). SO we .necd only one extra bit instead of an extra digit.
arding Ci.l"S‘lhlS extra bit a sticky bit, because any nonzero bit shifted
through this bit position sticks there. Even if r is not a power of 2, we shall
.re!'cr to ‘lhc. (p-t-q | Dst digit of " as a sticky digit. Thus, to produce
;l.l;l)t(hmcll(l: )n;) EP(r. Z ), we take ¢ ;> | and modify the arithmetic in
U p. ciq) by Introducing a sticky digit in the subtract magni ¢
the operations @) and ©. renitude C«‘fe o
. _thn r is cven, i} i's.easy to modify this approach to produce arithmetic
in FP(r, p, R). For division, we develop the first p |- | digits of the quotient
t{nd then round the answer to p digits. For the operations @, ©), and *, wecan
simply procceq as we would in FP(r, p, ¢/2), using a sticky digit in the
subtract mngnn!ldc case of the operations (p) and ) and then round the
result to S(r, p) |p§lc:|d of chopping it. Since the final operation of rounding
a flumbc'r '.“’,’ digits may require us to perform an extra addition, rounded
arithmetic is likely 1o be a littie slower than chopped arithmetic.

124. UNNORMALIZED NUMBERS AND
UNNORMALIZED ARITHMETIC

. We have assumed that a nonzero number x in S(r, p) was always written
in the form

X rem, b im0

We shall now consider unnormalized numbers, so the mantissa will be allowed
to h;.nve an.ubsolulc value less than r "', But then the representation of the
ﬂoalmg-p{)mt number is not unique, because there arc many numbers in
S(r. p) which can be written with more than one exponent. Unfortunuicly
the result produced by the arithmetic operations often depends on lh(;
represcnlulion of the operands. Therefore, we shall now consider a Aoating-
point number (o be an ordered pair (¢, n1), where ¢ is its exponent and m is its

)
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mantissa. The exponent is a signed integer and the mantissa is a signed
fraction which can be represented in the radix r with p digits to the right of the
radix point. Then (¢, m) is a representation for the number rem in S(r, p), and
|m| < L.

The hardware could be designed so that each arithmetic operation nor-
malized the operands before performing the arithmetic, so the results would
be the same regardless of whether the operands were normalized or not. But
prenormalizing the operands is extra work, and it makes the arithmetic
slower. It may even affect the speed with which arithmetic can be performed
on normalized numbers, because the machine must test the numbers to see
whether they are normalized. Therefore, the hardware often performs the
arithmetic without prenormalizing the operands. Instead, it simply uses the
exponent e and mantissa m which appear in the representation (e, m) of
the floating-point numbers. But then the result produced by the operation may
depend on the representation of the operands. We shall illustrate this by
considering the case in which the machine is designed so that the arithmetic
will be performed in the system FP(r, p, clg) whenever the operands are
normalized.

To compute the product (e, m) » (f; n), let 4’ be the first p |- g digits to
the right of the radix point in the 2p-digit product mn. Then the result
produced by the operation (e, m) = (f, n) is the normalized number (g, u).
where rfu = r**/y’. That is, we normalize the number r**/ x4’ and then chop
it to S(r, p). If g = p, then x4’ = mn, and we shall produce the same result as
we would in the system FP(r, p, ¢). But if ¢ < p and the operands are unnor-
malized, we may have chopped digits that would have been retained in
FP(r, p, c). In fact, we could have g == 0 even though mn 3£ 0. The smaller ¢
is, the more severe this problem becomes, and it would be particularly
annoying if ¢ were 0 or 1. For this reason, the IBM System/360 normalizes
the operands before it performs the multiplication.t

Next, we shall consider the quotient (e, m) + (f, n). If neither m nor n is

zero, then '

(12.4.1) rr <l% <r

holds whenever m and n are normalized. But when the operands are allowed
to be unnormalized, we have only

- m
I”<|—”— <rf.

$There are many variations in the way machines compute the product of unnormalized
numbers. For example, the IBM 7090 never shifts the result more than one place to post-
normalize it. If the operands are normalized, this will produce a normalized result. (Sce
Scction 1.8.) Otherwise, the result may be unnormalized, and the product can vanish even

though mn +# 0.
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To perform the division of normalized numbers, the machine must be able to
handle the case in which (12.4.1) holds. But the case in which |m/n| > ris
often troublesome, and machines differ in the way they treat it. For example,
the IBM 7090 produced a divide check condition whenever [mjn] > r, and it
did not perform the division. On the other hand, the IBM System/360 avoids
the problem by prenormalizing the operands.

Finally, consider the operations (i) and ©. We can compute (¢, m) O
(/. n) by changing the sign of n and adding, so it suffices to consider (e, m) )
(/- n). Also, we may assume that the notation is chosen so that e~ f Asin
Section 1.8, we form n’ = r=*¢-'p by shifting n to the right ¢ - / places. Let
n” be the first p |- ¢ digits to the right of the radix point in n’, and form
# = m |-n"”. The result produced by the operation (e, m) () (/, ) is the
normalized number (g, u), where rey -~ rep’. Thus if [ p'] < 1, reg’is nor-
malized and chopped to p digits. On the other hand, W'l == l,g--e |1
and g is obtained by chopping r~'4' to p digits. If (e, m) is normalized, it is
casy to sec that we shall produce the same result regardless of whether (f. n)
is normalized. But if (e, m) is unnormalized and ¢ — J >+ ¢. then we shall chop
more digits of n’ than we would have if (e, m) had been prenormalized, and
the operation may produce a different result. In fact, when (e, m) is unnor-
malized, we may shift the number with the larger magnitude. This will happen
ife > fbut [r'm| -<|rin|.

The behavior of (¢, 0) in addition and subtraction is particularly impor-
tant. Suppose that

(12.4.2) (e.OYD(Sfn) = (g p).
Clearly
(12.4.3) rin = rey

holds whenever f >+ . We recall that in Section 1.4 we defined a normalized
zero to be a representation (e, 0) for zero in which ¢ is the smillest allowable
exponent, so (12.4.3) always holds if (¢, 0) is normalized. Since the operalion
(1) always produces a normalized result, the effect of adding a normalized
zero to (/. n) is to normalize it—that is, to produce a normalized number
(g, p) satisfying (12.4.3). But we may change the value of a floating-point
number if we add an unnormalized zero to it, because # will be chopped in
the computation of (¢, 0) @) (f. m) if ¢ — -~ q. For this reason, unnormalized
zeros can be troublesome. Our definition of floating-point arithmetic in
Chapter | specified that the result produced by the operations ), =, =, and
<= will always be normalized, even if it is zero. When this holds, as it does on
many machines, including the IBM System/360, we usually will not encounter
any unnormalized zeros in our computition unless we make a special effort to
produce them.

)

SEC. 12.4 UNNORMALIZED NUMBERS AND UNNORMALIZED ARITHMETIC 281

There arc some sitnations in which unnormalized zeros can be quite
uscful. For example, if x has the representation (f, n), then we can chop x to
an integer by forming (/. n) () (p |- ¢, 0). This is an easy way to extrict the
integer part of a floating-point number when we are coding mv/\sscmblcr
language, and the compiler can usc this approach to handle the FORTRAN
functions AINT and AMOD. o

In programming the FIXED TO FLOAT conversion, it is ofte'n con-
venient to begin by constructing an unnormalized number. Let / be an integer
with | 7] - 2 r?, and suppose that we want to convert the representation of /
from a fixed-point to a floating-point number. By converting p to a character-
istic and inserting it in the correct portion of the word that holds /, we can
form the floating-point representation (p, r=?1) for 1. But (p, r-?1) may be
unnormalized, so we complete the FIXED TO FLOAT conversion by nor-
malizing it. Some machines have « NORMALIZE instruction which can be
used for this purposc; otherwise we normalize the number by adding a
normalized zero to it.

We have assumed that the floating-point arithmetic operations always
produce normalized results. But many machines have additional instructions
to perform wnnormalized arithmetic, and these instructions can produc;c
unnormalized results. We shall assume that these operations are perf ormcc.l in
the saume way as the operations in FP(r, p, ¢lg), except that the postnormaliza-
tion is omitted. That is, we never normalize ' before chopping it. The result
may be unnormalized even though both of the operands are normalized. On
some machines, for example, the CDC 6600, all the instructions perform
unnormalized arithmetic. To produce a normalized result on such a machinc:
we first perform the arithmetic operation and then use a NORMALIZE
instruction.

Unnormalized arithmetic is often used in programming the FLOAT TO
FIXED conversion. We shall illustrate this by considering the coding required
for the FORTRAN statement

I X

Suppose that the representation for the floating-point number X is (¢, 1),
where ¢ < p. If we add (p, 0) to (¢, m) using unnormalized addition, the !'csu!t
is (p, n), where rra is the integer part of X. The integer we want tostore in lis
comprised of the p digits of # with the radix point at the right. We can
usually obtain the result by extracting the p digits and sign of n :Il‘ld storing
them in 1.t The advantage of using unnormalized addition here is that we
know the scaling of the result,

tThe coding is slightly more complicated on the 1BM System/360, because lh? machine
uses the sign and true magnitude represeatation for floating-point numbers, but it uses the
2's complement representation for negative fixed-point numbets,
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Two other sources of unnormalized numbers are the gradual underflow

described in Section 2.8 and the significance arithmetic discussed in Section
7.2. With the gradual underflow, a result which underflows may be replaced
by an unnormalized number. Significance arithmetic produces unnormalized
results, but it uses arithmetic operations which differ somewhat from the
unnormalized arithmetic discussed above.

EXERCISES

Consider a decimal machine in which cach word contains 12 decimal digits

and a sign, and suppose that we want 10 use these words to store the numbers in

(10, 10). We have two decimal digits left to hold the characteristic, which we

shall define to be the exponent plus 50. Assume that the machine uses four

bits to represent a decimal digit and one bit for the sign, so cach word requires

49 bits. We want to compare this machine with a binary machine having a

49-bit word.

a. Find the largest value of p for which we can represent the numbers in
S(2, p) in a 49-bit word if we use enough bits for the characteristic so that
we can represent at least as large a range of floating-point numbers as the
decimal machine does.

b. Let p” be the value of p found in part a, Using the criterion (8.1.9) based on
the comparison of worst cascs, find the largest value of P’ for which we
would prefer to use the system FP(2, p’, ¢) instcad of FP(10, p”, ¢).

Consider a machine which performs arithmetic in the system FP(4, p, ¢). The

mantissa requires 2p bits, so if we use one bit for the sign and & bits for the

characteristic, we shall need 2p |- X -1 1 bits to hold a floating-point number.

We want to compare this machine with a binary machine which uses 2p

k 11 bits for cach floating-point number and performs arithmetic in

FP(2, p’, ). Suppose that the binary machine uses &* bits to hold the charac-

teristic, where &' is chosen to produce approximately the same range of floating-

point numbers that we had on the machine with radix 4,

a. How large can p’ be?

b. Which machine provides the better bound for the relative error introduced
by chopping a number?

c. Compare the average relative error introduced by chopping numbers on
these machines.

Compare the average relative error introduced by chopping numbers to
S(16, 6) with that introduced by chopping numbers to 8(2, 22), assuming that
the mantissas are

a. Uniformly distributed.

b. Logarithmically distributed.

Suppose that we are using a machine which performs arithmetic in FP(16, 6, c).
To compute x-(n/2), we can either multiply x by 7/2 or divide x by 2/r.
Compare the accuracy with which we can approximate 72/2 and 2/n by numbers
in 5(16, 6).

by
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Supposc that you were designing the floating-point number system for a bin.ary

machine with a 48-bit word. How would you partition the word into the sign,

characteristic, and mantissa?

Consider a machine which uscs complements 10 represent negative numbers,

a. If the machine uses (r — 1)’s complements, how can you determine whether
or not a number is normalized ?

b. If the machine uscs (r — 1)'s complements, how would you normalize an
unnormalized number?

c. If the machine uscs r’s complements, how can you determine whether or
not a number is normalized ?

d. If the machine uscs r’s complements, how would you normalize an unnor-
malized number?

Consider the problem of shortening a number from double-precision to sing'le-

precision on a binary machine which uses complements to represent negative

numbers. Let x be a positive number in §(2, 2p), let x be x chopped to S(2, p),

and let X' be x rounded to S(2, p). Suppose that we are given —x, with its

mantissa represented as a complement, and that we want to form either — j' or
%". The result is to be stored as a single-precision number with its mantissa

.represented as a complement. (Note that the 1’s complement of the mantissa

m of a single-precision numberis2 — 22 — m.)

a. How would you form —x if the machine uses 1's complements?

b. How would you form — x” if the machine uses 1°s complements?

¢. How would you form — % if the machine uses 2°s complements?

d. How would you form — x” if the machine uses 2's complements ?

Consider a machine which has a special bit pattern which is treated as

INDEFINITE.
a. What value would you want stored in 1 by the FORTRAN statement

1:-X

when the value of X is INDEFINITE? )
b. Give an example of a situation in which it is essential to know whether or

not a number is INDEFINITE.
Consider a decimal machine in which the representation of the ﬂoaling-pqm_t
numbers consists of a sign, a two-digit characteristic, and an cght-dng:t
mantissa. The characteristic ¢ is the exponent plus p, and it I[es in the interval
0 < ¢ -~ 99. We consider three possible forms for the mantissa:

SXXXXXXXX
X. XXXXXXX

XXXXXXXX,

For each of these forms,

a. Findwify - 50 ‘ '

b. Find the value of y that would make the range of lh.e floating-point num-
bers symmetric. That is, find the value of p that will yield Qw -j— 10-8,
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c. Describe the calculation of the characteristic of the product of two nor-
malized floating-point numbers.

10, Let xand y be positive numbers in S(r, p), and let z = x () y, where the sum is
computed in FP(r, p, clq). Suppose that (e, m) and (/, n) are representations
for x and y which are not required to be normalized, and let

(g, p) = (e, M) D (S, n).

Suppose that the machine which we arc using is designed so that the arithmetic
will be performed in FP(r, p, c¢lg) whenever the operands are normalized, and
suppose that it computes the sum (e, ) @ (/, n) in the way described in Section
12.4. By how many units in the last place of z can r#u differ from z?

11. Consider a machine which has only unnormalized arithmetic operations.
Suppose that it performs arithmetic as it would in FP(r, p, c/q) but that it never
normalizes the result before chopping it. After each arithmetic operation, we
use a NORMALIZE instruction to normalize the result. How does the result
differ from the result that would be produced if the arithmetic were performed
in the system FP(r, p, c/0) using normalized arithmetic operations ?

12. Program the FLOAT TO FIXED and FIXED TO FLOAT conversions in

Assembler language for the machine you are using. What special cases must be
considered ?

13. What would be the effect of using a sticky digit in the add magnitude case of the
operations @ and © when
a. The operands are normalized ?
b. The operands are not required to be normalized?
¢. The operands arc not required to be normalized and the operation is
unnormalized addition?

14. Consider a machine which performs arithmetic in FP(r, p, ¢) when the operands
are normalized. To accomplish this, it performs the arithmetic in FP(r, p, cly),
where ¢ > 1, and it uses a sticky digit in the subtract magnitude case of the
operations () and . Assume that it does not prenormalize the operands
before performing the arithmetic. Let (g, ) be the result produced by the
operation (p -I- g, 0) @ (e, m). Describe (g, u) if
a. The operation is normalized addition.

b. The operation is unnormalized addition.

15. How does the unnormalized arithmetic described in Section 12.4 differ from
the significance arithmetic discussed in Scction 7.2?

l 3 COMPLEX NUMBERS

13.1. PROGRAMS USING COMPLEX NUMBERS

Although the hirdware seldom has operation codes for complex am’h-
metic, some higher-level languages support the data type COMPLEX. With
this data type, the complex number is carried in the form x - iy, where x anfi
y are floating-point numbers stored in adjacent storage cells. Another possi-
'bilily is to represent the complex number in the for'm Aé®, wher.c,? an.d 0 are
floating-point numbers. While this is more convenient f9r multiplication and
division, it is less convenient for addition and subl:ra;:tlon. W: §hall assume
that the complex numbers arc always written in the form x -} iy.

When lhg compiler does not support the data type COMPLEX, we
encounter many of the same problems we face when we want to use don.nt?le-
precision arithmetic and the compiler does not §upport the double-precusuo'l:
data type. First, complex numbers require twice as tnuch. storage as rea
numbers do, so we can use one of the techniques decribed in Section 5.7 to
allocate the storage for them. We might use different names, say AR and f.\l,
for the real and imaginary parts of A, or we might use an adfiltlonz_ll subscript
to refer to the two parts of the number. Second, the am.hmellc mus} be
changed, and in many cases it will be performed by calling sub.roqun'es.
Finally, we may want to have complex versions of some of the basic library

UK THEAN ]

m(,;.n annoying problem that arises with complex numbers is that th.e
intermediate results may averflow or underflow even though the answ;er is
within range. For example, if z = x -I- iy, then|z| - /x? :}- )‘ Here x zll'ld
y* can overflow cven though | 2| is much less than Q. Similarly, they can
underflow even though | 2| is much larger than w. Therefore, we would like to

285
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have a library program which would avoid these overflows and underflows
and compute the absolute value of a complex number = whenever w -+ | 2] -
Q. (Sec Exercise 8 of Chapter 2.)

13.2. RELATIVE ERROR

If Z is an approximation for the complex number z -7 0, we may define the
rclative error p by

p T e—
so 2 = (I |- p)z. Here p is a complex number, and we are usually interested
in a bound for | p|.

Another approach is to consider the real and imaginary parts of z sepa-
rately. Letz - x | ivandZ  : & | iy If neither x nor y vanishes, we may set

g, ——
and

a‘z [ A

Then we shall be interested in the bounds for the |a, |
Suppose that |a, |- o fork - - 1, 2. Since

p X lox | iy c_r;,l') (v 1 iy) ox | ia,r,
x| iy ROy
we have
(ol aixt | iy .a’xt | aly?

X x|yt

so|pl- " o. Thus, |p| - max(|a, |. |a,]). so|p]is small if both the |g, ] are
small.

But the converse does not hold. Suppose that = | |- 10 "% and that
p - 10 % Then

ez pze 1 — 1015 (10 % |10 '),

s0 |a,] is on the order of 100. Thus, one of the | g, | may be large even though
1plis small.
However, the relative error p is still very uscful. In many cases we can

)
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obtain a bound for | p| but not for the o, |. Morcover, it is oficn the relative
error p that is propagated, not the a,.1

13.3. COMPLEX ARITHMETIC

We shall now consider the addition, subtraction, multiplication, and
division of complex numbers. The complex numbers will be stored in the
machine in the form x | iy, where x and y are real, floating-point numbers.
To simplify the discussion, we shall assume that the machine performs
floating-point arithmetic in the system FP(r, p, ¢/l).

Fork - 1,2, let

F PR T 1) PR

where x, and y, arcin S(r. p). If z - x -|- iy is one of the complex numbers
Sy Iz &y 0 23 2423 OF 24/2;, we want to compute an approximation
2 X | iyforz. Let p be the relative error in this approximation, so

2ol p

We want this relative error to be small, and it would be nice if the relative
errors ¢, and &, in the approximations ¥ = x and y > y were also small.
Unfortunately, we cannot always guarantee that the | g, | will be small, unless
we usc higher-precision arithmetic. But even if we use only single-precision
arithmetic, we can produce a small bound for | p|.

Forthesum:z, | z,,weset¥ x, cPx,and § -y, (D y,. The results of
Section 3.3show thatX - (I |- e)xand y - (1 |- a,)y, where|a, |- rt#-"
for k - 1, 2. Then, as we saw in Section 13.2, | p] < r "', Subtraction is
handled similarly. Since these computations are so simple, many of the
compilers that handle the COMPLEX data type compile in-line code instead
of calls to subroutines for the addition and subtraction of complex numbers.

Before discussing complex multiplication, we shall prove two theorems
which will be used to obtain bounds for the relative error.

Tiorem 13.3.1

Let a. b, ¢, and d be positive numbers in S(r, p), let 0 - ab |- ¢d, and lct
& (ax* b)) (¢ * d), where the floating-point arithmetic is performed in the
system FP(r, p, ¢/1). Suppose that ab > cd, and let e and f be the integers
for which r#° ' - ab - r- and r/-' < it < rf, Then |t — u|-<2r/-? and
[(& - w)u] << 2r 'V, Moreover, if £ > e, then |[& — u| << (1 |- r)f-2,

1The same situation ariscs in matrix problems when we study the error in a vector. We
usually consider a norm of the crror instead of the relative error in the components of the

vector.
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Proaf. Since a + b and ¢ * d are positive and ¢d -~ ab, it follows that
Then we may write
(@a*b) V- cd-:it | €,

where0 -7 ¢, <2 r/ ». Wealsohaveab --axbh |- €,,whereQ- €, - r* * s0
u -u- € |-€and

(13.3.1) & ul<rl®yre
Since f ™ e, this yiclds it — u| <2 2/ # and

278 20
Tl 7t

i u
u

< - 2r 7,

Iff>-e.thenf ¢t 1,s0(13.3.1) reads
it —u| < (1 | r ")y r

Tieorem 13.3.2

Let a, b, ¢, and d be positive numbers in S(r, p), let » <= ab - ¢d, and let
v - (a * b) O (c * d), where the floating-point arithmetic is performed in the
system FP(r, p, cll). Suppose that ab ;- ¢d, and let e be the integer for which
re Y <7 ab <2 r. Then

Lo -w]<<@—=rt)re.
2. Ifed ™ r* ' then o — v| <2 rF 2.

3.Ifv20and (v —v)fv| - 2r » V', then
a Jre t <ed
b. |- w|-lr 2.

Proof. W ab  «¢d, then a+b - c+d so & v 0 and the theorem
holds. Therefore, we may assume that ab - ¢d. Let

ab = (a» b) |- 8,
cd  (c*xd) |- 8,
and
(ash) —(ced) = [(a*b) O (ced)] |- d,,
E{0]

v '6 '6| “'63 I"S):

Let / be the integer for which /' - " ¢d < ¢/. Then 0-7 4, -~ r* ® and

)
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078, -2 r 7. Since the subtraction of ¢ *d from a= b is performed in
FP(r, p, cl1), we have

L AL Nl (IR D TR L
Then
50l 16, ~ 8 | &,/ <@ -r) >,

so assertion 1 holds. The second assertion follows from the fact that §, 0
whenever e = f.
To prove the third assertion, we assume that v % 0 and that

-0
v

(13.3.2)

>2p 00D,

If ¢ - f, then both assertions a and b are true, regardless of whether or not
(13.3.2) holds. Therefore, we may assume that ¢ - /. Then

PR N (U AT |
SO
—8, 1 8, > —re,

We first show that v < re 1, If 9 > r-!, we have

v

e p1! -
< (2 r e
) e -1

< 2p7fo 0

so (13.3.2) implies that v -~ ' If 5 ~-r¢! . », then | - v|-<r* # ' and

v>-rtt — el 50

F
v

re -p-1

-

-
Syt oLLptp

L <2,

Therefore, (13.3.2) implies that < r*~'. Then there is a postshift of at least
one place in the floating-point subtraction of ¢ * d, from a * b and since the
arithmetic is performed in the system FP(r, p, c/l), this implies that d, -7 0.
Then

<G — 8yl 8, <,

so assertion b holds. If v > §r-%, this yiclds

< Il = 2ren,
rr‘!

v
v

Therefore, (13.3.2) implies that v <Z }r~'. But

v-o=ab—cd>r " — cd,
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socd > re-' — v > §r), Thus, assertion a holds, which completes the proo!
of the theorem, :

We shall now consider the product z of the complex numbers z, and z,.
The real and imaginary parts of z are given by

X=X X; = W)2

Yy =Xy X200

(13.3.3)

and we shall use the approximations

X=X *x)O(p, *y))

(13.3.4)
F=0x, #y)D(x,+ 1)
for x and y.

It is easy to see that if the calculation of ¥ involves the add magnitude case,
then the calculation of 7 involves the subtract magnitude case, and vice
versa. If, say, the calculation of X involves the add magnitude case, then the
approximation ¥ = x will have a small relative error. But when the calcula-
tion of X involves the subtract magnitude case, we cannot guarantee that the
approximation X = x will have a small relative error unless we usc higher-
precision arithmetic. However, even though the relative error in one of the
components may be large, the following theorem provides a small bound for
| p| when the arithmetic is performed in FP(r, p, cl}).

THEOREM 13.3.3

Let z, and z, be complex numbers of the form z, :- x, |- iy,, where the
x, and y, are in S(r,p); let z - z,z;;and let 2 - X |- iy, where X and y are
given by (13.3.4). Assume that the calculations in (13.3.4) are performed in the
system FP(r, p, cll). Then Z = (1 |- p)z, where | p| <2 2r 2.

Proof. Since
(iz))z, = (=¥, | ix))zy == i(2,2,) == -y |- ix,

the calculation of (iz,)z, requires us to perform the same arithmetic operations
that we perform in the calculation of z,z,, except that the signs of the terms in
y and y are changed. Therefore, the calculation of (iz,)z, produces the same
relative error that the calculation of z,z, does, so we may restrict our attention
to the case in which | x,| > |y, |. Similarly, if we replace z, by ~z,, we merely
change the signs of all the terms in (13.3.3) and (13.3.4), so it suflices to con-
sider the case in which x > 0. If y, = 0, (13.3.3) reduces to x : x,x, and
»y = x,¥,. Then the relative errors in the approximations x, * x, = x and
x, * y; = y have absolute values less than r ¢ "', so|p| < r *# . Thercfore,

)

)
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we may assume that y, # 0. A similar argument applies to z,, so we may
assume that x, ~ - | y| >- O holds for k = I, 2. Also, we shall assume that the
notation is chosen so that [ x;, | 3= | x, y.|. Finally, if we replace z, and z, by
their conjugates x, — iy, and x, — iy;, we merely change the _signs of the
terms in y and 3. Therefore, we may assume that y, > 0. Thus, it suffices to
consider the case in which

(13.3.5) x,=n>0
(13.3.6) x|yl >0
and

(13.3.7) Xy = x )l

Let e, £, g, and / be in the integers for which

ret < xxy <<r

rrt<lx<rf
(13.3.8) <y <t
ety <t
Clearly g <  e. If X - (1 |- a))x and 7 (1 |- a,)y, wl:nere loy] < 2r 20
for k - 1, 2, the theorem follows from the results of Section 13.2. Thercfore,
we need consider only the case in which one of the [a, | is at least 2_r"”'“.

First, suppose that y, is negative. Then we have the add magmu.xde case

in the calculation of ¥ and the subiract magnitude case in the calculation of .
By Theorem 13.3.1, & = (I | a,)x, where |o,| < 2r "1 Therefore._we
need consider only the case in which |[(y - YWyl 2r 2P, Now Jj ==
(¥ * 1) O (x, * 1y, ), so, by Theorem 13.3.2,

|5yl < oo

(l339) lrl-l < le ‘)'2' < rs,

First, suppose that f >~ ¢. Then|z]| = |x| > #f"", and, by Theorem 13.3.1,

(¥ — x|l -t rt)yloe,

SO

ol < WL D2 VIl premy(1 gy 1)
But
(13.3.10) (v ety 1ir| T12r 71 2ri<,

so|p| << 2rtet,



)
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Thus, we may assume that f = e. Then we have

o |2re

14 |.'|ir'_’—' < 2y w-n LAt
. <

|xfre=t]
so it suffices to show that

14 drtemni] <

x '

ret
or
(13.3.11) L e < (G5)

From (13.3.8) and (13.3.9), we obtain

X x> i,.z.-z’

S0
1,.2:-2.
9yl > X
Then
r2'—2
X = xy Xy b poyal > X, | ix.xz .
Let
2¢-2
Fay -1 12772
Fort > r~', we have
28-2
Fy=1-¥ — > 1 — 420 50,

]
so the minimum of F(¢) on the interval re-! << ¢t < ris

i,-u-z

Fret) = et 7

Then x >+ F(r¢~'), so

— rc-l[' + ir-zlr-nl.

2
() >0 0en

and (13.3.11) holds. Thus, | p| < 27 t#-1 ify, <0,

_ Now supposc that y, is pasitive, so we have the subtract magnitude case
in the calculation of ¥ and the add magnitude case in the calculation of 7. As
above, we need consider only the case in which || > 2r~*~", so by
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Theorem 13.3.2,

(13.3.12) et <y, <
| X — x| << ree.
Then
(13.3.13) et <y y, < x K xyy, xyx, <1
50

Yl Yy <2
Thus, hiseithereore-|- 1. Ifh-:¢ - |, we have

15 = 71 < (1 4 roiyros
by Theorem 13.3.1, so

e B A A
r!

|p|< = o0t il Y

Using (13.3.10), this yields | p| <z 2r='#-V, Therefore, we may assume that
h=:e. If xpp, = re?, then (13.3.13) implies that y - §r¢-!, so, using
(13.3.12), we have

'pl - Ir"p |"-2lr'"l'| —_ i,—(p-l)“ q 2,' < 2r o1,

Therefore, we may assume that

r'> X2y =T Xy )2 i".k

But then /r == g |- |, so, by Theorem 13.3.1, |5~ y| <2 (I |- r ") #, and
this yiclds

1P| < |re® - l'(:‘ |I r e =@ 0Ll <2 e,
Thus, | p| -2 2r **-"" also holds for y, > 0, which completes the proof of the
theorem.

We may have some problems with everflow and underflow in the calcula-
tions in (13.3.4). We can encounter expanent spill in the intermediate results,
sven though the numbers we are trying to compute are within range. For
example, |x, # X2 cun he greater than § even though | x| is less than Q.
Similarly, x, * x, and y, * y, can underflow even though x .- @. Now if one
of the injermediate resulls. suy X, * X, averflows, we have

R R N ER B B B
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so |z} > Q. We might be willing to accept the Q-zero fixup in this case,
although it is not completely satisfactory. (See Exercise 6.) But underflows
may be more annoying. Suppose that y, * y, underflows and that we use the
Q-zero fixup. If | x, * x,| < r* 'w, replacing y, * y, by zero can produce an
abnormally large relative error in x. If ] y| is also small, this can produce an
abnormally large value for [p].

There are two ways we can avoid this problem. One is to use gradual
underflow, described in Section 2.8. Another approach is to scale z, and z,
before performing the calculations in (13.3.4) and then adjust the final answer.
If we use scale factors which are powers of the radix, scaling will not introduce
any error. The scale factors can be chosen in various ways. (Sce Exercise 7.)
For example, we might scale z, and z, so that the exponent of the larger
component of each z, is zero. Then we shall never encounter overflow in the
calculations in (13.3.6), and numbers which underflow can be replaced by
zero with negligible effect on | p|. Therefore, we can use the Q-zero fixup for
underflow.t If z, and z, were multiplied by the scale factors s, and s,, we
complete the operation by dividing X and J by s,s,. If 5,5, is a power of the
radix, we can do this by adjusting the exponents of ¥ and 7, and we can
provide whatever treatment we want when the resulting exponents are out of
range.

Finally, consider division. Assume that z, £ 0, and let z - z,/z,. Then

Ly )iy Kx, - iy,),
(13.3.14) z - Ll

so the real and imaginary parts of z are

XX, L,
o 2z ¥
xz -l y:
(13.3.15)
X Py XY
y =Ty 5
X3l yz

The natural approximation to use is £ = ¥ |- iy, where ¥ and y are computed
by replacing the arithmetic operations in (13.3.15) by thc corresponding
floating-point operations. That is, we set

(13.3.16) D - (xys )y y)
and compute ¥ and y from

X, s x;) Dy, * 3] b

(13.3.47) i V
P+ ) (x, # )] = D.

tSince these underflows have negligible effect on | p|, we might want to avoid printing
underflow messages for them.

)
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Now z -~ w/D, where
wo= (g iy )(x, —iy,)
and
D - xj 1yl

Letw - &t |- iD, where

-

i (x, % x)(D(y, *y,;)
(X * P ) O (X, * )

<t

Then ¥ & - Dand 5 & : D. By Theorems 13.3.3 and 13.3.1, we may
write @ - (1 |- g)w and D -: (1 |- v)D, where || and |t]| are less than
2r-t2-1 Also,

=t

D= (1 - 8)

o =

<t

=D o-( - a,)lb.

where the 8, are real and 0 <8, < r~*-". Then Z = (I -} 8)w/D, with
|6 << r ", Thus
P L oxl -I-a)z_

I+t
We may write 2 - (1 |- p)z, where
(L1 8XI I a)
bipe i
which yields
(13.3.18) p Slo~-1tldo

[

Then p = o |- 6— t. which shows that the calculations in (13.3.16) and
(13.3.17) yield a small relative error p. Using (13.3.18), we can obtain a bound
for | p| on the order of 5r-'* U, but this is not a very good bound. If we
exclude trivial combinations of r and p, it can be shown that | p| < 3r-#-0,

Overflow and underflow present a much more serious problem in complex
division than they do in complex multiplication. If one of the products in
(13.3.4) overflows, | z, z, | must be greater than £. But the intermediate results
in (13.3.16) and (13.3.17) can overflow even when | z,/z, | is on the order of 1.
For example, if |z,| =~ |z,| > ~/Q, we have |z,/z,|~ 1, but D> Q.
Similarly, we can have|z,/z,| = | and D < w. Thus, we can have exponent
spillin (13.3.16) and (13.3.17) even though| z, |, | z, |, and | z,/z, ] all differ from

)
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o and Q by many orders of magnitude. Unfortunately, if we use the Q-zero
fixup for exponent spill in (13.3.16) and (13.3.17), we can produce some very
misleading results. (See Exercise 9.) Therefore, most programs for complex
division try to avoid exponent spill, either by rearranging the calculations in
(13.3.16) and (13.3.17) or by scaling z, and z,.

One approach, suggested by Smith (1962), is to divide the factors
(x, — iy,) and (x} -+ y3) in (13.3.14) by either x, or y,, whichever has the
larger absolute value. That is, if | x,| > |y, |, we use
(13.3.19) 0=y,=x
b=x,®0.+Q)
F=ln®0 0N D
7= O (x, Q)] = ﬁ.

and if | x,| <|y,|. we use

(13.3.20) 0= X, =¥,
b= (x, Q)@)’z
F=lx,+ @Dyl + D

F=10r*®Ox]: D

This approach avoids many of the most disastrous cases of exponent spill,
but we can still encounter some problems if one of the | z, | is on the order of w.

Another approach is to scale z, and z,. We could select a scale factor S
and compute z\/2;, where z; = z,/S for k = 1, 2. For example, we might
use S = max(]x,|, |y, |). Then

(133.21) 1<)l < /T

SO

(13.3.22) Al<yz1< lill ey
Z; Z;

Consequently, we shall not encounter overflow unless |z,/z, | is either out of
range or almost out of range. Also, underflows are not a problem unless
|z,{z,] is quite small, so we have eliminated the most disastrous cases of
exponent spill. However, we will still have the same sort of problems with
overflow.and underflow that we had in the multiplication of complex num-
bers. Instead of using the scale factor max(| x, |, | ¥, ), we might prefer to make
S a power of the radix, so that the scaling will not introduce any rounding
errors. Suppose that we choose the scale factor S to be r%, where e is the
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exponent of max(| x, ). |y, ]). Then in place of (13.3.21) and (13.3.22), we have

ri<lal<y/Z
and
Z .f'li\!z"l< 4 o,/z’
2, 2,

so the scale factor r* is almost as effective in eliminating exponent spills as
max(|x, |, |y, )-

Probably the best approach is to scale z, and z, independently. For
k = 1,2, let e, be the exponent of max(|x, |, |y, ), and let 2, == z,/r*. We can
divide z, by Z, and then add e, — e, to the exponents of the real and
imaginary parts of the quotient. Now r~! <{|zi| << /2, and

2z,
EA

"r< <rJ/7Z.

r

Therefore, we shall not encounter overflow in the division of 2| by 23, and
numbers which underflow are so small with respect to | z,/2} | that replacing
them by zero has a negligible effect on the complex relative error p -
(Z — z)/z. We can provide any treatment we desire for the cases in which the
addition of e, — e, to the exponents of ¥ and y produces numbers that are
out of range.

EXERCISES

1. For k == 1,2, let 2 - % - iy, be an approximation for z, =: x4 | Vs,
and suppose that ®, == (1 |- @ )xx, J% = (1 4 T, and 2, = (1 | ps)as.
Let 2,2, = % - ipand 22, = x -+ iy,and write % = (I | @)x, ¥ -~ (U7
and £,2, = (1 -|' p)z,2,. Here 0, T, and the 0, and 7, are real, but p, g, and
p2 may be complex.

a. Find an example which shows that even if the |g, | and |7, | are small, we
cannot guarantec that both | @ | and | 7| will be small.
b. Find a bound for | p| in terms of | p, | and | oz ).

2. Let Z= A¢® be an approximation for z - Ae®, where 06 <2m. If
A- (11 0)4, - (1479, and Z: (1 -t p)z, find a bound for |p| in
terms of || and |T|.

3. Suppose that z, - A.e®, where A, and 0, arg in S(r,p) for & 1, 2. Let
A Ayv4; and § 0,0 0,, where the arithmetic is performed in
FP(r, p, ), and consider the approximation 2 - Ae# for = 2,5, Write
# xd4dp and = x iy, and Jet & (1) @y, j (V| 7, and
£ (1 -1 p)z. What can you say about |a, | 7). and |p|?

_—_._-—-—-)_
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Find an example which shows that the relative error p in Theorem 13.3.3 can
be close to 2.

Fork ~ 1,2,let z, -~ x, I iy, where x, and y, arein S(r, p) and x, |y, ).
Let z - z,2,, and write z == x -} iy.

a. If x < x,x,, what is the smallest | z| can be?

b. Find an example in which x,x, > Q but | x| and | | are both less than Q.

For k =: 1,2, let z, = x;  iy., where the x, and y, are in S(r, p) and

Xe 2> | ye| Let 2,2, = x -} iy, and let 2 = £ |- i7 be the approximation for

Z,z; computed by using (13.3.4). Suppose that we perform the floating-point

arithmetic in FP(r, p, c/1) and use the -zero fixup for overflow and underflow.

a. If x,x; > Q, what is the smallest | | can be?

b. Find an example in which x and y are greater than Qbut ¥ - 0and j - Q.

¢. Suppose that x and y are greater than Q but # —= 0and 5 - Q. How large
can x/y be?

d. Find an example in which x > y but 0 < % < .

e. If x> ybut0 < X < 5, how large can y/% be?

f. If % and j are zero, how large can | z,z;| be?

For k - 1,2, let 2, -: x, | iy, where the x, and y, are in S(r, p). Let
zyz; = x | iyandlet Z = % -|- iy be the approximation for z,z, computed by
using (13.3.4). Assume that we perform the floating-point arithmetic in

FP(r, p, cl1) and use the Q-zero fixup for overflow and underflow. Suppose

that we scale the z, by forming z; = 2,/S,, and let 2z}, : x{ |- iy}.

a. Let S -: re, where e, is the exponent of max(]x, |, | 3 |), and suppose that
both | x| y;| and [ x} 5 | are less than w. Then -~ 0. How large can | y| be?
How large can | y/x| be?

b. Assume that we want the scale factors S, to be powers of the radix, so
Sy -~ re. Is there a better choice for the e, than the exponent of
max(j x|, |y« )?

Let z, and z, be complex numbers of the form x, | y,, where the x, and y,
are in S(r, p). Let z = z,/z,, and let # = % | iy be the approximation for z
produced by the calculations in (13.3.16) and (13.3.17). Find an cxample in
which 2 - (1 {- p)z, where| p|is close to 3.

Let z, and z, be complex numbers of the form x, | iy,, where the x, and y,
are in S(r, p). Let z = z,/z,, and let 2 = % -|- iy be the approximation for z
produced by the calculations in (13.3.16) and (13.3.17). Suppose that we do
not scale the z, and that we use the Q-zero fixup for overflow and underflow.
a. What is the range of | z,/z,|if D == 0 but D # 0?

b. Suppose that | x| and | y| are greater than 2. How small can | Z| be?

C. Suppose that |x,, x; |, |y vz ) | X vzl [ X220 | %3], and | p}| are all greater

than Q. What numbers will be produced for % and j?

Let z, and z, be complex numbers of the form x; -1 iy.. where the x, and y,
are in S(r, p} and [x,| > |px). Let z == z,/z,, and let 2 - % |- ip be the
approximation for z produced by the calculations in (13.3.19). Assume that
we use the -zero fixup for exponent spill.

)
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a. Suppose that D > € and that ncither % nor j is zero. Find a lower bound
for|z,/z;].

b. Suppose that |y}/x:| < @, so y, « § will be replaced by zero in the cal-
culation of . What is the maximum relative error this can introduce in D7

c. Find an example in which underflows in the calculation of X and y produce
a bad relative error even though |z,/z,| is on the order of 1, D does not
underflow, and neither % nor y is zero.

Let z, and z, be complex numbers of the form x, | iy, where the x, and y,
arc in S(r, p) and | x, | > | ¥« |. Let e be the exponent of x,. To avoid the most
disastrous cases of exponent spill in the calculation of z,/z,, we compute
24/2%, where zi - zi/re.

a. Find an example in which the calculation of z{ overflows, even though the
calculation of z,/z; would not overflow. How small can |z,/z,| be if this
happens?

b. Suppose that we are using the Q-zero fixup for exponent spill and that we
encounter underflow, either in the calculation of z} or in the division of z}
by z5. How large can the relative error be if the final answer is not zero?

Let z, and z, be complex numbers of the form x, |- iy,, where the x, and y,
are in S(r, p). Let e; be the exponent of max(|xx |, | ¥ ). To avoid exponent
spill in the division of z, by z,, we scale z, and z, individually by forming
z, - zx/re. Then we adjust the exponents of the answer accordingly.

a. Show that any numbers which underflow may be replaced by zero with
negligible effect on the relative error p in the answer.

b. Let z,/z; - x |- iy, and suppose that we produce the answer ¥ |- ij. If we
use the Q-zero fixup for exponent spill, underflows may cause us to
produce 7 - 0, even though y ;2 0. Find a better choice for the ¢, that
would help avoid this situation.
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GLOSSARY OF SYMBOLS

Symbol Definition Page
@® Floating-point addition 10
(S Floating-point subtraction 10
. Floating-point multiplication 10
+ Floating-point division 10
r Radix (number base) in which the floating-point numbers 9
are written
S(r,p) Set of floating-point numbers having p digits of precision 10
in the radix r
FP(r, p, a) Floating-point number system using p-digit numbers in 9
the radix r; the symbol substituted for a designates the
type of arithmetic used
FP(r, p, ©) Floating-point number system using p-digit numbers in 12
the radix r; the symbol ¢ specifies that the system uses
chopped arithmetic
FP(r, p, R) Floating-point number system using p-digit numbers in 12
the radix r; the symbol R specifies that the system uses
rounded arithmetic
FP(r, p, clg) Floating-point number system using p-digit numbers in 22
the radix r; the symbol c/g specifies that the system uses
chopped arithmetic with a low-order register that is g
digits long
x Number produced by chopping x to p digits in the radix r 13
X Number produced by rounding x to p digits in the radix r 13
XL Largest number in S(r, p) which is < x 197
XR Smallest number in S(r, p) which is > x 197
B(x) Number obtained from x by performing the bias removal 195
operation -
B(x) Number obtained from x by performing the modified bias 196

removal operation
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Symboli Definition Page
D, H, 0, B used These subscripts specify the radix in which the number is 9
as subscripts wrilten; D stands for decimal, M for hexadecimal, O
in numbers for octal, and B for binary
A B, C, D EF When a number is written in hexadecimal, the symbols 10
used as digits A, B, C, D, E, F represent the hexadecimal digits ten
in numbers through fifteen, respectively.
e* Maximum exponent that can be used in the machine 19
representation of floating-point numbers
fe Minimum exponent that can be used in the machine 39
representation of floating-point numbers
y Number which must be added to the exponent of a I
floating-point number to produce its characteristic
[¢] Largest positive floating-point number whose exponent 40
is<e*
w Smallest positive floating-point number whose exponent 40

is => e,.

INDEX

A

Add magnitude case, 26, 78, 79-80,
248, 291, 292
Antichopping, 198
Ashenhurst, R, L., 202, 203
ASSEMB function, 266, 267-268
Associative Jaw:
addition, 14, 16-17, 80, 82-83
multiplication, 14, 17-19, 80, 83-84
AUGMENT function, 198, 266
Automatic precision increase, 163
Average program, 240-246
Azen, S., 117

B

Backward error analysis, 105-107, 111,
249

Base, see Radix

Binary arithmetic, 271

Binary machine, 9, 271, 273

Binary representation of numbers, 9,
273

Bias removal, 130, 194-197

Biased exponent, 6

C

Cancellation law, 15, 19-20, 22, 29,
81, 86-87

CDC 6600, 12, 30-40, 41, 62, 66-67,
154, 167, 191, 192, 275, 281

Ceiling, 198

Characteristic, 6, 11, 39, 44, 57,
60-61, 143-146, 164, 165, 185,
272, 273-274

Checking, 255-259

Chop left rule, 198

Chop right rule, 198

Chopping, 10, 12, 13, 73-74, 114, 126,
134, 189-190, 191, 226-227, 277-
278, 280

Clean double-precision arithmetic, 166

Closure, 14

Coarse double-precision arithmetic,
166, 167

Cody, W. J., 108, 183

Coefficient, 6, 12

COMMON, 159, 268

Commutative laws, 14, 16

COMPARE instruction, 68

Complements, 11, 145, 274-275

Complex absolute value function, 69,
285
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Complex arithmcetic, 285, 287-297
addition, 287
division, 294-297
multiplication, 290-294
subtraction, 287
Complex data type, 179, 247, 285,
287
Complex numbers, 246-247, 253, 285
relative error in approximating, 286-
287
Condition, 98-103, 107, 109, 111-112,
184, 249, 261
Conservation laws, 256
Constants, 155-157, 179-180, 182,
207, 265, 268
Controllability, 263, 264-265
Conversion, 157-158, 179-180, 227-
238, 253, 265, 272
Cosine, 107-108, 136, 241
Counting mode, 57-59, 62, 63, 66

D

D exponent, 155, 157-158
D format, 155
DBLE function, 161
DDD arithmetic, 164, 167
addition, 170-171
division, 174-178
multiplication, 165-167
subtraction, 170-171
Decimal arithmetic, 6-9, 271, 272
Decimal floating-point numbers, see
Floating-decimal numbers
Decimal machine, 9, 271-273
DECREMENT function, 198, 266
DEFAULT statement, 163
Derr, J., 117
Digit:
hexadecimal, 10
sticky, 278
Dismantling floating-point numbers,
143-146
Distributive law, 14, 20, 81, 85-86
Division by zero, 66-67
Divisors of zero, 15

— F

Double-precision arithmetic, 163-178
addition, 168-171
division, 171-178
in FORTRAN programs, 124, 145,
155-161, 162-163, 178-180, 193
on IBM 7090, 22-23, 48, 154
on IBM System /360, 23, 48, 154
multiplication, 165-168
need for, 108, 131-132, 180-185,
249
in PL/1 programs, 161-162
subtraction, 168-171
Double-precision data type, 124, 156
Double-precision numbers, 154, 164-
165
on I1BM 7090, 22-23
on IBM System/360, 23, 48
DSD division, 172-174

E

E exponent, 155
E format, 155, 228-229
EQUIVALENCE statement, 144, 159
Equivalent number of digits, 224-228,
272
Error analysis:
of arithmetic in FP (1, p, clq),
75-80
automatic, 201-202
of Average program, 245-246
backward, 105-107, 111, 249
forward, 105
using higher-precision arithmetic,
213-220
using interval arithmetic, 207-213
using noisy mode, 205-207
of programs, 103-105, 127-128, 133-
134, 245-246
of propagated error, 75-77, 79-80,
87-92
of quadrature program, 127-128
using significance arithmetic, 202-
205
statistical, 113-117
of sum of power series, 133-134
of X«2N, 92-98

Error messages, 46-48, 62-64, 255
Exact sums, 137-143
Exponent:
of a floating-point number, 6, 10-11,
39, 59, 144, 250-252, 279, 294,
297
overflow, see Overflow
spill, sce Spill
underflow, see Underflow
Exponential function, 101, 135
Exponentiation, 65, 67, 92-98
Lxtended error handling facility, 46
Extended-precision arithmetic on IBM
System/360, 48, 49, 62-63, 108

FIXED TO FLOAT conversion, 206-
207, 273, 281
Fixed-point arithmetic, 273-274
Fixed-point calculation, 1-4
Fixed-point numbers, 1-3, 144-145,
273
Fixup:
- Zero, 41-43
-, 44
-Zero, 41-44, 47, 57, 62, 63, 67
(for division), 66-67
standard, 42
Flag bits, 12, 275
FLOAT TO FIXED conversion, 191,
273, 281
Floating decimal arithmetic, 6-9, 271-
272
Floating decimal numbers, 4-6, 225,
228, 272-273
Floating-point arithmetic:
addition, 10-11, 25-29, 60-61
on CDC 6600, 41, 62, 66-67, 154,
167, 191, 192, 275, 281
division, 10-11, 12, 28-29, 33-35
double-precision, see Double-precision
arithmetic
on 1BM 7090, 22, 23, 45, 154,379,
28()

).___
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on IBM System/360, 12, 22-23, 44,
61-62, 66, 154, 167, 171, 271,
279, 280

multiplication, 10-11, 12, 24-25,
28-29

overflow in, see Overflow

subtraction, 10-11, 12, 25-29, 60-61

underflow in, see Underflow

Floating-point number systems, see
FP(r, p, a), FP (r, p, ¢),
FP (r, p, clq), FP(r, p, R)
Floating-point numbers, 10-11, 224-
228, 273-277

on CDC 6600, 12, 39-40, 41, 67,
154, 167, 275

on IBM 7090, 23, 39, 154

on IBM System/360, 23, 39-40, 145,
154, 167

Floor, 198

FORMAC, 202

FORTRAN, 12, 18, 46, 48-49, 52-55,
62, 65-66, 67, 68-69, 92, 144-145,
153, 155-161, 162-163, 178-181,
192, 193-194, 265, 266, 267-268

Forward error analysis, 105

FP(r, p, a), 9-11

FP(r, p, c), 12-14, 75, 80-87, 242-246,
277-278

FP(r, p, clq), 22-29, 78-79, 80-87,
137-143

FP(r, p. R), 12-14, 35,75, 1 1 7-1 18,
191, 277-278

Fraction, 6

Fractional part, 6

G
Goldberg, 1. B., 227, 270
sradual underflow, 57, 59-61, 62
Gray, L. H., 204
Guard digit, 23, 25, 28
H

Hamming, R, W., 116, 276
Hatding, L, J, Jr., 277-278
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Hartree, D. R., 114, 115

Henrici, P., 304

Hexadecimal machine, 9, 272

Hexadecimal representation of num-
bers, 9, 10, 116-117, 158, 225,
233,272

Higher-precision arithmetic, 185-186,
213-219

Hull, T.E,, 115

IBM 1620, 154

IBM 704, 22, 39, 45, 233

I1BM 709, 22, 39, 45

IBM 7090, 22, 33, 35, 39, 45, 48, 61,
154, 167,279

IBM 7094, 22-23, 39, 45

I1BM 7030, 12, 39, 168, 202, 205-206,
275

IBM System/360, 22, 23, 39, 44, 61,
66, 145,154, 167, 171, 271, 279,
280

1EXP function, 266, 267-268
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Testing programs, 182, 255, 259-261
Tests for spill, 48-49
Trapping, 45 (see also, Interrupt)
Transformation:

conversion, 228-232

into, 228-229

monotone, 229

neighbor, 230

one to one, 229-232

onto, 229-232

rounding, 230, 232

strictly monotone, 229

truncation, 230, 232

well defined, 229
Truncation, 12 (see also, Chopping)
Truncation conversion transformation,

230, 232
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UNSPEC, 145-146, 267

v

Variable word length machines, 154-
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