
DECIMAL_ TO _FLOATING (3) C LIBRARY FUNCTIONS DECIMAL_ TO _FLOATING (3)

NAME
decimal_ to_ single, decimal_ to_ double, decimal_ to_ extended - convert decimal record to floating-point
value

SYNOPSIS
#include <floatingpoint.h>

void decimal_to_single(px, pm, pd, ps)
single •px;
decimal_mode •pm;
decimal_record •pd;
fp _exception_ field_ type • ps;

void decimal_to_double(px, pm, pd, ps)
double •px;
decimal_mode •pm;
decimal_record •pd;
fp _exception_ field_ type •ps;

void decimal_to_extended(px, pm, pd, ps)
extended •px ;
decimal_mode •pm;
decimal_record •pd;
fp _exception_ field_ type •ps;

DESCRIPTION
The decimal_to_ftoating() functions convert the decimal record at •pd into a floating-point value at •px,
observing the modes specified in • pm and setting exceptions in • ps. If there are no IEEE exceptions, • ps
will be zero.

pd->sign and pd->fpclass are always taken into account. pd->exponent and pd->ds are used when pd­
>/pclass is fp _normal or fp _subnormal. In these cases pd->ds must contain one or more ascii digits fol­
lowed by a NULL. •px is set to a correctly rounded approximation to

(pd->sign)•(pd->ds)•lO••(pd->exponent)

Thus if pd->exponent. == -2 and pd->ds == "1234", •px will get 12.34 rounded to storage precision. pd­
>ds cannot have more than DECIMAL_STRING_LENGTH-1 significant digits because one character is
used to terminate the string with a NULL. If pd->mtJre I= 0 on input then additional nonzero digits follow
those in pd->ds; fp _inexact is set accordingly on output in •ps.

•px is correctly rounded according to the IEEE rounding modes in pm->rd. •ps is set to contain
fp _inexact, fp _underflow, or fp _ overflow if any of these arise.

pd->ndigits,pm->df, andpm->ndigits are not used.

strtod(3), scanf(3), fscanf(3), and sscanf(3) all use decimal_to_double.

SEE ALSO
scanf(3S), scanf(3V), strtod(3)

Sun Microsystems Last change: 23 October 1987 1

ECONVERT (3) C LIBRARY FUNCTIONS ECONVERT (3)

NAME
econvert, fconven, gconvert, seconvert, sfconven, sgconven, ecvt, fcvt, gcvt - output conversion

SYNOPSIS
#include <floatingpoint.h>

char •econvert(value, ndigit, decpt, sign, buO
double value;
int ndigit, •decpt, •sign;
char •buf;

char •fconvert(value, ndigit, decpt, sign, buf)
double value;
int ndigit, •decpt, •sign;
char •buf;

char •gconvert(value, ndigit, trailing, buf)
double value;
int ndigit;
int trailing;
char •buf;

char •seconvert(value, ndigit, decpt, sign, buf)
single •value;
int ndigit, •decpt, •sign;
char •buf;

char •sfconvert(value, ndigit, decpt, sign, but)
single •value;
int ndigit, •decpt, •sign;
char •buf;

char •sgconvert(value, ndigit, trailing, but')
single •value;
int ndigit;
int trailing;
char •buf;

char •ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, •decpt, •sign;

char •fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, •decpt, •sign;

char •gcvt(value, ndigit, but)
double value;
int ndigit;
char •buf;

DESCRIPTION
econvert() converts the value to a NULL-terminated string of ndigit ASCII digits in bu/ and returns a
pointer to buf. bu/should contain at least ndigit+l characters. The position of the decimal point relative to
the beginning of the string is stored indirectly through decpt. Thus buf == "314" and •decpt == 1
corresponds to the numerical value 3.14, while bu/== "314" and •decpt == -1 corresponds to the numeri­
cal value .0314. If the sign of the result is negative, the word pointed to by sign is nonzero; otherwise it is
zero. The least significant digit is rounded.

Sun Microsystems Last chang~: 21 January 1988 1

ECONVERT (3) C LIBRARY FUNCTIONS ECONVERT (3)

fconvert is identical to econvert, except that the correct digit has been rounded for Fortran F-fonnat output
with ndigit digits to the right of the decimal point. ndigit can be negative to indicate rounding to the left of
the decimal point. The return value is a pointer to buf. bu/should contain at least 310+ma:x.(0.ndigit) char­
acters to accomodate any double-precision value.

gconvert() converts the value to a NULL-terminated ASCII string in buf and returns a pointer to buf. It pro­
duces ndigit significant digits in fixed-decimal format, like Fortran F, if possible, and otherwise in floating­
decimal format, like Fortran E; in either case buf is ready for printing, with sign and exponent. The result
corresponds to that obtained by

(void) sprintf(buf,"%gw.n",value);
If trailing= 0, trailing zeros and a trailing point are suppressed. If trailing!= 0, trailing zeros and a ttailing
point are retained.

seconvert, sf convert, and sgconvert() are single-precision versions of these functions, and are more
efficient than the corresponding double-precision versions. A pointer rather than the value itself is passed
to avoid C's usual conversion of single-precision arguments to double.

ecvt() and fcvt() are obsolete versions of econvert() and rconvert() that create a string in a static data
area, overwritten by each call, and return values that point to that static data. These functions are therefore
not reentrant.

gcvt() is an obsolete version of gconvert() that always suppresses trailing zeros and point.

IEEE Infinities and NaNs are treated similarly by these functions. "NaN" is returned for NaN, and "Inr'
or "Infinity" for Infinity. The longer form is produced when ndigit >= 8.

SEE ALSO
printf(3S)

Sun Microsystems Last change: 21 January 1988 2

FLOATING_TO_DECI1\1AL(3) C LIBRARY FUNCTIONS FLOATING_TO_DECI1\1AL(3)

NAME
single_to_decimal, double_to_decimal, extended_to_decimal - convert floating-point value to decimal
record

SYNOPSIS
#include <ftoatingpoint.h>

void single_to_decimal(px, pm, pd, ps)
single •px;
decimal_mode •pm;
decimal_record •pd;
fp_exception_field_type •ps;

void double_ to_ decimal(px, pm, pd, ps)
double •px;
decimal_mode •pm;
decimal_record •pd;
fp_exception_field_type •ps;

void extended_to_decimal(px, pm, pd, ps)
extended •px;
decimal_mode •pm;
decimal_ record •pd;
fp _exception_ field_ type •ps;

DESCRIPTION
The ftoating_to_decimal() functions convert the floating-point value at •px into a decimal record at •pd,
observing the modes specified in •pm and setting exceptions in •ps. If there are no IEEE exceptions, •ps
will be zero.

If •px is zero, infinity, or NaN, then only pd->sign and pd->fpclass are set Otherwise pd->exponent and
pd->ds are also set so that

(pd•>sign)•(pd•>ds)• lO••(pd->exponent)

is a correctly rounded approximation to •px. pd->ds has at least one and no more than
DECIMAL_STRING_LENGTH-1 significant digits because one character is used to terminate the string
with a NULL.

pd->ds is correctly rounded according to the IEEE rounding modes in pm->rd. •ps hasfp _inexact set if the
result was inexact, and has fp _ overflow set if the string result does not fit in pd->ds because of the limita­
tion DECIMAL_STRING_LENGTH.

If pm->df == jloatingJorm, then pd->ds always contains pm->ndigits significant digits. Thus if •px ==
12.34 and pm->ndigits =-= 8, then pd->ds will contain 12340000 and pd->exponent will contain -6.

If pm->df == fixed Jorm and pm->ndigits >= 0, then pd->ds always contains pm->ndigits after the point
and as many digits as necessary before the point. Since the latter is not known in advance, the total number
of digits required is returned in pd->ndigits; if that number>= DECIMAL_STRING_LENGTH, then ds is
undefined. pd->exponent always gets -pm->ndigits. Thus if •px == 12.34 and pm->ndigits == 1, then
pd->ds gets 123, pd•>exponent gets -1, and pd->ndigits gets 3.

If pm->df == fixed Jorm and pm->ndigits < 0, then pm->ds always contains -pm->ndigits trailing zeros;
in other words, rounding occurs -pm->ndigits to the left of the decimal poin4 but the digits rounded away
are retained as zeros. The total number of digits required is in pd->ndigits. pd->exponent always gets O.
Thus if •px == 12.34 and pm->ndigits == -1, then pd->ds gets 10, pd->exponent gets 0, and pd->ndigits
gets 2.

pd->more is not used.

Sun Microsystems Last change: 23 October 1987 1

FLOATING~TO.:._DECIMAL (3) C LI13RARY FUNCTIONS FLOATING_TO_DECIMAL(3)

econvert(3), fconvert, gconvert, printf(3S), and sprintf, all use double_to_decimal.

SEE ALSO
econvert(3), printf(3S)

Sun Microsystems Last change: 23 October 1987 2

FLOATINGPOINT (3) C LIBRARY FUNCTIONS FLOATINGPOINT (3)

NAME
floatingpoint - IEEE floating point definitions

SYNOPSIS
#include <Sys/ieeefp.h>
#include <floatingpoint.h>

DESCRIPTION
This file defines constants, types, variables, and functions used to implement standard floating point accord­
ing to ANSI/IEEE Std 754-1985. The variables and functions are implemented in libc.a. The included file
<Sys/ieeefp.h> defines certain types of interest to the kernel.

IEEE Rounding Modes:

fp _ direction _type

fp _ direction

fp _precision_ type

fp _precision

SIGFPE handling:

The type of the IEEE rounding direction mode. Note: the order of enumeration
varies according to hardware.

The IEEE rounding direction mode currently in force. This is a global variable
that is intended to reflect the hardware state, so it should only be written indirectly
through a function like " .}S 3 2 "ieee_ftags(set,direction, ...)"'' "'' "" "" "" ""
that also sets the hardware state.

The type of the IEEE rounding precision mode, which only applies on systems that
suppon extended precision such as Sun-3 systems with 68881 's.

The IEEE rounding precision mode currently in force. This is a global variable
that is intended to reflect the hardware state on systems with extended precision,
so it should only be written indirectly through a function like
ieee _ flags(" set"," precision", ...).

sigfpe _code_ type The type of a SIG FPE code.

sigfpe_handler_type The type of a user-definable SIGFPE exception handler called to handle a panicu­
lar SIGFPE code.

SIGFPE_DEFAULT A macro indicating the default SIGFPE exception handling, namely to perform the
exception handling specified by calls to ieee_handler(3M), if any, and otherwise
to dump core using abort(3).

SIGFPE_IGNORE A macro indicating an alternate SIGFPE exception handling, namely to ignore and
continue execution.

SIGFPE_ABORT A macro indicating an alternate SIGFPE exception handling, namely to abon with
a core dump.

IEEE Exception Handling:

N_IEEE_EXCEPTION The number of distinct IEEE floating-point exceptions.

fp_exception_type The type of the N_IEEE_EXCEPTION exceptions. Each exception is given a bit
number.

fp _exception_ field_ type

fp _accrued_ exceptions

Sun Microsystems

The type intended to hold at least N_IEEE_EXCEPTION bits corresponding to the
IEEE exceptions numbered by fp_exception_type. Thus fp_inexact corresponds
to the least significant bit and fp_invalid to the fifth least significant bit Note:
some operations may set more than one exception.

The IEEE exceptions between the time this global variable was last cleared, and
the last time a function like ieee _ flags(" get"," exception", . ..) was called to
update the variable by obtaining the hardware state.

Last change: 21 October 1987 1

FLOA TINGPOINT (3) C LIBRARY FUNCTIONS FLOATINGPOINT (3)

FILES

ieee_handlers An array of user-specifiable signal handlers for use by the standard SIGFPE
handler for IEEE arithmetic-related SIGFPE codes. Since IEEE trapping modes
correspond to hardware modes, elements of this array should only be modified
with a function like ieee handler(3M) that performs the appropriate hardware
mode update. If no sigfpe _ handler has been declared for a particular IEEE­
related SIGFPE code, then the related ieee_handlers will be invoked.

IEEE Formats and Classification:

single ;extended

fp _class_ type

IEEE Base Conversion:

Definitions of IEEE formats.

An enumeration of the various classes of IEEE values and symbols.

The functions described under ftoating_to_decimal(3) and decimal_to_ftoating(3) not only
satisfy the IEEE Standard, but also the stricter requirements of correct rounding for all arguments.

DECIMAL_STRING_LENGTH
The length of a decimal_string.

decimal_string The digit buffer in a decimal_record.

decimal_record The canonical form for representing an unpacked decimal floating-point number.

• decimal_form The type used to specify fixed or floating binary to decimal conversion.

decimal_mode A struct that contains specifications for conversion between binary and decimal.

decimal_string_form An enumeration of possible valid character strings representing floating-point
numbers, infinities, or NaNs.

/usr/include/sys/ieeefp.h
/usr/include/floatingpoint.h
/usr/lib/libc.a

SEE ALSO
abort(3), decimal_ to_ floating(3), econvert(3), floating_ to_ decimal(3),
ieee_handler(3M), sigfpe(3), string_to_decimal(3), strtod(3)

ieee _ flags(3M),

Sun Microsystems Last change: 21 October 1987 2

PRIN1F(3V) SYSTEM V LIBRARY PRINTF(3V)

NAME
printf, fprintf, sprintf - formatted output conversion

SYNOPSIS
#include <Stdio.h>
int printf(format [, arg] ...)
char •format;

int fprintf(stream, format [, arg] ...)
FILE •stream;
char •format;

int sprintf(s, format [, arg 1 ...)
char •s, •format;

#include <varargs.h>
int_ doprnt(format, args, stream)
char •format;
va _ list args;
FILE •stream;

DESCRIPTION
printf() places output on the standard output stream stdout fprintf() places output on the named output
stream. sprintf() places "output", followed by the NULL character (\0), in consecutive bytes starting at
•s; it is the user's responsibility to ensure that enough storage is available. printf, fprintf() and sprintf()
return the number of characters transmitted (excluding the NULL character in the case of sprintf).

If an output error is encountered printf, fprintf() and sprintf() return EOF.

Each of these functions converts, formats, and prints its args under control of theformat. The format is a
character string which contains two types of objects: plain characters, which are simply copied to the out­
put stream, and conversion specifications, each of which causes conversion and printing of zero or more
args. The results are undefined if there are insufficient args for the format. If the format is exhausted
while args remain, the excess args are simply ignored. •

Each conversion specification is introduced by the character % . After the % , the following appear in
sequence:

Zero or more flags, which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width. If the converted value has
fewer characters than the field width, it will be padded on the left (or right, if the left-adjustment
flag '-', described below, has been given) to the field width. The padding is with blanks unless
the field width digit string starts with a zero, in which case the padding is with zeros.

A precision that gives the minimum number of digits to appear for the d, i, o, u, x, or X conver­
sions, the number of digits to appear after the decimal point for the e, E, and f conversions, the
maximum number of significant digits for the g and G conversion, or the maximum number of
characters to be printed from a string ins conversion. The precision ta.lees the form of a period(.)
followed by a decimal digit string; a NULL digit string is treated as zero. Padding specified by the
precision overrides the padding specified by the field width.

An optional I (ell) specifying that a following d, i, o, u, x, or X conversion character applies to a
long integer arg. An I before any other conversion character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision or both may be indicated by an asterisk(*) instead of a digit string. In this case,
an integer arg supplies the field width or precision. The arg that is actually converted is not fetched until
the conversion letter is seen, so the args specifying field width or precision must appear before the arg (if
any) to be converted. A negative field width argument is taken as a '-' flag followed by a positive field
width. If the precision argument is negative, it will be changed to zero.

Sun Microsystems Last change: 18 November 1987 1

PRINTF(3V) SYSTEM V LIBRARY PRINTF(3V)

The flag characters and their meanings are:
The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a sign (+ or -).
blank If the first character of a signed conversion is not a sign, a blank will be prefixed to the result.

This implies that if the blank and + flags both appear, the blank flag will be ignored.
This flag specifies that the value is to be convened to an ''alternate form.''For c, d, i, s, and u

conversions, the flag has no effect For o conversion, it increases the precision to force the first
digit of the result to be a zero. For x or X conversion, a non-zero result will have Ox or OX
prefixed to it. For e, E, r, g, and G conversions, the result will always contain a decimal point,
even if no digits follow the point (normally, a decimal point appears in the result of these
conversions only if a digit follows it). For g and G conversions, trailing zeroes will not be
removed from the result (which they normally are).

The conversion characters and their meanings are:

d,i,o,u,x,X The integer arg is converted to signed decimal (d or i), unsigned octal (o), unsigned decimal
(u), or unsigned hexadecimal notation (x and X), respectively; the letters abcdef are used for x
conversion and the letters ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be represented in fewer digits, it
will be expanded with leading zeroes. (For compatibility with older versions, padding with
leading zeroes may alternatively be specified by prepending a zero to the field width. This
does not imply an octal value for the field width.) The default precision is 1. The result of
converting a zero value with a precision of zero is a NULL string.

r The float or double arg is converted to decimal notation in the style "[-]ddd.ddd" where the
number of digits after the decimal point is equal to the precision specification. If the precision
is missing, 6 digits are given; if the precision is explicitly 0, no digits and no decimal point are
printed.

e,E The float or double arg is converted in the style "[-]d.ddde±ddd," where there is one digit
before the decimal point and the number of digits after it is equal to the precision; when the
precision is missing, 6 digits are produced; if the precision is zero, no decimal point appears.
The E format code will produce a number with E instead of e introducing the exponent The
exponent always contains at least two digits.

g,G The float or double arg is printed in style fore (or in style E in the case of a G format code),
with the precision specifying the number of significant digits. The style used depends on the
value converted: style e or E will be used only if the exponent resulting from the conversion is
less than -4 or greater than the precision. Trailing zeroes are removed from the result; a
decimal point appears only if it is followed by a digit.

The e, E, f, g, and G formats print IEEE indeterminate values (infinity or not-a-number) as ''Infinity'' or
"NaN" respectively.

c The character arg is printed.
s The arg is taken to be a string (character pointer) and characters from the string are printed

until a NULL character (\0) is encountered or until the number of characters indicated by the
precision specification is reached. If the precision is missing, it is taken to be infinite, so all
characters up to the first NULL character are printed. A NULL value for arg will yield
undefined results.

% Print a % ; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if the result of a conversion is
wider than the field width, the field is simply expanded to contain the conversion result Padding takes
place only if the specified field width exceeds the actual width. Characters generated by printf() and
fprintf() are printed as if putc(3S) had been called.

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02," where weekday and month are pointers to
NULL•terminated strings:

Sun Microsystems Last change: 18 November 1987 2

PRINTF(3V) SYSTEM V LIBRARY PRINTF(3V)

NOTE

printf(" %s, %s %i, %d: %.2d", weekday, month, day, hour, min);

To print 7t to 5 decimal places:

printf("pi = %.Sr', 4 • atan(l. 0));

These routines call _doprnt, which is an implementation-dependent routine. Each uses the variable-length
argument facilities of varargs(3). Although it is possible to use _doprnt to take a list of arguments and
pass them on to a routine like printf, not all implementations have such a routine. We strongly recommend
that you use the routines described in vprintf(3S) instead.

SEE ALSO
econvert(3), printf(3S), putc(3S), scanf(3V), varargs(3), vprintf(3S)

BUGS
Very wide fields (>128 characters) fail.

Sun Microsystems Last change: 18 November 1987 3

SCANF(3V) SYSTEM V LIBRARY SCANF(3V)

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include <Stdio.h>

scanf(format [, pointer] ...)
char •format;

fscanf(stream, format [, pointer] ...)
FILE •stream;
char •format;

sscanf(s, format [, pointer] ...)
char •s, •format;

DESCRIPTION
scanf() reads from the standard input stream stdio. fscanf() reads from the named input stream. sscanf()
reads from the character string s. Each function reads characters, interprets them according to a format,
and stores the results in its arguments. Each expects, as arguments, a control string format, described
below, and a set of pointer arguments indicating where the converted input should be stored. The results
are undefined in there are insufficient args for the format. If the format is exhausted while args remain,
the excess args are simply ignored.

The control string usually contains conversion specifications, which are used to direct interpretation of
input sequences. The control string may contain:

1. White-space characters (SPACE, TAB, NEWLINE, or FORMFEED) which, except in two cases
described below, cause input to be read up to the next non-white-space character.

2. An ordinary character (not '% '), which must match the next character of the input stream.
3. Conversion specifications, consisting of the character '%', an optional assignment suppressing

character '•', an optional numerical maximum field width, an-optional I (ell) or h indicating
the size of the receiving variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the result is placed in the variable
pointed to by the corresponding argument, unless assignment suppression was indicated by '• '. The
suppression of assignment provides a way of describing an input field which is to be skipped. An input
field is defined as a string of non-space characters; it extends to the next inappropriate character or until the
field width, if specified, is exhausted For all descriptors except"[" and "c", white space leading an input
field is ignored.

The conversion character indicates the interpretation of the input field; the corresponding pointer argument
must usually be of a restricted type. For a suppressed field, no pointer argument is given. The following
conversion characters are legal:

% A single % is expected in the input at this point; no assignment is done.
d A decimal integer is expected; the corresponding argument should be an integer pointer.
u An unsigned decimal integer is expected; the corresponding argument should be an

unsigned integer pointer.
o An octal integer is expected; the corresponding argument should be an integer pointer.
x A hexadecimal integer is expected; the corresponding argument should be an integer

pointer.
An integer is expected; the corresponding argument should be an integer pointer. It will
store the value of the next input item interpreted according to C conventions: a leading
"O" implies octal; a leading "Ox" implies hexadecimal; otherwise, decimal.

n Stores in an integer argument the total number of characters (including white space) that
have been scanned so far since the function call. No input is consumed.

e,f,g A floating point number is expected; the next field is converted accordingly and stored
through the corresponding argument, which should be a pointer to afloat. The input for­
mat for floating point numbers is as described for string_to_decimal(3), with

Sun Microsystems Last change: 30 January 1988 1

SCANF(3V) SYSTEM V LIBRARY SCANF(3V)

fortran exponent zero.
s A character string is expected; the corresponding argument should be a character pointer

pointing to an array of characters large enough to accept the string and a terminating \0,
which will be added automatically. The input field is terminated by a white space char­
acter.

c A character is expected; the corresponding argument should be a character pointer. The
normal skip over white space is suppressed in this case; to read the next non-space char­
acter, use % ls. If a field width is given, the corresponding argument should refer to a
character array, and the indicated number of characters is read.
Indicates string data; the nonnal skip over leading white space is suppressed. The left
bracket is followed by a set of characters, which we will call the scanset, and a right
bracket; the input field is the maximal sequence of input characters consisting entirely of
characters in the scanset. The circumflex ("),when it appears as the first character in the
scanset, serves as a complement operator and redefines the scanset as the set of all char­
acters not contained in the remainder of the scanset string. There are some conventions
used in the construction of the scanset. A range of characters may be represented by the
construct.first-last, thus [0123456789] may be expressed [0-9]. Using this convention,
first must be lexically less than or equal to last, or else the dash will stand for itself. The
dash will also stand for itself whenever it is the first or the last character in the scanset
To include the right square bracket as an element of the scanset, it must appear as the first
character (possibly preceded by a circumflex) of the scanset, and in this case it will not
be syntactically interpreted as the closing brackeL The corresponding argument must
point to a character array large enough to hold the data field and the terminating \0, which
will be added automatically. At least one character must match for this conversion to be
considered successful.

The conversion characters d, u, o, x, and i may be preceded by l or h to indicate that a pointer to long or to
short rather than to int is in the argument list Similarly, the conversion characters e, r, and g may be pre­
ceded by l to indicate that a pointer to double rather than to float is in the argument list. The I or h
modifi~r is ignored for other conversion characters.

Avoid this common error: because printf(3V) does not require that the lengths of conversion descriptors
and actual parameters match, coders sometimes are careless with the scanf{) functions. But converting %f
to &double or %If to &float does not work; the results are quite incorrect

scanf() conversion terminates at EOF, at the end of the control string, or when an input character conflicts
with the control string. In the latter case, the offending character is left unread in the input stream.

scanf() returns the number of successfully matched and assigned input items; this number can be zero in
the event of an early conflict between an input character and the control string. The constant EOF is
returned upon end of input. Note: this is different from 0, which means that no conversion was done; if
conversion was intended, it was frustrated by an inappropriate character in the input

If the input ends before the first conflict or conversion, EOF is returned. If the input ends after the first
conflict or conversion, the number of successfully matched items is returned.

EXAMPLES
The call:

int i, n; float x; char name[SO];
n = scanf("%d%f%s", &i, &x, name);

with the input line:
25 54.32E-l thom pson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain thompson\O. Or:
int i, j; float x; char name[50];
{void) scanf{" %i%2d%f%•d %(0-9)", &j, &i, &x, name);

Sun Microsystems Last change: 30 January 1988 2

SCANF(3V) SYSTEM V LIBRARY SCANF(3V)

with input

01156789 0123 56a72

will assign 9 to j, 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to
getchar() (see getc(3S)) will return a. Or:

int i, j, s, e; char name[S0];
(void) scanf("%i %i %n%s%n", &i, &j, &s, name, &e);

with input
0xll Oxy johnson

will assign 17 to i, 0 to j, 6 to s, will place the string xy\0 in name, and will assign 8 to e. Thus, the length
of name is e - s = 2. The next call to getchar() (see getc(3S)) will return a SPACE.

SEE ALSO
getcOS), printf(3V), stdio(3V), string_to_decimal(3), strtol(3), scanf(3S)

DIAGNOSTICS
These functions return EOF on end of input, and a short count for missing or illegal data items.

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

CAVEATS
Trailing white space (including a NEWLINE) is left unread unless matched in the control string.

Sun Microsystems Last change: 30 January 1988 3

SIGFPE(3) C LIBRARY FUNCTIONS SIGFPE(3)

NAME
sigfpe - signal handling for specific SIGFPE codes

SYNOPSIS
#include <Signal.h>

#include <floatingpoint.h> •

sigfpe_ handler_ type sigfpe(code, bdl)
sigfpe _code_ type code;
sigfpe_handler_type hdl;

DESCRIPTION
This function allows signal handling to be specified for particular SIGFPE codes. A call to sigfpe() defines
a new handler hdl for a particular SIG FPE code and returns the old handler as the value of the function
sigfpe. Normally handlers are specified as pointers to functions; the special cases SIGFPE_IGNORE,
SIGFPE_ABORT, and SIGFPE_DEFAULT allow ignoring, specifying core dump using abort(3), or default
handling respectively.

For these IEEE-related codes:
FPE_FLTINEX_ TRAP
FPE_FLTDIV _TRAP
FPE_FLTUND _TRAP
FPE_FLTOVF _TRAP
FPE_FLTBSUN_TRAP
FPE_FLTOPERR_TRAP
FPE_FL TNAN_ TRAP

fp _ inexact - floating inexact result
fp_division - floating division by zero
fp underflow - floating underflow
fp - overflow - floating overflow
fp = invalid - branch or set on unordered
fp _invalid - floating operand error
fp_invalid- floating Not-A-Number

default handling is defined to be to call the handler specified to ieee _ handler(3M).

For all other SIGFPE codes, default handling is to core dump using abort(3).

The compilation option -ffpa causes fpa recomputation to replace the default abort action for code
FPE_FPA_ERROR. Note: SIGFPE_DEFAULT will restore abort rather than FPA recomputation for this
code.

Three steps are required to intercept an IEEE-related SIGFPE code with sigfpe:

1) Set up a handler with sigfpe.

2) Enable the relevant IEEE trapping capability in the hardware, perhaps by using
assembly-language instructions.

3) Perform a floating-point operation that generates the intended IEEE exception.

Unlike ieee_handler(3M), sigfpe() never changes floating-point hardware mode bits affecting IEEE trap­
ping. No IEEE-related SIGFPE signals will be generated unless those hardware mode bits are enabled

SIGFPE signals can be handled using sigvec(2), signal(3), sigfpe(3), or ieee_handler(3M). In a particular
program, to avoid confusion, use only one of these interfaces to handle SIGFPE signals.

Sun Microsystems Last change: 21 October 1987 1

SIGFPE(3) C LIBRARY FUNCTIONS SIGFPE(3)

EXAMPLE

FILES

A user-specified signal handler might look like this:
void sample_ handler(sig, code, scp, addr)

int sig ; /• sig = SIGFPE always •/
int code;
struct sigcontext •scp;
char •addr;
{ ,.

Sample user-written sigfpe code handler.
Prints a message and continues.
struct sigcontext is defined in <signal.h>.

•I .
printf(" ieee exception code %x occurred at pc %X \n" ,code,scp->sc_pc);

}

and it might be set up like this:
extern void sample_handler();
main()
{

sigfpe_handler _type hdl, old_handlerl, old_handler2;

• save current overflow and invalid handlers; set the new
• overflow bandier to sample_handler() and set the new
• invalid handler to SIGFPE_ABORT (abort on invalid)
•I

I•

hdl = (sigfpe_handler_type) sample_handler;
old_handlerl = sigfpe(FPE_FLTOVF _TRAP, hdl);
old_handler2 = sigfpe(FPE_FLTOPERR_TRAP, SIGFPE_ABORT);

• restore old overflow and invalid handlers
•I

sigfpe(FPE _FL TOVF _TRAP, old_ handler 1);
sigfpe(FPE_ FL TO PERR_ TRAP, old_ handler2);

}

/usr/include/ftoatingpoint.h
/usr/include/signal.h

SEE ALSO
sigvec(2), abort(3), ftoatingpoint(3), ieee_handler(3M), signal(3),

DIAGNOSTICS
sigfpe() returns BADSIG if code is not zero or a de.fined SIGFPE code.

Sun Microsystems Last change: 21 October 1987 2

SIONAL(3) C LIBRARY FUNCTIONS SIGNAL(3)

NAME
signal - simplified software signal facilities

SYNOPSIS
#include <signal.h>

void (•signal(sig, func))()
void (•func)();

DESCRIPTION
signal() is a simplified interface to the more general sigvec(2) facility. Programs that use signal() in
preference to sigvec() are more likely to be portable to all systems.

A signal is generated by some abnonnal event, initiated by a user at a terminal (quit, interrupt, stop), by a
program error (bus error, etc.), by request of another program (kill), or when a process is stopped because it
wishes to access its control terminal while in the background (see tennio(4)). Signals are optionally gen­
erated when a process resumes after being stopped, when the status of child processes changes, or when
input is ready at the control terminal. Most signals cause termination of the receiving process if no action
is taken; some signals instead cause the process receiving them to be stopped, or are simply discarded if the
process has not requested otherwise. Except for the SIG KILL and SIGSTOP signals, the signal() call
allows signals either to be ignored or to interrupt to a specified location. The following is a list of all sig­
nals with names as in the include file <Signal.h>:

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3• quit
SIGILL 4• illegal instruction
SIGTRAP 5• trace trap
SIGABRT 6• abort (generated by abort(3) routine)
SIG EMT 7 • emulator trap
SIGFPE 8• arithmetic exception
SIGKILL 9 kill (cannot be caught, blocked, or ignored)
SIGBUS 10• bus error
SIGSEGV 11 • segmentation violation
SIGSYS 12• bad argument to system call
SIGPIPE 13 write on a pipe or other socket with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGURG 16e urgent condition present on socket
SIGSTOP 17t stop (cannot be caught, blocked, or ignored)
SIGTSTP 18t stop signal generated from keyboard
SIGCONT 19• continue after stop (cannot be blocked)
SIGCHLD 20. child status has changed
SIGTTIN 21 t background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
SIG IO 23• I/0 is possible on a descriptor (see fcntl(2V))
SIGXCPU 24 cpu time limit exceeded (see getrlimit(2))
SIGXFSZ 25 file size limit exceeded (see getrlimit(2))
SIGVTALRM 26 virtual time alarm (see getitimer(2))
SIGPROF 27 profiling timer alarm (see getitimer(2))
SIGWINCH 28• window changed (see termio(4) and win(4S))
SIGLOST 29• resource lost (see lockd(8C))
SIG USRl 30 user-defined signal 1
SIGUSR2 31 user-defined signal 2

Sun Microsystems Last change: 22 November 1987 1

SIGNAL(3) C LIBRARY FUNCTIONS SIGNAL(3)

NOTES

The starred signals in the list above cause a core image if not caught or ignored.

If June is SIG_DFL, the default action for signal sig is reinstated; this default is termination (with a core
image for starred signals) except for signals marked with • or t. Signals marked with • are discarded if the
action is SIG_DFL; signals marked with t cause the process to stop. If June is SIG_IGN the signal is subse­
quently ignored and pending instances of the signal are discarded. Otherwise, when the signal occurs
further occurrences of the signal are automatically blocked and June is called.

A return from the function unblocks the handled signal and continues the process at the point it was inter­
rupted. Unlike previous signal facilities, the handler June remains installed after a signal has been
delivered.

If a caught signal occurs during certain system calls, terminating the call prematurely, the call is automati­
cally restarted. In particular this can occur during a read(2V) or write(2V) on a slow device (such as a ter­
minal; but not a file) and during a wait(2).

The value of signal() is the previous (or initial) value of June for the particular signal.

After a fork(2) or vfork(2) the child inherits all signals. An execve(2) resets all caught signals to the
default action; ignored signals remain ignored.

The handler routine can be declared:

void handler(sig, code, scp, addr)
int sig, code;
struct sigcontext •scp;
char •addr;

Here sig is the signal number; code is a parameter of certain signals that provides additional detail; sep is a
pointer to the sigcontext structure (defined in <signal.h>), used to restore the context from before the sig­
nal; and addr is additional address information. See sigvec(2) for more details.

RETURN VALUE
The previous action is returned on a successful call. Otherwise, -1 is returned and errno is set to indicate
the error.

ERRORS
signal() will fail and no action will take place if one of the following occur:

EINV AL sig is not a valid signal number.

EINV AL An attempt is made to ignore or supply a handler for SIG KILL or SIGSTO P.

EINVAL An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

SEE ALSO

kill(!), execve(2), fork(2), getitimer(2), getrlimit(2), kill(2V), ptrace(2), read(2V), sigblock(2), sig­
pause(2), sigsetmask(2), sigstack(2), sigvec(2), vfork(2), wait(2), write(2V), setjmp(3), termio(4)

Sun Microsystems Last change: 22 November 1987 2

STRINO_TO_DECIMAL(3) C LIBRARY FUNCI1ONS STRINO_TO_DECIMAL(3)

NAME
string_ to_ decimal, file_ to_ decimal, func _to_ decimal - parse characters into decimal record

SYNOPSIS
#include <floatingpoint.h>
#include <Stdio.h>
void string_ to_ decimal(pc,nmax,f ortran _ conventions,pd,pform,pechar)
char **pc;
intnmax;
int fortran _ conventions;
decimal_record •pd;
enum decimal_string_form •pform;
char ••pechar;
void file_ to_ decimal(pc,nmax,fortran _ conventions,pd,pform,pechar ,pf,pnread)
char **pc;
int nmax;
int fortran_conventions;
decimal_record •pd;
enum decimal_string_form •pform;
char ••pechar;
FILE •pf;
int •pnread;

void rune_ to_ decimal(pc,nmax,fortran _ conventions,pd,pform,pechar ,pget,pnread,punget)
char **pc;
int nmax;
int fortran _ conventions;
decimal_record •pd;
enum decimal_string_form •pform;
char **pechar;
int (*pget)();
int •pnread;
int (•punget)();

DESCRIPTION
The char_to_decimal functions parse a numeric token from at most nmax characters in a string **pc or file
*Pf or function (•pget)() into a decimal record •pd, classifying the form of the string in *pform and
*pechar. The accepted syntax is intended to be sufficiently flexible to accomodate many languages:

whitespace value

or

whitespace sign value

where whitespace is any number of characters defined by isspace in /usr/include/ctype.h, sign is either of
[+-], and value can be number, nan, or inf. inf can be INF (infJorm) or INFINITY (infinityJorm) without
regard to case. nan can be NAN (nan Jorm} or NAN(nstring) (nanstringJorm) without regard to case;
nstring is any string of characters not containing')' or NULL; nstring is copied to pd-><ls and, currently, not
used subsequently. number consists of

significand

or

significand efield

Sun Microsystems Last change: 21 January 1988 1

STRING_TO_DECIMAL(3) C LIBRARY FUNCTIONS STRING_ TO _DECilVIAL (3)

where signiftcand must contain one or more digits and may contain one point; possible forms are

digits
digits.
.digits
digits .digits

efield consists of

echar digits

or

echar sign digits

(intJorm)
(intdot Jorm)
(dotfrac Jorm)
(intdotfrac Jorm)

where echar is one of [Ee], and digits contains one or more digits.

When fortran _ conventions is nonzero, additional input forms are accepted according to various Fortran
conventions:
0 no Fortran conventions
1 Fortran list-directed input conventions
2 Fortran formatted input conventions, ignore blanks (BN)
3 Fortran formatted input conventions, blanks are zeros (DZ)

Whenfortran_conventions is nonzero, echar may also be one of [Dd], and efield may also have the form

sign digits

When fortran conventions>= 2, blanks may appear in the digits strings for the integer, fraction, and
exponent fields and may appear between echar and the exponent sign and after the infinity and NaN forms.
Iffortran_conventions== 2, the blanks are ignored. Whenfortran_conventions== 3, the blanks that appear
in digits strings are interpreted as zeros, and other blanks are ignored.

The form of the accepted decimal string is placed in •pefonn. If an efield is recognized, •pechar is set to
point to the echar.

On input, •pc points to the beginning of a character string buffer of length >= nmax. On output, •pc points
to a character in that buffer, one past the last accepted character. string_ to_ decimal() gets its characters
from the buffer; file_to_decimal() gets its characters from •pf and records them in the buffer, and places a
null after the last character read. func_to_decimal() gets its characters from an int function (•pget)().

The scan continues until no more characters could possibly fit the acceptable syntax or until nmax charac­
ters have been scanned If the nmax limit is not reached then at least one extra character will usually be
scanned that is not part of the accepted syntax. file_to_decimal() and func_to_decimal() set •pnread to
the number of characters read from the file; if greater than nmax, some characters were lost. If no charac­
ters were lost, file_ to_ decimal() and func _to_ decimal() attempt to push back, with ungetc(3S) or
(*punget)(), as many as possible of the excess characters read, adjusting •pnread accordingly. If all unget
calls are successful, then ••pc will be NULL. No push back will be attempted if (•punget)() is NULL.

Typical declarations for •pget() and •punget() are:
int xget()
{ ... }
int (•pget)() = xget ;
int xunget(c)
char c;
{ ... }
int (*punget)() = xunget;

If no valid number was detected, pd->fpclass is set to fp_signaling, •pc is unchanged, and •pform is set to
invalid_ form.

Sun Microsystems Last change: 21 January 1988 2

F77 _IEEE_ENYm.ONMENT (3F) FORTRAN LIBRARY ROUTINES F77 _ IEEE _ENVIRONMENT (3F)

NAME
IEEE environment- mode, status, and signal handling subprograms for IEEE arithmetic

SYNOPSIS
#include <1771177 _ ftoatingpoinLh>

integer function ieee _ ftags(action,mode,in,out)
character•(•) action, mode, in, out

integer function ieee _ bandler(action,exception,hdl)
character•(•) action, exception
sigfpe _handler_ type bdl

sigfpe _handler_ type function sigfpe(code, hdl)
sigfpe_code_type code
sigfpe _handler_ type hdl

DESCRIPTION
These subprograms provide modes and status required to fully exploit ANSI/IEEE Std 754-1985 arithmetic
in a Fortran program. They correspond closely to the functions ieee_flags(3M). ieee_handler(3M). and
sigfpe(3).

EXAMPLES
The following examples illustrate syntax.

integer ieeer
character• 1 mode, out, in
ieeer = ieee _ flags(' clearall' ,mode, in, out)

sets ieeer to 0, rounding direction to 'nearest', rounding precision to 'extended', and all accrued
exception-occurred status to zero.

character• 1 out, in
ieeer =- ieee _flags(' clear',' direction', in, out)

sets ieeer to 0, and rounding direction to 'nearest'.

character• 1 out
ieeer = ieee_flags('set' ,'direction' ,'tozero' ,out)

sets ieeer to O and the rounding direction to 'tozero' unless the hardware does not support directed round­
ing modes; then ieeer is set to 1.

character• 16 out
ieeer = ieee _ flags(' clear'., exception'.' all' ,out)

sets ieeer to O and clears all accrued exception-occurred bits. If subsequently overflow, invalid, and inex­
act exceptions are generated then

character• 16 out
ieeer = ieee _ flags(' get',, exception',' overflow' ,out)

sets ieeer to 25 and out to 'overflow'.

Sun Microsystems Last change: 23 March 1988 1

F77 _IEEE_ENVIRONMENT (3F) FORTRAN LIBRARY ROUTINES F77 _IEEE_ ENVIRONMENT (3F)

FILES

A user-specified signal handler might look like this:

integer function sample_ handler (sig, code, sigcontext)
integer sig
integer code
integer sigcontext(5)

c Sample user-written sigfpe code handler.
c Prints a message and terminates.
c sig .eq. SIGFPE always.
c The structure of sigcontext is defined in <signal.h>.

print *,' ieee exception code ',code,' occurred at pc ',sigcontext(4)
call abort(' ieee exception occurred')
end

and it might be set up like this:

extern sample_ handler
integer ieeer
ieeer = ieee _ handler ('set', 'overflow', sample_ handler)
if (ieeer .ne. 0) print*,' ieee_handler can not set overflow '

/usr/includetn7 /f77 _ ftoatingpoint.h
/usr/lib/libm.a

SEE ALSO
floatingpoint(3), signal(3), sigfpe(3), f77 _ftoatingpoint(3F), ieee_ftags(3M), ieee_handler(3M)

Sun Microsystems Last change: 23 March 1988 2

