COMPATIBLE HARDWARE FOR DIVISION AND SQUARE ROOT !

- George S. Toylor

Computer Science Division
University of California
Boarkeley, Califoraia 84720

ABSTRACT

Hardware for redix four division and radix two
square root is sbhared in a processor designed u‘lmgo-
ment the proposed IEEE flosting-point standard. .
division bardware looks abead to find the next guotient
digit in parallel with the next partias remainder. An 8-bit
ALU estimates the pext remainder's leading bits, The
Quotient digi* lock-up table is addressed with a trunce-
tion of the esw.aate ratber than a truncation of the full
partial remainder. The estimation ALU and the look-up
table are asymmetric for positive and negative
remainders. This asymmetry reduces the width of the
ALU and the number of minterms in the logic equations
for thy look-up table. Ths sguare root algorithm obtains
the correctly rounded result in about two division times
using small extonsions to the division bardware.

Introduction

An IEEE Computer Society working group bas
recommended a standard for binary ficating-point arith-
metic based on the proposal by Kaban, Coonen and Stone
[1){2). To investigate the feasibility of the XCS architec-
ture, we are building s substitute ficating-point accelers-
tor for the DEC VAX 11/780 minicomputer [3]. The pro-
posed standard re s that an implementation provide
correctly rounded quotients and square roots. We found
that radix four division bardware provides high spsed at
reasonable cost and, as s by-product, accommodates
sguare root with minor extensions. This paper describes
the algorithms and hardwars for both operations.

Antacedants

We use nonrestoring division with redundant quo-
tient digits and an irredundant partial remainder. Selsc-
tion of another digit is overlapped with calculation of a
partial remainder using the current digit. The theocry
and gensral implementation of higher radiz nonrestoring
division are explainsd by Atkins [4][5][8], based om the
work of Robertson [7]. The lliac Il was an early machine
which selected quotient digits using truncetions of the
divisor and partial remainder [8]. Tan reports [9] that
certain IBM processors use a short precision ALU to esti-
mate thes next remainder. Quotient selection which is
overlapped with the full width remainder iteration in this
way is classified as QS2 by Kalaycioglu [10]. Baron's
study [11] of several division schemes includes & redix
four method similar to ours, but she recommends more
redundancy in the quotisnt digit representation than we
found to be optimal. e

$ This work was supported by the U. 8. Deprriment o Boergy
wnder comract DE-ATOS-76SF00034, project agreemenmt DE-ASOS-
TOERIOSSS, and by the National Science Foundation under

gt
HCS78-07291. The suthar was supported by &n NSF Greduate hnw-'

alxip.

Design Ovarview

Our division and square root board contains 130 ICs.
Division is limited to a single board because of con-
straints on the size of the entire accelerator and the
difficyity of passing wide operands between boards. 85
ICs on the addition/subtraction board also support the
division operation. All parts ars Schottky except
threc programmable array logic (PAL®) packages which
implement the gquotient digit look-up tabls,

The accelerator supports three floating-point for-
mets: single, double and (doubls) extended, with
significand widths of 24, 53 and 84 bits, respectively. We
use the term sign{ficond rather than fraction as & rem-
inder that the sgignificant digit fisld of normalized
numbers in all formats bas one bit to the leRt of the
binary point. Single and double precision significands
are left justified with gzero fill before reaching the division
board, 8o its data paths are designed for 64-bit operands.
The opsrands are positive numbers because KCS uses
sign-magnitude representation.

Internal deta paths and functional units are slightly
wider than the operands. Quotients in all formats are
developed with three more bits than the operands bave
in order to allow unbiased rounding with an error s §
ULP (unit in the last place), as KCS requires. The three
bits are called Guard, Round and Sticky. The Guard bit
is used if the quotient is normalized by one bit before
rounding, the maximum normalization that KCS permits.
The Sticky bit is equal to zero only if the result is sxact,
Le., all subsequent bits in an infinite precision result
would be sero. Square roots bave two more bits, Round
and Sticky, than the operand because there is no nsed
for normalization. Ths resuits are rounded after they
leavs the division board.

Register to register operation times are given in
Table 1. Our division iteration produces twice as many
bits per cycle, bul bas the same cycls time as the origi-
nal VAX accelerator. The innsr loop sccounts for about
two-thirds of the time in sach instruction.

Table 1. = Accelerator Instruction Timss (¥ssc)
~Instruction Berkeley VAX
Divide - zingle 26 4.2
Divide — doubls 4.0 8.6
Divide — extendsd 8.8 -
Squars root - single 4.2 -
Square root — double 7.6 -
Square root — extended 9.2 -

OPAL i & trademark of Honolthic Memarien.

/3]

The VAX 11/780 microinstruction cycls time is 200
ns, with minor cycles at 50 ns intervals. For this reason,
our inner loop times bhad to be 50, 100 or 200 ns. The
67-bit ALU in the main partisl remainder dats path takes
64 ns becausc we use amall 745381 parts. This lsad us to
design simple data paths in order to achiove a 100 os
step: time. The microprogrammer can request sither
one or two division or square root stsps per mieroin-
struction cyels.

The bardware necessary for division alone is shown
in Figurs 1, while that for squars root alone is shown in
Figure 2. Shared functional units and data paths are
readily identiied. Somse small data paths which eass the
tasks of ioading the operands and generating the Sticky
bit are not included.

Dtvisian

_ The division procsdurs was chosen through a seriss

of decisions: :

1) the radix ~ four

2) divisor multiples — one and two, but not three

3) paralielism — overlapped quotient and remainder

4) width of remainder estimate - eight bits

5) estimation ALU operation — asymmetric
The choices made imply that the quotient selection logic
must observe seven remainder bits and four divisor bits
(one known implicitly). Table 2 is a P/D plot of the logic,
where g¢,, (Lo be defined later) plays the rols of the par-
tial remainder. The choices are explained next.

Radix Four

We had more board space available than the sim-
plest radix two restoring division scheme requires. The
original VAX accelerstor produced one quotient bit per
100 ns by this method. We wished to make division faster
in order to keep it in balance witb addition and multipli-
cation. Radix two with s redundant partial remainder
and carry save addition could run at less than 100 ns per
eycle, but the bardware cost would be substantial and
square root could not be accommodated easily. Radix
four at 100 us per cycle provides squal or better perfor-
mance at lower cost. Higber radiz metbods were unat-
tractive becauss they required divisor multiples which
could not bs generated mersly by sbifting. Radiz four
cen be implemented with a two-input ALU and and a
two-input multiplexer In front of the divisor register,
instead of functional units with three or more inputs as
the higher radix methods would require.

We use s nonrestoring method rather than a restor-
ing ons so that the remainder iteration requires only a
single data path and no backtracking. Backtracking
would waste the gain made through lookabesd gquotient
digit selection. The c~st is that negative quotient digits
must be combined in an ALU with the ones pravicusly
sccumulated. Due to the low degree of redundancy in
our quotient digit representation, this ALU must be the
full width of the quotient rather than the width of one
quotient digit. Since the ALU on the accelerator's addi-
tion board can be shared for this purpose, the division
board contains only one full precision ALU.

ot ESTIMATED NEXT MEMANDER 37 (+oo's complement)
3 i - Bore S et el St Bt S et
218888538 g855S-=8833
3|8s8s=====zz=8ssss8882z:=ss
L)
1,000 PR H AR REARAHE
1,001 aFafale rilalelol1]1cl2]a]2
1,010 27217211 blejel 11141121212
DIVISOR " 0\ FEAERRARNGEARARRARE
d , 100 afa 3l ifalelelole[1[1]cl2[2]2]3
1101 TfFafaala[af1f1]olelolol: [1]1]2][2]2]2]3
(pesifie) 12110 [F2F2r2[af2ls [a[2[2]e]o[olo2]1]1[a[a[2]2]2
o CREREEEERERf T selelelol i1 [T 1 [2]2]2(2]2
y 22
A ~(2-g2:41)
8 =(2-92)
c 1 +JZ
b '(1—32)
3 2
TASLE 2 — P/D PLOT FOR QUOTIENT SELECTION LOGIC

! !V‘l ’.L‘.! ‘165
Ase ! A+0
A-8-1 DALY \ -8
U
o/ N X
P || STIOKY [|
v’ W' '
|
nqes)
RR ZERO (Lu ! Lo RR ,3 SQR OPERAND
WIRED X4 St !
es | x4 } 14 2 ‘ } e3
1 o : |
QUO LOGIC F=—==f-=F--4 ,
" A 638
LV o J
QFF J{,‘ - __[MUX MUX
NANNN FAVAN
. ZERBTXI x2] [xuvie x1lx2
POS 'I NEG - s
(1] (1. DR DR /
A-8 1 | 5 SGUARE R SQUARE ROOT RESULT
J L) y (T 4 o8 sev oor e
STICKY 67 avo sTicky
DATA BUS l N " DATA BUS

FIGURE | =DIVISION DATA PATHS FIGURE 2-SQUARE ROOT DATA PATHS

A square root algorithm shifts its remaeinder by
twice the number of result bits found per iteration. A
division algorithm, by contrast, shifts its remainder by
the same number of bits as are generated during the
cyecle. Division and square root bardware can be merged
i twice as many bits are produced per division step as
per aquare root step. Thus redix four division hardware
bas the advantage of convenient reuse for square root.

Resdundancy and Simple Divisor Multiples

A redundant quotisnt digit representation permits
lookahead logic to salect the next digit befors the full
precision next remainder is determined. For maximum
redundancy in radix four, quotient digits could be
sslected from a set containing up to seven values: §-3, -2,
-1, 0, 1, 2, 3]. Becauss the multiple of three times the
divisor would be costly to generats, quotient digits are
sclected instead from the set {-2, -1, 0, 1, 2]. The cost is
mors complicatad quotient selection hardware, but pro-
grammable logic limits the increase to a few ICs.

Parallelizsm

In the algorithm's inner loop., & quotient digit is
selected and that multiple of the divisor is subtracted
from the shifted previous remainder. Using notation
suggested by Atkins and Kalayeioglu [12],

Lonep =gt Pristom-1 (1)

whore
¢ = partial remainder after {th iteration

Po & dividend
reradizs 4
§¢ = $tb quotient digit

d = divisor

m is the number of radix v digits in @, . the last quotient
before rounding. Q. has the form g,. 42 §m. With
the binary point between g, and gp.

In a logical sense, the guotient is accumulated dur-
ing the iteration by resolving the negative quctient
digits. Using @ for the partial quotient after the @b
fteration,

;{‘Gn = Q4 (1v)

whers Qp = 0. An squivalent procedure ssves hardware
in our design. The positive and negative ¢,'s are beld in
ssparate shift registers. At the end of the iteration, the
negative register is subtracted from the positive ons.

It is not possible first to select g,,, and then carry
out equation (1a) in 100 ns.)t g(s; were known immedi-
ately, the worst cass delay to form the next full-width
remainder would be:

Read g,y from flip-iop QFF O as

Select g;.1d through MUX 18 ns
Add or subtract in DALU 64 ns
Setup time for gy, in RR Sns
Total

In arder to know g(,; at the beginning of a cyele, it is cal-
culated in parallel during the previous one. The GALU in
Figure 1 uses truncations of p; and g¢,; to guess quickly
the leading bits of py.). Then the guotient digit logic
squations are svalusted using the guess. For later refer-
ence, define p, and §.;d ss the truncatsd inputs to

GALU, and é-gm as its output. The gquotient sslection

table is addressed with the lsading bits of g,,, and d.
which we dencte by g,; and d. g, is not a truncation
of pesy. tince it may differ by one unit in its last place
from the corresponding bits of gy.

The worst case delay arcund the sslection loop is:

Read gy, from gip-fiop QFF Ons

Select gy.,d through MUX 16 ns

Add or subtract in GALU 35 ns

Prediction logic 0 ns

Setup time for g fip-B8opQIF 3Sns

Total 95 ns
Ths Algorithm

Before examining the guess ALU in more detall, we
need to explain the division algorithm. The significands
©of the initial division operands lie in the range

0 £ dividend pg € 2 @
1€ divisor 4 <2 (3)

because the divisor must bs normalized. The partial
remainders p, are two's complement, while the divisor d
is alvays positive.
After step £,

2 1 2

e & shns 34)
Consequently, at the beginning of the next step, after
-:—p.., has been shifted left to multiply by v,

"%“P‘n":" (s

Pieg O8N be driven back into the interval of eguation (4)
by the appropriste subtraction or addition of ssro, d or
2d. The process is illustrated in Figurs 3.

P‘m /D

1}
ooye-

-— ’l..l —’I

<-g0-> < gI->

,c—’sl —tn

FICURE 3 = DIVISION ALGORITHM

The setup step for the algorithm selects g,, which is
used in the first iteration to move the dividend from the
range of squation (2) into the range of squation (4).
Since the dividend is strictly less than 24, ultimately '1}
contributes one bit to quotient @, rather than two.
g1 = 2, then p, will be nogative and the adjustment to @,
during the second iteration of equation (1b) will be sub-
traction. Consequently, Qu bas an odd pumber of
significant bits.

8dit Next Remainder Prediction ALU

The guess ALU's width is chosen to satisfy the
conflicting demands of high speed and simple quotient
selection logic. Mesting an 8-bit boundary is desirable
for design with 4-bit ALU slices. To determine the
minimum reasonable width, we contruct a tadle for the
quotient sslection logic. Inspection shows that five
remainder bits and three divisor bits (plus the first bit
which is always one) are snough to determine g,.g #xcOpt
in a few cases. Table 3 shows our quotient selection logic
organized by these sight bits._In the sxceptional cases,
either one or two more bits of g(,y must be cbserved.

The fifth and sixth columns of Table 3 contain the

bounds on ?'f-vhleh can bs set by observing the bits of

F¢o1 and d shown in columns two and four. g,.q can be
sslected only if the minimumn and the maximum ratios in

e given row are within g—uniu of the same integer. The

bounds depsnd on the reiationship between g(,, and p,,,.
z::. EALU': inputs are truncations of the main ALU's
puts.

1gerd| = |gee1d chopped| = |go1d] ¢ (=1,0] (o)
$i = p chopped = p + (=10)
where ths intervals are in units of the lsast significant

'Nt of GALU. Depending on the sign of g¢.y. the GALU per-
orms

B o Xt lfedl ®
Case +:
ot o By (-20) (90)
Case =
Gse P

s -t (=1.1) if GALU performs A-B, but (8b)

lc,n - 2-;01_ + (-2.0) if GALU performs A-B-1. (9c)

Since a particular g¢,y may result from either addi-
tion or subtraction,

Per ® g ¢ [0.2) ULPs of g, (10)
for the asymmetric GALU which performs A+B or A-B-1.
The quotient selection logic addressed by g¢,; and & can
bound Bl

for gi1 20,

- 7 < Bt g
d ¢+ 1ULPatd - ¢ d
ier ¢ 1ULP°!§'¢.-1: 1UlPof gier =

3 2t (110)

for geey €0,
g1 ¢ 1ULPotger + 1ULP of gy — 2¢
d + 1ULPofd -

Puny |- [0
< r 4 —a

(11v)

whers ¢ = 1 ULP of py,y and d.

The bounds can be ovaluated once the widths of g.,
and d are chosen. In our design, g(,; bas sight bits and

d bas four, so one ULP of g¢,, = T’—.cn-mofi_.;- -:—
endone UlP of d = -3- Figurs 4 illustrates the calculs-

tion of geere

— Pi
+ “TCTIITCZ oA
———————— Ji
2
rd
———-—.——:J— Jiﬂ
Tt
FIGWRE 4 — Ty

As an example, assume that g;,; ® binary 0001.1
d = binary 1.000. Bin i end

1.8 o 1.9¢ 08¢ 0.62% = 2¢
10 ¢ phrpimTy S Dybs L2008 0ES o2 ¢ posas

Asymmetric GALU
The advantage of equation (10) over its counterpart
for & symmetric GALU is that g, wiggles in only one

direction. |g.:| is never larger than [pg,y]. Many fsr,

e d
Jee 1
i+1umda"“°"'"""“"'"°'? e

predictsd minimum megnitude for ’%-.qulh 'Y -i-or
¢ -‘L; or a predicted maximum magnituds squals & E-or

& o then mors than five bits of g,; must be observed.
Tb° avoid looking at more bits when the maximum ratio is
3 for example, the predicted minimum ratio would have

to be u-;-. But Table S shows that the difference

between the predicted bounds is never as small as -;—

unit. Since gq,, is uncertain in only one direction rather
than two, there is sufficient information without observ
ing enother bit in approximately balf of the boundary
cases.

Our quotient seloction logic implements Table 8
using 39 minterms. An earlier design based on a 9-bit
symmetric GALU would bavs requirsd 58 minterms. An
8-bit symmetric ALU would bavs required even more
minterms and at lsast one more bit in g¢,,or d.

Although asymmetry decreases the size of both the
ALU and the programmable logic, it might not simplify
RAM implementation. The width of g¢,; remains ssven
bits rather than six because of one bad case: see
*(9eey d) = (1110.02x, 1.000) in Table 3. A single level
RAM would require ten address bits. However, a two level
RAM implementation, such as the one suggested by Tan
[?]. could trade one more bit of d for ons less bit gy

Varificetion 2

The quotient selection table was tsstsd by simula-
tion with all pairs of #-bit dividends and divisors. No
error was found end no part of the unimplemented
region (n Table 3 was accessed. Random modifications to
the tadble caused errors to be detected.

Division tep by Step
The division operation proceeds in four steps. Refer

to Figure 1.

Step 1
Load the divisor into DR. Load the dividend into RR
through MUX and DALU. The MUX shifts the dividend
right by four bits and there is a wired left shift by
two bits at RR. The net effect is to shift the dividend
right by two bits. The dividend is loaded by & roun-
debout path in order to save the space and delay
which a multiplexer in front of RR would cost.

Step 2
Put g, into QFF by adding sero to RR in the ALUs
and reloading RR. This leaves the dividend in RR
with its binary point in the same relative position as
the divisor’s binary point occupies in DR. GALU's

output !'2- equsals E'L Consequsntly, the quotient

selection logic chooses ¢, by comparing the divi-
dend and divisor with their binary points correctly
aligned.

Step d .
Repeat squations (1ab) 34 times. The sign bit of QFF
controls the ALU operation. The other two bits con-
trol the MUX. At the end of sach cycle, clock QFF
into the POS and NEG registers, py,, into RR, and
".' hb m.

Step ¢
Subtract NEG from POS to form Q,,. i p, (In RR) is
negative, then subtract one more ULP from Q,. The
Sticky bit is sero if p, = 0 and ons otherwise.

For ths purpose of division, DR is a register of the
same length as the opsrands. RR is a register three bits
longer than the operands. DALU is one bit wider than the
operands. POS and NEG are shift registers four bits
longer than the operands.

Remaindsr

KCS defines & remainder operation whose result bas
maegnitude no greater than balf the divisor's magnitude.
To produce this result, a fixup step is required after divi-
sion. It is convenient to change RR from a register to a
shift register so that the last partial remainder can be
shifted back to the right by two bits in order to align it
with the divisor.

Square Root

The restoring square root algorithm produces one
result bit per step. The accumulated partial result after
any step is the truncation of the infinitely precise
answer, so the bits may be collected in a shift register.

The algorithm consists of “completing the square.”
Two bits of the operand are brought into the calculation
during each cycle. Imagine that before sach cycle the
remainder and partial result are aligned so that

{(ar)® € cpsrand = (ar ¢+ b)Y ¢+ ¢ < (ar ¢+ 7)® (12)
whers
ar = (he truncated result already found

r = radiz = 2
a.d ereintsgers

¢ isarsalnumber £ v

and we seck b In 0D £ r-1 to minimize ¢ 0. The
current remainder = (ar ¢+ 8)ec - (ar)t
= 2arb + b2 4+ c. b is sither O or 1. To find the next
result bit, assume d = 1 and subtract 4a + 1 from the
current remainder. The next result bit is one if this
differsnce is 2 0, and zero otherwise.

The position of the binary point within the operand
imposes only one restriction. Pairs of operand bits
brought into the calculation must lie on the same side of
the binary point. Thus if the exponent’s value is even
and the significand’s value is between 3 and 2, only one
bit will be used during the first iteration. The significand
is shifted left by one bit if the exponent is odd. This may
raise the significand’s value in the first iteration to
bstween 2 and 4, so that two dits ars used.

The bardware previously described for division and
remainder is extended in three ways for square root.
Shift register SQR holds the operand until it is intro-
duced into the computation. RR becomess a two bit at a
time left shift register. (The remainder fixup step
already requires it to be a two bit at & time right shift
register.) DR is changed from a register to a one bit at &
time left shift register in order to hold the developing
squars root result.

As used in square root, RR and DALU are three bits
wider than the operand. DR is ons bit wider than the
operand because the point et which result bits are
inserted into DR is two bits left of the least significant
end of RR and DALU. SQR is one bit narrower than the
operand because the first two bits of it load directly into
RR during the intitialization step.

A Note on Software Square Root

W. Kaban has shown that software square root algo-
rithms can find the correctly rounded result using inter-
mediate guantities no wider than the precision of the
operand [13]. The calculation is simpler if the machine
can chop quotients and round sums. Software methods
can bs sxpected to take between six and fifteen divide
times, depending on the size of the processor. The

larger the processor, the greater the ratio. if hardware
square root takes between one and two divide times, it
will be about ten times faster than software. The choice
of implementation depends on the importance of tbe
square root operstion and its incremental cost in the
total hardwars design. ’

Square Root Step by Step
The square root operation proceeds in five stsps.
Refer to Figure 2.

Step 1
Load the operand into DR. The operand should be
normalized in order to avoid wasted cycles ot the
beginning of the itsration.
Step 2
Sst QFF to one if the operand’s unbiased exponent is
even. Set QFF to two if the exponent is odd. In the
latter case, the operand will be shifted lsft by one
bit during the next step.
Step 3
Move the operand from DR through the MUX into RR
and the square rbot register SQR. 65 bits (mot
including the sign which is known to be positive)
come ocut of the MUX. The two high order bits, which
are conceptually to the left of the binary peint, go
into the least significant bits of RR. Clear the
remaining bdits of RR The 83 bits which
are conceptually to the right of the binary point go
into SQR. Clear DR to prepare for shifting in the
result bits.
Step 4
Repeat 85 times: Subtract DR plus one from RR. It
the difference is non-negative, then abift it left by
two bits and store it in RR. Shift DR lsft by one bit
and carry In a logic one.® If the differonce is nege-
tive, then shift the old contents of RR left by two
bits and shift DR left by one bit with a carry-in of
ssro. In sither case, shift SQR left by two bits and
fill in the rightmost two bits of RR with the bits
shifted out of SQR.
Step 5
Move the 85-bit result from SQR to the normalize-
tion and rounding logic by clearing RR and adding in
the DALU. The Sticky bit is the 88th bit of the
result. It is formed by the logical OR of the DALU
carry-out and the bits of RR during the last iteration
of Step 4.° The sticky bit is latched at the end of
il“p ‘d.” that information is not lost when RR is
care

Conclusions

Radix four division offers us the most cost-effective
improvement (in the same technology) to radix two res-
toring division. Radix four uses the same hardware
structure in the partial remainder loop except for a mul-
tiplexer to produce a second multiple of the divisor.
Since the ALU delay dominates the loop, radix four has
the same step time as radix two. Quotient digit sslection
ia the limiting task, so we reduce the width of the guess
ALU to eight bits in order to speed that path. Our
tradeofls benefit a programmable logic implementation
of the look-up table. Different choices could bs better

9 The carry-out from DALY ia tied directly to DR's left ahift fxput.

¢ I the last iteraticd produces a one, then the square root bas an
infinite sumber of nonserc bits ard the Sticky bit abould be & ane. The
ALU’s carry-out is & one in this case. E the last iteration produces s
zs70, then the Sticky bit is & cne i the previous remainder wes nanzero.

for @ RAM implementation, especially a two level one.
The cost of resolving the redundant quotient repressnta-
tion is low because registers and an ALU sisewhers in the
accelerator can be shared for this purpose. Kardware
square root is an inexpensive extension to eur division
scheme. The sxtira hardware is a shift register to hold

the opsrand and s shift register to bold the result.

Acknowledgement

¥. Kahan bas offered encouragement and walusble
suggestions throughout the course of this projsct.

Rasferences

(1) IEEE Computer Socisty Microprocessor Standards
Committes Task P754, "A Proposed Standard for
Binary Floating Point Arithmetic, Draft 0.0," Com-
puter 14, No. 3, March, 1981, pp 52-83.

(2] J. Coonen., "An Implementation Guide to & Proposed
Standard for Floating Point Arithmsetic,” Computer
13, No. 1, January, 1880.

[38] G. Taylor and D. Patterson, “VAX Hardware for the
Proposed IEEE Floating Point Standard.” Fifth IEEE
Symposium on Computer Arithmstic, May, 1981.

(4] D. Atkins, “The Theory and Implementstion of SRT
Division,” Report 230, Dept. of Computer Science,
Univsrsity of lllinois, Urbans, June, 1987,

{5] D. Atkins, "Higher-Radix Division Using Estimates of
the Divisor and Partial Remainders,” JEEE Transoc-
g;; on Computers 17, No. 10, October, 1988, pp.

34.

{6]) D. Atkins, "A Study of Methods for Selection of Quo-
tient Digits during Digital Division,” Ph.D. disserta-
tion, Report 397, Dept. of Computer Science, Univer-
sity of llinois, Urbana, June, 1870.

{7] J. Robertson, "Methods of Selection of Quotient
Digits during Digital Division,” File 683, Dept. of
Computer Science, University of lllinois, Urbana.
Juns, 1885, .

{8] D. Atkins, “Design of the Arithmetic Units of Ilise I:
Use of Redundancy and Higher Radizx Metbods,”
Report 333, Dept. of Computer Science, University
of Illinois, Urbana, May, 1989.

[e] X. Tan, "The Theory and Implementations of High-
Radix Division.” Fourth IEEE Symposium on Com-
puter Arithmetic, October, 1978, pp. 154-163.

[10] U. Kalaycioglu, “Analysis and Synthesis of General-
ized Radix Additive Normalization Division Tech-
niques,” Ph.D. dissertation, SEL Report 88, Dept. of
Electrical and Computer Engineering, University of
Michigan, Ann Arbor, May, 1975.

{11]3. Baron, "Implementation Study of Generalized
Radix, Non-Restoring Division Techniques,” SEL
Report 102, Dept. of Elgctrical and Computer
Engineering, University of Michigan, Ann Arbor, Sep-
tember, 1977.

(12] D. Atkins and U. Kalaycloglu, “Concurrency in Gen-
eralized Radix Non-Restoring Division"”, Twslfth Aller-
ton Conference on Circuit and Switching Theery,
l.lgla\-r;:gty of llinois, Urbana, October, 1874, pp.

[13] ¥. Kahan, "Software Square Root for the Proposed
IEEE Floating Point Standard,” Computer Science
Division, University of California, Berkeley, August,
1860, submitted to JEEE Transactions on Mathemat-
{cal Softwars.

Ty
T o
remamdsr (Ts somp)
dogtma] __ Mizary |
-8 1100.1
-0 1101.0
-3 1301.1
-2000 3110.000
=187 1119.60)
=1L780 3110.010
-1488 1110013
=13 1101
-18 nus
-28 1111.3
% e
s 8000.1
18 001.0
13 0001.1
2] %100
L] 0103
-28 3100.1
-8 1101.0
-28 1011
-200 1110.60
-1.7 1110.00
=15 1101
=10 n1e
=08 11138
00 0000.0
s 0000.1
10 001.0
150 0001.10
1.7 o0e1.13
a0 010.0
88 010.1
88 @110
-8 31%0.0
-84 11001
-20 11010
-85 11011
-89 1100
-13 1110.1
-100 ni.w
--" 1o
-5 11113
.0 0000.0
ol ©000.3
19 ©0001.0
13 0001.3
a0 @100
s o101
39 0011.0
s 1.2
-3 1o
-0 11000
28 1100.1
-20 1101.0
-8.80 1101.10
-2 1o
-8 12100
-8 mes
=180 ne
-2 nn
=23 11181
[d §000.0
s 80001
[oed 0018
18 8001.4
. et
] 010.1
el 01e
L] [_1iR}
=25 1Ly
-8 11508
-23 ue.1
-0 11010
-8 1014
=20 - 31100

rrrrrrr;rrrrr
- o o - - -
BEEEEDEREERR

<

firet 4 WMhs

of diviasr

[)

Sestmal _binery |

L0 1000
1.000 1000
3.800 1.000
1.000 1800
1000 1000
1.000 1.000
1.000 1800
1.000 1080
1.000 1.000
.00 3080
1.000 1000
1.000 1000
1.000 1000
1000 1000
1000 LOBD
L0 1000
48 1001
110 1001
1188 1001

128 1001

Table 3. - Quotient Selacticn legic:

Asymumetric 8-t Next Rermatndar Predictisn ALD

Q
s e ied [nent ol
Mundnlc’“. g
to full diviser & (dgn caag)
Lninimyn __ paaximum
«80111 <3.8000 -8
21807 -3.0000 -8
19838 ~8.8000 -8
-1.0111 =8.0000 -2
«1.0008 -1.4750 -2
13000 ~1.9900 -2
-1 15350 -}
«0.5333 -1.9000 =3
88800 -1.0000 -1
00828 «0.5000 -©
9.0000 0.9028 «
0-0004 10838 *
..0000 1.0629 e
15338 s.0028 ”
L™ 20830]
smn s.0828 o
-2 w0 -4u1n -2
-1.000u =2.0007 -2
-1.9000 -R.e2E2 -2
15800 <LYTM8 -2
. X -1
-3
-1
-9
«w
.l
.
o
o
]
”
]
-2
-1
-3
-g
-1
-}
-1
-9
-9
0
n
)
el
o
L
"
o2
-8
-8
-8
-8
-8
-l
-1
-1
-}
-9
-y
-
o
.
21
]
e
o
-
-8
-8
-8
-8
-1
-0.0048 -1.33% -3

Tin [§9Y
et 6-7 bts of firet ¢ bs ratie of shifed 2ST quetiont
estimated nazt of diviscr full remaioder Piny >

rematnder (2's eamnp) (poattiv) WA dvisar d (sign: mag)
Ldocimal __ Mnayy | [minjomm __martmum
=19 1118.3 3.800 1.160 | -C.c7e8 «3.0000 -1
-1 1111.0 3.900 1.300 | -0gese =0.0087 -9
23 1111.1 1.900 3.160 0.0417 =0.3353 -
090 0000.0 1000 1100 ©0.0000 0.3700 L]
080 0000.10 1.900 1.300 .00 0.0417 *0
(X,] 0000.11 1.900 1100 0.e819 c.7083 L]}
18 0001.0 L0000 1100 C.018¢ 1.041?7 *
18 8001.1 1900 1.100 c.0e31 1.9780 *l
209 018.00 1.000 1100 18308 1.8417 ol
ass 010.01 1500 1100 1.9040 1.7083 2
s [IU%) 1.000 1100 1.5388 8.0017 o2
80 0118 1000 1100 1.0482 25700 L
(1] o011.1 1900 1.100 81659 0.7083 o
[V] 0100.0 3800 L3100 S4018 8.0017 L
--8 1011.8 1685 1101 | 88307 -0 -8
<5 10113 1.088 1101 | =8.8800 -8.7002 -8
40 1100.0 1.638 1.108 =].0843 -8.4013 -2
-5 11003 1.088 1101 -1.8700 -2.1839 -2
-0 1010 1.085 1101 | -1.0029 ~).0482 -g
-8 11011 1.083 1103 =1.107M1 -1.5983 -1
-0 11100 14828 1.101 -0.8314 =1.2908 -1
-18 13101 3.088 1.101 =0.8387 «0.423) -]
=30 111.0 1483 1101 «0.8500 «0.810¢ -£
-3 nl 1.088 1.101 0.c380 -0.307? -
[T] 0000.0 1085 1101 ©.0000 0.5482 L]
os ©000.1 1.8 101 02837 ©.6338 «
10 o010 1.638 1.103 o871 c.0018 ol
13 0001.1 1.628 1.101 0.e071 1.2032 L2
89 0010.0 1.623 1.101 1.1409 1.970 ol
2 0818.1 1.038 1101 1.4200 1.8040 3
[1) 0011.0 188 1101 1.71163 21829 L
‘88 o011 1.628 1191 :m 2.8000 o2
'y] 0100.0 1.620 1.101 2837 .00 o _
%] $100.1 1.8 1101 a2ev1e 8.3184 »
-8 ;e 1.9%0 1310 | <t @m%3 «4.1489 -8
-0 1011.0 1. 1110 | -G.%00? -2.0073 -2
-45 1011.3 1.7%0 3.110 «8.1000 -2.871¢ -2
-0 1100.0 1.79%0 1310 | ~-1.83% -2.9857 -2
-39 2100.1 1.7%0 3.110 | -1.0087 «2.0000 -8
=3.00 1101.00 1790 1110 | -1.4833 1M -8
-2.98 1101.08 1.900 1110 «1.9000 -1.0716¢ -]
-8 11011 1.780 1310 | -1.0833 -1.4208 -1
-20 1110.0 1.990 1310 | -6.7907 =1.1489 -]
=19 11101 1.990 3.110 | =0.0000 -0.0071 -1
-19 1110 1.990 1.110 | =0.g932 ~0.6714 -©
03 1118 1.980 1.110 0.0087 «0.82007 -£
[]] 9000.0 1.Y%0 1110 0.0000 0.831¢ «0
[T} 0000.1 1.0 1.110 0.8007 [X 14 0
10 oo01.0 1.990 Lo 0.6333 0.0030 (4
18 ©001.1 1.980 1110 ©.8000 1.1708]l
80 0010.0 1.990 1110 1.000? 1.0840)
[])] 9010.1 1.790 11310 1.83% 1.9800 2
20 0011.0 1.9%0 1.110 10000 8.633? o2
| V] 9011.1 1.980 1.110 1.0087 8.821¢ o8
40 0100.0 1.700 1.110 81883 8.0071 -8
9 0100.1 1.7 1.110 9.4000 2.008% o8
-3 1010.1 1., 1111 | <0400 -£2.931 -2
-20 1011.0 14 111 | 8888 2.7 -2
-3 1011.3 1% .11 | -1.0600 84000 -2
-0 1150.0 1.7 £.11 | =-1.7100 -8.153° -2
35 1100.1 1.7 L111 | =1.4000 «3.0087 -8
=20 3101.0 107 L1183 | ~18188 =).9000 -3
-23 13013 1.0 1311 | 0.8 «31.5339 -1
-8 1110.0 167 L1] 0N -1.0007 -1
-3 1188 1878 1111 | 0408 -0.0000 -
=10 1o 1.8m 1111 | «0.8100 -0.6333 -9
-8 118.0 ‘3.0 1113 0.0333 -0.2007 -£
(] -] 0000.0 107 1111 6.0000 0.9000 +«*
o8 0000.1 107 1111 0.8300 G.0087 L]
19 ©0001.0 1.8 1111 0.6000 ©.e333 ol
18 0001.1 1.7 1111 0.7800 1.1000 L3
80 00100 1.0 1.111 1.0008 2.0007 *
8 o010.1 1.078 1111 1.8900 1.0339 [2
2.0 0011.0 1.0 1111 1.9000 3.0000 <8
8 o111 1.7 .11 1.7800 2.1007 2
[¥ -] o10.0 187 1113 £.0000 2.43%3 L,]
48 o100.1 1.0 1113 8.82000 2.7000 L,
e o0 1L 38 131 $.0000 g eea? 28

