
Thacher Comments on Floating Point Indoctrination 4/18/88 

COMMENTS ON FLOATING-POINT INDOCTRINATION SYLLABUS 

P- 5. Project Suggestions. These additional topics, about 
suitable for a master's project, might be of interest. I can 
supply additional details and preliminary results to anyone in­
terested. 

a. Static representation of floating-point numerals. MACBAR 
and PARANOIA characterize floating-point by analyzing the results 
of floating-point arithmetic operations. It is also important for 
some purposes to know the representation of numerals in memory. 
This can be accomplished by manipulating the memory representa­
tion using integer or logical operations. I have already gotten 
the wordlength, base, and scaling factor, as well as the bits 
allocated to the exponent and significand. More things need to be 
worked out. 

b. Testing Functions of Several Variables. Most protocols 
for testing routines for testing functions of a single variable 
include tests at a set of random values of the variable. For 
functions of two or more variables, the number of values rapidly 
becomes exorbitant. In quadrature, where the same explosion in 
data requirements is found, considerable attention has been paid 
to using "equidistributed" point sets (c.f. Stroud, Approximate 
Calculation of Multiple Integrals, Chap. 6). Bow well would these 
techniques apply to estimating at least the RMS error of a func­
tion routine? They should, of course, be supplemented by tests at 
critical points. 

2. Comparisons of floating-point arithntetics in computers. I 
assume you are aware of Yohe's MRC reports on this topic. 

I hope you will blast the manufacturers who advertise that 
BCD arithmetic is free of rounding errors. 

Don't forget to mention the problem with early IBM 360's 
which they had to field modify because of no guard digit for 
multiplication in double precision. 

What effect will RISC architectures have on floating-point 
calculations? Coprocessors driven by a RISC cpu? Microprogrammed 
floating-point operations? Interpreters? 

Kathy Ward wrote a balanced ternary floating-point simulator 
as a M.S. thesis for me at the University of Kentucky in 1983. It 
includes C listings for the arithmetic and conversion routines. I 
can make my copy available for copying by anyone who wants to 
experiment with this system. 

It may be of interest to note that the EDSAC 1, probably the 
first machine to have even programmed floating point, used a 
binary significand, with a decimal scaling base. Fortunately, 
they normalized the sisnificand so that 1 < lfl ~ 10, so that ~he 
integers could be represented exactly. Tom Kurtz, in the inter­
preter for his SCALP Algol processor for the LGP-30, chose the 

1 



Thacher Comments on Floating Point Indoctrination 4/18/88 

normalization 1/2 s lfl < 1, so that only multiples of 5 were 
exact. 

Metropolis pushed unnormalized arithmetic on MANIAC III, as 
expounded in several papers by Aschenhurst. Argonne (Gray and 
Harrison, IEEE paper early 60's) proposed using an index of sig­
nificance (i.e. a count of the number of left normalizing shifts) 
and built the floating-point processor FLIP which was attached to 
the old George machine. Unfortunately, by the time it was built, 
there was nobody around who was interested in using it for 
research. 

On multi-precision schemes, Bob Gregory pushed a scheme very 
hard. It is described in a little book he published, my copy of 
which evaporated with some student. You can also find something 
about it in Young and Gregory's two-volume numerical analysis 
book. The scheme required too much programming for me to experi­
ment with. I translated Hill's ACM Algol procedures into FORTRAN, 
and used them quite successfully for special tasks, e.g. comput­
ing the continued fraction for the exponential integral and sine 
and cosine integrals, and the zeros of the latter, and the coef­
ficients of the Gram series for the Riemann zeta function. 

5houlc1n' t, oonveroion of preeisiona be in,Jluded amon,i t.11e 
algebraic operations? This would emphasize the danger of assuming 
that a variable as stored is the same as the value remaining in 
an extra-length register. 

Is Pichat as good a reference on precision doubling as Lin­
nainmaa's 1981 TOMS paper? I transcribed it for Borland's Turbo­
pascal 2.0, and spent quite a while discovering that their pro­
grammed floating-point did not use a guard digit in subtraction. 
Naturally, my complaint fell on deaf ears, and I upgraded to 
Turbo-87. I do hope they send a representative to these lectures. 
I haven't checked the emulators on their more recent releases. 
Another project, perhaps. 

3. Models of floating-point arithmetic for programmers. 
Wasn't Dekker's paper one of the first to attempt to define what 
the programmer should be able to expect? 

Should the model, and preferably a usable one, such as the 
IEEE standards, be an essential part of the language specifica­
tion? As I remember, ADA tried this with the Brown model, but 
that is a bit hard to work with. I told Kurtz of the IEEE work 
when they were producing the new BASIC standard, but they didn't 
take advantage of that ef f·ort. 

To what extent should accuracy checks be included in mathe­
matical software? For example, Forsythe, Malcolm, and Moler's 
approximation to the condition number in DECOMP and SOLVE, or 
regenerating a polynomial from its computed zeros. 

5. Real elementary transcendental functions. The key to most 
function routines is a nonanalytic operation: exponent manipula­
tion, extraction of significand, and so on. 

Relative error is a manageable, but inexact way of account­
ing for variations in the size of the result. The goal should be 

2 



Thacher Comments on Floating Point Indoctrination 4/18/88 

accuracies which match the wobbling precision of the particular 
floating-point representation. 

"Best" approximation is a game played by approximators. We 
should look for the cheapest good enough approximation. A suc­
cessful approximation depends far more on range selection and the 
use of an effective auxiliary function than on tedious leveling 
of the error curve by adjusting the parameters. Many high quality 
numerical tables, including some in AMS 55, use good auxiliary 
functions to permit easy interpolation. With proper auxiliary 
functions, truncated Chebyshey series are usually good enough. 

·Not elementary functions, but pertinent to testing: Along 
with checks in critical regions where isolated extreme errors may 
be found, most testing protocols include tests at a fairly large 
number (2000-5000 say) of random arguments, preferably con­
strained to provide fairly even distribution over the domain. For 
functions of several variables, the number of evaluations to 
provide equal coverage of the domain becomes 2000A(number of 
variables). The project may reduce this somewhat. 

6.Complex arithmetic. I have been looking at T-polynomials 
on regular polygons in the complex plane, because triangles, 
squares and hexagons cover the plane without overlapping as do 
circles for which the polynomials are the powers of z. The work 
is not complete, but they seem promising. I can tell you more if 
you are interested. 

a.Numerical lapses in standard programming languages. Many 
of the problems we see may derive from the poor Algol 60 choice 
of real to indicate floating-point numerals. Floating-point num­
erals are all rational, at least. Furthermore they are enumer­
able. Each except for the infinities has a successor and a pre­
decessor. Providing these functions would allow easy monitoring 
of precision at a particular value. 

Ignoring integer overflow can conceal some errors, but warn­
ings should be optional. Otherwise, random number generators are 
harder to write. 

Most ABS functions I have seen return a negative value for 
the most negative representable integer. 

Your objections to Pascal seem to have been eliminated in 
the latest version of Turbopascal 4.'0. 

I remember your complaining about the conversion of cons­
tants including the question of when it should be done, and that 
it should be done well, and coldormable with the I/O conversion 
routines, but I did not find it in the syllabus. 

3 




