t

A
i
i
'

1

e

North-Hotland
Microprecessing and Microprogramming 1 {1983) 221-226

‘lmplementati'on of Transcendental Functions

on a Numerics Processor

Rafi Nave

Intel Israel Litd., M. T.M. Scientific Industries Center, P. O Box’

1659, Haita 31 015, Israel

The Intel 8087 is a numerical processof that delivers
unprecendented functionality and performance for a single
VLS! chip. Cne of its key features is the performance of the

transcendentat (logarithmic and trigonometric) instructions that

compute with very high precision and fast execution times.

The above was achieved by making thrée major engineering
decisions: .

(a) The sefection of an instruction set which is minimal
enough to be implemented in firmware, and still covers' the
primitives for ali desired transcendentals;

{h) The selection of the CORDIC algonthms “tor
implementation of those primitives;

(c} The selection of minimai hardware extensions o the
architecture that enable efficient execution.

Keywords: Numerical processor, transcendental instructions,

performancge.

1. Introduction

The implementation of transcendental-functions
usually involves the selection of the instruction set,
algorithms and firmware. In the case of the Intel
8087 [1, 21, the constraints of code size, and ex-

isting architecture accompanied by ambitious per-

formance and precision objectives implied t_h.eneed .

for a unique solution,

1.1. Transcendental Instructzons Objectives

The instruction set had to inciude the basic mstruc-
tions that will enable, with minimal softwa.re ef-
fort, to calculate all logarithmic, e«:ponential
hyperbolic and trigonometric functions.

A very high precision, as measured by a relatwe

error smaller than 3.27 64 for results that have 64
bits of precision should be obtained.

The execution time of those basic instructions
nad to be less than 200 micro seconds.

1.2. Design Constraints

The micro code size was limited to about 500 lines
for the whole transcendentals set.

The floating point data path and control were-

optimized for the basic instruction set (ADD, SUB-
TRACT, MULTIPLY, stc...). Only "‘minimal,
essential, extensions could be tolerated.

Only minor modifications to the existing micro
instructions were permitted.

1.2, Implemeniation Sirategy

1.3.1. Selection of Instruction Set

It was determined that 4 instructions will do the
job: LOGARITHM, EXPONENT, TANGENT
and ARCTANGENT. It can easily be shown that
all the desired transcendental functions can be
computed with this set. The domain of
trigonometric operands was selected so that the-ap-
plication of the REMAINDER operataon can easily
reduce any operand to the proper range; (0, 7:/4)
1.3.2. Selection of Algorithm: :
The computatlon of a transcendental function can
be in one of several techniques: Polynomial (like
TAYLOR series), continued fractions, rational ap-
proximations, or coordinate rotation - CORDIC
[3~7]. The domain of operands, performance re-
quirements, and given archatecture led us to the
conclusion that CORDIC will give the most effec-
tive results. This will be illustrated throughout this
paper by the example of the TANGENT function.

¥

222 R. Nave / Impilementing Transcendental Functions

2. The CORDIC Technique
2.1. The Motivation for CORDIC

‘The polynomial or rational approxiriztions usually
incur a computation error which is proportional to
some power of the operand. For example, if one
takes 5 elements of the series:

Y=In(l - X)
e Xt e b e T T 1)

the error, for small enough X’s is roughly: X°/6.
if we could evaluate the function ¥ by using an ar-
bitrarily small X, we could obtain the desirable
small enough computation error.

The CORDIC algorithms provide such a con-
trolled approach to reversible arbitrary reduction
of the operand’s size, evaluation of the function,
and a build up of the result for the original operand
from the result computed for the reduced operand.

2.2. The TANGENT Example

The coordinates rotation is illustrated in Fig. 1.
The coordinates system is rotated by angle § and
the following relations hoid:

___£ ;}’i+1
tg{e) = X tg{0;)= X, (2)
=0+ f,
te(a) = tg(a;+1)+tg(ﬁ))

1 tg(e,) 18(B)

Xt

i+1

Fig. 1. Rotation of Coordinates.

If we substitute (2) in (3), we get:
Y, Y+ Xiey
X XY etg(f)

If we select a very “‘special’’ B, such that
tg(f)=2""[i.e., f=Arctg(277)], we get:
Y, Yoo #2700 X

—=—r . 5
X X:‘+1“2_[°Yi+l : ®

In other words, if we reduce the operand’s size
from @ to a,, and compute Tg(e.)=
Y, /Xy, we can compute Tg(a)=Y/X;
through the relations: '
Y=Y +27 X,

, {6)
X=X 1 -27"Yiup.

It is important to note that a multiplication by
2~7is simply a shift right by / locations. This coor-
dinate rotation can be applied as many times as one
wishes. It can be proven that the representation:

N
a= 3, g B+ oy, where a<n/4)
i1
))
fi=arctg2™), g={1}

is unique and oy, <27V,

Similar techniques (although less illustrative) can
be developed for other functions that converge for
small X’s to 0 such as:

Y=In(l-X), Y=2%-1,
or Y=arctg(X).

2.3. Computational flow

All CORDIC algorithms consist of three major
steps:

1. The PSEUDOQ DIVIDE where the operand is
reduced to a desired small value, while a ““record”’
of the reduction process is stored in the form of a
PSEUDO QUOTIENT. The PSEUDO QUG-
TIENT’s i-th bit is set to 1 for every iteration i,
after which the residue is still positive, otherwise it
is set to 0 and no reduction takes place.

2. The RATIONAL APPROXIMATION com-
puting the function for the last remainder with a
guaranteed precision,

3. The PSEUDO MULTIPLY where the result

(4)

R. Nave / Implementing Transcendental Functions 223

for the original operand is built up iteratively, us-
ing the result of the rational approximation as a
starting value, and the PSEUDO QUOTIENT as
the computation control. Only rounding errors af-
fect the accuracy of this step. o

3. Implementation Example —~ TANGENT

3.1. Polynomial Approximation
The TANGENT function can be approximated by:
te(Z)=Z+4+Z3+ 2%+ LZ7 . (&)

If we compute only N elements of the series the er-
ror is roughly the (N+1)s element. Since Z could
be as big as £, the convergence of this series is
relatively slow, and it may take over 20 elements to
compute to our desired precision! This will yvield an
unacceptably high execution time, far higher than
the objectives we set.

3.2, The CORDIC Implementation

The CORDIC technique described in Section 2 is

applied. The TANGENT computation steps are:
(a) A PSEUDO DIVIDE step during which the

operand Z is decomposed in the following way:

N
<= _2} Gir T+ Ly gy

where
={% and r;=arctg(2™) {9

It can be shown that Z,,, <277 and that this
representation 1s unigue,

(b) The RATIONAL APPROXIMATION step
computing the function:
te(Zys1) = (10)
It can be shown that the relative error in this
approximation is E,=4(Zy.,) and thus, if
Zn+1<27 1% we can guarantees E,< 26,

(¢) The PSEUDO MULTIPLY sequence is now
applied. Let ¥y, =tg(Zy,,) and Xy, ,: =1, In
an iterative process for /=N through 1, one can

compute.

Yi= Y+ g X yo27!
and
X=Xi—gr Y, 270 (11}

At each step tg(Z;) = Y,/ X, and when N times ap-
plied, the desired fina} result is obtained:
tg(Z) =Y,/ X;.

It is important to notice that this PSEUDO
MULTIPLY process is as accurate as the precision
of the constants 7, and the rounding of the
machine. In our case the wide data path (67 bits)
guarantees that the camulative relative error will
not exceed 279,

3.3. Hardware Requirements

The given floating point machine already had the
facilities for multiplication and division, an
elaborate barrel shifter and micro code looping
support, as well as enough working registers. Thus,
the only additions to the hardware were:

1. Constant ROMs: for the constanis 7,=arctg
(27%, as well as for a similar set of constants for
the logarithm functions.

2. A 16-bit shift register for the PSEUDO QUO-
TIENT storage and testing.

3. A capability to set the shift span, and to ad-
dress the constant ROM?’s, based on the contents of
the loop counter. This is essential for the fast ex-
ecution and code compactness during the
PSEUDO DIVIDE and PSEUDO MULTIPLY
sequences.

With the above hardware extensions, the micro
code implementation managed to meet all the
design objectives,

4. Numerical Results

The above algorithms were used in the implementa-
tion of the Intel 8087 Transcendental Instructions
with the following results.

4.1, Precision

The precision of all instructions was better than a
relative error of 3.27% for floating point numbers
with 64 bits of precision.

R s At

224 R. Nave / Implementing Transcendents! Functions

4.2, Execution Time

The execution speed of the primitives, as well as the
operands” domains are Iisted in Table |,

A full support for high level elementary func-
tions is provided by a software library utilizing the
primitive tfranscendental functions. The perfor-
mance of some of those functions for a SMHz and
8MHz 8087 & 8086 chip set is listed in Tabie 2,

Table 1. Primitive Transcendental instructions

Execution
Time
{micro-
Operands Clock seconds)
Instructicn Function Demain Count BMHzEMHz

FPTAN YiX=Tg(Z) 450 80 57

0=Z=
FP Z= Os¥<X<eo 650 130 a2
ATAN aretg{ ¥/ X)

Z=

ESEY

FL2X Z=VY-logeX o< V< 4oe 950 180 120
O X< + o0

FL2XPY 7= —o<Y<+ow 850 170 107
¥iogz {1+ X) ;—’5—1<x<?—-‘§

FZXM1 Z=2%_4 0=X= % 500 100 63

Table 2. Elementary Functions Library

Function 8086 + 8087 Execution Time
(Migroseconds)
5 MHz 8 MH:z
SIN 486 304
Cos 489 308
TAN 338 21
ASIN 456 285
ATAN 303 188
ACQOS 476 298
TANH 542 338
COSH 528 330
SiNH 536 334
EXP 81T 282
Y**X ‘ . 624 390
L.OG 298 186

LOGIO 298 186

5. Conclusion

It has been shown that for a micro coded numerical
execution machine that has wide data paths, a high
precision and low execution time.can be obtained
by using the CORDIC technique. The careful im-
plementation can yield compact code size and only
minimal hardware extensions without COMPromis-
ing on either precision or speed.

Acknowledgement

I would like to thank Prof. W. Kahan for his
technical guidance and outline of the theory behind
the specific aigorithms that were chosen. J.F.
Palmer for the ongoing numerics expertise and
dialogue, C. Wymore and A, Kornhauser for their
support in the impiementation of the various
algorithms in hardware and firmware, Y. Talgam
for proposing valuable improvements to this
paper, and the whole Intel Israel design team for
their share in the 8087 effort.

References

[11 J. Palmer, R. Nave, C. Wymore, R. Koehler and ¢,
McMinn, Making Mainframe Mathematics Accessible to
Mini Computers, Electronics, Vol, 23 (8 May. 1880},

{21 R. Nave, J. Palmer, A Numeric Data Processor, Digest of
Technical Papers, ISSCC (Feb. 1880), 108-108.

[3] J.E. Volder, The Cordic Trigonometric Cemputing Techni-
que, IRE Trans. Hectron. Computers, Vol, EC-8 {Sept.
1859}, 330--334.

[4] W.H. Specker, A Class of Algeorithms for LNX, EXPX,
SINX, COSX, TAN™"X, and COT~ "X, IEEE Trans. Eiec.
tron. Computers, Vol. EC-14 (1965}, 85-8s8,

[8] J.8. Walther, A Unified Algorithm for Elementary Func-
tions, AFiPS 1971 Proc,, Spring Joint Computer Conf,
{1971), 379-385,

6] T.C. Chen, Automatic Computation of Exponentials,
Logarithms, Ratios and Square Roots, I1BM J. Res.
Develop., Vol. 16 (July 1972}, 380—388. ‘

{71 M. Andrews, D.E, Eggerding, A Pipelinad Computer Ar-
chitecture for Unified Elementary Function Evalustion,
Comput. and FElectron. Engineering, vol. 5 {1978},

189202,

R. Nave / Implementing Transcendental Functions . 225

Appendix

Basic Definitions

BARREL SHIFTER Hardware module that is able to shift, in
one ciock, a series of bits by a specified number of locations.

CORDIC “Coordinate Rotation Digital Computer” — an
algorithm that computes a function by structured rotation of
coordinates.

PRIMITIVE Subset of an intricate instruction. It is the kernel,
hardest to implement, or performance limiting portion which
can be extended to the full instruction, with simple software,

PSEUDO DIVIDE Reduction of an operand’s magnitude
resulting in a PSEUDO QUOTIENT, and a remainder that is
known te be smaller than a certain bound.

PSEUDC MULTIPLY build up of the result using the
PSEUDO QUOTIENT, and function of the remainder.

TRANSCENDENTAL FUNCTIONS Mathematical functions
that cannot be represented by a ratio of 2 finite polynomials, and
thus have no rationat representation.

Rafi Nave was born in Tel Aviv, in 1949, He served in the Israeli
Army as a communication technician from 1987 to 1970. He
graduated from the Electrical Engineering Faculty at the Tech-
nion, Haifa, in 1974, and received his M.Sc degree in 1979, He
joined Intel Israe!, a wholly owned subsidiary of Intel Corpora-
tion, in 1974. He was responsible for the development of the [N-
TEL 8279, he supervised the development of the INTEL 82534
and 80B0A, and managed the development of. the INTEL 8087,
He is currently the General Manager of Intel israsl,

