ional

come

rSoc
LE.'.‘.'T

H

£

&

o= Shicd

m e

c 3

iE

) 3

3 % A
Qg

S L. 0y

5> P78
[

U.W« .y m

w o

= 5 3

2 o

o«

o

-

Q

=

N-O'HARE

SHERATO
The lEEE Compute

K

Y]

_obvious advantage of
- software easier to write, ancther benefit tbat

THE INTEL STANDARD FOR FLOATING-POINT ARITHMETIC

John F. Palmer

Intel Corporation
Santa Clara, CA

Microprocessors will - inevitably enter the

realm of serious floating-point computation.
At the present there are some software
packages and bit-slice boards that perform
‘floating-point computation, but LSI technology
will socn be capable of numeric calculation
with respectable speeds. If we are to avoid
the chaotic situation that exists in this area
among mainframes and minicorputers, it dis
imperative that a standard be adopted. A
standard, just because it is standard, will
confer scme benefits; but to have any hope of

permanence the standard should' be carefully -

developed, paying particular attention to
those with experience in the field. Ve have
studied the present situation and consulted
with known experts and have adopted an
internal standard for floating-point formats
and arithmetic that we believe could be
adopted for microprocessors in general.

Floating-point arithmetic is an area where
microprocessors have so far found 1little use.
Becausa of slow execution speeds and narrow

data paths, they have not been capable of .

serious numerical computation. However, as
the power of microprocessors increases, it is
inevitable that floating-point capability will
eventually be provided in silicon.

In order to avoid some of the problems that
have in the past been associated with
floating-point arithmetic, we have decided to
adopt a standard for the formats and
arithmetic algorithms. The purpose of this

‘paper is to present this standard and briefly

discuss some of its merits.

Adopting a standard would confer advantages
even if the standard had some defects since at
least everyone would be “programming around”
the same ancmalies. FEowever, the standard we
propose has the additional advantages of
providing maximum accuracy with no ancmalies.
The arithmetic is done according to easily
understood rules which make results
predictable and accurate. In addition to the
making mathematical

107

- disastrous: for

will be e:cplaimd later is the abﬂ.:.ty to

perform Interval Arithmeticl only about two to
four times slower than ordinary f£loating-point
arithmetic. (A well implemented Interval
Arithmetic package on a typical mainframe,
because of faulty arithmetic, takes from forty
to three hundred times as long as
floating-point oanputat:.on) .

We have consulted with several experts in th:.s .

field in order to formulate a superior
standard, and we believe that it oould be
adopted as a general floating-point standard
for microprocessors. This would do much to
avoid the chaotic situation that now exists in
the mainframe and minicomputer environments.

As evidence of this chaos and motivation for
the need of a standard we will present three
examples taken from the present and recent

,pasl:. 'I’hese examples will -also motivate our

giving "accuracy a high priority in our
standard. . .

The first example we will oonsider was the
delivery of a rrajor line of computers with no
guard digits in the double prec1sxon
hardware. One explanation is that it seems
scmewhat oounter intuitive that one must
calculate results to greater precision than
one displays. The absence of guard digits is
‘example, there is no
multiplicative identity. Consider the
following four bit example: :

Xx= 1111 * 22
.1000 * 2 1
-01111000 * 2

With no guard digits the last one bit in the
product will be lost before normalization.
The normalized result will be

21110 x 2°
and therefore
1.0*XfX

Another consequence of no guard digits is that
relative errors can b2 far larger than those

in ocomputations with at least
digit.

one guard
For an explanation of why guard digits

are imperative see Kahan and Parlett?,

When the programing difficulties caused by
this oversight became clear, an offer to
retrofit all existing hardware with a guard
digit was made even though this product had

. been on the market for about two years.

Another problem that is common in nurerical
conputing is the lack of a forwat standard,
even within the same ocompany. One major
manufacturer has, with very few exceptions, a
different floating-point . format for each
computer model. One of the most popular
mocdels even has a different format for the

double precision software than for the’

hardware. One con of the lack of a
forrat standard is that converting from one
machine to another or upgrading from software
to hardware. can cause’ severe difficulties.
Another is the proliferation of machine
dependent software. ’

The last example we will cite has some
interesting parallels with the previously
cited case of no guard digit. In this case

. the guard digits are there, but they are not

properly used. A floatmg—pomt subtractl.on
on this widely used machine is performed in a
double length register. Since an unnormalized
guantity often results, the subtraction is
followed by a normalize instruction.
Unfortunately, this instructicn only
normalizes the most significant half of the

double lergth result. This apparently
innocent feature can cause catastrophic
results. Consider the following four Dbit
exanple: .

(.2000 * 21y - (1111 * 20

.1008 0000
.01l11 1030
.0000 1000

correct result : .1000 x 273

oonputed result: 0

relative error :I .1000 x 273 -
[.2000 x 27

It should be pointed out that since the guard
bits are there, a 5 instruction sequence
exists that will yield a fairly accurate
subtraction operation. Therefore, it is left
to users, if aware of the problem, to decide
if the extra overhead is worth it.
Carplicating the decision is the fact that one
of thz main reasons for using this powerful
machine is its execution speed.

We have atterpted to learn from the past; and
if there is anything that seems evident, it is

108

the need for carefully developed standards.
The INTEL standard for floating-point
arithmetic has been adopted to apply to all
general purpose products including software,
systems and corponents. (A software
Floating-point Arithmetic Library (FPAL) for
the 8080 and a Math Board (SBC-310) mada of
series 3000 bit slices have already been
prcduced using this standard.) In presenting
the standard we will first discuss the formats
and then the arithmetic.

FORMAT STANDARD

In selecting floating-point
primary considerations are word: size and the
radix of ths arithmetic. The choice of word
size will be discussed first. Fram the -

literatured it appears that a 32 bit .wocd is
regquarde@d as too small for
computation. However, scientific computation
is not the only agplication of floating-point
arithmetic, and in an environment of 8 and 16
bit processors, using a word length of 48 bits
would generate 50% unnecessary overhead for a
user whose application only required 32 bits.
Therefore,
manufacturers, that two word sizes . vwere
needed: a short precision word of 32 bits and
a 64 bit long precision word. This seems to
be an adeguate solution:
(but potentially fast) precision ‘for many
non-scientific applications and a long
precision for scientific and commercial
epplications requiring a high degree of
accuracy. (It is our opinion that 1long
precision is often used out of an exaggerated
fear of roundoff errors, and - in time highly

. accurate short prec;smn arithmetic will be

found adequate).

The selection of the radix of the arithmetic

was primarily based on the observation that if
ne is going to use a short word of only 32
bits then cne should choose the radix that

.provides the greatest potential accuracy.

Brent'? showed that for a given word size and
exponent range, binary arithmetic with an
implicit first bit had round-off
characteristics superior to radices 4,
16. In fact it was found that such a ‘binary
scheme with correctly rounded arithmetic was
aporoximately one DECIMAL digit more accurate
than truncated hexadecimal arithmetic. In
addition binary arithmetic is well understocd,
easy to irplerent and potentially very fast.
These considerations led us to choose a binary
radix irplemented with an implicit initial bit.

Besides word size and radix there are other
considerations such as
precision and exponent range. On the matter
of represantation, there seams to be agreement
that sign-magnituds is superior to 2°'s

formats the

scientific

wa decided, as bave most -

providing a shoct .

8 or.

representation, .

10

..éa@lementa’s. If the word size is fixed, the

range and precision are functicns of each
other. Cody (1971) states that a range

of 10273 js not adequate but that 1083%0 js.
However, most people are using less range than

+100 and there seems to be much less .
complaint about the range than about the low

precisicn of only 20 to 24 bits. Therefore,
range should be sacrificed for precision,
particularly for short words. Nevertheless,

there is a large and growing group that is
becaming used to ranges of at

least 108100 qyiq group includes users of

pocket calculators, desk top computers and a
few mainframes. Consistent with the
observation that there was a need for two word

lengths, it was decided to provide two .

exponent ranges. In the short word the range
is small to provide as much precision as
possible while in the long word the exponent
range is very large. (This choice also has
the interesting advantage that the Jong
product of two short mumbers cannot overflow
or underflow.) Another balancing criterion is
that the mantissa of the long word should be
wore than twice as long as the short mantissa
to provide for almost error-free accumulation
of inner products. The .two formats are
described in detail below.

Short Format

st e | £ l
0 8 31

bit 0 . : s = sign of the mantissa (s=1
means negative)

bits 1-8 : e = biased exponent (the
bias is 2/ -1)

bits 9-31: £ = fraction (when e # 0 there is
an assumed 1 bit at the left of

the fraction; the binary point -

is between the assumed bit and
the first explicit fraction
bit)

the number represented ~by the

formula :
’ above floating-point word is

g
~ns 22D o 4 g
provided e # 0.

Format
lsl_e 1 £ 1
0 n 63

109

bit 0 :t s
bits 1-11: e

sign
biased exponent
(the bias is 2101

bits 12-63; £ = fraction (when e # O there is
an assumed bit as explained
. above) ‘ o

: the number represented by the'long
word is o

formula

(1. + .£) T
provided e # 0.

10
(-1) Sze- (27-1)

There are scme specific observations that
should be made concerning these formats.

1) The bias was chosen so that the range was

- as balanced as possible with the
constraint that all small numbers had
representable reciprocals. Thus, oontrary
* to usual practice, our range is slightly
biased toward causing underflow since, for
reasons discussed below, underflow is
easier to deal with than overflow.

2) It has been thought that a weakness of the
irplicit first bit is that it precludes

implementation of gradual underflow® .
However, as explained below, a method has
been discovered to accommodate both
features. . T

3) ‘There are several special cases.

a) The exponent field of all zeros is
reserved for

1) 2ero --all bits are zero

2) uninitialized data - the sign bit
is 1 ard all others are zero.

3) denormalized numbers - all bit
patterns with a zero exponent and a non
zero fraction are to be interpreted as
derormalized numbers. In performing
the arithmetic, the leading bit is set
to zero, and the implied 1 bit is
instead add=d to the exponent. fThis
interpretation will allow gradual
underflow to be implemented.

Demormalized formula
7 .
1S 22D o 4 g
b) The exponent of " all ones is also
reserved.

1) +00 - the sign is zero and all
other bits are one

2) =00 -~ all bits are cne

o2 e B Ao d A I K el b RY A

TR LR A T W TR T R S F S AT PP SRS URT O GGG ¥ i TRl PR kg6 st 2 2

3) indefinite - the sign and fraction
are zero and exponent is all ones

4) others-— the rest are reserved for
as yet undefined uses.

The formats that have been chosen are to be an
INTEL standard; it is envisioned that all
INTEL floating-point products using binary
arithmetic will implement at least one of
these formats. This will make converting from
one machine to another or from software to
hardware much easier than if no standard were
observad.

In software conversion there are also the
considerations of result compatibility and
accuracy. To accommcdate conversion and to
provide reliable and accurate results we have
also developed a standard for floating-point
arithmetic which we now describe.

ARITHMETIC STANDARD

The purpose of floating-point arithmetic is to
provide the user a convenient number system in
which he can obtain accurate results. Knuth
suggests a model for flcating-point arithmetic
which is to produce the floating-point number
nearest the true result. He also gives
algorithms for implementing this general
modal. ‘There are two problems with these
methods: they are unnecessarily expensive,
and the question of what to do when the result
is exactly midway between two floating-point
nurbers is not treated. To resolve these

difficulties, a set of rules7 will be given
that sp=cify all cases, and then algorithms to
implement these rules will be explained.

Rules

1. The set of floating-point numbers should
contain O and 3L (additive and
multiplicative identities), and if x is in
the set then —x should be also.

2. If the true result of a fleating-point
operation is a fleating-point number that
number should be produced by the
arithmetic, otherwise the result should be
rounded according to rule 3.

3. If the true result is exactly haliway
between two fleating-point numbers then
the arithmetic should produce the "even"
ons (the number whose last mantissa bit is

zero). Otherwise the arithmetic should
produce the floating-point number nearest
tha true result. (This rule assunes

neither underflow nor overflow occur.)

The rules listed above (the rounding rule is

called "round to even") provide maximum
accuracy, and in addition remove the bias
inherent in most rounding schemes. There is
some experimental evidence for the

110

desirability of unbiased roundin-g8 , but that

is not the main reason for its
implementation. There are two other very
important motivations for providing such

careful rounding. One is so that any user may
correctly sugpose that the floating-point
arithretic is yielding results as accurate as
he could possibly expect: he can turn his

attention from his hardware to his om
problem. Another reason for rounding
correctly is that if any compromise in
accuracy is allowed, it becames almost
impossible to maintain a standard.

Furthermore, there are algoritbms to implerent
our rules that are very 1little (if at all)
more expensive than any other reasonable
rounding scheme. These algorithms will now be

discussed.
We will present methods for cdoing
floating-point add, subtract, multiply and

divide that use "round to even" to produce the
final result. To simplify the explanation we
will illustrate the algorithms with 4 . bit
arithmetic. The existence of an accumulator
will be assumed as shown

Tor 152 B3[B4[C |R [ST]

The bit labels denote:

1) OF — the overflow bit
2) Bl-B4 - the 4 mantissa bits

3) G - the guard bit

4) R - the rounding bit

5) ST - the "sticky" bit o
The sticky bit is set to one if any ones
shifted right of the rounding bit in
process of denormalization. If the sticky
bacomes set, it remains set throughout the
coeration. All shifting in the accuulator
involves the OF, G, R and ST bits. The ST bit
is not changed by left shifts, but zeros are
introduced into OF by right shifts. In all of
the algorithms below we will assure that the
accumulator is initialized to zero and that
the operands have been checked for being
invalid or zero. Thus, only valid, normalized
(nonzero} opsrands are considered. We will
also assume that the appropriate exponent
arithmetic for multiply, divide and shift
adjustment is straightforward and need rot be
detailed, and that the sign of the result is
also set aporopriately. .

are
the

Floating-point addition and subtraction will
be considered together. The two cases to be
considered are

1) addition of magnitudes - when mubers of
the sare sign are added or nurbers of
opposite signs are subtracted

bit: ..

2) subtraction of magnitudes - when numbers

of the same sign are subtracted or numbers
of opposite sign are added.

2ddition of Magnitudes

1) Denormalization - the number with the
snaller exponent is loaded into the
accunulator and shifted right as many
places as the difference in the exponents.
(If the exponents are equal then either
number " is loaded and shifting is
required.) '

2) 2ddition - the other operand is added to
the acoumulator..

3) Normalization — if the OF bit is set then
shift the accumulator right one position.

4) Round - add 1 to the G position then if
G=R=ST-0 set B4 to zero.

5) Renormalization - if OF is set then shift
right.

6) . Overflow — check for exponent overflow.
Subtraction of Magnitudes

1) Denormalization — load the number smaller
in magnitude into the accumulator and
shift right (if necessary) as before. (The
result will be zero if and only if the
operands are equal in which case set the
result to zero and skip all subsequent
steps.))

2) Subtract - Subtract the accumulator from
the other operand 1leaving the result in
the accumulator. (Thus, if ST is set it
will generate a borrow.)

3) Normalization - shift the accumulator left
until the Bl position is set to one.

4) Round - same as before (except no rounding
is needad if more than one left shift was
required in normalization.)

5) Renormalization ~ if the rounding caused
OF to become set then shift right.

Multiplication

In describing the algorithm for floating-point
multiply we will assume the facility exits to
form the double length product of two nurbers.
(If ot one can do an "add-and-shift-right"
algoritim in an accumulator as described above
to build wp the product from low to high
order. Then the unneeded low order part is
lost as it is shifted out of the ST bit.)

1) Multiply - Form the double length product

2) Normalization - é shift by one may be
needed to rormalize the product.

.

1m

3) Sot up G,R,ST — let the normalized double
- Jength product be

I BllBZ IB3I B4 IBSIBSIB?IBSI

then G=B5, R=B§ and ST=(B7 v BS).
4) Rourd - as before.

5) Renormalization - as before.

6) Errors - check for - exponent ovefflm: on
uwderflow.- -

Division

We will assume that division is implemented so
that the remainder at any point is available,

' 1) Divide - form the'first six bits of the

normatized quotient: .
|BL[B2[B3] B4[BS5[BS |

2) SetupG, R, ST - set G=B5, R=B6 and
ST=rerainder. ’ .

3) Romd - as before.
4) Rerormalization - as before.

There are subtle variations on the algorithms
given above that will yield the same results
with possibly some speed increases. For
exanple, if done afﬁg: rounding, only one
normalization is needed. However, in that
case the rounding - algorithm is more
ocmrplicated. :

One of the consequences of implementing a
sticky bit is that it is easy to provide
directed rounding. In directed rounding one
rounds toward the right or left on a standard
nember line as directed. With a directed
roundirg capebility, Interval Arithmetic nay
be efficiently implemented with the mininum
possible growth in interval size. Interval
Arithmetic, if implemented efficiently, could
be a significant computational aid. Not only
can rood-off error be controlled but one can
use it to estimate the effect of noises in data
{by letting mesured data enter a ocrputation
as an ianterval) and to simulate the effect of
variables taking on a range of valuss. For
example, if one wishes to prove that as long
as the temperature stays in a certain range, a
system's performance is not degraded, then one
enters the temperature varjable into the
simulator a3 an interval.

Conclusion

It is clear that we have sacrificed some
executicn speed to attain maximum accuracy.
Vi2 know that speed is an important factor, but
we are convinced that accuracy and reliability
are well worth their relatively small cost in
spead.

1) Accurate, reliable arithmetic makes
software easier to write, debug and
maintain.

2) Auser can igrore the arithmetic since

there are no anomalies and turn his
attention to his own problem.
3) Interval Arithmetic can be

efficiently
supported. .

These are some of the reasons for insisting on
correctly rounded arithmetic at a modest oost
in speed. BAnother is that if a standard is
good it has a much better chance of enduring.

There are many issues we have not addressed
such as the proper resgonse to error
conditions or what facilities are important to
support elementary functions and other
important computations. Cne of our goals is to
make the development of mathematical software
much easier than it has been in the past. We

‘believe that our format and correctly rounded

algorithm standards are a major step in that
direction., However, there are certainly other
important considerations that we are currently
studying.

Acknowl ts
w2 are indebted to Professor W. Kahan for his

lecture notes fram which several examples have
been taken and for many discussions which have

greatly influenced our philosophy on
floating-point computation.

‘Biblicgraphy

J. Moore, R.B. (1966), Interval Pnalysis,

Englewcod Cliffs, N.J.: Prentice-Hall.

2. Kehan, W. and Parlett, B. (1977), "Can You
Count On Your Calculator,” Memorandum No.
UCB/ERL M77/21, University of California,
Barkely.

3. Cody, W. J. (1971), ‘"Desirable Hardware
Characteristics for Scientific
Computation,” SIGNUM Newsletter, 6, No. 1,
16-31.

4. Brent, R. (1973), "On the Precision
Attainable with Various Floating-Point
Number Systems," IEEE Trans. Computers,
VOl. C_22' NO. 6’ 601"‘607.

5. Knuth, D.E. {1969), “Seminumerical
Algorithms,® The Art of Corputer
Programming, vol. 2 Reading, Mass.:
Addison - Wesley.

6. Sterbenz, P. (1974), - Floating-Point
tation, Englewood Cliffs, N. J.:

Prentice - Hall.

112

7.

80

(1973),

Kahan, W. “Implementation of
Algorithurs, Part I,” Tech. Report 20,
Department Comp. Sci., Univ. cal.,
Berkeley.

Kuki, H. and Cody, W.J. (1873), *“A
Statistical Study of the Accurecy of

floating-Point Number Systems,”
223-230.

CAM - 16,

