L 13
A

RC 6203 (#26651) 9/14/76
. Computer Sc1ence 11 pages

Research Report

A Unified Dcecimal Floatmg—Pomt Architecture for the
‘ Support of High-Level Languages :

(Extended Abstract)
Frederic N. Ris

IBM Thomas J. Watson Rescarch Center .
Yorktown Heights, New York 10598

E % Research Division - :
§ Th San Jose Yorktown - Zurlch

RC 6203 (f#26651) 9/14/76
Computer Science 11 pages

A Unified Decima!\Flo.atih'g-:Poin't Architec-t_u_fe.for the
Support of High-Level Languages -
(Extended Abstract) -~ . -

- Frederic N. Ris

IBM Thomas J. Watson Research. Center
Yorktown Heights, New York 10598 '

Abstract: This- paper summarizes a proposal for 2 decimal floating-point arithmetic interface for
the support of high-level languages, consisting both of the arithmetic operations observed by
application programs and facilities to produce subroutine libraries accessible f rom these programs.
What is not included here are the 'detailéd . miotivations, examinations- of alternatives, and
implementation considerations which will appear in the full work. . ‘

An architecture for decimal floating-point operations is presented with the following
characteristics: o : R o

« Operations are storage-to-storagé, with no visible hierarchy of registers-and store, in common_
with the data models of high-ievel, procedural languages. :

« Elementary storage units oéé'upy 32, 64,--a'nd 128 bits, in common with the basic high-speed
* data paths on much general-purpose digital computing equipment. ' .

The architecture is suitable both for compiler-generated code and for the implémenldtion of
mathemdti_cal subroutine libraries used by high-level applications. ' ’ :

o The computational model underlying the architecture is close to Jongstanding human computa-
tional practice and thus substantially. easier to comprehend than existing floating-point-
systems. a S ' ‘ '

Regularity and freedom from. anomaly have been given highest priority; - time and storage
requirements have been viewed.as less important than consistency and accuracy when
modest increments in hardware can be used to gain performance. '

- Acknowledgements: ~ This papet - is an ‘outgrowth of numerous- conversations held with
Prof. W. M. Kahan while he was-on sabbatical in the Mathematical Sciences Department at 1BM
_Research in 1972-3; many of his ideas are reflected here. = W. C. Carter and F. G. Gustavson
contributed to most of these discussions; W. G. Bouricius and B. Tuckerman also took part in
‘Many early drafts were subjected to thorough scrutiny - by W. C. Carter, F. G. Gustavson,
W. M Kahan, and H. P. Schiaeppi, each of whom has suggested numerous improvements. . -

1. BASIC ARCHITECTURAL ASSUMPTIONS. .- = L e
This decimal floating-point archilectu_re'doics,not' arise from first principles. "It is specifically
_intended lo be sympathetic with current high-performance, broad-function, general-purpose,
.commercially-oriented. computing systems and with the semantics of languages such as Fortran
and PL/1. Because we wish the ability to inlegrate this design with minimal impact in existing
‘environments, a processor has not been designed around the floating-point unil.- Rather, some
basic assumptions now discussed are made which _have significant influence on the decimal
floating-point architecture by way of constraint. . T

_ We assume the store to be composed of éight-bit_bytes.a'nd"ar_:lcl.ressed to the byte level. The
essence of much computing is character manipulation—even in Fortran, though-under ‘the covers
[2)}—and character addressibility is vital in producing efficient software. = - -

We assiime a fixed-point binary format for instruction and operand addressing. In order to .

“do address arithmetic and to keep efficiently accessed arrays of pointers, a -word length for
addresses of 16, 32, or 64 bits leads to enormous architectural simplifications, cven if the

architected addressibility comprises [ewer bits than the basic word. Because 16-bit addressibilily

. gives access only to 64K byles, it is assumed that the fixed-poini word size is 32 bits, whether or
‘not some addressing mechanisms employ a larger number. | A 32-bit data path is thus likely 1o be
~a fundamental part of either. the hardware or of a logical interface presented by hardware and a
modest amount of microcode.: - : B o -

. Itis assumed that instructions occupy. an even number of bytes and that the first two or. four
" bytes of the instruction specify the operation and any status or options which may be applicable.
‘Subsequent byte pairs (the number of ‘which' is determined by the first two hytes) specily’
operands. The mode in which the operands are addressed is of litthe concern, save that in this

architecture there is no register-storage hierarchy, so that addresses in the store must be devel-

oped for each operand. Addressing possibilities include, but are not limited to, 32-bit direct

address, 4-bil base register plus 12-bit byte displacement, [6-bit byte displacement from an.

implicit base register, and 24-bit absolute address modified by the sum of iwo 4-bit index regisicr

specifications. B _

We assume that the four-bit haives of byles continue to be important in three key respects.
The first is in base or index register specification as in the addressing examples just cited. The
second is as BCD encoded decimal digits used in fixed-point decimal computations in which two
digits are packed in a byte. The third is as a lengih specification for such strings of digits.

‘ The consequence of this is that fixed-point decimal operations naturally take place on strings
composed of an odd number of digits and a sign (occupying one of the digit positions), and that
the operations are effeclive on data types comprising - 1,3.5; ..., 31 digits. For fixed-poind
operations, thirty-one digits plus sign occupying sixteen bytes is thus a very natural limitation in
the assumed underlying architecture that will remain. '] '

. We assume that efficient conversion operations exist among the fixed binary formats used in
addressing, the fixed decimal formats .used in computation,.and the character formats used in
input/output. ' :

'3. ONE-LEVEL STORE.

The decimal floating-point instructions have been assumed to be storage-to-storage opera-

tions for a number of reasons. Chief among these is that the-data models of high level languages

do not encompass a two-level, r_egis_tef/ main store hierarchy. When anarithmetic expression has

been parsed into its constituent ‘parts. and the semantic rules of the language have assigned

attributes to the resulting generated temporary data items, 2 transformation with source-level

equivalents has been performed. In a machine in which'-operati'o'ns‘ must be done in registers,
code generation must additionally manage these resources and insert appropriate loading and
storing operations. ' R ‘

For fioating-point data this hardly seems worth the trouble. If 'the'registers are architectural
copies of storage formats, the extra work this entails must be repaid in’ performance, for the

overhead incurred provides no additional function. For high-performance machines we expect
that frequently referenced data which are natural candidiates for registers will reside in a cache.

For other machines, we do not see that the presence of registers provides execution efficiency, '

although as an addressing mode the presence of registers means fewer addressing bits are -needed
in instructions—but at the expense of a larger instruction set and the code required o do. the
loading and storing operations. ' - : e '

'An architecture which wishes to retain the two-level storage hierarchy characteristic of real

hardware should examine carefully the qdcsli'o'h whether the registers should mirror the store or- -

whether additional information kept in- regi'st_jgéts can be used to provide better function; for
example, additional ¢xponent range. . In this case, making a relationship between high-level
language code and the resulting operations is more diff icult. | S

Noate lhat we assume thal basic‘rz'xddres'sing and indexing is accomplished with the help of

registers, both for reasons of performance and to keep instruction lengihs down, and that only the

floating-point data resides exclusively in storage. ~Substantial opportunities. exist 1o obtain
performance gains with incremental hardware expenditure to perform addressing and storage
operations in parallel with’ other sequencing operations as well as for instruction lookahead,

pipelining, or other forms of logical overlap.

K

_ If the base architecture supporls ar_ra}j-manipiu!atioﬂ in a reasonably atomic manner then -
reductive operations can exist with substantially more. functional power than their naive program-
med counterparts. The essence of .what is required is best illustrated by example. One usciul

reductive’ operation is finding the: largest element in an array. However, in many COBLEXts in -

which the maximum is required the position at which is occurs is also important. Thus the most
primitive operation should deliver as result not the value ‘of the maximum but the value of the
index at which the maximum-is to be found (or the first such in case of duplication). 1f the value
is required, the index should have been delivered-in such a way that a simple array relerence has
“already been set up.. In the case of a two-dimensional array, a pair of indices should be produced.
‘Finally, in the case ol a two-dimensional array it is valuable-to be abie to treal a cross scction
* {i.e.,-2 particular row or column) as & one-dimensional array for the same operation. Cross-
_sections should also ‘be feasible with “the computational reductive operations such as sum.

Support of these addressing modes for arrays. of higher dimension may not be cost-justified, in- "

which case a standard addressing mechanism -for arrays of arbitrary dimension are reasonably
cleanly handled. ' 1f two-dimensional array references are effected. by specifying an array
descriptor and two actual indices, the effective address computation which s customatily done in.
software will then be moved beneath:the. architectural interface. While this reduces the possibili-
ties of obtaining very efficient code in special cases where an optimizing compiler can save much
work using strength reduction and code motion, these operations can be reasonably efficiently -
implemented in hardware if some pre-computation is- done when the index registers are loaded,
taking advantage of the ability of hardware to perform operations in parallel and to keep alternate -
* representations of quantities which may be used in different contexIs. ' '

It is assumed that abnormal conditions which arise during execution because of data
irregularities (e.g., invalid operand format, overflow, division by zero, etc.) will give rise to traps.
One trap is'associated-wi-th:each--condilion, each trap may independently have a - specilied
transfer-point; and each trap causes a defauit. action to arise if a transfer-point has not been
specified. When a-trap is taken, information must be available at the transfer-point to be
interrogated by the program at that point as to whiere the trap occurred and other information as -
_appropriate to the trap;.for example, if an invalid source .gperand was encountered which operand
it was. From the transfer-point it must bepossible¢ to continue execution by returning to the.
instruction causing the trap with the trap still enabled for that instruction, by returning o the
instruction causing the trap with the default action ‘to ‘be 1aken if the instruction again fails, by
returning to the instruction following the.one which:trapped, by ‘branching to some other legal
point, or by branching to one of the opérands of the: trapped instruction, in case of a conditional
branch instruction. The transfer-addresses must either exist on stacks or be available for.program
. interrogation so that dynamic control of the trap intercéption protocol is elficient,
-4, OTHER ARCHITECTURAL CONSIDERATIONS. =)

B While we informally postulate the ability to mix precisions and the resulting conceptual use
. of generic operators, the utility of these powerful tools is substantially reduced unless subroutines
can be produced to be used in the same way. - This implies that programs must be able to
ascertain the types and precisions of their parameters. and make decisions accordingly. - In

- particular, they must be able to obtain working storage whose details may not be known until the
routine is invoked. o R L R ‘

. While this architectire ¢an be implemented across a wide range of price and performance, it

“otjg important “that ii—be,cco'nomical-lo"implemcnt'oh' a.large, fast -processor. To this end, it:is .-

assumed that the implementation of greatest importance will entail special-purpose hardware for

key aspects of the decimal fioating-point arithmetic and extensive microcode. 1 this environment

adding additional function such as the Fortran clementary functions or the APL operator set is

the most l‘easrble Complete 1mplementauon in hardware, whlle possible, may well not be
cost-effective. Nor, possibly, would be. a software 1mplemematton on general-purpose and
non-sympathetic hardware. Thus, a- floating-point simulator on a mini-compuler OF micro-
processor along convenuonal lines may not be successful, tf anylhmg other than software function
is considered.

5, CODING. ‘

In the following formats, reference is made to sets of 3 coded decimal dtgrts By this is
meant a ten bit field into which values between 000 and 999 have been encoded using the
‘albonthm described in. f1].- This. encoding is: extremely: well suited to present digital logic
technology. is fast, andis efficient of storage, making’ pOSSlb]C ‘the packing of nine decimad digits
and two signs into a thirty-two bit word whereas ordtnary BCD encodmg could have atcommo-
dated al most seven’ dlg,lts :

- 6. BASIC FORMATS.

The following three formats are requlred to support short and iong precasron ar:thmeuc
adequately in high- level lnnbua;,es Decoding of decimal digits occurs between storage and the -
floating-point unit, and coding takes place in the reverse direction. ‘Invalid data exceptions are .

_taken on the 24 invalid 10-bit coding’ combinations, on non-z¢fo unnormahzed r(,presentauons ‘
whose exponenl is other than the mmlmum, on non—standard zeroes, and on noON-zETo bllh in
[ormats with unused positions. .~ "0 S - : }

o Short precision (32 bits: .2 digit exponent, 7'-digit fraction)
- SrgnmbntO—-Ofor+,1for— o
- Exponent sign in bit 1 — 0 for +, 1 for —- "

- . Exponent and fractlon dtglts in btts 2-31 represented as 3 sets of 3 coded decimal-
digits, of which the first two with' the, exponent sign” represcnt a ten’s: complemunt
exponent and the last seven represent ‘the fraction; i.e.,. - - -
| 99,

=100 expone.-rt :
: 9.999..999' _'

1 000 00 g fracnon.

<
<
-+ The vaiue 0 represented by all bits. set. 10 zer0

- Long preeision (64 bits: 3 digit CXponent 15 dlgrt fractron)
—~ Signin bit 0 — O for +, 1 for— .
-+ Exponent sign in bit ¥ — 0 for +, l for'— -

- Exponent and fraction digits in bils 2-61 represented as 6 sets of 3 coded deum.rl
digits, of which the first three with the exponent slg,n rcprescnt a len's Lumplt.ment ‘_
exponent .md the last fifteen represent the fmcnon 1L, ‘

- ~1000 < expanem < 999 s
i 000 000 ‘000 00000 < frac!iou 9 999 999 999 999 99

- Bits 62-63 unused (set to, and checked for, zero)

. ‘The vatue O represented by all bn_ts sel to zero.

« Extended pfecision (128 bits:- 4 dig'il exponent, 31 digit fraction) '
= Signin bit 0 — 0 for +,1for — . L
- Exponent sign in bit 1 —0 for +, 1 for— ..

- Exponent and fraction :rdigits in bits 2121, represented as 12 sets of 3 coded decimal
digits, of which, the first four with the exponent sign represent a ten’s complement .
exponent, the next. thirty-one represent the fraction, and the last is set to and

~ checked for zero throughout; i.e., e : : :
' © 10000
1

exponent -

it <9999
fraction <

4_:' :
S _ < 10— 1073
: - Bits .1_'224"27 unused (set to, and chék.:ked'for,_ Zeroy - B

~ The value 0 r'ep'résén'ted by'all bits set to ze_:_rb‘ :

7. EXTENDED FORMATS.

" ‘In addition, if the extended f_drm'ét.is to be f'ulll'y_"supportéd i high-level languages (especially .

with elementary functions and the like), then oné of the following two formats is essential
(although it need not be supported in the high-level language): - “ ‘ - :

. “Working” precision (144 bits:- 5 digit exponent, 37 digit fraction) . ..~
- Sign in bit 0 — O for +, 1.for — A |

- = Exponent sign in bit 1 —0 for +', :_1-'fo'r -

% Exponemnt andrfraction'-digits in ,bits"- 2—--1.41','rép_rqé‘enf-edvés“f14 sets of 3 coded decimal
digits, ‘of which the first five with the exponent sign represent a ten's complement
exponent and the last thirty-seven represent the fraction; i.e.,” . R o

o ©~100000 < exponent < 99999
' 1 £~ ffaclion < 10~ 10—36

'~ Bits 142-143 unused_(set to; and checked for, zero) . .. -

'~ The value 0 fépreéente‘d by all bits set 10 Zero" . ;

. “Doubly-E’ktended” prec;isio.n:;(,25_6.__Z;:bit_s:3'_,_-5,.digit.;g.xppnent;-?o._digit fractiony.
. = Sign inbitO_"-O_for +._11f0r;' e T

- Exponent sign'in bit 1 — 0 for +,1 fdr'_~_-_~ [ER

- Exponent and [raction digits in bits 2-251, represented. as 25 sets of 3 coded decimal
. - digits, of which the first five with the exponent-sign represent a ten’s compiement
exponent ;md the last seventy represent the fraction; ie., 7 : '
N ' ~100 000" S: : e,:.cp.onéu(S 9“9'-9'99 _
| _ o 1. < fraciion < 10— 107% "
-« Bits 252-255 unused " (set to,'_and checked for, zero) -

= The value 0 represented by all bits set L0 zero

8. PRINCIPLES OF ARITHMETIC. s _
General principles which apply to all arithmetic operations on scalar items are:

e Any source operand is considered a numerical value and nothing more. This value is exact.
Its origin and representation are.of no.consequence and -imply nothing of its history, future,
“**accuracy”, “significance”, or importance.” In a particular - departure from previous
architectures, there are no “unnormalized zeroes™; the addition of zero Lo any other. value
leaves the latter value unchanged. The¢ representation of -a valuc may change when it is
‘moved to a celi of different attributes, but the value will not change unless it is impossible
to contain its representation-in the storage cell for which it is. destined.

® All arithmetic operations which do not result in a trap store the exact value of the result
subject to a specified transformation which is applied only when the Tepresentation of the
fraction will not fit into the space available.” The storage rule which approximates values by.
shoriening representations is called rounding. R

». Al arithmetic operations produce normalized results only, and the rounding rule applies
only to normalized representations, which may require re-normalization subsequent to
rounding. - The unnormalized store operation ‘may: produce an unnormalized result with a

* minimal exponent. o : B

. The basic (default) rounding rule in decimal floating-point arithmetic is the unbiased round -
of magnitude, rounding ties to the .nearest even. This means: '

e If the digits to be discarded amount to more than half a unit in the last place

retained, the magnitude of the last digit retained is increased by one. -

© e . Ifthe digits to be disédeEd amount to less than half a unit in the last place retained,
the digits retained are unchanged. : : -

o - If the digits to be discarded-amount to exactly.ﬁalf a unit in the last place retained,
the digits retained are unchanged if the last digit reiained is even, but the magnitude
- of the fast digit is increased by one if it is odd. -

o If, after rounding the fraction, the exponent of the value to be stored cannot be represented
' in the number of digits allocated, a'special action is taken. “The sign and rounded [ruction
as computed are stored with an exponent of zero in a designated cell of ‘the longest
floating-point format supported in-the architecture.. The true exponent is stored ‘in a
designated cell as-a 15-digit signed decimal integer. . Finally, a trap is taken lo one of two
previously designated points.in_the ‘program, depending on whether the exponent is.
negative (underflow) or positive (overflow). At these points, in addition (o inspecting and
changing the designated celis, it must also be possible to ascertain the operation, operands,
and target of the instruction which caused the trap to be taken.: ' B :

- o . If a divisor with value zero is encountered, nothing is stored in the target nor in the cell
designated for exponent underflows and overflows. Instead, a trap is taken to a point
previously designated for zero divide exceptions... At this point it must be possible to
ascertain the operation, operands, and target of the instruction which caused the trap 1o be
taken. C ' S

o - If any source operand contains invalid codes in the fraction digits, nothing is stored in the
- rarget nor in the cell designated for exponent underflows and overflows. Instead, a trap is
‘taken to a point previously designated for decimal data exceptions. At this point it must be

-+ 'possible to ascertain the operation. operands, and target of the. instruction which caused the - -
trap 10 be taken. Such invatid codes may have been placed in the source for the. explicit e
purpose of causing an interruption. : S EEN g

»

e Should zero be the result of an operation, the zéro stored is represented by all bits set to

_ zero. This departs from previous architectures in that the exponent is true zero rather than

_ the minimum possible exponent. When zero 'is stored, an cxception can-never be taken.

v The value zero can result only from addition of terms of equal magnitude and opposite

: sign, in subtraction of equal operands, in multiplication when at feast one factor is Zero,
and in division only when the dividend is zero and the divisoris not.

[7 o .- Each operation which produces a rounded decimal floating-point result must .be available

with each of three rounding and storage options: .

S ' ptdinary,' unbiased round, as previously described, followed by _sl'drage. underflow, or
' overfiow: - L A : ' |
. round to. closest. algebr:i'i(:'al_ly" lower- flqating-pdin-t_ number; followed by _storage' of

this value if within range, or the next '.Iower:re_presenlqble-'number if not within range
_and possible, or overflow if all representable numbers are greater than the compuled
value - : : s T

e round to close'slt 'algebraiéally higher -ﬂoati'n'g-p'oint number, followed by storage of
~ this value il within range, or-the next higher representable number if not within range
- and possible, or overtlow if all represéntable numbers are less than the computed

These thtee o‘p'eratior!'s ;)n::_th'g' value x toa re'pre.'séntation of n-digits will be respectively =~
. .denoted R, (x), R, (x), and (R, x). o
9. .EXAMPLES OF ROUNDING.

o The following examples assume a-seven decimal digit fraction and 'a"t\'{r'o ‘decimal digit
. ten's-complement exponent.. s S

: (valﬁe) - __'(ordinarj roun&)_ : (lower bound) " (upper bound)
1234567 O 123es67-10° 1.234567-10° 1.234567-10°
12345678 1.234568-10° ,1.2_34561-'10".? . 1:234568-10%
-12345678 _1.234568.10° —1.234568:10° ~1.234567-10° |
99999985 - 9.999998-10° 9.999998-100 9.999999:10°
9.9999995 1.000000-10' 9.999999- 10" © 1.000000-10"
‘ ‘2_‘-i0‘-l23 (underflow) - "o 1.000000- 10~ %,
i 2102 (underflow) ~1.000000-10-"% o
a0 (omﬂé‘.&):]}_ . _9-.9999_99-1'0‘.’9_' O foverflow)
-2.10'2 o toverflow) . {overflow) =9.999999-10%
o 0 B 0

to the original value and. that the result of ordinary rounding cither underflows or is identical to
~one of these bounds. Directed roundings never underflow. -~ : :

5 Note: that the directed rounding and -s.'lo'ra-ge{mleé"{.pfo’#ide-,.g'ua'_rameed', unambiguous. bounds | .

It must be emphas:zed that roundmg of any sort is- consndered an operallon on a value which
produces a storable representation and is applied immediately prior to the slora;,e operat;on only
if the representauon of the value cannot ltself be slored : :

0 OP‘ERATIONS ON SCALAR DATA

‘In addition to the data formats descnbed above and the operanons to be described, the
architecture contains seven special objects.. Five rmp ada‘ress cells contain the addresses of
locations to which branches are taken.in the face of exceptions. These cells can be implemented
in a number of ways. The simplest is to designate specific locations in ‘Tow- order storage in which
pointers o program labels are stored.. (However, it is' necessary to store into these. locations
_from the problem program, so such an lmplementatlon should not:be in a protected area of
storage.) Another possibility is. to. keep regsters which can’be. foaded and stored with- prob!em

- program acce551bie instructions." “An -éven.more attractive. prospect is a set of push down stacks,

although the cost of this mlght not be justxfled “The exceptions whlch can anse are:

lnvalld Data
Overflow
Specification .
" Underflow.
Zero Divide

‘Whether these partlcular exceptlons can be raised for other lﬂStl‘UCthl’lS OutSldE the dec1mal
floating-point area is an architectural question which. cannot be answered here. There may be
additional exceptions having to do with. the spemficat:on addressmg, storage protectnon etc. of
' the operands. ‘ . ‘

~ There are two speclal cells, regzs*ers, or pomters to user—supphed stora;,e areas called the
.-Exception Fraction. -Cell and the Exception Exponent Cell. The former isa floating-point datum
of the longest architected precision; ‘the latter is an eight byte fixed decimal datum. (i.e., fifteen E
- signed decimal digits}). The same possnbxhtles exist for the treatment of these cells as for the trap
address cells. The: followmg notation apphes to lhe operatnon descnpt:ons m this section:

T R floatmg decimal target of any precxslon
S, 81,82 floating decimal sources: of any. preusions
L, LI, .. program labels -
N,'N1, N2 integer sources
M _ integer target = RS
k- Index over roundmg rules : ‘
.rel - . element from the set {=, #, <, €. 2, >}
¢ . precisionof T (number of dlgns in fracuon)
F. . Exception fraction cell -
E- ~ Exception exponent cell
Ly - Address in invalid data’ trap cell
-Lg .~ Addressin overflow trap cell -
Lg . Address in specification trap cell
Ly .- Address in underflow trap cell -

Lz Address in zero divide trap cell

The following functions play a part-in the operation de’scriptions: 2
_ R, (x) denotes “round-to—closest” applred to x 'to give an n—drgrt representation.
_R, (x) denotes “round- to-lower—bound" applied to. X 10 grve an n-digit representauon
. _' : +R,; (x) denotes "round lo»upper-bound" applred o x 1o give an n—digit representanon ‘
£, (x) denotes applreauon of any of the three roundmg, rules above. '

e o C, _denotes the chopping rule applied to x to give an n—digit represematron
o lfx)OlhenC(x): R,). :

If x <0 then C, (x) = R (x)

C, (0) = R, (0) = 0.

: fracr (x) is the: srgned fracnon in the normahzed representat:on of X,
~fract (0) = O and if x # 0 then -1 < | fracr ! < .10]
“exp (x) is the signed exponent in the normalrzed representauon of x.. [exp (0) = 0]
[Therefore i f= fracr (x) and e exp x), x = [-10°}.

U (F E) is the gently underflowed, n—drgrt representauon of F 10[' {It is discussed more
fully in the text. I o .

. N (x) is the number of non-zéro drg:ts in the represematlon of x .' ‘N (0) ‘= 0, and for
- x#0, N (x) is the smallest mteger n for whrch frac!‘ (\T) 10"' - is an
mteger .

The fo!!owmg sub-operalron conventrons are always apphcable

" Rounding and .S'rorage. LAl amhmetrc operauons are of the form “'I‘ - R, (x)" lf the
- value of AR,, (x) is out: of the range of T then : : TR

: l)‘- Assrgnmenl to ‘T is not performed e
2) © F - fract {R, ()} -
3) E -~ exp{R,)} 25 ‘
: 4) ~if E<0 then go to Ly,
: : -else go to LO. '

' Operand Use. If a source operand is rmproperly formed in other than a Test operauoo. then
1) ° No assrgnmems are performed ' ‘
2) Goto L;. '
Zero Dwrde. Ifa dwrsor o!' zero 1s encountered lhen i
-1 No assrgnrnent is perfonned .

- 2) Go to Lz

' Speerfrcaﬂon Etceptmn: If the target of the Fraclron operatlon is nol as long as 1he precrs:on of s
Sl . the source, or il .the value of the lhrrd operand in the Round or’ Chop operallons is ner_auve'
Coe - or greater than the precision of the largct lhen ' .

l) . No assignment rs performed
2y Golo Lg-

10

The following operations are proposed for scalar arguments:

Operator |) Operanﬂs Semantics . _
Add, TS1S2 T - (R (S1452)
Sub, CoTsi:2 T« R, 51-52)
Compare (rel)) l;,S],SZ _ ' If Sl rel 52 then goito L
Magnitude, TS T« (R, (ISD
Negauvek S T.S T- kR: (-S)y .
| Precision; TS | Tc— R, ®
Round, TSN " T« Ry®
~ Chop TSN T« Cy(S)
Multiply, .~ TSLS2 T = R, (S1-52)
CSeale, TSN LT = R, (5. 10MN)
". Divide, TSLS2 T - (R,(51/5D)
Test ‘ - L1 L2, L3 L4.8 'y I_S is invalid go to L4
- S <0 - goto LI
HS=0 goto L2
_ : : CIFS > 0 ‘goto L3
Unm;rmaliZe o T S L ;'I"-';- -'U (F, E) |
i 1F|"action - MS : o M - fract (S)
Exponent MS U ,.M ~. exp (S) -
Floa, ~ TNLN2 T « R, (NI -_10“2)

Non-zero-digits MS - - M - N(S)

" 11. REDUCTIVE OPERATIONS

General principles which apply 1o 1he reducuve operauons {sum, product, inner product,
- polynomial evatuation, and search’ for maxlmum mmlmum max1mum mag,mtude or mmlmum
magnitude) are: S -

e - The reductive operations. behave ldenncally toa sequence of elementary opcr.mons in

' which intermediate results are held at the longest precision supported and with cssunmll}
infinite exponent range so.that an intermediate result never underflows or overflows. Afler
each elementary operation prior to.the last, one of the three rounding rules is applicd o
‘round the intermediate resuit to the. iength of the longest precision. - After the final
operation, the: same ‘rounding rule is applied to round: the {inal'result to the length of the
target. The computed exponent is then tésted agamst the range aliowed for the target, H
an overflow or underflow condmon then exnsts, u is lre.ned in:the same way as for clemen-
tary operations. -

If a source operand contains invalid codes in the fraction digits, the intermediate result’
.. must-be saved in the designated cells and format used for overflow and underflow and a
Sl Arap taken to the point dc.s:gnaled for decimal data exu:puons At this point it must be -
possible to ascertain the operation, operunds, index of exceptional opcmnd mvo!vud .md
ulumate target of the mslruc.uon causing the excepuon Tl b ‘

1

For example, the dot {inner) product operation applied to vectors X and Y of length a should
be equivalent to the following sequence, where T and U are internal temporaries with precision
equal to the highest precision supported in the architecture and enough exponent range not to
underflow or overflow: L - ‘ ' T

-Multiply o “T.X(1),Y(1)

' CMultiply: - UX(2)LYQ@) |
Add CTTU L
- Multiply - UX3))Y(3)
Muljply - UXmMYm)
CoAdd © - Target, T,U-

: Invalid decimal digit exceptions can arise in the Multiply ope_réuii_»‘ns-. but overflow or
underflow can arise only at the final Add operation. No other exception can arise. :

12. ARRAY OPERATIONS. -~ = - 0
" The following general principles apply to array operations (if ‘supported):

« Array operations behave identically. to a sequence’ of .elementgryoperaticns. The rules -
which apply to elementary operations as regards operand values, rounding rules, and
exception handling apply equally to array operations. - S S

.. If a source operand to an array operation is a scalar, ‘its value is prefetched and preserved
before any storage is done. ... T : e _ _

. If an exception occurs in the processing of an element in a array operation, it is treated as if
~ jt were the corresponding exception arising in the elementary operation. At the point of
exception, a Resume instruction must start afresh the elementary operation which caused

‘the interruption. Alternatively, it must be possible to restart with the elementary operation

following the cause of th¢ interruption, or to terminate the array operation entirely..
_'For example, if X and Y are vectors of length - n ~and C is a scalar. the multiplication of
X by C to give Y should be equivalent to the following sequence, where'A is an.internal tempo-
rary with enough precision to hold C exactly and enough exponent range so that norm'ulizaliqn of
" C will not lead 10 underflow: .. R L T : :
7 7 - L{0): - -* Precision . A.C_: . _

CL(: - Muliply Y(1),X(1)A
L2 Muliply . Y(2).X(2)A
CLon: - Multiply. '-?i;}fii'(h),;g_j

“L(n+1): (Next Instruction)

An inivalid digit exception can accur-at L(0); in which case it should be possible to resume '
execution at either L(0) or L{z+1). The multiply instruction at L{k) may lead to invalid digit
~ exceptions, underflow, or overflow: In each case it must be possible to resume execution at any
of L{0), L(k). LCk+1), or L(n+1). . - g a - S

REFERENCES.) U |
i Cl_ien,'T. C. and Ho, Irving T. -"S_t'drage-_Effi'cieh't Representation of Decimal Data.” -
' Communications of the-ACM 18 (anuary, 1975). 49-52. N

7 21 Knuth, DU E: -?fAh'Emp'i_ricars_mdy—or'-FORT;R-AN--pr_ag;ms.-'.ri{'-.;}sqn_wareaPraefi;ce{and.;j Ry
- Experience 1. {1971), 105-133. . . R

AT

