SV L LTINS

EUAN

et by

e

July 25, 1973

TO: ‘W. Kahan

FROM: P, H. Sterbenz

PROPOSAL FOR DECIMAL
FLOATING-POINT ARITHMETIC

by

THE COMPUTATION SPECIAL INTEREST GROUP

i
*
a1
3
:
4!
i
3
i
i
i
5
5

IBM CONFIDENTIAL

ysm

. _csszzogﬂgf_g

s
S,

- ' Specifications for Decimal Floating~Point Arithmetic

Le Formal:

Single-Precision = 8 bytes o : e
Double~Precision = 16 bytes - - ' -
» Mantissa length:

Single-Precision: 6~1/2 bytes = 13 decimal.digits
Double-Precision- . 14-1/2 bytes = 29 decimal digits

Righ order 1-1/2 byte:
Sign, invalid indicator, characteristlc

Representation

: x = T 10%n
e = exponent
m = mantissa (13 .decimal digits for single- preclslon
29 decimal digits for double- precision)
c=

characteristic = e + 512
_ Allow 10 bits for ¢, so

0 5c < 1023 } S
~512 <'e <511 R o

sign

invalid indicator
characteristic
mantissa

20 KW
I |

Use Msign and true magnitude" representation for negative numbers..

Scaling of the mantissa . §

The mantissa of the floatlng-poxnt number is written with the decmmal
point to the right of the leading digit. Thus, in the representation oL j

w

X = T 10%m

we have

=512 £ e £ 511

0%m<10 ok

S N022983

ey pn OAFIETICT

Sl MMV L LBES

.

Normalized Numbeors

(a) A non-zero number is norﬂallzed if the high order, dlgit of its
- mantissa lS non-zero. That Ls, if ic 15 stored as

X = T'loem,
where 1 £ m < 10.
(b) Normalized zero:

L "sign +

~ characterlstlc = {
mantissa = 0
invalid bit "off"

Iy
+
L]

Unnormalized Number:

A number is unnormalized if it is mot a normallzed zero, but the high
order dlglt of lCS mantissa is. zero.

P N s rreylyl

G0 22083

-~
»

Réuﬁding

Let x be a real number.and let § be the set of p dlglt floating-decimal

numbers. (Here p = 13 for single-precision and p = 29 for double-precision.)
Let X and Xg be the left and right "neighbors'" of x in §. That is:.

x is the (algebraically) 1argest:numbef in § which is < x
. % is the (algebraically) smallest number in § which is = x
Then -

< x_.
(1) Xy < x xR | |
(2) 1fxis in S, x. = x = x_.

L R -
(3) If x is not in-§, X <x < X

’

We define three operations, CHOP(x), ROUNDH(x) and ROUNDU(x) which round % to §,
ROUNDH using a "half-adjust" round and ROUNDU using an "unbiased round. The

operations CHOP(x), ROUNDH(x), and ROUNDU(x) will always produce one of the

neighbors Ko Xp of x. .

Here

(1) CHOP(x) produces the neighbor Xy 0T X having the smaller absolute

value. (That is, it chops off all digits beyond the first ? digits,
in x.) ') . 1 :
o .E.

(2) 1f one of the neighbors X, or X2 is closer to x than the other one

is, both ROUNDH(x) and ROUNDU (x) will produce the nelghbor Whl:h
is closest to x. , _ o]

3) 1f x;, and x, are equally close to x: _ oL

(a) ROUNDH(x) will produce the nelghbor hav1ng the larger abéolute
Value. .

(b} .ROUNDU(x) will produce the nelghbor whose low order dlg
is even,

_ ‘ gﬁ% _
Note: These definitions imply that all rounding and chopping tak63p1acé after

normalization (and after right shifting to compensate for 0verflow in
the add magnitude cases of addition and subtractlon)

In general terms:

Need:

For CHOP(x): mneed first p digits of x ; ﬁ

For ROUNDH(x): need first pt+l digits of x i :

For ROUNDU(x): need first ptl digits of x and an Lndlcatlon ofi
whether or not x has any non-zero dlglts to tnm
right of the first p+l diglts.

3.

o:q pwen OAPET?

sl L4903

3
-

[A T

/
General approach for rounding: .t v

- For ROUNDH(x): s
" (1) Obtain x normalized and cho
(2> If x#0, add 5 to the p+l-st digit of the absolute
value of the mantissa, allowing carries to propagate.
If this produces a high order carry, adjust the
exponent and right shift the mantissa,
(3) Chop result to p digic, .

pped to p+l digits,

For ROUNDU (x) :

(1) Obtain x, normalized and chopped to p+q digits plus
a sticky digit. Here q is 1 or 2. The sticky digic
1s 1 (or # 0)1if x has non-zero digits to the right
of the first Ptq digits, otherwise it is zero.

(2) (&) If the ptl-

(b) If the ptl-st digit of x is 3,-but x has non-zero

digits to the right of the first pt+l digits,
form ROUNDH (x). :

{c) If ptl-st digit of x is 5 and x has N0 non-zero

digits to the right of the first pt+l digits, look .
at the p-th digit of x.

(i) 1f prth digit of x ig even, form FUE“f“)

H Y
LT

(1) If p-th digit of x is odd, £orm ROUNDH (x

st digit of x is not a 5, form ROUNDH(x).

c.-cm > 2 ANPGRS

LMYV 298 T

:
oy .
H

Rounded Arithmetic . . .

We wust decide on one of the rcunding strategieé, ROUGNDH or ROUNDU,
and then use this technique throughout, Mathematically, ROUNDU is preferable,

because there are cases in which it reduces or eliminates bias., ROUNDH is

probably easier to implement.

.

We shall assume that one of the rounding techniques ROUNDH, ROUNDU has
been chosen, and we shall designate it by ROUND.

Let @ ,@ » ¥, + denote floating-point addition, floating-point
subtraction, floating-poiat multiplication, and. floating-point division

respectively, A'I‘hen we want -the hardware to produce the following results:
| %@y = ROUND (xty)
) .‘ Xy = ROUND (x~y)
. : . X ‘.* y = ROUND (xy) ,
X+ y = ROUND {x/¥) .
. 5.

P Y Ay JIricTAYS

i 022983

Details of_Floatinguoecimal'Arithmetic

Let x and y be p digit floating-poiat numbers with

X = 10eﬁ;‘”' _
. y = 1054
Here m and n are tﬁe mantissaslof x and y;'so they are signed numbers
with ' ‘ . i
' \m|'< 16
Inl < 10. : .

We do not require that x and y be normalized. We shall assume that X and vy
are stored with the exponents e and f (that is, with the characteristics

e + 512 and £ + 512.)

Floating=-Point Addition and gubtraction

(1) Compare e and f and interchange X and vy if e < £f. Then we may
assume that e = f.

(2) Sshift n to the right e-f places, keeping two guard digits'and‘
a sticky digit. That is, produce a p+3 digit number n' of

the form .

n' = X.KXX .. XXX

defined as follows: |

(a) Let n'" be a p+2 digit number of the. form
" = XXX . Xxx

Jhich is defimed to be the first pr2 digits of 107 P,

(b) The first p#2 digits of n' ére the same as those of u".

{(c) The p+3 -rd digit of n' is zero if n' = 10-(e-f)n, otherwise

it is 1 (or any other convenient non-zero digit). Thus,
if a non-zero digit is shifted out of the p+2 -nd position,
it "sticks" in the p+3 -rd positiom.

{(3) Add (or subtract if the operation is (&) the signed numbers m
and n' to produce w'., Since the addition of m to n' may produce
a high order carry, p' is a signed pth digit number of the form

' +
B! = - XXoXXX cee XXX

Remark: The answer we want to produce is obtained by suitably
normalizing 10eu' and rounding it to p digits.

(4) We shall designate the answer by IOgu, where g and | are
described below. ' '

6.

P 4. 7Y o Yoy] -

LaL

Y W L L T D

Gy

(6)
(7)
(&)

B ¢)

(10)

(11)

(12)

If lﬂ | =2 10, set g' = e+l and Shlft w'! one place to the rlght;

to produce a p+3 digit number u" of the form

W om ok X UXKK ... XXX

All digits of p' participate in this shifc, with the low order
digit acting as a sticky digit. That is, the low order digit

of u" is zero if and only if the low order 2 digits of p'
were zero. ' '

If 1 < el < 10, let g'=e and let p" = ',

If p' = 0, set the answer to a normalized zero,

1f 0 < |u} < 1, let k be the number of leading zero in {'
(not counting the tens position). Then '

1< |10%%] <10

Set g' = e-k and shift u' to the right k places to produce p".
All digits of u' participate in this shift.)

As a result of steps 5, 7 or 8, we have produced a pt3 digit
number u'"' of the form

wa b
1 HeXXX ooe XXX
Let p"' = ROUND(p.'") -

If step 10 does not produce a high order carry, we have
[pt] < 10, so we set .

g=g'
o=t

If step 10 produced a high order carry, set

g=g'+1

Lol

LT 1
7.

ST L S 4 ’ . s Lyt - e o2] . - T

A

£96ZL 0TGN

LAV LOLTE S

Floating«Point Multiplication

1. Prenormalize the operands. If either operand is zero, set the result
equal to a normalized zero. ' ' ‘

2, Suppose that neither operand is zero. Since the operandsare prenoimalized,
we may write

10%n, 1 s |nl <10

b
it

lofn, 1« ln' < 10.

f

¥

3. Let w' = mn, so 1 € |p'] < 100 Then 1’ may be written as a 2p digit
- number of the form . §

! + -
B! B e XX.XXKX ... XXX
Form the p+3 digit number u By retaining the high order pt2 digits of
p' and a sticky digit. Thus,

i
ul HKeKEHK w00 XXX

The low order digit of u" is zero if and only if u has no non-zero
digits to the right of the first p+2 digits.

4, We shall deszgnate the answer by 10gu, where g and u are descrlbed

below.]
5. If !M"! 2 10, let g' = ed+f+1l and ' = u"/lO . | _ "
6. If |u"| <10, let g' = e+f and "' = "

7. Thus p"" is a p+3_digit'number of the form
Il'! — +
W Fo= KeXXX ses XXX
8. Let u(iv) = ROUND{p"') :

9. If step 8 does not produce a high order carry, we have Ip(V)] < 10
S0 we set

g=8
iv

W= u()

10, If step 8 produces a high order carry, set

g=g'+ 1 | '

- (iv)
RS
W= 1

Remark: If we use ROUNDH instead of ROUNDU, we do not need the sticky digit.
Then y'" and u"' can be p+2 digit numbers instead of p+3 digit numbers,

»

8 £

COEZ T OTWIETR

&4, Form ROUND(q)

LIy W e L J0 D

~ Floating-Point Division

1, Prenormalize the operands and provide special-treatment for zero
operands. , : -

2. The divide command will probably pre-shift the dividend so that no-
post-normalization is required. ‘

3. Develop a p+2 digit quotient q which is normalized and contains the
first p+l digits of x/y and a sticky digit. The sticky digit is
zero if the quotient can be represented exactly in p+l digits,
otherwise it is non=-zero. : '

-

Remark: TIf we use ROUNDH instead of ROUNDU, we don't need .the sticky

digit.

Remark: Instead of developing pt+l digits of the quotient, we can develop

p digits of the quotient and a remainder. The rounding procedure
is based on whether the remainder is less than, equal to, or
greater than half the divisor

v

9.

P - P2 L e TiCTATS

G iAi022983

Unnormalized Operands and Unnormallzed Arithmetlo

Unnormalized Operands:

s

-

The operations proceed exactly as described above, Note that the

- multiply and divide commands prenormalize the operands, but the add and
Bubtract commands do not. '

Unnormalized Operation Codes:

It is proposed that in additiom to the normalized operation codes
described above, there should be operation codes fox unnormalized
addition and subtraction. These operations omit post~normalization,
but they retain rounding. In the add magnitude case, correct ad justment

is made if there is a high ovxder carry.

1003

P ALt v]

Héerdnl 022983

o ‘ invalLid sNuhllLo

« Tn all of the floating-point ‘arithmetic operations (& NONRIEONE
if either of the operands has the invalid bit "ON", the result will have

the invalid bit "ON",

Special bit patterns will be used to represent ®,~o, and INDETERMINATE.
These bit patterns will have the invalid bit "ON" and they will use a bit

.pattern which is distinct from that of any regular floating~-point number.

Rules: Let a and b be regular floating-point numbers with b # 0, Then:

a’ @ -2 .] : .) -] @ a =«

a @ 23D = =D K . o0 a =

a @(-w) P ' . (-m) @ a = e

a @(-m);m . ! (..co)@ a = ==

b % (2x) = +eo (normal sign control)

a+ @#E») =0 (normalizéd zero)
(#®) + 0 = &= '

b + 0 =t

®) @ = : | @ (5) ® = INDETERMINATE
(-=)) (-®) = == ' e (4 (-®) = INDETERMINATE
(=) () ©= == ' ! (-=) D o = INDETERMINATE

@ =

(~=) = o © (=o) () (=) = INDETERMINATE
(k=) + (+=) = INDETERMINATE '
0 '+ 0 = INDETERMINATE .
- INDITERMINATE:
(#w) * 0 = INDETERMINATE ')

2
e

i

L
I

In comparisons:

w > g
-t < a
L] > -l

Questions

1. We really don't know the correct sign to-givé to (£«)}+ 0 or b + 0.
It is probably reasonable to give the result the same sign as the

numerator.

2. Should two ='s compare as equal? Should two INDETERMINATE's
compare as equal?

Remarks: In coansidering the speed of the operations, emphasis should be
placed on the speed with which the hardware handles the case
in which both operands are "valid", Tf either operand is
"invalid", speed may be degraded somewhat.

11,

caprynSWrES?

BN IYE 3

Special Operation Codes

The following operations should be easy to perform. There probably

should be special operation codes for many of them,

-

A. Sign control:
* 1. Test sign of x ° ' _ o

2. ABS(X) ’ .] :
- 3. ~X 7 -

B. Invalid Bit:

1, Test to see whether invalid bit is "ON"

2. Set invalid bit "ON"

3. Set invalid bit "OwF"

4, Extract invalid bit

5. Test to determine whether a number is o, -», INDETERMINATE,
- or Yother", '

C. Dismantling and Assembling:

1. Extract exponent
2. Extract mantissa
3. Assemble

D. ' Scaling and Shortening . .

1, TNormalize

2. Take integer part

3. Write as unnormalized number with exponent k

4, Chop to k digits

5. Round to k digits

6. Round double-precision number to single-precisiom.

7. Chop double-precision number to single-precisiom.

8. Extend single-precision number to double-precision by
appending zeros.

E. Mixed Operations

-1, Multiply two single—precision nunbers to produce a
double-precision result, '

2. Add a single-precision number to a double~precision number
to produce a-double~precision result.

F. Reduction

’ 1. SUM -
2. PROD
3. DOT
4, POLY
]
iz,
Sy

.<.z?', ‘ [I T e . S 1»..:.--.‘._“».. --‘_,:‘—. - - .‘e’: B e P ? i PR

P Y L arleTLlYy.

QLR U L2098 3

We shall use the term "exponent spill" to include both overflow and
underflow, o - ‘ : . ,

Comments:

3.

4,

5.

6.

Exponent spill should cause an interrupt.

We want it to be easy to change the way the software responds to
the interrupt. We want to be able to make this change in the
middle of a program at the cost of, say, a move.

Performance may be degraded when spill occurs.

Result prodﬁced after sﬁill:

(a) invalid bit is "ON"

[]

(b} result should have correct sign, correct mantissa, and a o
“wrapped-around" characteristic, That is, the characteristic’
is 1024 too small after overflow and 1024 too large after
under flow, .

For distributed operations, the operatibn should be completed before

the interrupt is taken.

Por reduction, set the intermediate result to x= after overflow

.and O after underflow and continue the operation to completion.

Take the interrupt at the ead of the operation.

13,

oL TRt ars?

delInNin22g983

Questions

It would be desirable to look at the complete sat of operation codes
and consider the coding of, say, argument reduction for simple functioms
or higher~than-double-precision arithmetic. No one is now planning to do

- “this.

P 4 L o Yo]

