DIV7S4 ' ' . Nov. 1a, 1988

A Computer Program with Almost No Significance

o Prof. W. Kahan
Elect. Eng. & Computer Science Dept.
Univ, of Calif.
Berkeley CA %4720

An amusing little program computes Z = 2.0 correctly, despite
roundoff, only on computers that round products and quotients in
the way specified by IEEE Standard 734 for Binary Floating-Peint
CArithmetic. On every other commercially significant computer the
praogram computes the same wrong result 2 = 1.0 . What makes the
program act this way are properties of rounded multiplication and
division unobvious enough to justify writing this note to explain

" them. No other reason for the program’'s existence is known.

The Program. :

All variables esxcept § have the same floating-point type, be it
Single, Double or Extended Precision. The variable J§ 1is an
integer. The only input is the variable A , which can take any
value between 1,000 and 8,000,000 ; but since the program’s
running time is proportional to A , ° larger values are best
avoided on slower computers. The only output is the variable Z ,
which would have the value 2.0 if np rounding errors occurred;
otherwise 7 will be miscomputed as 1.0 an all computers except
those (now in the majority) whose arithmetics conform to IEEE
Standard 734 (1983) . Here is the program, plus annotations:

Display " Enter a valus between 1000 and BOO00OOO for A @ "j
Input, A ; _ .
If A < 1000 or A > BOOOOOO then
{ Display " V¥You sesm to lack interest in this game.";
Stop } & ’ ‘
One ‘= 1.0 3 Two = One + One 3 H = Dne/Two ; Cewe = 1/2
Three = One + Two 3 R = Twa/Three ; : cwse W 2/3
W= (((R=H)=H) + (R=H)) + (R=H) 3 ... = 3%{ Roundoff in R)
If U= 0.0 then C = 1.0E36 else C = One/(UkU) ;
ves Now C 1s a huge number, narmally like {1 /Roundof+)=®
S = One ; I = Omne 3 s} later . I.=1, 3, 3, 7, ...
While I < A do '
{ D = Three 3 T re-3 later D =-1 + 2
for J = 1 to 15 do '
LR i= I/D ‘ M- R = I/D rounded:
X = Q%D - X = 1 -+ roundoff
E i= (X-1)YkC 3 “un E = roundoff¥C
8 = EXE + 8§ 3 . 8 ¥ 1 + I E=
D =D - 0ne + D } ; ‘ /- :
I I= 1 + Twoy 3 3 rney nNow S5 = | + FlroundoftkC)=
Z = One + One/S ; ses » If all roundoffs = 0 then " Z = 2
RDisplay " Z =", I ; .

Stop.

DIV754 ' - Nov. 16, 1988

What Happens? o
I+ the program is run on a computer whose multiplication and
division are rounded in conformity with IEEE standard 754, the

final value displaved is Z = 2.0 , as would be expected if no
rounding errors occurred. On all other computers the incorrect
value Z = 1.0 is displayed. This incorrect 1.0 is easier to

explain than the correct 2.0 , so0 this is where we shall begin.

Consider first a programmable calculator that rounds every
arithmetic oparation teo ten significant decimal digits. It will
first compute R = 0.66b6b666667 instead of 2/3 , and then it
will find U = 3R-2 = 0.000000000]1 exactly and € = 1.CE20 . 1In

- the innermost loop the calculator will first compute not & = 1/3
but G = 0.3333333333 , and then X = Q3 = 0.9999999999 exactly
so E = (1.0E-~10)%1.0E20 = 1.0E10 instead of ©0 . This causes &
to be increased and rounded to 1.0E40 , and subseqguent passes
around the loop increase S beyond that. Finally Z rounds to

1.0 , as predicted. The same final result Z = 1.0 is computed

on almost every other decimal calculator regardless of how many
significant decimals it carries and whsther it rounds or chops.
The exceptional calculators are certain Casio models that do not
compute 0,333...333%3 = 0.999...979 correctly but instead round
it cosmetically to 1.000...00 . because that displays as a small
integer 1 3 only for very large valuezs | (and A) can such
a machine produce npnzero values for E and hence Z = 1.0 .

Mow consider the IBM /370 , a family of machines that are used
very widely. These machines perform hexadecimal floating-point
arithmetic with products and guotients that are chopped to fit the
floating-point format in wuse, which may be Single Precision o
with & sig. hex. digits, Double Precision with 14, or
Extended (Quadruple) Precision with 2B. These computers get
0.95395...339n (in hexadecimal Y instead of 1/3 for &, and
then ©O.FFF...FFFy instead of 1 for X , s8o0o E is nonzero and
finally Z = 1.0 instead of 2.0 . The same kind of thing
happens on all computers that chop -products and-‘quotients instead
of rounding them, although some of those computers introduce an
unnecessary extra rounding error when X-—1I is computed; on altl
computers that chop, Q '= I/D is'chopped to something actually
smaller than I/D if it is not exact, and then X = D is
chopped to something smaller than I , so E = (X-I)%C turns
out to be a fairly big negative number and finally Z = 1.0 .

Mext consider the DEC VAX™ , with its four bhinary floating-
point formats:

(F) Single Precision rounded to 24 sig. bits.

t =
(3) Double Precision rounded to t = . 53 sig. bits.
(D) Double Precision rounded to t = Bb sig. bits.
(H) Extended Precision rounded to t = 113 sig. bits.

Arithmetic on this machine is comparatively well-behaved, yet it
computes Z = 1.0 , .instead of the correct 2.0 , in a way that
depends upon whether the number t of significant bits carried is
aven ot odd. Let us consider those cases separately.

Whern t is pven, the value computed for R is not 2/3 but
0.1010.,.101llsz (im binary), ‘and then U = 27 and C = 2%= .,
When I = 13 and D =3 , +the value computed for & 1is not
13/3 but 100.01010...1011= , and Q%3 = 110]1.00000...0001z

2

DIV7S54 Nov. 16, 1988

rounds up to X = 1101.00000...001= instead of 1101w = 13 .
This produces E = 2¢*% and finally 2 = 1.0 instead of 2.0 .

When t is odd, the value computed for R is not 2/3 but
0.1010...1012 , and then U = -2 and L = 2= Whern I = 7

and D =3 , the value computed for & is not 7/3 but
C10.¢101...01lz , and R4%3 = 111.0000...001l=z rounds up to X =
111.0000...012 instead of 11l = 7 . This produces E = 28*+%
and finally Z = 1.0 instead of 2.0 . :

On a WVAX , all the cases that produce nonzero values for E do
50 when a value xxxx.00...001z rounds up to X = xxx%x.00...0lz
instead of down to I = %xxxxX.=z . This happens because a VAX
rounds all such " halfway cases " away from zero. Later we
shall see that rounding these cases to " nearest even, " as is
required to conform to IEEE standard 794, would keep X = 1 .

Thus we conclude that Z will finally be computed incorrectly as °

1.0 instead of 2.0 on all the following classes of machines:

—-— Those with radix greater than 3 ¢ for 1= 1/3 they
compute a value @ slightly different from 1/3 , after which
X = Q3 exactly, so X # 1 and hence E = (X-1)xO # O .

—— Those that chop products and guotients: whenever ® = I/D
.is inexact it is too small, and then X = R¥D < I too.

—= Binary machines that round halfway cases away from zero, as
does a VAX, or round them differently than specified by IEEE
standard 734.

Why IEEE Standard 754 gekts 7 = 2.0 .)

IEEE 734 specifies binary floating=peoint arithmetic with + = 24
sig. bits for Single Precision, t = 33 for Double, and any

t > 7% +For Double-Extended Precision. For the program above the
only necessary constraints upon t are that - t-1 2 log=f > log=l
cand £t > 13 » j . The 1EEE standard also specifies a rounding
mode ta be supplied by default { in lieu of an explicit request
for something else Y. The default mode rounds to nearest, and
breaks ties in halfway cases by rounding to nearest even; this
will be explained later when we need it although it is explained
alsn 1in items cited in the Reading List below.

Henceforth we take that default rounding mode for granted,

Now the crucial insight is the aobservation that the two coperations

0 = 1/D ;
X = Q%D 3
always produce X = I exactly, despite rounding errors in both

Q@ and X , provided I and D are floating—point variables with
positive integer values subject to the following constraints:

I is not too enormouss in fact, I ¢ 2=t

P is a sum of two powers of 2 3 i. 2ay D= 24 + 2k
The caonstraint upon D wmay seem peculiar, but its necessity can
be demonstrated as follows.

“The first few integers D that are sums of two powers of 2 are
1, 2, 3, 4, 9, &, 8, 9, 10, 12, 18, 17, 18, 20,
The first integer not in this sequence is 7 . Let us try D
and, for IEEE 754 Single Precision. with +t = 24 , +try 1

,

o
«

3

DIvV7S4 : Nov. 16, 1988

in the two operations above. Since 31/7 = 100.011011011...2 in
binary, @ != I/D rounds to & = 100.011011011011011011011= .
Then X = @D = 11110, 1111111144111 14111101 2 rounds down to X =
TPitoc ittt i1 1ti il < I = 31 . For IEEE 734 Double
Arecision with t =353 , +try I =29 and get X > 1 . When

b = 11 the trial values I = I3 and I = 15 cause X # I . I+
we wish to keep X =1 Ffor all integers 1 that are not too
enormous, some constraint upon D must be accepted.

1§ we accept the two constraints upon I and D, ouw next task is
"to demonstrate why they imply X = 1 exactly. For this purpose
we shall standardize the integers T and D by multiplying them by
powers of 2 so chosen that atterwards =31 +24 and I 1i1s
an even integer in the range 2%1 ¢ 1 ¢ 2%2 . Multiplications
by powers of 2 introduce no rounding errors, so they have no
effect upon whether the subsequent operations & = I/D and X =
GxD will produce X = 1 . And since no rounding srror would

occur if D o= 2, we assume henceforth that § > 0 .

Now the demonstration breaks into two cases called Low and High
according to the way I/D compares with 2041

Low Case: 2t—i=2 ¢ 21/ (1+24) ¢ I/D £ 2=
In this case the guantity 2+4+I/D lies in the interval
2Tt L RAiT/D 2%
s0 1t must round to the nearest integer with a rounding error
strictly swaller in magnitude than 1/2 3

‘ , 29 = (249 I/D) rounded = 24 I/D o+ /D
with r/DI < 1/2 . In fact, + 1is a remainder, an integesr
strictly between -D/2 and D72 , g0 =290 L {247 . Now

) GkD = I 4+ Z2=9"% = T + (at most 1/4 3 ,
and this rounds to the nearest integer since 21 { 1 ¢ 2%-2 .
Therefore GFD rounds te X = I exactly in this case. NMote that
kD cannot fall halfway between two integers, but a halfway case
can arise when I = 2%1 and GQ¥D = I - 1/4 3 fortunately both

JEEE 754 and the DEC VYAX round that halfway case up to I .

High Case: 2%~ ¢ I/D £ (2%-2)/(1+2%) < 2¢
In this case the guantity 29I1/D lies in the interval
et L 291/D £ 2=, :
50 it must round to the nearest integer with a rounding error
strictly smaller in magnitude than 1/2 ;

24 = (241/D) rounded = 24I/D + r/D
with |r/D] < 1/2 . Again, r is a remalinder, an integer
strictly between -D/2 and D/2 , so =2t { v < 24=% . DNow
GxD = I + 2= = "1 + (at most 1/2) ,

and this rounds to the nearest integer since 2%t (1 ¢ 22 .
The nearest integer is unambiguously I unless %D is a half-
integer, in which event IEEE 734 will round it to the nearest
even integer, which turns out to be I again. Therefore %D
rounds to X = I exactly in this case too. End of demonstration.

The High Case is the one that can fail on a DEC VAX when a
half-integer G¥D is rounded up to X = I+l . And it could fail
for IEEE 734 14 I were too enormcus, o much so that it were
an pdd integer between 2% gnd 2% , in which case rounding O%D
to the nearest even integer wonld yvield X # 1 .

DIV7S4 | Nov. 16, 1988

Roundoff is Mot Random.

The situation we have just finmished studying must be very special
to ensure that the two rounding errors committed during the two
operations & (= I/D and X = QXD will neatly cancel and lesave
X = 1 . NMormally, in the absence of constraints upon I and D ,
we must expect X # I from time to time. However, the behavior
of those rounding errors is not random; they are still correlated
strongly enough that, even i1f X # I , the further computation
of G = X/D always produces G = @ exactly on every computer
that rounds correctly (rather than chops) to keep the error no
worse than half a unit in the last place, regardless of radix and
the treatment of halfway cases, provided (as is universally the
case) the arithmetic carries a constant number (at least twa)
of significant figures. The proof that 6 = @ resembles the one
above bhut is more complicated; see the Appendix.

Conclusion.
One might wish that the two operations @ != I/D and X = QXD
would &lways yield X = 1 exactly, but that i1s too much to ask
nf any computer. IEEE 7594 ensures that X = I whenever 1 1is
any integer no bigger than 2= = B,388,608B and D is drawn from
the interesting seguence '

1, 2, 3, 4, 3, &, B8, 2, 10, iz, 1&, 17, 18, 20,
This is better than every othesr commercially significant floating=-
point arithmetic can doy but whether this phenomenon has any
commercial significance remains to be seen. Perhaps it is no more
than another small piece of evidence supporting the claim that the
main benefit derived from IEEE 754 is this:

Program Importability: Almost any application of floating-
point arithmetic, programmed in a higher-level language and
designed to work on a few different families of computers in
existence before IEEE Standard 754, will work at least
about as well on a machime conforming to IEEE 754 as on
any other nonconforming computer with similar” capabilities
{ memory, speed, word-size and compilers).

Reading Ligst:

ANSI/IEEE Standard 734-1983 for Binary Flpating-Point Arithmetic,
published by the Inst. of Electrical and Electronic Engineers,
Inc., 345 E. 47th St., Mew York NY 10017 (item SHICII&).

W. J. Cody et al. "A Proposed Radix— and Word-length-independent
Standard for Floating-Point Arithmetic” in IEEE MICRO wvol. 4
no. 4 {(August, 1%84) pp. 84-100. «-. Easier to read.

Apple Mumerics Manual, Eﬁd ed. (1988), Addison-Wesley, Mass.
«++ Describes the most conscientious and most widely available
implementation of IEEE 734.

Harold G. Diamond "#Stability of Rounded OFff Inverses Under
Iteration” Mathemalticy of Computation IJ2 (1973 pp. 227-232
... Slightly weaker inferences from much more general

hypotheses, and some further reading.

5 ' ‘

DIV734A Nov. 16, 1988

APPENDIX: We prove here that correctly rounding the Dpefationa
B .= 1/D ; X = %D G5 = X/D 3
in floating—point arithmetic always yields G = & .

Arithmetic is assumed correctly rounded to t sig. digits of
radix § , which keeps the rounding 2rror no bigger than one half
a unit in the last sig. digit; the proof remains valid regardless
of whether halfway cases are rounded up or o nearest even. X i
assumed not to over/underflow; and far siwmplicity’'s sake we alsao
assume that + > 1. Then we use the abbreviation B = g% , D
that the floating-point numbers between B and ¢B consist of the
integers B, B+1, B+2, ..., ¢B-2, ¢B~1, ¢B . The next floating-
point number after @B is @B+ 3 the one before B is B-1/¢ .
We also use repeatedly the fact that multiplication and division
by B or by any other integer power of § are exact.

When D is a power of € , or when D =1 , no roundoff ocecurs
to prevent G = G . Therefore we can henceforth disregard these
cases when we scale the data 1 and D to integers in the ranges

_ B <L I £ 8B and B+1 < D < @B-1 .
Then I/D is restricted to the range

/7g < B/7@B-1) < I/B < (@gB-1)/(B+1) < @ 3

this range will be broken inpto two cases: LOW , when I/D < 1
and HIGH , when I/B > 1 . Later both rases will be subdivided
further.

LOW Cases B¢ I < I+t ¢ D < @B-1 .
In this case B/(gB-1) € I/D ¢ (D-1y/D < (eB-2)/7(eB-1) ;3 now
multiply by B ta put @BI/D into a range where it must round
to the nearest integer; _

B+B/(gB-1) £ @BI/D < @B—-1 - 1/((gB-1) .
Then @BI/D rounds to the nearest integer ¢BE bestween B and
.@8B-1 1mclusive. This @B is a quotient whose remainder is

o= @Bl - ¢BED , and 1 € D/2 .
If @ = 1/8 then both X = 6GD and 6 = X/D = @ exactly, sa we
need consider only the case B+1 < @#BR = @Bl/D"—- r/D . Then
GD = I - r/(gB) and = Jr/(eBY | < D/(2eB) £ (gB~-1)/(2¢B) < 1/2 .

Therefore, unless B - 1/(2g) > @D , D rounds to X = I and
then G = G exactly.

In the case when B- 1/(28) > QD = I - /(@B > B-1/2 , still
#AD rounds to an integer @X = @QD +Ff with (f] ¢ 1/2 3 and
then @BX/D = @BQ + £B/D difters +From the integer @BE by
(£B/D| € (I/2¥B/7(B+1Y < 172 , so @BX/D rounds to @BG = $BR .
Therefore G = 0 exactly again, finishing off the LOW Case.

High Cases: B+1 { D < D+] £ 1 < @B-1 .
In this case (@B-1) /7{(gB-2) < (D+1Y/D < I/D < (eB-1}/(B+1) , sO
we multiply by B to put BI/D into a range where it must round
to the nearest integer;

B+ B/{gB-2) < BI/D < gB-@#-1+ (g+1)/(B+1) .
Then BI/D rounds to the nearest integer BR between B and
#B-¢ inclusive. This B is a quotient whose remainder is

r = B&D) - BI , and lri € Dr2 .

I+ @ =1 then both X = @D and G = X/D = @ exactly, so we
need consider only the case B+1 ¢ BQRQ = BI/D+ r/D < @B-¢ . Then
B+2+1/B € QD = I +¢/B < 1T +D/7(2B) £ 8B-1 + (gB-2)/2B < @B-1+g/2 3
therefore @D rounds to the nearest integer except in the rare

b

pIV7S4n | Nov. 16, 1988

case that @B+ 1/2 < @D , which we shall deal with later.

When 8D rounds to the nearest integer X , the difference

f = @D~ X satisfies |f] < 1/2 ;3 and then BX/D = BR—- +8/D
with |[£B/D| < (1/72)B/(B+1) < 1/2 , spo BX/D rounds to BG = B
which is the nearest integer. That is why 6 = 8@ in this case.

In the rare case that @B+ 1/2 < @D < @B-1+ @/2 , which cannot

arise unless @ > 4 , the rounded value of QD is X = @B . Now
G = X/D rounded 2> I/D rounded = @ on the one hand, and
G = @B/D rounded < (I /D rounded = @ on the other.

- Therefore G = @ exactly again, and the HIGH Case 1is finished.

End of proof.

Testing Correctly Rounded Multiplication and Division.
Whether the phenomenon just proved has any worthwhile application
is not known. At first sight it seems to supply a simple way to
test whether computers round multiplication and division correctly
in floating-point. The test program would generate a large number
of pairs I and D , perhaps at random, and for sach pair test
whether the three operations

@ i= I/D 3 X i= QD ;3 6 = X/D ; .
vielded G = @ exactly. A failure would signify that one o+ both
of multiplication and division is not correctly rounded.

Unfortunately this test can succeed, Ffinding G = Q@ every time,
even if multiplication and/or division is merely almost correctly
rounded in so far as its error exceeds one half in the last sig.
digit by extremely little extremely rarely. Therefore such a test
is valuable only as a quick way to expose arithmetic that is very
incorrectly rounded. Mpore refined tests are supplied in some of
the author’'s reports:
- Checking #Whether Fleoating-point Division is Correctly Rounded
(April 1987) ’
- To Test Whether Binary Fleating-FPoint Huttiplication is
Correctly Rounded - (July 1988)
A Fleating Pfeint Validation (FPV) package of software that
tests all the arithmetic operations (+, —, %, / and ¥) can be
- purchased for wnder $1000 from the Numerical Algorithms Group,
1101 3lst Street, Suite 100, Downers Grove IL 6051512463 .

Acknowl edgmnent:
Some of this work was supported by grants from the U. 8. Office
aof Maval Research under contract NO0OI4-85-K-0180 .

