
INFORMATION PROCESSING 71 - NORTH-HOLLAND PUBLISHING COMPANY (1972)

A SURVEY OF ERROR ANALYSIS

W.KAHAN
Computer Science Department, University of California,

Berkeley, Calzfornia 94720, USA

Rounding error is just one kind of error, and an easier kind to analyze than some others. Error and uncertainty
in data is a more important kind, and not so easy to estimate nor analyze; here is where error analysts are currently
busiest. The most refractory kind of error is attributable to flaws in the design of computer systems, both hardware
and software, caused primarily by misconceptions about the other kinds of error. These flaws should not be blamed
entirely upon those systems' designers, who must contend with arbitrary directives from on high and conflicting ad
vice from their customers; "Who shall decide when doctors disagree?"

I. INTRODUCTION

A horse, a rider, a battle, a crown; that they all
might be lost for want of a nail is plausible though
unlikely. How likely is anything important to be
lost because of a rounding error?-Before we answer
this question, we might consider the inhabitants of
a far northern city who are persuaded that their
harsh arctic climate is really very healthy because
they see so few sick people walking their streets.
Will our logic be any better than theirs?

There is a natural analogy between illness and
numerical inaccuracy. Germs and rounding ~rrors
are small, numerous, and best combatted by sani
tary precautions which, alas, are all too frequently
neglected, not so much because of their intrinsic
difficulty or expense as because of indifference or
ignorance. When that neglect breeds mischief, the
doctor is called. Now the analogy breaks down;
germs are more persistent than rounding errors.
Among the achievements of the past generation of
error analysts is their capacity to deal with roundoff
in a comparatively routine way that medical practi
tioners could only envy. Of the various kinds of
errors that confront error analysts, rounding errors
are among the easier kinds to deal with theoretically,
so let us deal with them first.

"A little neglect may breed mischief ...
for want of a nail the shoe was lost;
for want of a shoe the horse was lost;
and for want of a horse the rider was lost."

from Poor Richard's Almanac
Benjamin Franklin

2. EXAMPLE OF ROUNDOFF ANALYSIS

Here is an example, solving the quadratic equation

Ax2 - 2Bx + C = 0,

to illustrate the routine by which a ·mathematician
may dispose of roundoff. This example has been
chosen because its analysis is relatively short but
otherwise typical of small algebraic problems. The
first formula that comes to mind,

is well known to be a poor way to compute the
roots R+ and R _ whenever one root is very much
smaller in magnitude than the other; see fig. 1,
which shows such 'a calculation done in 4-significant
decimal floating-point arithmetic.

Because the computed value of R_ is quite wrong,
we might describe the computation as "unstable";
this is a correct conclusion from wrong reasoning,
as we shall see. We might also be tempted to con
demn the last subtraction for "losing"· three signifi
cant decimals, though that subtraction has been

Invited Papers W. Kahan, A survey or error analysis

T'o solve Ax2 -2Bx+C= 0 with

A = .1002, B = 98,?8, C=l0.03;

Use 4-significant-decima_l rounded floating point ca,itlvnetic;

Set D = B2 -AC= 9?5?,4864 - 1.005oos ~ 9?5?, - 1,005 ~ 9756.;

The roots are R = (B + /jj)/A, where
±. -

,ID¼" ✓9?56. = 98,??2!f66 ... '!' 98.??;

R+ :f: (98,?8+98.??)/A ~ 19?,6/.1002 = 19?2.osss,., ~ 19?2,

(R+ = 19?1,aoss,,,);

R_ ~ (98.78- 98, 77)/A = . 01000/.1002 = , 099800,,0 ... = , 09980

(~_ = ,050?6sss4,.,).

Fig. 1. An unstable calculation.

C • ., TO SOLVE A>1XH2 - 2>1B>IX + C = O.
D = B**2 -A>IC
IF(D .LE. 0,) GO TO 1

C •• , REAL DISTINCT ROOTS RP AND RM WHEN D > 0,
S = B + SIGN(SQRT(D), B)
RP= S/A
RM= C/S
GO TO •••

C. • • COMPLEX OR COINCIDENT ROOTS RR ±. I<RI WHEN D ~ O.
1 RR= 8/A

RI = SQRT(-D)/A

Fig. 2. A stable algorithm.

To solve Ax
2

- 2Bx + C = o with

A= 47.51, B = 4?,45, C = 47,39

using 4-significant-decimaZ rounded floating-point a.1'ithmetic in

the program of Figure 2;

Set D = B
2

-AC = 2251,so2s - 2251,tisa9 ¼° 2252. - 2251, = 1,000;

Set S = B +vfj~ 47. 45 + 1,000 = 48. 45; the roots aJ"e

and

R_ = C/S ~ • 9?81:2.11 a ~ ,-9781 (R_ = ,99741422.,,),

Fig. 3. Poor results from a stable program!

1215

1216 W. Kahan, A survey of error analysis Numerical Mathematics

Approximate solution of a:c
2

- 2bx + c = O;

d = {b2 (1+µ1) - aa/1+µ 2)}{1+o};

When d > O estimate real distinct roots r+ and r_;

e = {JbJ +{l+p)/J}(l+a)sgn(b); (sgn(O) = 1)

r+ = (1+61)s/a;

r _ = (1+0
2

Jc/s; go to .•..

When d .:5. O estimate complex or coincident roots rr ±. 1ri;

r r = /1+o3)b/a;

ri = (1+o4) {l1+p) ✓-d}/a.

Rounding errors: a for add., a for subtract, µ for multiply.,

C for divide, p for square root.

Fig. 4. Representation of rounding errors in fig. 2.

performed precisely and no more deserves condem
nation than does any other bearer of ill tidings. The
subtraction merely reveals an error half of which
was committed at the beginning when B 2 =.
= 9757.4884 was rounded to 9757.

A stable F. ortran-like program to solve the qua
dratic is displayed in fig. 2; when applied to the
coefficients A, B, C of fig. I it produced the roots
correct to within one ulp. (An ulp is a Unit in the
Last Place quoted.) Although in fig. 3 this program
appears to lose half the figures carried, yet I insist
that the program deserves to be called '"stable";
the loss of figures could be charged against the data
A, B, C if these coefficients were all uncertain by
as much as ten ulps, for then they would specify
an ill-conditioned problem whose solution is uncer
tain more because of its own data's uncertainty
than because of my program's roundoff. To prove
this, to exculpate my program, I submit the fol
lowing analysis.

3. REPRESENTATION OF ROUNDOFF

The letters A, B, C, ... are intended to be the names
of real variables but the· Fortran compiler interprets
them as the names of cells in which are stored the
values of real variables we shall call a,b,c, ... respec
tively. The variables A and a are not the same, though
generally intertded to approximate each other. A
Fortran statement intended to compute, say, a quo~
tient

R=S/A

causes instead the computation of, say,

r=/I+o)s/a

where the variable O represents the contribution to
r due to roundoff. For example, whens/a=
1.019 ,,,, ... is rounded tor= 1.020 then o =
(r - s/a)/1 s/a) = 0.0002L.; usually the only infor
mation about O that is used in an error analysis is

an a priori bound; in this case the assertion

lo!< 0.0005

is valid independently of sand a* 0. More generally,
to every arithmetic operation performed on a spe
cific machine corresponds a data-independent bound
which reflects the worst error that could possibly
occur during that operation (in the absence of over/
underflow). Customarily we assume that each float
ing point arithmetic operator# such as+, -,
*, /, ,J, decimal-binary conversion, ... has, for every
precision (word-length) pre-assigned to the cell
calledR, its own data-independent bound e# for
the relative error committed when the Fortran state
ment

R=S#A

causes a new value, obtained by adjusting s#a, to
be stored in cellR. Whether the adjustment is by
rounding or chopping is a minor issue to be dis- •
cussed later; here rounding has been assumed.
Whether e# is a bound for 1/r- s#a)/(s#a)l 6J
l(r - s#a)/rl is a matter of convenience for the an-

Invited Papers W. Kahan, A survey of error analysis 1217

A slightly wroYIIJ solution to a slightly wrong problem.

Set a: a, b: b, 0: a(1+µ2)/(1+µ1) in the perturbed

~- t· ~ 2 b~ ~ quaUI•a 1-C ax - 2 x + c = O;

If d .:'_ 0 the roots I' + 1r.
r - •

of the perturbed quadratia

are approximated c"losely via the aomputed values;

If d > 0 the roots F±. of the perturbed quadratic are

approximated closely by the ccmputed values

r+ = 11+e)(1+a)(1+01)"+' r_ = i'_(l+8)(1+µ1!l{n+e)/1+a)/1+µ2)}

where 8 " (s/(1+a)sgn(b))/(lbl + /2;2-ac) - 1

= p✓(1+µ1 ! /l+-0) + (µ1+-0+µ1cr!/{1 + ✓(1+µ 1) (1+cr)}

1 + lbl ✓(1+µ1)(1+-0)/d

~ /p + ½i1+ ½,;;u + lbl/✓ci;.

Fig. 5. Assimilation of rounding errors in fig, 4.

alyst (and confusion for the student). Whether
the customary assumptions can be validated for
any particular computer system is one of the ma
jor issues to be discussed later. The arithmetic in
fig. 3 is done in such a way that e# = .0005 holds
for every operator. Finally, complicated Fortran
statement like

D=B**2-A*C

are interpreted as abbreviations for sequences of
simpler statements like

The ways in which a Fortran compiler might intro·
duce these invisible temporary variables is another
major issue to be discussed later; here we assume
each such variable to be, like all the others, restricted
to 4 significant decimals.

Fig. 4 shows the relation between the program of
fig. 2 and the values actually taken in storage by the

variables a,b,c, Each of the Greek letters in fig. 4
represents a rounding error about which we assume
only that it is smaller in magnitude than E = .0005.

Let us assail this confusing profusion of Greek letters
with the following question:

Do there exist coefficients a, o, c, differing from
a, b, c respectively by at most a few ulps, whose
quadratic equation

ifx2 - Wx + c = 0

has roots '+ differing from the computed values
r + respectively by at most a few ulps?

Yes~ there are many such coefficients a; 75, C; so
many that a novice might have trouble finding any!
One set is displayed in fig. 5, in which the coefficients'
perturbation is confined to two rounding errors in
c, while each root's perturbation amourits to five
or fewer rounding; i.e., ignoring e2 terms,

le-cl :S2elcl, lr-rl :S 5elri for'+• r_, r,, r;.

In effect, the program's first two rounding errors
have been carried backward to c while the rest have
been carried forward to the roots, We may compute

2251 b2

2252 0 =47.3690322 ... ,

which differs from the given value c = 4 7.3 9 by
about 2 ulps, and then verify that the roots r+ =
1.01978 ... and r_ = .977691... of the perturbed
equation ax2 ~ 2bx + c = 0 differ from fig. 3's

1218 W. Kahan, A survey of error analysis Numerical Mathematics

computed values r + = 1.020 and r _ = .9781 by
less than 4 ulps.

4. A SLIGHTLY WRONG SOLUTION TO A
SLIGHTLY WRONG PROBLEM

Do not be deceived by the last few computations,
however small they make the errors seem to be.
They do not say how close the computed roots r +

are to the "true" roots of "the" quadratic equation;
we have not yet identified the "true" roots because
we have:not yet identified "the" quadratic equation.
Let that equation be

Ax 2 -2Bx +C= 0,

with coefficients A, B, C that are approximated by
the variables a, b, c represented in storage. The val
ues of A, B, C may be unknown but, if the calcula
tion is worth doing at all, we must have bounds for
them; for example, suppose the inequalities

IA-al/lal < 10,e, IB-bl/lbl < IOe,

IC-cl/lcl < !Oe

say all that is known about A, B, C. These inequali
ties imply that the true roots R+ are uncertain by
at least (actually much more than) a factor of about
/ I + 2Qe) because to two sets of coefficients satis

fying the foregoing inequalities, say

' ' ~ ~ 2E

' '

rD'' T~ C,.

The shaded region
is the Uncertainty
caused by roundoff
and attributed to
data

L--------..space Of coeffiCient!:. (a,b,c)

The intended coefficients A, B, Care at the point C.
The stored coefficients a, b, care in the inner square.
The perturbed coefficients a, b, care in the outer rectangle.

A' =(I+ IOc)a,

A" =(I - IOe)a,

B' =b,

B 11 = b,

correspond roots satisfying·

c' = (I - !Oe)c,

C"'=(! + IO'e)c,,

so either (R~/R~) or (R ~/R~) differs from 1 at
least as much as (I - I0e)/(1 + !Oe) do.es. Com
pared with these relative uncertainties of 1 0e in
the coefficients A, B, C and consequently at least
20'e in the roots R+ , the additional relative un
certainties of2e\in-c and Se in i'+ added by round
off in fig. 2's pro~ram seem unobjectionable. See
fig. 6. \

Thus do we render the following verdict: The
program in fig. 2 is not guilty of objectionable
rounding error; the.wrong answers in fig. 3 are
scarcely more wrong than they deserve to be. But
those answers remain wrong nonetheless! Is this
progress?

5. APPEAL TO PERTURBATION THEORY

We have made progress. Even if the intended

coefficients A, B, Care not Uncertain, but precisely
equal to the stored values a, b, c, * the foregoing anal-

* This is assumed trud for the remainder of this section.

The smallest diagonal
of this figure is
bigger than 2oe.

Each point in this
space represents the
roots of a quadratic
equation whose coeffi
cients are represented
by a point in the space
above

L---------------space o1 roots <r+,r >

The rootsR±·of the intended equation (A,B,C) are at the
point R. The roots of the stored equation (a,b,c) are in the
inner-lozenge. The roots r± of the perturbed equation
(a,.b,c)-are in the middle lozenge. The computed approx
imatio~s '± are in the ~uter lozenge.

Fig. 6. Pictorial assimilation of rounding e~ors in figure 4. A slightly wrong solution to a slightly wrong problem.

Invited Papers W. Kahan, A survey of error analysis 1219

ysis is helpful because it allows the error made during
the computation to be summarized in a way that
frees subsequent analysis from the messy details of
the program and the computer's hardware. Here is
.the summary:

The computed "roots" rare close to actual roots 'f'

of a perturbed quadratic equation a,:2 - 2bx + c =
0 whose coefficients a, b, C are close to the given
values a, b, c

• (i.e., ic-cl/lcl :S 2e).

All that is left of the program and its rounding errors
is the pair ofvalues(Se,2e) and the following question:

How much can the roots of a quadratic equation
change when the last coefficient of the quadratic
is changed by at most a little?
This question submits to conventional perturbation
analyses. For example, we may regard each root R
of ax2 - 2bx + c = 0 as a function of c and compute
the derivative

aR -I
ac 2(aR-b)

whence the bound !~cl = lc-c'. I < 2eicl implies that
the error !Ml= IR-rl caused by changing c to c
is bounded by

if e2 terms are ignored. These bounds are almost
rigorous; by applying results from Smith [I] or
Borsch-Supan [2] we may verify the first few for
mulae in fig. 7, which provide rigorous a posteriori
bounds for IM I. These bounds do not assume any
thing about the source of the approximations; why
don't we just use these bounds and skip the foregoing
rounding error analysis? There afe three reasons
why.

First, a rounding error analysis, even if not entirely
rigorous,·indicates how likely are the computed value.s
to repay the cost of their computation. Without that
analysis we must wait until after the computation to
discover whether it was worthwhile; could we.perhaps

An a posteriori bound for roots:

Let r+ and r ... be given approximations to the roots of

P(z) ~z 2 - 2bz/a + c/a = O.

If r + =fa r _ then each of the two regions

in the z-plane contains one of the roots of P(z) = O unless
those regions overlap, in which case their union contains both
roots. If r+ = r _ = r the region

lz-rl ,;; ½IP'(r)I + J¼IP'(r)12 + IP(r)I

contains both roots. (Here the prime means derivative,)

An a pn·ori bound for roots:

If the roots of ax 2
- 2bx + c = 0 are R + and the roots of

ax2 - 2bx + c(l+y) = 0 are r+, then thtrelative differences
8± '=' l -r±/R± are bounded by

Fig: 7. Bounds for perturbed roots.

get a-better answer-sooner by repeatedly invoking a
random number generator until'its output satisfies ac
ceptable a posteriori bounds?

Secondly, a posteriori bounds frequently cost at
least about as much as the computation they are in
tended to validate, and more if no advantage is taken
of what might reasonably be inferred about the role
of roundoff in that Computation. Furthermore, the
computation of bounds is another computation sus
ceptible to rounding errors. For example, whep. the
expression (A •Z-2.•B)•Z + C is computed using the
coefficients A, B, C and 4-significant decimal rounded
arithmetic of fig. 3, it vanishes for Z = .9860, for
Z = 1.011, and for several other 4-significant decimal
values between them, despite the fact that the intended
quadratic should vanish only twice (i.e., at
Z = .99741•22 and Z = 1.0). Evidently, the a
posteriori bounds of fig. 7 cannot be applied to the
computed values of P(r ±) unless either those values
are computed more precisely (is double-precision
arithmetic obviously good enough?), or else those
values are reconciled with roundoff. The quadratic
expression above is approximated in storage by a
computed value

1220 JV· Kahan, A survey of error analysis Numerical Mathematics

in which the Greek letters represent, as before, round
ing errors bounded by e; by means discussed in Adams
[3] we may compute that roundoff contributes
roughly as much uncertainty as if the value 47.39 of
C were uncertain by about two ulps. Consequently,
after four-digit calculations provide estimates
(0.02±0.02)/47 .51 for both values of P(r ±l, the best
inference from fig. 7 places both desired roots' real
parts somewhere between 0.938 and 1.06, and
imaginary parts between ±0.04; these bounds are not
worth the effort to compute them*.

Cheaper bounds can be achieved by doing more
analysis first and then less computation. For example,
from

we may conclude via fig. 7 that the desired roots lie
in the union of the two regions

lz-r±I :$ 5<1r±I + 4Elc/al/{lr+-r_l-5Elr+l-5<1r_l},

which place real parts between 0.921 and 1.08,
imaginary between ± .06. These cheap bounds are
poor too, but better bounds are nearby.

A third reason for not skipping the analysis of
roundoff is that it provides better bounds. Aware
that a perturbed quadratic ax2 - 2bx + c exists, we
may invoke the a priori bound in fig. 7; its proof fol
lows lines laid down by Ostrowski ([4], Appendix B).
After inferring IR ±-i'", 1/ Ir± I :$ y2.l€ and recalling
Ir ±-r± I/Ir± I:$ 5€ we deduce that each desired root
R± lies in a circle

(ignoring €2 terms). Despite the fact that these circles
overlap·, each contains one root. Consequently, if both
roots are real

0.943 <R_ <, 1.02 and 0.985 <R+ < 1.06

whereas if they are a complex conjugate pair

R± =R, ± iR 1

* A more delicate analysis shows that, for the values A, B, C
under discussion here, µ 2 = a 1 = a2 = 0, whence improved
estimates for P(r ±) are (0.02 ± 0.0l)f4 7.51, and 0.948, 1.05
and ±0.02 for the rootS' bounds. But only a welHmple
mented Interval Arithmetic program is capable of such
delicacy.

0.985 <R, < 1.02 and -0.03 <R; <, 0.03.

Though better·than before, these bounds are still
three times wider than they could be.

The foregoing few paragraphs are not intended to
disparage a posteriori error bounds; these bounds are
invaluable for validating results of long calculations,
and for sensitivity analyses. For example, if'our coef
ficients A, B, Care uncertain by, say, 5 ulps each then
P(r ±) must be uncertain by ro\lghly ±0.15/47.51 and
the desired roots must be uncertain to an extent not
grossly overestimated via fig. 7, namely

IR.-r ±I:$ 2(0.15/47.5 I)/Ir+ -r _I ~ 0.15 .

But when A, B, Care known precisely the a posteriori
techniques may be hampered by a restriction to arith
metic no more precise than was used to compute the
approximations under test; their bounds may be no
better than if A, B, C were uncertain by about an ulp
each.

In our example the limitations of 4-digit arithmetic
can be circumvented by an old trick; observe that the
substitution x = I + y changes 47.5 Jx2 - 2 X 47.45x
+47.39 into anew quadratic 47.5iy 2 + 2 X 0.06y
+ 0 whose coefficients happen- to be computable
precisely with 4-digit arithmetic. We shall return to
this trick later.

6. HASTY JUDGEMENTS

"The Purpose of Computing is
Insight, not Numbers. "(1962)

"The p'urpose of computing numbers
is not yet in sight, "(1970)

R.W.Hamming

At this point the tired reader may be tempted to
draw from the foregoing mass of arithmetic some
wrong conclusions:

I. Error analysts are nit-pickers who delight in
finding last-figure errors in other error analysts' cal
culations, and don't do much else. This may be true,
but it is not the right conclusion.

2. Since error analysts cannot solve a problem as
given, but must first imagine it to have been altered
by an ulp or two here and there, they cannot legiti
mately protest when the arithmetic unit of an elec
tronic computer produces results no more wrong than
if every operand were first perturbed by an ulp.
That this is quite wrong will be apparent later.

Invited Papers W. Kahan, A survey of error analysis 1-221

3. A principal source of error in numerical compu
tation is cancellation, which should therefore be
avoided or circumvented whenever possible. This is
wrong too because cancellation cannot create error
despite contrary appearances in figs. 1 and 3; more
over, artful cancellation can help diminish error, as we
shall see.

The correct conclusion is this:
Error analyses, especially those concerned with

roundoff, are so tedious, so much nastier than the cal
culations they are intended to validate, and so fre
quently unrewarding, that they should not be in
flicted inconsiderately by one man upon another.

Why, then, inflict such an analysis upon the reader?
My motive now is the same as it was when I re

ported [5] on modifi;:ations to the IBSYS operating
system on the University of Toronto's IBM 7094-11
and their impact upon a library of numerical sub
programs:

" ... users of these subprograms need not supple
ment their own competency in mathematics,
science, engineering or the humanities by a hyper
fine proficiency at both numerical analysis and the
debugging of systems programs ... "

"For as long as electronic computers have been
in use (since 1949 at the University of Toronto),
there has existed a steadfast policy to widen the
range of intellectual disciplines that might benefit
from the machine. That policy is partly respon
sible for a decline in the numerical sophistication
of users, a decline" which has yet to be compensated
by an increased sophistication in the programs they
can use. Despite intensive attempts to educate
them in the arts 'of computation, too many new
users attribute to the numerical library subprograms
the infallibility of a mathematical proof. They shall
be disillusioned. To what extent can their disillu
sionment be written off as part of their education?
To what extent can their dissatsfaction be traced
to shoddy computing systems? There is room for
improvement in both the quality of education and
the quality of computer performance. But you
cannot teach an old dog new tricks, and you can
not teach a new dog very much. Therefore the bulk
of the improvement must and can come in the
performance of computer systems."
From a numerical analyst's point of view computer

systems have improved mainly in speed and storage
capacity since those words were written, but have de
teriorated in several other respects. Of course, there
are exceptions. For example, the elementary function
subroutine library* supplied for Fortran on IBM

System/360 machines by Hirondo Kuki of the Uni
versity of Chicago is a triumph of persistent diligence
over the nastiness of hexadecimal arithmetic, but ac
cording to Cody [6] the high quality of that library
is atypical of curren,t commercial practice. Further
more these·subprograms, like other packii.ges of
scientifically oriented subprograms distributed
vilriously by compu~er systems' manufacturers, user
organizations like SHARE, software firms, universi
ties and other major research centers, tend to be
closely tuned to some specific machine or operating
system and go out of tune when moved. The same is
true of some of the ostensibly machine-independent
programs published in various journals of computing
and numerical analysis. The fault rarely lies in those
programs as published; more often it lies in a com
puter system described as "compatible with XXX
(except for YYY)". Wherever the fault may lie, the
result is the same; the computer user is obliged to
learn more about the details of the programs and of
his computer system than he had intended.

What would happen to our society if everybody
who wished to use a telephone, a television set, a car,
a detergent, a plastic toy or a computer were obliged
first to learn at least a little about how it was made
and how it works internally, and then to test it him
self for hazards and other surprises?

An environment in which a computer program can
operate reliably on any of several computer systems
can be achieved partly by a measure of standardiza
tion, but mostly requires that attention to detail
which, by eliminating anomalies and arbitrary restric
tions, promotes economy of thought. The assertion
that a program is machine-independent and reliable
is worthless if it is not susceptible to both analytical
and experimental verification. Here is where error
analysis can make its contribution, not so much by
providing error bounds for specific numerical proce
dures as by providing a rationale which, when.com
bined with an harmonious computing environment,
assures that such bounds will be found witho.ut exor
bitant intellectual effort.

Computer systems, hardware and software, are not
coming into harmony with the rationale of.error
analysis. I shall support this contention with examples.
The examples are con,trived; they are artificial because
the complications of real computations tend to dis-

* Some of theSe programs are described in IBM System/360
Fortran IV Library Subprograms, Form C28-6596, and
others in Kuki and Ascoly [7}.

1222 W. Kahan, A survey of error analysis Numerical Mathematics

tract attention from the roots of disharmony. They
are designed to show why error analysis on today's
computer systems is turning into necromancy. If
they help hardware and software designers learn a
little more about error analysis, and if error analysts
learn a little more about hardware and software, and
if we collaborate, we can re-establish error analysis as
a humdrum scientific activity from Which most com
puter users may safely be spared.

7. BACK TO THE QUADRATIC

We saw that fig. 2's program approximates, to
within a few ulps, the roots of a quadratic equation
whose coefficients match the given coefficients to
within a few ulps. From this we inferred, without
further reference to that program, that the com-
puted roots match the "true" roots to at least about
half as many significant figures as were carried during
the computation. Since a program which lo,es half the
figures carried seems less than exemplary, we are led
to three questions:

1. Is the error analysis realistic?
2. Ifso, can the program be improved?
3. If so, is the improvement worth its cost?

We shall see that the answers are respectively:
I. Yes.
2. Yes, on most computers.
3. Yes, on some computers, in some dialects of

Fortran.
That the error analysis is realistic follows from

the sharpness of the assertions in fig. 7; Smith [l]
has shown the a posteriori bounds there to be pessi
mistic by factors not much larger than 2, and the
a priori bound's inequality becomes equality when
'f > 0 and i\ = F_. Hence it follows that, however
many figures the program may carry, examples like
fig. 3 must exist for which half the figures are lost.
The loss can be traced to those rounding errors µ 1
and µ 2 in figs. 4 and 5 which are interpretable as per
turbing the coefficient c. Were those .perturbations µi
with lµ;I < e replaced by smaller lµ;I < e2, whence
the new perturbed coefficient c would satisfy
le-cl <s 2e2 1cl, the a priori bound in fig. 7 would lead
to new bounds like

IR.-r±l/lr±I <y'2]e + 3.6e

instead of the previous y'2}e +Se.In other words,
roots accurate to nearly single precision could be ob
tained by evaluating the products B••2 and A •C and

subtracting them in double-precision before rounding
the result to a single-precision D in fig. 2.

Despite the fact that the hardware of many computers
provides easy access to the precise double-length pro-
duct of two single-precision numbers, today's pro
gramming languages tend to obstruct that access, and
future hardware designs could respond to its conse-
quent disuse by eliminating it. For example, in the
older dialects of Fortran IV on the IBM 7094
(IBSYS versions up to 12) we could get what we
wanted by replacing

in fig. 2 by

DOUBLE PRECISION DD
DD= B•B
D= DD-A•C

The old compilers recognized a double-precision con
text in which truncation of B•B and A •C to single
precision did not occur. Today's compilers obstinately
truncate, thereby producing a result no better than if
DD were merely a single-precision variable. To achieve
what we want now we must write

D = DBLE(B)**2 - DBLE(A)•DBLE(C) ,

which appends zeros to the right of A, B,.and C's
values and goes through the wasted motion of two
full double-precision multiplications.

While at the University of Toronto, I circum
vented this foolishness by adding a built-in function
DSJC to our Fortran compiler, thereby permitting
simply

D = DSIC(B•B)- DSIC(A•C)

to yield the desired result. DSIC accepted simple
sums and products of single-precision variables and
produced their doubly-precise evaluation. This func
tion found wide application, especially for doubly
precise accumulation of scalar products of single
precision vectors, and rendered many matrix handling
programs more nearly transparent by freeing them
both from machine-language subroutines intended to
accomplish the same effect and from subtle errors
induced by arbitrary and easily forgotten implicit
parsing rules. DSIC was very fast on the 7094's
Fortran IV version 12 since no superfluous in
structions were generated; some of this speed was lost
during the transition to version 13.

Invited Papers W. Kahan, A survey of error analysis 1223

PR OGRA.M S 1 LL y (INPUT, OUT PIJT·, TTYO1JT, T APEi = TTYOll T)
X=l.0+3/2
Y· = I .0 + C3/2)
WRITE (1,1) .X, Y
F'ORMI\T(/9X,*l•ll + 3/2 = *,F5.2,6X,*l,0' + (3/2} *,F5.2,I)
STOP
ENJ

BEGIN EXECUTION SILLY

1.0 + 3/2 = 2,50 l,0+(3/2)= 2.f'10

STOP SILLY
>

Fig. 8. Never ·underestimate the power of parentheses.

The issues at stake here go, beyond convenience
and efficiency; they b_ear upoh our ability to say
what we mean or mean what we say when we use
programming languages. For example*, in PL/I we
fmd

25 + 1/3 = 5.333 ... withFJXEDOVERFLOW,

but
25 + 01/3 = 25.333

One of the Fortran dialects used on CDC 6000-class
machines allows mixed-mode integer and real arith
metic to give the results shown in fig. 8, which was
taken off a terminal connected to Berkeley's 6400.
Some compilers cause different values to be assigned
to

Y = X + 3.14159 and Z = X + 3.1415900000,

whereupon arithmetic comes to depend not upon the
values of numbers but upon accidents of notation, as
if we could divine something more than its value from
a number by looking at the way it is written.

Despite the ascendancy of computers, mankind will
continue to hold that

3.14159 = 3.1415900000 = 3.1415900000 ...

= 314159/100000,

and none of these digit strings is correctly a substitute
for the transcendental ir = 3.14159 26535 ... or for the
interval [3.14158 5, 3.14159 5] or for the integer 3,
nor can the unique rational number they represent be

* This example is drawn from p. 231 of IBM System/360
Operating System PL/I(F) Language Reference Manual,
File #S360-29, GC28-8201 ·3.

represented by a single binary floating point number
in a computer. Of course·approximation is necessary,
but when one number in hand must be approximated
by another the approximation should ideally depend
upon the value of the first number and upon the con
text in which the second will be used, not upon how
many digits are alleged to be "significant". These
notions have been explained lucidly by De Lury [40]
and are realized in Algol on at least some com-
puters (e.g., Burroughs B5500).

In a properly designed computing environment,
both digit strings 3.14159 and 3.1415900000 should
be converted to the same binary approximation in
otherwise indistinguishable contexts; whether they
are approximated to single- or to double-precision
should depend only upon that context. Similarly,
whether the computed value of A •C will be retained
in double-precision or rounded to single-precision
should depend upon the context i.n which it appears
and not upon the ostensibly single-precision formats
of A and C, whose values may, like 3.0, be in no way
imprecise. We should have the option to round
A *C's value to single-precision by writing, say,

RND(A•C)

as I used to do at Toronto. Then the language de
signer can choose any convenient and simple conven
tions whereby implicit RNDs or CHOPs or DSICs may
be understood to be compiled into any expression in
appropriate places; e.g., when we write simply

D= B**2 -A•C

we may read

D = CHOP(CHOP(B•B)-CHOP(A•C)) .

1224 W. Kahan, A survey of error analysis Numerical Mathematics

And ifwe dislike what we read we may write instead

D = DSIC(B*B) - DSIC(MC)

and read

D = CHOP(DSIC(B•B)-DSIC(A•C)),

to which now corresponds a computed value

This last equation is not quite accurate. It would
be true (if DSIC were implemented there) on IBM
System/360 maehines now that they retain a guard
digit for double length arithmetie. But the 7094, like
most other computers, does not retain such a guard
digit, and consequently may discard prematurely the
last few digits of the smailer of two double-precision
numbers being subtracted, though the difference will
not then be in error by more than if instead the
larger number were first aitered by one ulp of double
precision. This corresponds to computing (1.0-
o.9999 9999) using "eight significant figure arith
metic" in one of the following ways:

(like IBM 7094,
double precision)

1.000 0000
-o.999 9999 i

0.000 0001 ➔ 10 7

(like CDC 6400,
single precision)

1.000 0000
-0.999 9999 9

0.000 0000 X ➔ o

Doing arithmetic this way is sometimes excused by
the argument, which we shall demolish later, that
nobody can say exactly what the last digit of a high
precision number ought to be, so nobody should care
if it is aitered a little.

It appears that the vaiue computed for D above
will satisfy

with

(The factors 2 are appropriate for the 7094, a binary
machine, with E = r 26 for chopped arithmetic.) The
final result does not seem to deteriorate much; we get

[R,-r±l/lr±I <sy'lJE + 4.IE < 5.2E

for the relative error in the computed roots. How
ever) when the computed roots are complex with
relatively tiny imaginary parts we may wonder
whether those tiny numbers are accurate to nearly
full single precision. They are; this does not follow
from the inequaiities for µ 1 and µ 2 given above but
can be proved laboriously to be true for every major
North American computer with double-precision
hardware; the reader is urged to try to prove this
claim for his own computer.

We are now almost in a position to which every
conscientious error analyst aspires from time to time.
We have a program which will solve a familiar prob
lem accurately, at a cost (on decent computer sys
tems) which is scarcely more than minimai, without
having to inflict upon our program's users any more
of our error analysis than the following simple state
ment:

Given the single precision coefficients A, B, C of
the quadratic equation Ax 2 - 2Bx + C = 0, the pro
gram computes the roots correct in every respect to
within a few (IO on an IBM 7094) units in the last
place quoted, except for over/underflow.

8. OVER/UNDERFLOW

Oh, the little more, and how much it is!
And the little less, and what worlds away!

By the Fire-side
Robert Browning

An earlier report [5] describes modifications done
to the IBSYS operating system, on the IBM 7094-11
at the University of Toronto, which were designed to
shield ordinary computer users from the nuisance of
those over/underflows which could reasonably be sup
pressed, circumvented or ignored automatically by a
well designed computer system. After the modifica
tions were introduced, most over/underflows became
invisible to users, provably exerting no adverse effect
upon their computations, and the persistent over/
underflows were rendered relatively easy for each
user to locate and cure as he pleased. I have the im
pression that over/underflow became far less of a
nuisance on Toronto's IBM 7094, despite its normai*

* The modifications included provision for certain kinds of
Fortran calculations to be carried out efficiently and
conveniently with magnitudes as extreme as 10.0*"'(±10**12),
but these were rarely used.

Invited Papers W. Kahan, A survey of error analysis 1225

number range of 1 o- 38 to I o+38, than it is now on
Berkeley's CDC 6400 with a far wider range of
10-294 to 10+322. The reader may form his own im
pression by comparing what he must do on his com
puter with what we used to do on the 7094 to cope
with over/underflow when solving quadratic equa
tions.

Our object is to replace the phrase "except for
over/underflow" above by this statement:

Overflow is reported if and only if a result must
overflow, and similarly for underflow, and over/
underflow in one result does not degrade the ac
curacy of the other.
A program matching these specifications is surprising
ly useful. Quadratics with exorbitantly large or small
coefficients arise, for example, when solving large
dimensional determinantal equations by certain
iterative methods, and the fact that those coefficients
may easily be re-scaled to reasonable magnitudes is
no excuse for not doing so in the program which
solves the quadratic. Failure to re-scale the coefficients
can lead to over/underflow during the computation of
D in fig. 2, and hence give no solution or else a wrong
one. Furthermore, occasions arise when one seeks a
distinguished root of a quadratic whose coefficients
depend upon a parameter in such a way that the un
wanted root tends to zero or infinity; this is why we
do not want over/underflow in one root to contami
nate the other.

Here is one of the algorithms that work. First dis
pose of the possibilities a= 0 or c = 0. Then choose h
to be a power of the radix (2 on the 7094) such that
neither a/h nor c/h over/underflows and yet
l(a/h)(c/h)l lies relatively close to 1, say between¼
and 4. (The best choice for h is not worth discussing
here.) We used to compute h in various ways, some
times by tricky machine-dependent integer-arithmetic
manipulations of a and c, sometimes by logical bit
manipulations, but always by means available through

our version of the Fortran compiler. Next compute
a= a/h, c = c/h and b = b/h. If b or d ~ P ~ ac over
flows, suppress that overflow indication and produce
r+ 'i' b/(½a) and r_ ec (½c)/b as roots of ax2 - 2bx
+ c = 0. If b or E2 underflows, suppress that under
flow indication and replace b by zero and continue.
Otherwise, compute the roots as usual using a, b, C
in place of a, b, c. Remember that d must be com
puted with a double precision subtraction. Each root
will be computed as a final quotient in which no
over/underflow can occur unless it is very nearly un
avoidable and must be reported.

The only loose end in the foregoing algorithm is
how to choose h, which we shall leave loose with the
observation that h can generally be constructed
easily and quickly in Fortran and in machine
language, but not so quickly in Algol. We must also
suppress irrelevant over/underflow signals, and enable
the relevant ones; here is where the advantages of the
7094 system became apparent, because they involved
few explicit tests and almost no loss of time. One
complete program to solve a quadratic properly took
less than 20% longer to execute than did a naive
program based upon fig. 2.

The algorithm is expensive to implement on a CDC
6400 for several reasons. First, the machine gets con
fused when asked whether a number is zero or not
(see fig. 9) because it sometimes tests only the first
12 instead of the first 13 bits of a floating number
(see CDC's 6400/6500/6600 Computer Systems
Reference Manual, Pub. no. 60100000, rev. A (1969),
pp. 3-18). Secondly, the machine sets underflowed
numbers to zero without any warning indication;
this causes problems like that in fig. l 0 where the
value of Y differs from 1.0 by rather more than could
be attributed to 11 rounding errors. Thirdly, many
tests are required, one after each arithmetic opera
tion susceptible to overflow, in order to avoid being
kicked off the machine for attempting to use arith-

PROGRAM NAUGHT <INPUT,OUTPUT,TTYOUT,TAPEl::TTYOUT>
Z : 0.5**916
ZZ : Z+Z
IF(Z .NE. 0 0 0 AND0 2*100 0 0 EQ0 O •• AND.

* Z/0.01 .EQ. O. > WRITECl,D z, 22
I FORMAT(44H Z .NE. O. BUT Z*lOO. :: Z/0.01 : O. AND , / * * PRINTING YIELDS Z = *, IPEI2.4, * , Z+Z :: *, IPE12.4)

STOP
END

BEGIN EXECUTION
Z • NE, 0, BUT
PRINTING YIELDS

STOP NAUGHT

NAUGHT
Z*lOO. :: Z/0,01 :: 0,
z :: o.

Fig. 9. ls Z zero or naught?

AND
z+z :: 3.1315-294

1226 W. Kahan, A survey of error analysis Numerical Mathematics

PROGRAM WHY CINPUT,OUTPUT,TTYOUT,TAPEl:::TTYOUT)
Z = 2.0**<2**10..: 48)
C , I .O/Z
A ::: C+c
Er::: A*l0.0**9
D : A+B
X ::: <B+D) /A

Y::: ((A*X+BJ/CC*X+D))/C (A+B/x)/(C+D/X))
If(A.GT.a •• AND. B.Gt.o •• AND. C.Gr.o •• AND.

* D.Gr.o •• AND. x.GT.O •• AND. Y .GT. 2.999
*) WRITE Cl,1) Y

l FORMAT< 5X, *WHY DOES Y ::: *, F' 15. 11, * 1*
STOP
END

BEGIN ~ECUTION WHY
WHY DOES Y ::: 2.99999999875 1

STOP WHY

Fig. 10. Why is Y so far from 1.0?

metically a previously overflowed result. The machine
can also operate in a mode which allows continued
operation upon "infinities" and "indefinites", but
this liberal mode is rarely used and cannot be in
voked nor repealed from within a Fortran pro-
gram. The reason why the liberal mode is rarely used
may be that any rules for manipulating the symbols
=(infinity) and -& (indefinite) must be potentially
misleading; the following example compares what
should be expected with what the 6400 actually com
putes.

Expected Observed
Program values values

X = 2.0•• 1069 2 1069 21069

Y= 4.0•X 210n

Z = Y-2.0•(X+X) 0 e
T = (({Y-X)-X)-X)-X 0 or-6- 00 !
U = 1.0/T oo or-& O!
V=X/Y ¼ or-& O!

Finally, CDC's Fortran compilers have nothing
equivalent to DSIC, and one must use DBLE ineffi
ciently instead.

If numbers like 10300 were sinful and numbers
like 10-3oo obviously negligible, the design of the
6400 would make sense. But why draw the lines
there instead of at 10150 and 10- 150? If over/under
flow is so obvious a mistake I why does it happen to
experienced professionals like Fettis and Caslin [8]?

Integer overflow reveals another notorious defect
in most compiler designs,.as Korfhage [9] could
testify. On the CDC 6400 the defect is enshrined in
hardware which gives no indication of integer over
flow. In fig. II, obtained from our 6400, every arith
metic expression is computed correctly, but J is in
correctly compared with K because J-K overflows.
Fig. 12 has two programs which differ only in that*

DO2N= 1,L, I

has been replaced by

INCREM = I

DO 2 N = I, L, INCREM.

The mysterious diagnostic tells the programmer that
he has abused the computer, but does not tell how.
It turns out that a division by zero occurred in the
first program's statement 2. All can be explained by
the observation that integer arithmetic in CDC's
Fortran is carried out sometimes modulo 217 -1,

* The terminal symbols ",111 could be dele.ted without alter
ing the results.

PROGRAM GOOF (lNPUT,"OUTPUT.i'TyOUT,TAPEl:TTYOUT)
I : 2**-'10
DO 1.1 -L :: 1, 18 .

11 1: l+I
J :: I + 3
K, -I
lFC J .GT. 0 .AND. K .LT. 0 .AND. J+K .EQ. 3

* .AND. J .LT. K) WRITE Cl,1)
J FORMAT(* WHY IS O < (!+3) <-I< 0 ?*>

STOP
END

BEGIN EXECUTION GOOF
WHY IS O < CI+3) < •I < 0 ?

STOP GOOF'

Fig. 11. Integers out of order.

Invited Papers W. Kahan, A survey of error analysis

PROGRAM l'lJDDLE (INPUT, OUTPUT, TTYOUT, TAPEI:TTYOUT)
C TO CCMPUTE THE INI-INITE SUM OF NICI+ N**3) FOR N: 11 2, 3, •••
C CORRECT TO _10 FIGURES, JUST ADD THE FIRST 300000 TERfrJS AND AN
C EULER-MACLAURIN CORRECIION

EPS = 0.1**10
L = 3.0/SQRTCEPS)
WRITE C I, l) L
FORMATC3X, llH THE SUM OF 1 17, 24H TERMS NICI+ N**3) IS)
SUM = O.
DO 2 N : I, L, I

EN = N
2 SUM= SUM+ EN/U.O + EN**3)

WRl1'E (1,3) SUM
3 FORMAT C 13X, F 16. 12, /)

SUM :: SUM + I .OIEN
WRITE Cl,4) SUM

4 FORMAT<3:X1 2IH THE INFINITE SUM IS I 3X,Fl6.12)
STOP
END

BEGIN EXECUTION MUDDLE
1HE SUM OF 300000 TERMS N/C I + N**3) IS

USER CPU ARITH-ERROR
1: DETECTED BY MTR , FL = 007455

PROGRAM FIDDLE (INPUT, OUTPUT, TTYOUT, TAPEJ::TTYOUT)
C TO COMPUTE THE INF'lNITE SUM OF N/Cl + N**3) FOR N = 11 2, 3, •••
C CMRECT TO 10 FIGURES, JUST ADD THE FIRST 300000 TERMS AND AN
C EULER-MACLAURIN CORRECTION

EPS = 0, 1**10
L = 3.0iSQRTCEPS)
WRITE CJ, I) L
rORMATC3X, IIH THE SUM OF , 17, 24H TERMS N/Cl + N**3) IS)
SUM :: O,
INCREM = I
D02 N=I,L,INCREM

EN = N
2 SUM= SUM+ EN/CI.O + EN**3>

WRITE Cl,3) SUM
3 FORMAT< 13X, F 16. 12• /)

SUM :: SUM + I ,·OIEN
WRITE Cl,4) SUM

4 FORMATC3X,2IH THE INFINITE SUM IS / 3X,Fl6.12)
STOP
ENO

BEGIN ~ECUTION FIDDLE
WE SUM OF 300000 TERMS N /(l + N**3) IS

1.111640603830

THE INFINITE SUM IS
Jylll643937163

STOP FIDDLE
>

Fig. 12. What did the first program DO wrong?

sometimes modulo 248, and sometimes modulo 9. A HORROR STORY
259 - 1, depending upon the whims of the compiler.

Incidentally, although the series has been summed
using 48 significant bit (about 14 decimal) arithmetic,
the two 13-decimal numbers printed out have been
contaminated by roundoff in their last 4 digits; the
correct values are 1.1116 4060 4896 and
1.1116 4393 8230 respectively.

" ... lo mal fabbro biasima lo ferro ... "
(... the bad blacksmith blames the iron ...)

Convivio I xi
Dante Alighieri

1227

I hope the reader will not think that I think com
puters are conspiring against me alone; that would be
a paranoid delusion.

Mr. Z. was despondent when I first saw him. A
graduate student of aeronautical engineering, he was
trying to augment boundary layer flow past wings in

1228 W. Kahan, A survey of error analysis Numerical Mathematics

a way which might enhance their lift at low speeds. If
his idea worked, his reward would be a Ph.D. thesis
and a job with a local firm designing STOL aircraft.
He was testing his idea on our university's computer,
then an IBM 7090, by solving numerically a compli
cated system of differential equations, finally pro
ducing a graph from which he could read Success or
Failure. He had just read Failure.

Fig. 13. Mr. Z.'s graphs: His the graph he Hoped to get, Sis
the graph produced by Single-precision computation, Dis the

graph produced by Double-precision computation.

Fig. 13 is a simplified picture of his program's out
put. The close agreement between single-and double
precision results, and their disagreement with his ex
pectations, seemed to prove conclusively that he should
look for a new thesis topic.

At that time I was testing an intended replacement
for IBM's single precision logarithm subroutine. Of
course, I had proved mathematically that my new sub
routine was preferable to IBM's in every way, but a
vestige of self-doubt induced me to re-run several
users' programs with my logarithm substituted for
IBM's. Mr. Z.'s program was one of those re-run, and
one of very few whose results were altered appreciably
by the substitution. His graph S moved to position H.
I was alarmed because I had expected my improved
subroutine to produce single-precision results closer
to double-precision, not further away; and Mr. Z. was
surprised because he had no explicit reference to
logarithms in his Fortran program. We soon dis
covered where a logarithm lurked in his program; it
was in a sub-routine which I have simplified and listed
in fig. 14.

Here is an outline of Mr. Z. 's error analysis of his
program to compute F(X,G) = xG(X)/(X-1) for
X> 0. He established first that G(X) was well-be
haved; 0 < G(X) ¾y'X and [dlogG(X)/dlogX[¾ 2.
Next he checked that the computed value g(x) dif
fered from G(x) by at most an ulp or two: g(x) =

ruNCTION F(X,G)
C Given a function G(X) well-behaved for all X > 0,
C this FUNCTION subroutine computes
C F(X,G)"" xG(X)/(X-1) correctly to within a few
C ulps,

1 IF (X .LE. 0.0) Complain "F(X,G) undefined for X,;;;; 0"
2 IF (X .. EQ. 1.0) F = EXP(G(X))
3 IF (X .NE. 1.0) F = X**(G(X)/(X-1.0))

RETURN
END

Fig. 14. Mr. Z.'s su-broutine.

= (I :f-y)G(x) for some tiny relative error -y. Then he
verified that defining

F(I ,G) = Jim F(x,G) = exp (G(l))
x-1

made F(X,G) continuous for all X > 0, and bounded
(I <F¾exp (1)<2.72) and, most important,
\dlogF(X,G(X))/d logX\ ¾ 3. Now he knew that
F(X,G(X)) was a "well-conditioned" function of X in
the sense that relatively small variations in the argu
ment X could not cause much larger relative varia
tions in F. Specifically, whenever the value x stored
in the cell called X was a good approximation to the
intended value X, then the value F(x,G(x)) would
closely approximate F(X,G(X)). All that remained
was fo show that roundoff during the computation of
what was intended to be F(X,G(X)) would produce a
computed value/relatively close to F(x,G(x)).

He observed that writing (X-1.0) caused (1-o)
(x-1) to be computed, with-a representing a rounding
error smaller than I ulp of (x-1). Similarly, the ex
pression G(X)/(X-1.0) would introduce another
rounding error 0 into the computed quotient, pro
ducing

y = (1-o)g(x)/ {(l-o)(x-1))

= (1-o)(l+r)G(x)/ {(l-o)(x-1)}

= (l+71)G(x)/(x-l), say,

where rJ represents an accumulated error, due to round
off, of at most a few ulps. Now he made his first mis
take; he assumed that writing X**y in Fortran
would produce a computed value (I +p)x Y in which p
represents another error, due to roundoff, of at most
a few ulps. Had that assumption been true, his con
clusion, that the computed value

Invited Papers W. Kahan, A survey of error analysis 1229

f= (l+p)xY = (1+p)F(x,G(x)) 1+ri

matched F(x,G(x)) and hence F(X,G(X)) to within a
few ulps, would have been correct. His second mis-
take was to test his program on only 3 I values of X dis
tributed uniformly between X = 0.5 and X = 2.0 and
on about as many values of X outside that interval,
these tests could not reveal his first mistake.

Why Was his assumption about X**Y wrong? It
would have been correct for a log-log slide rule, but
at that time our 7090 obtained X••Y by computing
EXP (Y •ALOG(X)), and the logarithm program then
(as on many other computers now) produced not logx
but (I+)..) log {(I +t)x} with A and teach representing
errors of about two ulps. The error twas introduced
through the familiar formula

logx=log((l+z)/(1-z))-½log2 with

puled on the 7094 for x slightly less than 1, the hard
ware first discarded x's last (54th) bit and then did
the subtraction. The resulting value f approximated
not F, as desired, but F112 or F 2i3 or p3/4 or ... de
pending upon x's last few bits. Mr. Z. cured this prob
lem by substituting the expression ((X-0.5)-0.5) for
(X-1.0) in his program, which is now machine-inde
pendent and runs correctly on any computer system
with respectable exponential and logarithm sub
routines.

Was Mr. Z. clever or just lucky? How often are
engineers baffled by·subtly wrong computations,
thwarted in otherwise exemplary endeavours, and
unable to uncover what went wrong? And how often
is an engineer who expresses doubts about the com
puting system he must use regarded as if he were
Dante's bad blacksmith?

z = (2x-y}.)/(2x+.,/I), 10. PAUSE FOR THOUGHT

because the value stored for ../2 was rounded and
also z was rounded. The end result was to compute
f ~ pl +Mogx instead of F, and this result was very
wrong whenever x differed from I by only a few
ulps.

My new logarithm subroutine* took care to keep
t = 0, caused X••Y to be approximated by (1 +p)xY
as expected, and allowed Mr. Z.'s program to give
the results he desired in single-precision. But why
were his double-precision results different? At first
we thought the double-precision DLOG program con
tained a flaw too, but it turned out to be unexcep
tionable. Then IBM issued a revision to the double
precision package on the 7090 which made graph D
go away; new graphs computed in both single- and
double-precision confirmed Mr. Z.'s hopes and he was
happy. For a while.

A few months later the 7090 was replaced by a
7094 with built-in double-precision hardware, and
graph D came back. We soon discovered that the
double-precision subtraction hardware on the 7094
lacked a guard bit which the 7090's latest software
had preserved. Consequently, when x - I was com-

* This program was distributed to other IBM 7090/7094
users via the SHARE organization in June 1964; the rele
vant SDA numbers are 3190, 3191 and 3192. Logarithm
and exponential subroutines of comparable quality, coded
by Hirondo Kuki, are now part of·the Fortran.libraries,
distributed with IBM 7094 and System/360 machines; see
also Kuki and Ascoly [7] and references cited therein, and
[20].

Mr. Z.'s program in fig. 14 has been exciticized on
several grounds. It is alleged that, since X must be
uncertain by an ulp or two, the difference (X-1.0)
can contain no significant figures when X is very
close to 1.0, and this is why the program deserves to
faj]. Similarly, the expression (X. EQ. 1.0) is sinful.
But such an argument has two flaws.

First, there is little significance in the number of
"correct" significant figures in a-·calculation's inter
mediate results. Matrix calculations frequently gen
erate intermediate results among which are numbers
agreeing in not one figure with what would have been
generated in the absence of roundoff, but the answer
at the end is correct! Another example is provided by
solving the differential equation

ay - 2bj, + cy = 0, given y(0) = Yo and j,(O) = Yo ,

(Ji=dy/dt) in terms of the roots r ± of the quadratic

ax2 - 2bx + c = 0 .

If the roots are real and distinct the solution is

(
• sinh ut) y(t)= Yo coshut+(y 0-,y 0)-u- exput

where u = (r + -r_)/2 and v = (r + +r _)/2; if the roots are
coincident at r the solution is

1230 W. Kahan, A survey of error analysis Numerical Mathematics

if the roots r ± = v ± iw are complex

y(t) = (Yo cos wt+(y 0-vy 0) si:wt) exp vt .

For modest* values oft the solution y(t) is a well
behaved function of a, b and c even though the inter
mediate results, namely the roots r ±,maybe ex
tremely sensitive to small changes in those coeffi
cients, as we have seen. But the roots do not vary
capriciously. If we were to alter arbitrarily those
digits of the computed roots which differ from what
would have been obtained in the absence of round-

Now we see the advantage in a subprogram which
computes accurately the roots of a quadratic equation
as given even when its coefficients are uncertain to an
extent which may compromise half the figures in the
roots. Besides shielding its user from unproductive
thought, such a subprogram will preserve relationships
implied by possible correlations among the errors in
the coefficients; such a subprogram cannot be the
weakest link in a chain of subprograms.

off, as we could if we regarded those digits as "wrong",
we would do as much damage to the value of y(t)
computed from those altered roots as if instead we

The second flaw in the allegation criticized above
appears when the allegation is cited in support of
certain hardware designs, like the CDC 6400's, which
neglect to carry guard digits for addition and subtrac
tion. We have seen what happened to the expression
(1.0-0.9999 9999); now look at figs. ! Sa and 1 Sb,
which were produced by our 6400 using binary float
ing point arithmetic with "48 significant bits". As I
runs from 1 to 100, something bizarre happens for

had altered the same number of terminal digits in the
coefficients; in other words, we could capriciously
squander half the digits carried. If those "insignifi
cant" digits are carried in the usual way, the value of
y(t) computed from them will be quite satisfactory.

* This restriction is imposed because

Jim y(t)

may be a violently discontinuous function of a, b, c, Yo
andj,o.

2 <I< 48 and I= 97, despite the fact that arithmetic
on the machine is provably monotonic.

The problem revealed in figs. ! Sa and I Sb could
be solved in any one of four ways. First, change the
compiler to effect a floating point comparison
(X .EQ. Y) by using only integer arithmetic manipula
tions; but this would occasionally malfunction when
X and Y are very different (recall fig. 11) and would

PROGRAM NAUGHTY CI NPUT ,OUTPUT, TTYOUT, TAPE J:TTYOUT)
X = 0.5
r = ex - o.5**4S> + x
DO 2. I : 1, 100

X : X*2.0
y = X*F'
IF"C X .EQ. Y .AND. ex-I.) .NE. CY-I~)) WRI'TE Cl,1) I

I FORMATC* WHEN l:: *• 13, * , X .EQ. Y BUT X-1 .t,jE. Y-1 *)
i CONTINUE

STOP
END

BEGIN EXECUTION NAUGHTY
WHEN I = 2 X ,EQ, y BUT X-1 .NE. Y-1
WHEN l = 3 X .EQ. y BUT x-1 .NE. Y-1
WHE·N [= • ' X .EQ. y BUT X-1 • NE. y..; 1
WHEN l : 5 X .EQ. y BUT x-1 .NE. Y-1
WHEN l = 6 X .EQ. y BUT X-1 .NE. Y-1
WHEN I = 7 X .EQ. y BUT X'I .NE. Y-1
WHJc'' " X .EQ. y BUT .. v. I
.. i11i'.N I = . ' X .EQ. y s11- x-1 .NE. ' WHEN I = 42 Q, , T x-1 .NE, y- I
WHEN I = 43 X . BUT X-1 • NE. y- I
WHEN I = .. X .EQ. y BUT x-1 • NE. Y· I
WHEN I = 45 X .EQ. y BUT x-1 .NE. Y-1
WHEN l = 46

' X ,EQ, y BUT x-.1 .NE. y- I
WHEN I = 47 ' X • EQ. y BUT X·l • NE. Y,. l
WHEN l = 48

'
X .EQ. ,y BUT X-1 .NE. Y-1

WHEN I = 97 , X .EQ. y BUT x-1 .NE. Y-1
STOP NAUGHTY
►

Fig. lSa. How can/determine·whenX= YbutX-1 =I= Y - l?

Invited Papers W. Kahan, A survey of error analysis 1231

PH oGnM, tlAU GH TY C 1 NPU T, OUTPUT, TTY OUT, TAPE I= TTyQUT)
Y. :: 0 .5
F: <X - 0,5**'i8l + X
DO 2 I : I, 100
X::: X*2.0
y :: X*F'
IF'< X ,LE, Y ,AND, <X-l,) ,G.T, (y-1.)) WF.ITE U,l) I

l FO~'MATC* WHEN I = *, 13, * 1 X ,LE, Y BUT X-1 ,GT, Y-1 *)
2 CONT HiUE

STOP
END

EEGI N EXECUTION
WHEN I 2
WHEN I C 3
WHEN I C 4
tmEN I 5
WHEN I C 6
WHEN I 7
WHEN l C C
WHEt-J ,.

..... Lq 41
WHEN C 42
\\iHEN C 43
WHEN 44
WP.EN C 45
1mEr1 46
WHEN C 47
WHEM 4S
WJ-!F:N ::: 97 ,

STOP UAUGHTY

NAUGHTY
X ,LE, y BUT x-1 .GT. Y-1
X ,LE. y 6UT r.-t ,GT. Y- 1
X ,LE, y 6UT x-· I ,CiT. y- l
X ,LE, y 6UT Y.-1 ,GT, Y- 1
X ,LE, y 8UT x-1 .GT. Y- 1
X .LE, y HUT x-1 ,GT, Y- 1
X ,LE, y CUT r.-1 ,GT, Y-1
X ,LE, y BUT x-1 ,e:.T.

.LE. y BUT X- I Y-1
X y BUT ,GT, y- 1
X ,LE, 1.-1 ,GT, Y- 1
X ,LE, y 5UT x-1 .GT. Y- 1
X ,LL y BUT X-l ,GT, Y-1
X ,LE. y euT x-1 ,GT. Y- 1
X ,LE, y BUT x-1 ,GT, Y- 1
X ,LE, y &UT r-1 ,GT. Y- l
X ,LE, y BUT r.-t ,GT. Y- 1

Fig.15b.Howcan/determinewhenX< YbutX-1 > Y-1?

occasionally allow division by zero in st'atement 3 of
fig. 14. Second, change the compiler to perform addi
tions and subtractions properly; this would require
five instructions* instead of the two now executed, at
a cost of perhaps doubling their execution time. Third,
change the hardware so that the pseudo-rounding RX
instructions (which are rarely used now) will normalize
before rounding, and then alter some software to allow
advantage to be taken of this change; this could cost a
few million dollars if done for all CDC 6000 series
machines, but the problem would then be completely
eliminated.

The fourth possibility is to change the way we
think about numbers. Instead of basing numerical
analysis upon fewer than a dozen axioms, we could

* Currently X1 = X2 - X3 is computed via the sequences

EX! X2-X3 or
NXl Xl

which I would replace by

FXl X2-X3
NXl Xl
DXO X2-X3
NXO XO
RX! Xl+XO

RX! X2-X3
NXl 'Xl

adopt a new "number" system like that suggested by
van Wijngaarden, with 32 axioms which, if not cate
gorical, appear to be at least consistent. But if the
test of a scientific advance is the extent to which it
permits us to know more while obliging us to remem-

1

ber less, such a new number system is not an advance.
Perhaps certain computer systems could be classi

fied as dangerously addictive hallucinatory drugs, and
compulsorily labelled:

"Warning. It Has Been Determined That This
Computer Is Dangerous To Your Mental Health."

If the reader runs programs on one of those com
puters he will not be thankful for the foregoing ex
pose. When one of his programs fails mysteriously be
cause of a misplaced comma in a FORMAT statement,
and when he has failed to find that flaw or any oth~r
he can imagine, he may turn to these pages to see
whether one of the rare anomalies tevealed above has
caused his trouble. How long will he spend on th~t
wild goose chase?

1232 W. Kahan, A survey of error analysis Numerical Mathematics

11. MORE SURF KISES

"Things are seldom what they seem,
Skim milk masquerades as cream."

H.M.S.Pinafore
Gilbert and Sullivan

Rounding error analysfs may be full of surprises,
but it is void of major theorems. There seem to be
deep reasons why this must be so, reasons which I
propose to sketch now.

Many an error analyst has tried and failed to prove
theorems of the form:

"To compute XXX correct to single-precision re
quires that YYY be computed using ZZZ-precision
arithmetic."
Perhaps the failure is inevitable, for there is some pos
sibility that machine-independent Fortran sub-
routines could be written to perform arbitrarily high
precision floating point arithmetic without using any
but REAL variables; see Dekker [IO]. We shall examine
a special simple example of that notion.

Let us try to evaluate SN = ,;,r X1 where N is very
large (N> 106) and each X1 is computable to nearly
full single-precision as a function of J and of s1_ 1.

Such a problem arises in the course of solving ordinary
differential equations by discrete methods. The pro
gram

S =0.
D09J= l,N

9 s = s + X(J , ...)

actually computes

sn = s7(1 +~i)xi with ltil,,; (I +e)"+l-i - 1 .

Take e = 10-6 (as on, say, IBM System/360 machines)
and n = N = 106 to see what goes wrong here; the loss
of accl,lracy could be worse than in the ~cond program
of fig. 12. A better program is obtained by prefacing

DOUBLE PRECISION S

to that above, thereby replacing e by roughly e2 and
introducing little more uncertainty to sn than is in
herited from an uncertainty of a few ulps iri each
xi= (1 +x)Xi when each lxil < lOe, say. But what if
double-precision is unavailable (or if€ represents
double-precision, and triple-precision is unavailable)?
Can we still compute sn = S1(l+~i)xi in such a way

that the quotient l~jl•I is bounded independently of
i and n except for factors like (I +e2)"?

The answer depends upon whether single-precision
addition uses a guard digit or not. If it does, the fol
lowing annotated program works:

9

S = 0.

C= 0.

DO 9 J = 1,N
Y=C+X(J, ...)

T= S+Y
C = (S-T)+Y

S=T

So='= 0

Co= 0
For/ = 1,2, ... ,n in turn

Yi ~(Xj+Ci-J)(l+oi)
'i ~ (si- I +yi)(I +,-i)
Ci ~ ((si-J -Si)(J+ai)+yi)(l +yi)

SUM = S+C (sli,ghtly better than S)
Sn+ Cn = L7(1 +~j)Xj

Pro\dded l11il < e, [Ti[< e, [oil< e and i'Yil < e, it may
be shown that

I published this program (unannotated) in 1965 [11].
A similar program has been presented by Babuska
[12], and a more complicated one by M¢ller [13] is
further discussed by Knuth [14], pp. 201-4, from
a different point of view. Similarly motivated algo
rithms continue to be developed; see Thompson [15].

When the program above was first published it was
accompanied by a warning not to use it on machines
that chopped or rounded before normalizing, as does
our CDC 6400. The warning was issued with systems
of differential equations in mind, but another poten
tial application denied to that program on our machine
was discovered unwittingly by van Reeken [I 6], who
wished to compute running averages

AN"'SN/N

=SN-I+ (XN-SN-1)/N

from the last formula. He claimed that "addition
using Kahan's trick will give an error-free answer"
even on machines which truncate before normalizing.
He was almost right; fig. 16 exhibits an extremely rare
counter-example which he could not reasonably have
been expected to uncover in his tests.

There is a theorem by Viten'ko [I 7] which almost
implies that our objective, to bound It/el indepen
dently of j and n except for terms O(ne2), is impos
sible on those machines which respond, as do those
which chop first and normalize later, to the statement

xi

Invited Papers

B=C+D

W. Kahan, A survey of error·analysis

PROGRAM BUNGLE (INPUT,OUTPUT,TIYOUT,TAPEl::TTyOUT)
C THIS PROGRAM COMPUTES THE AVERAGE A OF 3000000 VALUES X(tD ,
C- EACH BETWEEN 0.5 AND 1.5 , IN Tl~O DJ_F'FERENT WAYS. ONE OF THOSE
C WAYS USES, INSTEAD OF DOUBLE PRECISION, A TRJCK WHICH ALWAYS
C WORKS ON SOME MACHINES AND ALMOST ALWAYS WORKS ON ALL OTHERS.
C A RARE SET OF VALUES X(N-) FOR WHICH THE TRICK FAILS ON THE
C CDC 6400 IS COMPUTED BY THIS PROGRAM.

DOUBLE PRECISION S
REAL N
E ::: 0.5**48
F::: 2.0H'.

C THE FOREGOING CONSTANTS ARE CHARACTERISTIC OF'
C THE CDC 64 00

C ::: O.o
Z ::: (I.0-F>+E
N ::: Q.O
s ::: o.o
A ::: O.O
DO 3 L::: l, 10
DO 3 K ::: 1, 100000
l)i) 3 J ::: l, 3

N ::: N+l.0
C COMPUTE X(N)

X ::: Z
JF(L .EQ. l .AND. K .EQ. I) GO TO 2
IF(J .EQ. 1) X::: t.O+FHN-J.O)
IF< J .EQ. 2 > X::: 1.0-F*N
IF(J .Lt. 3) GO TO 2

X::: CI.O-R:NHE*N
IFC.CCX-A)/N+C)+A .GT. A) GO TO 2
X ::: X+E
GO TO I

C NOW X IS DETERMINED. NEXT UPDATE THE AVERAGE A
2 DA::: CX-A}/N + C

T ::: A+DA
C ::: CA-I> + DA
A , T
s =- s+x

3 CONTINUi::
AV ::: S/N
WRITECl,9) N, AV, A

9 FORMAT(2X,*N =*,F9.0,5X,*AV :::*,Fl9.15,5X,*A =*,Fl9.15 / * * NO. OF ITEMS*,8X,*TRUE AVERAGU, 13X,*COMPUTED AVERAGE*l
STOP

BEGIN
N '
NO.

STOP
>

END

E<:ECUTION
3000000.
OF ITEMS

BUNGLE

BUNGLE
AV ::: .999999998223636 A: .999999999999996

TRUE AVERAGE COMPUTED AVERAGE

Fig. 16. An egregious average.

C = (S-T) + Y

by computingb = (l+-y)c+ (l+&)dwith I-YI<;; e and
181 <;; e. Viten'ko showed that the best that could be
done when, say,N= 8 was to compute the expression

with

F=O

1233

IF(SJGN(l.,Y) .EQ. SIGN(l.,S)) F = (0.46•T-T)
+T

whlch, in general, would allow If/el to grow as fast as
log2 N. But his hypotheses do not take account of all
that is known about -y and 8. Consequently, the pro
gram annotated above may be made to work on all
major North American computers with floating point
hardware by replacing the statement

C = ((S-F)-(T-cF))+ Y

This is not the place to explain why the modified
program works on all such machines, nor why :the
magic number 0.46 was chosen. Rather, the reader
should observe that programs may work, on some
machines, far better than he can prove.-Next consider

1234 W. Kahan, A survey of error analysis Numerical Mathematics

a programmer faced with the task of producing a
program which works well and can be proved to work
well. He also faces a dilemma; should he try to prove
that a simple program on hand works well, or should
he wrHe another more complicated program more
amenable to proof? On some machines the dilemma
is acute.

That tricky programs like those above contain sur
prises is not surprising, but sometimes surprises are
well hidden. For instance, consider the solution of a
cubic equation

If its coefficients are in error by as much as one ulp
its roots may be accurate to only ½-precision, as is
exemplified by

x3 - 3x2 + 3x - (1-e) = 0

whose roots are the three values of 1 + , 1/3. Any
algorithm for solving a cubic will encounter roundoff
which can, in part at least, be regarded as perturbing
the coefficients; see Wilkinson [18]. Al!)iough he
definitely does not say so, reading his book might
give the impression that triple-precision arithmetic will
be needed to get the roots to single-precision. Of
course the critical cubics, those with three nearly
coincident roots, can be transformed, by a linear sub
stitution which moves the origin nearer to the roots,
into a less delicate condition;but G.W.Stewart [19]
shows that the usual way of effecting such a trans
formation does not avoid the damaging perturbations.
Nevertheless, my 1968 notes [20] contain a different
form of the transformation which avoids the worst
of the perturbations;

when

Given single-precision coefficients ai and a suitable
single-precision c, this transformation is to be carried
out using dohble-precision arithmetic. The choice of
c can be effected in an innocent machine-independent
fashion. The final result is a program which accepts

single-precision coefficients, uses double-precision
arithmetic, and produces roots correct to nearly single
precision, as if triple-precision arithmetic had been
used. The program works on all major North
American machines; to prove that it works, one must
acknowledge that catastropic cancellation can be a
good thing.

12. ESCAPE FROM ROUNDING ERROR ANALYSIS

There are three ways to escape rounding error anal
ysis without abandoning computation. One is to use
multi-precision arithmetic so precise that errors are
"obviously" negligible if they occur at all. A second
way is to use well implemented Interval Arithmetic.
Since Moore [21], Hansen [22], Nickel [23], I [20]
and others have written extensively about Interval
Arithmetic, little is left to say about it here beyond
this; no other development in computer systems
would assist engineers and others like them to do
numerical computations more safely then would
the appearance of Interval Arithmetic as universally
accessible in Fortran as are double-precision and
corhplex arithmetic. For example, by using 4-signifi
cant decimal Interval Arithmetic we obtain almost
effortlessly the estimates

R+ E [.9987, 1.020] , R_ E [.9781, .9988]

for the roots of fig. 3's quadratic provided those roots
are real, and

R, E [.9987, .9988] , R; E [O, 0.02105]

for the roots Rr ± Ri if they are complex. More im
portant, if all we know about the coefficients is, say,

A E [47.46, 47.56]

CE [47.34,47.44]

then the inferences

R+ E [.9756, 1.071]

R, E [.9966, 1.001]

BE [47.40, 47.50] ,

R_E [.9315, 1.001] or

R; E [0, 0.06990]

(which are nearly unimprovable) come more economi
cally, by far, from a direct application of Interval
Arithmetic than from any other scheme. The fact that
Interval Arithmetic can be abused, and then will give

Invited Papers W. Kahan, A survey of error analysis 1235

wretchedly pessimistic error bounds, is no excuse to
deny its use to the computer using public. I suspect
that Interval Arithmetic is still so little used mainly
because deficiencies in some current floating point
hardware designs metamorphose into embarrassing
inefficiencies when Interval Arithmetic is imple
mented. Even so, Interval Arithmetic tends to be
cheaper than the human labour it supplants.

The third way to escape is to realize that there
are other kinds of errors than rounding errors. Errors
in data and errors in intentional approximations to
mathematical relationships cannot be dispelled by the
means described above, and are therefore the pre
ferred preoccupation of error analysts. I shall give two
examples drawn from my own work.

13. TRAJECTORY PROBLEMS

"I shot.an arrow in the air,
It fell to earth, I know not where."

The Arrow and the Song
Longfellow

Consider a system of n ordinary differential equa
tions

j, = f(y,t) + r(t), y(O) =Yo+ w0

in which uncertainties are represented by n-vectors
r(t) and w0 about which we know only bounds like

n0 > llwoll and p(t) > llr(t)II for t > o .

Our object is to compute a bound

n(t) > lly(t)-z(t)II

for the difference between the uncertain solution
vector y(t) and the unperturbed solution z(t) of

i = f(z.t), z(O) = Yo .

The source of the uncertainty·r(t) is not important
here. It could arise from the nume_rical method used
to solve y(t)'s differential equation, with z(t) repre
senting what the numerical method produces (see
N .F .Stewart [24]). Alternatively, r(t) could repre
sent unknown but bounded perturbing forces acting
upon a physical systemy(t) whose unperturbed mo-

lion would be z(t). Most likely both sources of error
would contribute to r(t), as they would to w0.

Over the past century several methods have been
proposed for computing U(t); significant contribu
tions have been made recently by Moore [21] and
Kruckeberg [25]. But all methods described so far
share an outstanding defect; they tend to produce a
function Q(t) which grows, as t ➔ =,exponentially
faster than lly(t)-z(t)II can grow, even when the.dif
ferential equation is linear, and in most cases even
when it is linear with constant coefficients chosen in
an unlucky way (see L.W.Jackson [26, 27]). There
is one exception.

In 19661 proposed [28] that ellipsoids be used
to produce Q(t). The idea was to compute a positive
definite n X n matrix A(t), the solution of an auxiliary
system of differential equations solved simultaneously
with z(t)'s equation, which would represent m ellip
soid A(t) as follows:

xEA ifandonlyif x'A-lx<I.

A(t)'s differential equation was to be so chosen that
y(t) - z(t) E A(t) for all I> 0. The scheme will be de
scribed below simply for linear differential equations
although it works on non-linear equations too, until
A(t) becomes so large as to grow spuriously and
unavoidably too fasL

Let w(t) = y(t) - z(t), and assume

w = Jw + v , w(O) = w0

where J(t) is a known n X n matrix but no more is
known about v(t) and w0 than two ellipsoids V(t)
and Ao such that

Wo EAo and v(t)EV(t) for t>O.

In other words we assume positive definite matrices
Ao and V(t) are given such that woAo1wo < I and
v'v- 1v < I for all I;;, 0. For example, given p2 ;;, v'v
for all t > 0 we should set V = p- 2. Now let W(t)
denote the "reachable set" of all solutions w(I) ob
tained by letting w0 and v(t) range over the sets A0
and V(t) respectively. In general W(t) is not an ellip
soid; we seek A(I):::, W(t) for all t;;, 0.
THEOREM. If A(t) satisfies*

A >JA +AJ' +-yA + Vh, A(O)>A 0

* Writing "X ;-. Y" for symmetric matrices means that X - Y
is positive semi-definite; x'(X-Y)x ;-. 0 for all x.

1236 W. Kahan, A survey of error analysis Numerical Mathematics

for any r(t)> 0 and for all t>O thenA(t) repre
sents an ellipsoid A(t) :J_ W(t).

To apply this theorem we might replace its first
two;, signs by= signs and solve the resulting differen
tial equation numerically for A(t) simultaneously
with the calculation of, say, z(t), provided we knew
how to choose r(t). There are many reasonable choices
available. For example see the following.
Corollary. If Vis constant and A(0) = A 0 = 0 and
J(t) is bounded for all t;, 0 and A = JA + AJ' + rA
+ V(r with r(t) = l/t then W(t) c: A(t) c: "1,,(t)W(t)
where "1,,(t)/-,/i+tis bounded for all I;, 0.

In other words, here is a case where the error
bound cannot over-estimate the possible error by
more than a bounded multiple of -,/i+t There are
many other cases of considerable practical importance
where r(t) can so be chosen that the error bound will
never grow arbitrarily larger than the possible error.
For example, ifw's differential equations are the
variational equations for the equations of motion of
a satellite in orbit about a lumpy central body whose
gravitational field deviates slightly from the inverse
square law in an unknown but bounded way, or if
the equations of motion concern a pendulum swing
ing in a draft of gas of unknown but small and
bounded density and velocity, r(t) can easily so be
chosen that the ellipsoid A(t) will grow at the same
rate as the reachable set W(t) for all I;, 0 until A(t)
becomes so large that nonlinearities in the equations
of motion dominate its growth. Calculations, some
performed with the aid of a particularly convenient
program written by Gabel [29] to solve differential
equations automatically on the 7094, have borne out
these claims. Details must appear elsewhere.

14. ILL-POSED PROBLEMS

My object all sublime -
I shall achieve in time -
To let the punishment fit.the crime.

Mikado
W.S.Gilbert

Among the most perplexing numerical computa
tions are those whose results, though intended to
mimic an ostensibly well-behaved physical configura
tion, turn out ill-behaved. Are they ill-behaved merely
because the numerical computation was performed
ineptly? Or is the physical system not so well-behaved
as was presumed? Or does its mathematical model

contain a flaw, not a mistake, which condemns every
straight-forward numerical method to confusion? This
last possibility can arise in two ways. On the one
hand, intermediate variables may have been intro
duced which are occasionally redundant, thereby al
lowing partly arbitrary and possibly unbounded
numerical values to intrude enormous rounding
errors into the computation. On the other hand, the
physical system may obey precisely laws which can
only be approximated numerically; the small errors so
introduced may then correspond to physically im
possible perturbations with physically impossible con
sequences.

To what extent can the foregoing three questions
be resolved by numerical means al0ne without des
cending to numerological augury? We wish not to
re-formulate a new mathematical model unless we
have to, and then not until we know what is wrong
with the old model. We hope to avoid the kind of
deft and inspired analysis exemplified by, say, Dorr
(30] and Babuska [31], since that may well lie
beyond our talents.

Error analysis offer~ a resolution based upon two
notions. First, the uncertainty attributed to data is
itself a datum. Secondly, when experimental obser
vations are subjected to computational processing,
the program becomes a part of the experimental ap
paratus, and subject to the same scientific criteria
concerning the reproducibility of meaningful results
in the face of ostensibly negligible variations. These
notions will be illustrated by application to a simple
linear least squares problem.

Given an m X n matrixFwith m ► n, and an m
vector g, we seek that n-vector x which minimizes
llg-Fxll; when the minimizing xis not unique (i.e.,
when the columns of Fare linearly dependent) we
further stipulate that, say, llxll should be minimized.
The vector norm used here is llzll = .,/?z, and we
shall use the natural matrix norm IIZII = maxzllZzll/llzll
although any other orthogonally invariant matrix
norm could be adapted to our purposes. The minimiz
ing vector x turns out to be Ft g where the pseudo
inverse Ft is uniquely defined formally by the familiar
equations

FFtF=F, ptppt =Fl , (FtF)' =FtF,

(FFt)' =FFt.

When Fhas full column-rank n, Ft = (F'Ft 1F'.
The literature abounds with methods for comput

ing Ft and Ft g. Some of the best are explained by

Invited Papers W. Kahan, A survey of error analysis 1237

Golub and his collaborators; see the several refer
ences. Certain cases when Fis of full rank but badly
ill-conditioned (IIFtllllFII is huge) are discussed nicely
by Gautschi [32,33} and by Wilson [34}. Another
special case in which we seek to choose dg, subject to
a given constraint "f ;;a, IIL.gll, to nearly minimize
IIFt (g+t.g)II when Fis badly ill-conditioned is dis
cussed by Miller [35] and mentioned by Golub and
Kahan [36]. But nobody has considered what to do
when Fis uncertain, although this matter is touched
obliquely by G.W.Stewart [24] and by Pereyra [37].

We shall consider the implications of uncertainty in
Ffor the computation of Ft. Specifically, given a
tolerance</>> 0 such that all F + t.F with lit.FIi < rj;
must be regarded as indistinguishable for practical
purposes, what should be done when (F+t.F)t is
found to vary violently discontinuously as t.Franges
over the allowed set?

First some apparatus is needed. Let the n singular
values of F be denoted in order by

These may be computed at modest cost by methods
described in Golub [38] and in Golub and Reinsch
[39]. Note that the singular values of Ft are the re
ordered numbers¢}, where </>t = 1/</>, except Q"f = 0.
According to Mirsky ([41], theorem 2) for
k=l,2, ... ,n

rj;k = min IIL.Fll over rank (F+t.F) < k.

Consequently no singular value of F + t.F can differ
from the correspondingly numbered singular value of
F by more than lit.FIi; and just as ¢1 = IIFII so is

II Ft II = I/min lit.FIi over rank (F+t.F) < rank (F).

Finally, the following little known but easHy verified
and.useful formula,

Et - pt = -Ft (E-F)Et

+ (!-Ft F)(E-F)'Et'Et + ptpt'(E-F)'(!-EEI),

has as a corollary

11£1 -FIii..: 11£-FII jllEllls - IIFIIJS
- 11£11-IIFII

< VSIIE-FII max (11£1 II, IIFt 11)2 .

The foregoing apparatus is the justification for iiib ,
following assertions.

The first step is to exhibit F = PAQ where P and Q
are orthogonal matrices (P'P=Q'Q=QQ'=!) and
A= diag(¢ 1,¢2, ... ,¢n); this can be done by methods
mentioned above. Next compare the tolerance¢ with
the singular values </>i. If</> <ii: 1'n then for all llt.FII < ¢

and

thus, we have a bound -for the change in Ft caused
when Fis changed by no more in norm than the
tolerance rj;.

The interesting case occurs when rj;k ► rj; > r/>k+l
for some k < n; this means that among the matrices
F + t.F with lit.FIi < rj; are some of rank k, k + I, ...
and n. Every time F + t.F changes rank, (F+t.F)t
jumps infinitely violently. Clearly the least squares
problem is now ill-posed because a matrix F + t.F in
distinguishable from F has only k linearly independent
columns. The last n - k rows of Q exhibit the inde
pendent linear combinations of the columns of F
which nearly vanish. As F + t.F runs through matrices
of minimal rank k with lit.FIi < </>, (F+t.F)I varies
continuously and differs by no more than
y5(¢+¢k+Jl/(r/Jk:--¢)2 in norm from a computable
distinguished choice

The corresponding :X = (F+AF)t g has the property
that it, like (F+AF), is a continuous function of the
data F and g for variations small compared with
</>k - </>. Finally, llg-Fxll may be rather larger than
minimal, but if so it cannot be reduced without re
placing x by a drastically larger vector x which must
change violently when Fis changed negligibly. In
other words, (F+3.F)t reveals something about the
data F, g which is independent of allegedly negligible
(smaller than¢) variations in the data. In this respect,
an ill-posed problem has been replaced usefully by a
well-posed one, and by numelical means alone. When
neither condition¢ <ii; 1'n nor rj;k ► </> > </>k+l is satis
fied, i.e., when</> is not much smaller than the next
larger singular value, the given least squares problem
must be regarded as intrinsically ill-posed in a way
that will not yield to numerical methods alone.

1238 W. Kahan, A survey of error analysis Numerical Mathematics

ACKNOWLEDGEMENTS

This paper is distilled from a fraction of the works
of so many people that, were I to try to acknowledge
as many as could be named in these pages, I could
only injure more of them by omission. Better so to
injure almost all. Besides, their names are familiar to
anyone who reads the journals of numerical analysis
and computing. But I am indebted for many acts of
kindness to G.E.Forsythe,. to A.S.Householder, to
J .H.Wilkinson, to my former colleagues and teachers
at the University of Toronto, Canada, and to my
colleagues now at the University of California at
Berkeley.

The work described here has been supported in
part by grants from the National Research Council
of Canada and from the U.S. Office of Naval Research.

REFERENCES

[1] B.T.Smith, Error bounds for zeros of a polynomial
based upon Gerschgorin's theorem, JACM 17 (1970)
661-674.

[2] W.B0rsch-Supan, Residuenabschiitzung fi.ir Polynom
Nullstellen mittels Lagrange-Interpolation, Numer.
Math. 14 (1970) 287-296.

[3] D.A.Adams, A stopping criterion for polynomial root
finding, Comm. ACM 10 (1967) 655-658.

[4] A.M. Ostrowski, Solution of Equations and Systems of
Equations, 2nd ed. Acad. Press, New York (1966).

[SJ W.Kahan, 7094-11 System support for numerical analysis,
SHARE Secretarial Distribution SSD-159, item C4537
(166), (An amended version is reprinted in my 1968 •
notes.).

[6] W.J.Cody,Jr., Software for the elementary functions,
presented at the Mathematical Software Symposium at
Purdue University (April 1970),

[7] H.Kuki and J .Ascoly, Fortran extended-precision
library, IBM Syst. J. 10 (1971) 39-61.

[8] H.E.Fettis and J .C.Caslin, Errata in tables of toroidal
harmonics, Math. of Comp. 25 (1971) 405-408.

[9] R.R.Korfhage, On a sequence of prime numbers, Bull.
Amer. Math. Soc. 70 (1964) 341-342, retracted on
p. 747.

[10 J T .J .Dekker, A floating-point technique for extending
the available precision, report MR 118/70, Mathe
matisch Centrum, Amsterdam (1970),

[11] W.Kahan, Further remarks on reducing truncation
errors, Comm. ACM 8 (1965) 40.

[12] I.BabuSka, Numerical stability in mathematical analysis,
in: Proc. IFIP Congress (1968) vol. l, A.J.H.Morrell, ed,
(North-Holland, Amsterdam).

[13} O.M¢ller, Quasi double-precision in floating point addi
tion, BIT 5 (1965) 37-50 and 251-255.

[14] D.E.Knuth, The Art of Computer Programming, vol. 2
(1969) Semi-numerical Algorithms, Addison-Wesley,
Massachusetts.

[15] R.J. Thompson, Improving round-off in Runge-Kutta
computations with Gill's method, Comm. ACM 13
(1970) 739-740.

[16] A.J.van Reeken, Dealing with Neely's algorithms, letter
to the ed., Comm. ACM 11 (1968) 149-150.

[17] I.V.Viten'ko, Optimum algorithms for adding and
multiplying on computers with a floating point, USSR
Computational Math. and Math. Physics 8, #5 (1968)
183-195.

[18] J.H.Wilkinson, Rounding errors in algebraic processes,
Nat'l Phys. Lab. Notes on Applied Science, no. 32
(1963) HMSO, London.

J19] G.W.Stewart III, On the continuity of the generalized
inverse, SlAM J. Appl. Math. 17 (1969) 33-45.
G.W.Stewart III, Error analysis of the algorithm for
shifting the zeros of a polynomial by synthetic division,
Math. of Comp. 25 (1971) 135-139.

[20] W.Kahan, Error in numerical computation, part of the
notes for summer course #6818, Numerical Analysis,
University of Michigan Engineering Summer Conferences,
Ann Arbor, Michigan (1968).

[21] R.E.Moore, Interval Analysis (Prentice-Hall, New Jersey
1969).

[22] E.R.Hansen, ed., Topics in Interval Analysis, (Oxford
U.P., London, 1969).

[23] K.Nickel, Error-bounds and computer arithmetic (1969)
54-62, in: Information Processing 1968, Proc. IFIP
Congress 1968, vol. 1, A.J .H.Morrell ed. (North-Holland,
Amsterdam).

[24] N.F.Stewart, Certain equivalent requirements of ap
proximate solutions of x = f(t,x), SIAM J. Numer. Anal.
7 (1970) 256-270.

[25] F.Kriickeberg, Ordinary differential equations.,(1969)
91-97, in: E.R.Hansen 1s T0pics in Interval Analysis.

[26] L.W.Jackson, A comparison of ellipsoidal and interval
arithmetic error bounds, abstract alone in.SIAM Rev.
11 (1969) 114.

[27] L.W.Jackson, Automatic error analysis for the solution
of ordinary differential eq~ations, Ph.D. Thesis/Tech.
Rep. no. 28 (1971) Comj_)uter Science Dept., Univ. of
Toronto.

[28] W.Kahan, A computable error-bound for systems of
ordinary differential equations, abstract alone in SIAM
Rev. 8 (1966) 568-569.

[29] G.F.Gabel, A predictor-corrector method using divided
differences, M.Sc. Thesis/Tech. Report No. 5, Com
puter Science Dept., Univ. of Toronto (1968).

[30] F.W.Dorr, An example of ill-conditioning in the
numerical solution of singular perturbation problems,
Math. of Comp. 25 (1971) 271-283.

[31] l.BabuSka, Numerical stability in problems in linear
algebra, Tech. Note BN-663, Inst. Fluid Dynamics and
Appl. Math., Univ. of Maryland, College Pk., Md.
20742 (1970).

[32] W.Gautschi, Construction of Gauss-Christoffel qua
drature formulas, Math. of Comp. 22 (1968) 251-270.

[33] W.Gautschi, On the construction of Gaussianquadrature
rules from modified moments, Math. of Comp. 24
(1"910) 245-260.

{34] M.Wayne Wilson, Discrete least squares and quadrature
formulas, Math. of Comp. 24 (1970) 271-282.

C

Invited Papers W. Kahan, A survey of error analysis 1239

{35] K.Miller, Least squares methods for ill-posed problems
with a prescribed bound, SIAM J. Math. Anal. 1 (1970)
52-74.

[36] G.H.Golub and W.Kahan, Calculating the singular values
and pseudo-inverse ofa matrix, J. SIAM Numer. Anal.
(B) 2 (1965) 205-224;
G.H.Golub and J.H.Wilkinson, Note on the iterative re
finement of least squares solutions, Numerische Math.
9 (1966) 139-148.

[37] V.Pereyra, Stability of general systems of linear equa
tions, Aequationes Math. 2 (1969) 194-206.

[38] G.H.Golub, least squares, Singular values and matrix
approximations, Aplikace Matematiky 13 (1968) 44-51.
G.H.Golub, Matrix decompositions and statistical calcu
lations, in: Statistical Computation Acad. Press, New
York (1969) 365-397.

[39] G.H.Golub and C.Reinsch, Singular value decomposi
tion and least squares solutions, Numer. Math. 14
(1970) 403-420.

[40] D.B.DeLury, Computations with approximate num
bers, The Mathematics Teacher 51 (1958) 521-530.

[41] L.Mirsky, Symmetric gauge functions and unitarily
invariant norms, Quart. J. Math. (2nd series) 11 (1960)
50-59.

