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A SURVEY OF ERROR ANALYSIS 

W.KAHAN 
Computer Science Department, University of California, 

Berkeley, Calzfornia 94720, USA 

Rounding error is just one kind of error, and an easier kind to analyze than some others. Error and uncertainty 
in data is a more important kind, and not so easy to estimate nor analyze; here is where error analysts are currently 
busiest. The most refractory kind of error is attributable to flaws in the design of computer systems, both hardware 
and software, caused primarily by misconceptions about the other kinds of error. These flaws should not be blamed 
entirely upon those systems' designers, who must contend with arbitrary directives from on high and conflicting ad
vice from their customers; "Who shall decide when doctors disagree?" 

I. INTRODUCTION 

A horse, a rider, a battle, a crown; that they all 
might be lost for want of a nail is plausible though 
unlikely. How likely is anything important to be 
lost because of a rounding error?-Before we answer 
this question, we might consider the inhabitants of 
a far northern city who are persuaded that their 
harsh arctic climate is really very healthy because 
they see so few sick people walking their streets. 
Will our logic be any better than theirs? 

There is a natural analogy between illness and 
numerical inaccuracy. Germs and rounding ~rrors 
are small, numerous, and best combatted by sani
tary precautions which, alas, are all too frequently 
neglected, not so much because of their intrinsic 
difficulty or expense as because of indifference or 
ignorance. When that neglect breeds mischief, the 
doctor is called. Now the analogy breaks down; 
germs are more persistent than rounding errors. 
Among the achievements of the past generation of 
error analysts is their capacity to deal with roundoff 
in a comparatively routine way that medical practi
tioners could only envy. Of the various kinds of 
errors that confront error analysts, rounding errors 
are among the easier kinds to deal with theoretically, 
so let us deal with them first. 

"A little neglect may breed mischief ... 
for want of a nail the shoe was lost; 
for want of a shoe the horse was lost; 
and for want of a horse the rider was lost." 

from Poor Richard's Almanac 
Benjamin Franklin 

2. EXAMPLE OF ROUNDOFF ANALYSIS 

Here is an example, solving the quadratic equation 

Ax2 - 2Bx + C = 0, 

to illustrate the routine by which a ·mathematician 
may dispose of roundoff. This example has been 
chosen because its analysis is relatively short but 
otherwise typical of small algebraic problems. The 
first formula that comes to mind, 

is well known to be a poor way to compute the 
roots R+ and R _ whenever one root is very much 
smaller in magnitude than the other; see fig. 1, 
which shows such 'a calculation done in 4-significant
decimal floating-point arithmetic. 

Because the computed value of R_ is quite wrong, 
we might describe the computation as "unstable"; 
this is a correct conclusion from wrong reasoning, 
as we shall see. We might also be tempted to con
demn the last subtraction for "losing"· three signifi
cant decimals, though that subtraction has been 
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T'o solve Ax2 -2Bx+C= 0 with 

A = .1002, B = 98,?8, C=l0.03; 

Use 4-significant-decima_l rounded floating point ca,itlvnetic; 

Set D = B2 -AC= 9?5?,4864 - 1.005oos ~ 9?5?, - 1,005 ~ 9756.; 

The roots are R = (B + /jj)/A, where 
±. -

,ID¼" ✓9?56. = 98,??2!f66 ... '!' 98.??; 

R+ :f: (98,?8+98.??)/A ~ 19?,6/.1002 = 19?2.osss,., ~ 19?2, 

(R+ = 19?1,aoss,,,); 

R_ ~ (98.78- 98, 77)/A = . 01000/.1002 = , 099800,,0 ... = , 09980 

(~_ = ,050?6sss4,.,). 

Fig. 1. An unstable calculation. 

C • ., TO SOLVE A>1XH2 - 2>1B>IX + C = O. 
D = B**2 -A>IC 
IF( D .LE. 0, ) GO TO 1 

C •• , REAL DISTINCT ROOTS RP AND RM WHEN D > 0, 
S = B + SIGN( SQRT( D ), B) 
RP= S/A 
RM= C/S 
GO TO ••• 

C. • • COMPLEX OR COINCIDENT ROOTS RR ±. I<RI WHEN D ~ O. 
1 RR= 8/A 

RI = SQRT( -D )/A 

Fig. 2. A stable algorithm. 

To solve Ax
2 

- 2Bx + C = o with 

A= 47.51, B = 4?,45, C = 47,39 

using 4-significant-decimaZ rounded floating-point a.1'ithmetic in 

the program of Figure 2; 

Set D = B
2

-AC = 2251,so2s - 2251,tisa9 ¼° 2252. - 2251, = 1,000; 

Set S = B +vfj~ 47. 45 + 1,000 = 48. 45; the roots aJ"e 

and 

R_ = C/S ~ • 9?81:2.11 a ~ ,-9781 (R_ = ,99741422.,,), 

Fig. 3. Poor results from a stable program! 

1215 
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Approximate solution of a:c
2 

- 2bx + c = O; 

d = {b2 (1+µ1) - aa/1+µ 2)}{1+o}; 

When d > O estimate real distinct roots r+ and r_; 

e = {JbJ +{l+p)/J}(l+a)sgn(b); (sgn(O) = 1) 

r+ = (1+61)s/a; 

r _ = ( 1+0
2

Jc/s; go to .•.. 

When d .:5. O estimate complex or coincident roots rr ±. 1ri; 

r r = /1+o3)b/a; 

ri = (1+o4) {l1+p) ✓-d}/a. 

Rounding errors: a for add., a for subtract, µ for multiply., 

C for divide, p for square root. 

Fig. 4. Representation of rounding errors in fig. 2. 

performed precisely and no more deserves condem
nation than does any other bearer of ill tidings. The 
subtraction merely reveals an error half of which 
was committed at the beginning when B 2 =. 
= 9757.4884 was rounded to 9757. 

A stable F. ortran-like program to solve the qua
dratic is displayed in fig. 2; when applied to the 
coefficients A, B, C of fig. I it produced the roots 
correct to within one ulp. (An ulp is a Unit in the 
Last Place quoted.) Although in fig. 3 this program 
appears to lose half the figures carried, yet I insist 
that the program deserves to be called '"stable"; 
the loss of figures could be charged against the data 
A, B, C if these coefficients were all uncertain by 
as much as ten ulps, for then they would specify 
an ill-conditioned problem whose solution is uncer
tain more because of its own data's uncertainty 
than because of my program's roundoff. To prove 
this, to exculpate my program, I submit the fol
lowing analysis. 

3. REPRESENTATION OF ROUNDOFF 

The letters A, B, C, ... are intended to be the names 
of real variables but the· Fortran compiler interprets 
them as the names of cells in which are stored the 
values of real variables we shall call a,b,c, ... respec
tively. The variables A and a are not the same, though 
generally intertded to approximate each other. A 
Fortran statement intended to compute, say, a quo~ 
tient 

R=S/A 

causes instead the computation of, say, 

r=/I+o)s/a 

where the variable O represents the contribution to 
r due to roundoff. For example, whens/a= 
1.019 ,,,, ... is rounded tor= 1.020 then o = 
(r - s/a)/1 s/a) = 0.0002L.; usually the only infor
mation about O that is used in an error analysis is 

an a priori bound; in this case the assertion 

lo!< 0.0005 

is valid independently of sand a* 0. More generally, 
to every arithmetic operation performed on a spe
cific machine corresponds a data-independent bound 
which reflects the worst error that could possibly 
occur during that operation (in the absence of over/ 
underflow). Customarily we assume that each float
ing point arithmetic operator# such as+, -, 
*, /, ,J, decimal-binary conversion, ... has, for every 
precision (word-length) pre-assigned to the cell 
calledR, its own data-independent bound e# for 
the relative error committed when the Fortran state
ment 

R=S#A 

causes a new value, obtained by adjusting s#a, to 
be stored in cellR. Whether the adjustment is by 
rounding or chopping is a minor issue to be dis- • 
cussed later; here rounding has been assumed. 
Whether e# is a bound for 1/r- s#a)/(s#a)l 6J 
l(r - s#a)/rl is a matter of convenience for the an-
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A slightly wroYIIJ solution to a slightly wrong problem. 

Set a: a, b: b, 0: a(1+µ2)/(1+µ1) in the perturbed 

~- t· ~ 2 b~ ~ quaUI•a 1-C ax - 2 x + c = O; 

If d .:'_ 0 the roots I' + 1r. 
r - • 

of the perturbed quadratia 

are approximated c"losely via the aomputed values; 

If d > 0 the roots F±. of the perturbed quadratic are 

approximated closely by the ccmputed values 

r+ = 11+e)(1+a)(1+01)"+' r_ = i'_(l+8)(1+µ1!l{n+e)/1+a)/1+µ2)} 

where 8 " (s/(1+a)sgn(b))/(lbl + /2;2-ac) - 1 

= p✓(1+µ1 ! /l+-0) + (µ1+-0+µ1cr!/{1 + ✓(1+µ 1 ) (1+cr)} 

1 + lbl ✓(1+µ1)(1+-0)/d 

~ /p + ½i1+ ½,;;u + lbl/✓ci;. 

Fig. 5. Assimilation of rounding errors in fig, 4. 

alyst (and confusion for the student). Whether 
the customary assumptions can be validated for 
any particular computer system is one of the ma
jor issues to be discussed later. The arithmetic in 
fig. 3 is done in such a way that e# = .0005 holds 
for every operator. Finally, complicated Fortran 
statement like 

D=B**2-A*C 

are interpreted as abbreviations for sequences of 
simpler statements like 

The ways in which a Fortran compiler might intro· 
duce these invisible temporary variables is another 
major issue to be discussed later; here we assume 
each such variable to be, like all the others, restricted 
to 4 significant decimals. 

Fig. 4 shows the relation between the program of 
fig. 2 and the values actually taken in storage by the 

variables a,b,c, ... . Each of the Greek letters in fig. 4 
represents a rounding error about which we assume 
only that it is smaller in magnitude than E = .0005. 

Let us assail this confusing profusion of Greek letters 
with the following question: 

Do there exist coefficients a, o, c, differing from 
a, b, c respectively by at most a few ulps, whose 
quadratic equation 

ifx2 - Wx + c = 0 

has roots '+ differing from the computed values 
r + respectively by at most a few ulps? 

Yes~ there are many such coefficients a; 75, C; so 
many that a novice might have trouble finding any! 
One set is displayed in fig. 5, in which the coefficients' 
perturbation is confined to two rounding errors in 
c, while each root's perturbation amourits to five 
or fewer rounding; i.e., ignoring e2 terms, 

le-cl :S2elcl, lr-rl :S 5elri for'+• r_, r,, r;. 

In effect, the program's first two rounding errors 
have been carried backward to c while the rest have 
been carried forward to the roots, We may compute 

2251 b2 

2252 0 =47.3690322 ... , 

which differs from the given value c = 4 7.3 9 by 
about 2 ulps, and then verify that the roots r+ = 
1.01978 ... and r_ = .977691... of the perturbed 
equation ax2 ~ 2bx + c = 0 differ from fig. 3's 
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computed values r + = 1.020 and r _ = .9781 by 
less than 4 ulps. 

4. A SLIGHTLY WRONG SOLUTION TO A 
SLIGHTLY WRONG PROBLEM 

Do not be deceived by the last few computations, 
however small they make the errors seem to be. 
They do not say how close the computed roots r + 

are to the "true" roots of "the" quadratic equation; 
we have not yet identified the "true" roots because 
we have:not yet identified "the" quadratic equation. 
Let that equation be 

Ax 2 -2Bx +C= 0, 

with coefficients A, B, C that are approximated by 
the variables a, b, c represented in storage. The val
ues of A, B, C may be unknown but, if the calcula
tion is worth doing at all, we must have bounds for 
them; for example, suppose the inequalities 

IA-al/lal < 10,e, IB-bl/lbl < IOe, 

IC-cl/lcl < !Oe 

say all that is known about A, B, C. These inequali
ties imply that the true roots R+ are uncertain by 
at least (actually much more than) a factor of about 
/ I + 2Qe) because to two sets of coefficients satis

fying the foregoing inequalities, say 

' ' ~ ~ 2E 

' ' 

rD'' T~ C,. 

The shaded region 
is the Uncertainty 
caused by roundoff 
and attributed to 
data 

L--------..space Of coeffiCient!:. (a,b,c) 

The intended coefficients A, B, Care at the point C. 
The stored coefficients a, b, care in the inner square. 
The perturbed coefficients a, b, care in the outer rectangle. 

A' =(I+ IOc)a, 

A" =(I - IOe)a, 

B' =b, 

B 11 = b, 

correspond roots satisfying· 

c' = (I - !Oe)c, 

C"'=(! + IO'e)c,, 

so either (R~/R~) or (R ~/R~) differs from 1 at 
least as much as (I - I0e)/(1 + !Oe) do.es. Com
pared with these relative uncertainties of 1 0e in 
the coefficients A, B, C and consequently at least 
20'e in the roots R+ , the additional relative un
certainties of2e\in-c and Se in i'+ added by round
off in fig. 2's pro~ram seem unobjectionable. See 
fig. 6. \ 

Thus do we render the following verdict: The 
program in fig. 2 is not guilty of objectionable 
rounding error; the.wrong answers in fig. 3 are 
scarcely more wrong than they deserve to be. But 
those answers remain wrong nonetheless! Is this 
progress? 

5. APPEAL TO PERTURBATION THEORY 

We have made progress. Even if the intended 

coefficients A, B, Care not Uncertain, but precisely 
equal to the stored values a, b, c, * the foregoing anal-

* This is assumed trud for the remainder of this section. 

The smallest diagonal 
of this figure is 
bigger than 2oe. 

Each point in this 
space represents the 
roots of a quadratic 
equation whose coeffi
cients are represented 
by a point in the space 
above 

L---------------space o1 roots <r+,r .... > 

The rootsR±·of the intended equation (A,B,C) are at the 
point R. The roots of the stored equation (a,b,c) are in the 
inner-lozenge. The roots r± of the perturbed equation 
(a,.b,c)-are in the middle lozenge. The computed approx
imatio~s '± are in the ~uter lozenge. 

Fig. 6. Pictorial assimilation of rounding e~ors in figure 4. A slightly wrong solution to a slightly wrong problem. 
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ysis is helpful because it allows the error made during 
the computation to be summarized in a way that 
frees subsequent analysis from the messy details of 
the program and the computer's hardware. Here is 
.the summary: 

The computed "roots" rare close to actual roots 'f' 

of a perturbed quadratic equation a,:2 - 2bx + c = 
0 whose coefficients a, b, C are close to the given 
values a, b, c 

• (i.e., ic-cl/lcl :S 2e). 

All that is left of the program and its rounding errors 
is the pair ofvalues(Se,2e) and the following question: 

How much can the roots of a quadratic equation 
change when the last coefficient of the quadratic 
is changed by at most a little? 
This question submits to conventional perturbation 
analyses. For example, we may regard each root R 
of ax2 - 2bx + c = 0 as a function of c and compute 
the derivative 

aR -I 
ac 2(aR-b) 

whence the bound !~cl = lc-c'. I < 2eicl implies that 
the error !Ml= IR-rl caused by changing c to c 
is bounded by 

if e2 terms are ignored. These bounds are almost 
rigorous; by applying results from Smith [I] or 
Borsch-Supan [2] we may verify the first few for
mulae in fig. 7, which provide rigorous a posteriori 
bounds for IM I. These bounds do not assume any
thing about the source of the approximations; why 
don't we just use these bounds and skip the foregoing 
rounding error analysis? There afe three reasons 
why. 

First, a rounding error analysis, even if not entirely 
rigorous,·indicates how likely are the computed value.s 
to repay the cost of their computation. Without that 
analysis we must wait until after the computation to 
discover whether it was worthwhile; could we.perhaps 

An a posteriori bound for roots: 

Let r+ and r ... be given approximations to the roots of 

P(z) ~z 2 - 2bz/a + c/a = O. 

If r + =fa r _ then each of the two regions 

in the z-plane contains one of the roots of P(z) = O unless 
those regions overlap, in which case their union contains both 
roots. If r+ = r _ = r the region 

lz-rl ,;; ½IP'(r)I + J¼IP'(r)12 + IP(r)I 

contains both roots. (Here the prime means derivative,) 

An a pn·ori bound for roots: 

If the roots of ax 2 
- 2bx + c = 0 are R + and the roots of 

ax2 - 2bx + c(l+y) = 0 are r+, then thtrelative differences 
8± '=' l -r±/R± are bounded by 

Fig: 7. Bounds for perturbed roots. 

get a-better answer-sooner by repeatedly invoking a 
random number generator until'its output satisfies ac
ceptable a posteriori bounds? 

Secondly, a posteriori bounds frequently cost at 
least about as much as the computation they are in
tended to validate, and more if no advantage is taken 
of what might reasonably be inferred about the role 
of roundoff in that Computation. Furthermore, the 
computation of bounds is another computation sus
ceptible to rounding errors. For example, whep. the 
expression (A •Z-2.•B)•Z + C is computed using the 
coefficients A, B, C and 4-significant decimal rounded 
arithmetic of fig. 3, it vanishes for Z = .9860, for 
Z = 1.011, and for several other 4-significant decimal 
values between them, despite the fact that the intended 
quadratic should vanish only twice (i.e., at 
Z = .99741•22 and Z = 1.0). Evidently, the a 
posteriori bounds of fig. 7 cannot be applied to the 
computed values of P(r ±) unless either those values 
are computed more precisely (is double-precision 
arithmetic obviously good enough?), or else those 
values are reconciled with roundoff. The quadratic 
expression above is approximated in storage by a 
computed value 
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in which the Greek letters represent, as before, round
ing errors bounded by e; by means discussed in Adams 
[3] we may compute that roundoff contributes 
roughly as much uncertainty as if the value 47.39 of 
C were uncertain by about two ulps. Consequently, 
after four-digit calculations provide estimates 
(0.02±0.02)/47 .51 for both values of P(r ±l, the best 
inference from fig. 7 places both desired roots' real 
parts somewhere between 0.938 and 1.06, and 
imaginary parts between ±0.04; these bounds are not 
worth the effort to compute them*. 

Cheaper bounds can be achieved by doing more 
analysis first and then less computation. For example, 
from 

we may conclude via fig. 7 that the desired roots lie 
in the union of the two regions 

lz-r±I :$ 5<1r±I + 4Elc/al/{lr+-r_l-5Elr+l-5<1r_l}, 

which place real parts between 0.921 and 1.08, 
imaginary between ± .06. These cheap bounds are 
poor too, but better bounds are nearby. 

A third reason for not skipping the analysis of 
roundoff is that it provides better bounds. Aware 
that a perturbed quadratic ax2 - 2bx + c exists, we 
may invoke the a priori bound in fig. 7; its proof fol
lows lines laid down by Ostrowski ([4], Appendix B). 
After inferring IR ±-i'", 1/ Ir± I :$ y2.l€ and recalling 
Ir ±-r± I/Ir± I:$ 5€ we deduce that each desired root 
R± lies in a circle 

(ignoring €2 terms). Despite the fact that these circles 
overlap·, each contains one root. Consequently, if both 
roots are real 

0.943 <R_ <, 1.02 and 0.985 <R+ < 1.06 

whereas if they are a complex conjugate pair 

R± =R, ± iR 1 

* A more delicate analysis shows that, for the values A, B, C 
under discussion here, µ 2 = a 1 = a2 = 0, whence improved 
estimates for P(r ±) are (0.02 ± 0.0l)f4 7.51, and 0.948, 1.05 
and ±0.02 for the rootS' bounds. But only a welHmple
mented Interval Arithmetic program is capable of such 
delicacy. 

0.985 <R, < 1.02 and -0.03 <R; <, 0.03. 

Though better·than before, these bounds are still 
three times wider than they could be. 

The foregoing few paragraphs are not intended to 
disparage a posteriori error bounds; these bounds are 
invaluable for validating results of long calculations, 
and for sensitivity analyses. For example, if'our coef
ficients A, B, Care uncertain by, say, 5 ulps each then 
P(r ±) must be uncertain by ro\lghly ±0.15/47.51 and 
the desired roots must be uncertain to an extent not 
grossly overestimated via fig. 7, namely 

IR.-r ±I:$ 2(0.15/47.5 I )/Ir+ -r _I ~ 0.15 . 

But when A, B, Care known precisely the a posteriori 
techniques may be hampered by a restriction to arith
metic no more precise than was used to compute the 
approximations under test; their bounds may be no 
better than if A, B, C were uncertain by about an ulp 
each. 

In our example the limitations of 4-digit arithmetic 
can be circumvented by an old trick; observe that the 
substitution x = I + y changes 47.5 Jx2 - 2 X 47.45x 
+47.39 into anew quadratic 47.5iy 2 + 2 X 0.06y 
+ 0 whose coefficients happen- to be computable 
precisely with 4-digit arithmetic. We shall return to 
this trick later. 

6. HASTY JUDGEMENTS 

"The Purpose of Computing is 
Insight, not Numbers. "(1962) 

"The p'urpose of computing numbers 
is not yet in sight, "(1970) 

R.W.Hamming 

At this point the tired reader may be tempted to 
draw from the foregoing mass of arithmetic some 
wrong conclusions: 

I. Error analysts are nit-pickers who delight in 
finding last-figure errors in other error analysts' cal
culations, and don't do much else. This may be true, 
but it is not the right conclusion. 

2. Since error analysts cannot solve a problem as 
given, but must first imagine it to have been altered 
by an ulp or two here and there, they cannot legiti
mately protest when the arithmetic unit of an elec
tronic computer produces results no more wrong than 
if every operand were first perturbed by an ulp. 
That this is quite wrong will be apparent later. 
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3. A principal source of error in numerical compu
tation is cancellation, which should therefore be 
avoided or circumvented whenever possible. This is 
wrong too because cancellation cannot create error 
despite contrary appearances in figs. 1 and 3; more
over, artful cancellation can help diminish error, as we 
shall see. 

The correct conclusion is this: 
Error analyses, especially those concerned with 

roundoff, are so tedious, so much nastier than the cal
culations they are intended to validate, and so fre
quently unrewarding, that they should not be in
flicted inconsiderately by one man upon another. 

Why, then, inflict such an analysis upon the reader? 
My motive now is the same as it was when I re

ported [5] on modifi;:ations to the IBSYS operating 
system on the University of Toronto's IBM 7094-11 
and their impact upon a library of numerical sub
programs: 

" ... users of these subprograms need not supple
ment their own competency in mathematics, 
science, engineering or the humanities by a hyper
fine proficiency at both numerical analysis and the 
debugging of systems programs ... " 

"For as long as electronic computers have been 
in use (since 1949 at the University of Toronto), 
there has existed a steadfast policy to widen the 
range of intellectual disciplines that might benefit 
from the machine. That policy is partly respon
sible for a decline in the numerical sophistication 
of users, a decline" which has yet to be compensated 
by an increased sophistication in the programs they 
can use. Despite intensive attempts to educate 
them in the arts 'of computation, too many new 
users attribute to the numerical library subprograms 
the infallibility of a mathematical proof. They shall 
be disillusioned. To what extent can their disillu
sionment be written off as part of their education? 
To what extent can their dissatsfaction be traced 
to shoddy computing systems? There is room for 
improvement in both the quality of education and 
the quality of computer performance. But you 
cannot teach an old dog new tricks, and you can
not teach a new dog very much. Therefore the bulk 
of the improvement must and can come in the 
performance of computer systems." 
From a numerical analyst's point of view computer 

systems have improved mainly in speed and storage 
capacity since those words were written, but have de
teriorated in several other respects. Of course, there 
are exceptions. For example, the elementary function 
subroutine library* supplied for Fortran on IBM 

System/360 machines by Hirondo Kuki of the Uni
versity of Chicago is a triumph of persistent diligence 
over the nastiness of hexadecimal arithmetic, but ac
cording to Cody [ 6] the high quality of that library 
is atypical of curren,t commercial practice. Further
more these·subprograms, like other packii.ges of 
scientifically oriented subprograms distributed 
vilriously by compu~er systems' manufacturers, user 
organizations like SHARE, software firms, universi
ties and other major research centers, tend to be 
closely tuned to some specific machine or operating 
system and go out of tune when moved. The same is 
true of some of the ostensibly machine-independent 
programs published in various journals of computing 
and numerical analysis. The fault rarely lies in those 
programs as published; more often it lies in a com
puter system described as "compatible with XXX 
(except for YYY)". Wherever the fault may lie, the 
result is the same; the computer user is obliged to 
learn more about the details of the programs and of 
his computer system than he had intended. 

What would happen to our society if everybody 
who wished to use a telephone, a television set, a car, 
a detergent, a plastic toy or a computer were obliged 
first to learn at least a little about how it was made 
and how it works internally, and then to test it him
self for hazards and other surprises? 

An environment in which a computer program can 
operate reliably on any of several computer systems 
can be achieved partly by a measure of standardiza
tion, but mostly requires that attention to detail 
which, by eliminating anomalies and arbitrary restric
tions, promotes economy of thought. The assertion 
that a program is machine-independent and reliable 
is worthless if it is not susceptible to both analytical 
and experimental verification. Here is where error 
analysis can make its contribution, not so much by 
providing error bounds for specific numerical proce
dures as by providing a rationale which, when.com
bined with an harmonious computing environment, 
assures that such bounds will be found witho.ut exor
bitant intellectual effort. 

Computer systems, hardware and software, are not 
coming into harmony with the rationale of.error 
analysis. I shall support this contention with examples. 
The examples are con,trived; they are artificial because 
the complications of real computations tend to dis-

* Some of theSe programs are described in IBM System/360 
Fortran IV Library Subprograms, Form C28-6596, and 
others in Kuki and Ascoly [7}. 
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tract attention from the roots of disharmony. They 
are designed to show why error analysis on today's 
computer systems is turning into necromancy. If 
they help hardware and software designers learn a 
little more about error analysis, and if error analysts 
learn a little more about hardware and software, and 
if we collaborate, we can re-establish error analysis as 
a humdrum scientific activity from Which most com
puter users may safely be spared. 

7. BACK TO THE QUADRATIC 

We saw that fig. 2's program approximates, to 
within a few ulps, the roots of a quadratic equation 
whose coefficients match the given coefficients to 
within a few ulps. From this we inferred, without 
further reference to that program, that the com-
puted roots match the "true" roots to at least about 
half as many significant figures as were carried during 
the computation. Since a program which lo,es half the 
figures carried seems less than exemplary, we are led 
to three questions: 

1. Is the error analysis realistic? 
2. Ifso, can the program be improved? 
3. If so, is the improvement worth its cost? 

We shall see that the answers are respectively: 
I. Yes. 
2. Yes, on most computers. 
3. Yes, on some computers, in some dialects of 

Fortran. 
That the error analysis is realistic follows from 

the sharpness of the assertions in fig. 7; Smith [l] 
has shown the a posteriori bounds there to be pessi
mistic by factors not much larger than 2, and the 
a priori bound's inequality becomes equality when 
'f > 0 and i\ = F_. Hence it follows that, however 
many figures the program may carry, examples like 
fig. 3 must exist for which half the figures are lost. 
The loss can be traced to those rounding errors µ 1 
and µ 2 in figs. 4 and 5 which are interpretable as per
turbing the coefficient c. Were those .perturbations µi 
with lµ;I < e replaced by smaller lµ;I < e2, whence 
the new perturbed coefficient c would satisfy 
le-cl <s 2e2 1cl, the a priori bound in fig. 7 would lead 
to new bounds like 

IR.-r±l/lr±I <y'2]e + 3.6e 

instead of the previous y'2}e +Se.In other words, 
roots accurate to nearly single precision could be ob
tained by evaluating the products B••2 and A •C and 

subtracting them in double-precision before rounding 
the result to a single-precision D in fig. 2. 

Despite the fact that the hardware of many computers 
provides easy access to the precise double-length pro-
duct of two single-precision numbers, today's pro
gramming languages tend to obstruct that access, and 
future hardware designs could respond to its conse-
quent disuse by eliminating it. For example, in the 
older dialects of Fortran IV on the IBM 7094 
(IBSYS versions up to 12) we could get what we 
wanted by replacing 

in fig. 2 by 

DOUBLE PRECISION DD 
DD= B•B 
D= DD-A•C 

The old compilers recognized a double-precision con
text in which truncation of B•B and A •C to single
precision did not occur. Today's compilers obstinately 
truncate, thereby producing a result no better than if 
DD were merely a single-precision variable. To achieve 
what we want now we must write 

D = DBLE(B)**2 - DBLE(A)•DBLE(C) , 

which appends zeros to the right of A, B,.and C's 
values and goes through the wasted motion of two 
full double-precision multiplications. 

While at the University of Toronto, I circum
vented this foolishness by adding a built-in function 
DSJC to our Fortran compiler, thereby permitting 
simply 

D = DSIC(B•B)- DSIC(A•C) 

to yield the desired result. DSIC accepted simple 
sums and products of single-precision variables and 
produced their doubly-precise evaluation. This func
tion found wide application, especially for doubly
precise accumulation of scalar products of single
precision vectors, and rendered many matrix handling 
programs more nearly transparent by freeing them 
both from machine-language subroutines intended to 
accomplish the same effect and from subtle errors 
induced by arbitrary and easily forgotten implicit 
parsing rules. DSIC was very fast on the 7094's 
Fortran IV version 12 since no superfluous in
structions were generated; some of this speed was lost 
during the transition to version 13. 
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PR OGRA.M S 1 LL y (INPUT, OUT PIJT·, TTYO1JT, T APEi = TTYOll T) 
X=l.0+3/2 
Y· = I .0 + C3/2) 
WRITE (1,1) .X, Y 
F'ORMI\T(/9X,*l•ll + 3/2 = *,F5.2,6X,*l,0' + (3/2} *,F5.2,I) 
STOP 
ENJ 

BEGIN EXECUTION SILLY 

1.0 + 3/2 = 2,50 l,0+(3/2)= 2.f'10 

STOP SILLY 
> 

Fig. 8. Never ·underestimate the power of parentheses. 

The issues at stake here go, beyond convenience 
and efficiency; they b_ear upoh our ability to say 
what we mean or mean what we say when we use 
programming languages. For example*, in PL/I we 
fmd 

25 + 1/3 = 5.333 ... withFJXEDOVERFLOW, 

but 
25 + 01/3 = 25.333 .... 

One of the Fortran dialects used on CDC 6000-class 
machines allows mixed-mode integer and real arith
metic to give the results shown in fig. 8, which was 
taken off a terminal connected to Berkeley's 6400. 
Some compilers cause different values to be assigned 
to 

Y = X + 3.14159 and Z = X + 3.1415900000, 

whereupon arithmetic comes to depend not upon the 
values of numbers but upon accidents of notation, as 
if we could divine something more than its value from 
a number by looking at the way it is written. 

Despite the ascendancy of computers, mankind will 
continue to hold that 

3.14159 = 3.1415900000 = 3.1415900000 ... 

= 314159/100000, 

and none of these digit strings is correctly a substitute 
for the transcendental ir = 3.14159 26535 ... or for the 
interval [3.14158 5, 3.14159 5] or for the integer 3, 
nor can the unique rational number they represent be 

* This example is drawn from p. 231 of IBM System/360 
Operating System PL/I(F) Language Reference Manual, 
File #S360-29, GC28-8201 ·3. 

represented by a single binary floating point number 
in a computer. Of course·approximation is necessary, 
but when one number in hand must be approximated 
by another the approximation should ideally depend 
upon the value of the first number and upon the con
text in which the second will be used, not upon how 
many digits are alleged to be "significant". These 
notions have been explained lucidly by De Lury [ 40] 
and are realized in Algol on at least some com-
puters (e.g., Burroughs B5500). 

In a properly designed computing environment, 
both digit strings 3.14159 and 3.1415900000 should 
be converted to the same binary approximation in 
otherwise indistinguishable contexts; whether they 
are approximated to single- or to double-precision 
should depend only upon that context. Similarly, 
whether the computed value of A •C will be retained 
in double-precision or rounded to single-precision 
should depend upon the context i.n which it appears 
and not upon the ostensibly single-precision formats 
of A and C, whose values may, like 3.0, be in no way 
imprecise. We should have the option to round 
A *C's value to single-precision by writing, say, 

RND(A•C) 

as I used to do at Toronto. Then the language de
signer can choose any convenient and simple conven
tions whereby implicit RNDs or CHOPs or DSICs may 
be understood to be compiled into any expression in 
appropriate places; e.g., when we write simply 

D= B**2 -A•C 

we may read 

D = CHOP(CHOP(B•B)-CHOP(A•C)) . 
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And ifwe dislike what we read we may write instead 

D = DSIC(B*B) - DSIC(MC) 

and read 

D = CHOP(DSIC(B•B)-DSIC(A•C)), 

to which now corresponds a computed value 

This last equation is not quite accurate. It would 
be true (if DSIC were implemented there) on IBM 
System/360 maehines now that they retain a guard 
digit for double length arithmetie. But the 7094, like 
most other computers, does not retain such a guard 
digit, and consequently may discard prematurely the 
last few digits of the smailer of two double-precision 
numbers being subtracted, though the difference will 
not then be in error by more than if instead the 
larger number were first aitered by one ulp of double 
precision. This corresponds to computing (1.0-
o.9999 9999) using "eight significant figure arith
metic" in one of the following ways: 

(like IBM 7094, 
double precision) 

1.000 0000 
-o.999 9999 i 

0.000 0001 ➔ 10 7 

(like CDC 6400, 
single precision) 

1.000 0000 
-0.999 9999 9 

0.000 0000 X ➔ o 

Doing arithmetic this way is sometimes excused by 
the argument, which we shall demolish later, that 
nobody can say exactly what the last digit of a high
precision number ought to be, so nobody should care 
if it is aitered a little. 

It appears that the vaiue computed for D above 
will satisfy 

with 

(The factors 2 are appropriate for the 7094, a binary 
machine, with E = r 26 for chopped arithmetic.) The 
final result does not seem to deteriorate much; we get 

[R,-r±l/lr±I <sy'lJE + 4.IE < 5.2E 

for the relative error in the computed roots. How
ever) when the computed roots are complex with 
relatively tiny imaginary parts we may wonder 
whether those tiny numbers are accurate to nearly 
full single precision. They are; this does not follow 
from the inequaiities for µ 1 and µ 2 given above but 
can be proved laboriously to be true for every major 
North American computer with double-precision 
hardware; the reader is urged to try to prove this 
claim for his own computer. 

We are now almost in a position to which every 
conscientious error analyst aspires from time to time. 
We have a program which will solve a familiar prob
lem accurately, at a cost ( on decent computer sys
tems) which is scarcely more than minimai, without 
having to inflict upon our program's users any more 
of our error analysis than the following simple state
ment: 

Given the single precision coefficients A, B, C of 
the quadratic equation Ax 2 - 2Bx + C = 0, the pro
gram computes the roots correct in every respect to 
within a few (IO on an IBM 7094) units in the last 
place quoted, except for over/underflow. 

8. OVER/UNDERFLOW 

Oh, the little more, and how much it is! 
And the little less, and what worlds away! 

By the Fire-side 
Robert Browning 

An earlier report [5] describes modifications done 
to the IBSYS operating system, on the IBM 7094-11 
at the University of Toronto, which were designed to 
shield ordinary computer users from the nuisance of 
those over/underflows which could reasonably be sup
pressed, circumvented or ignored automatically by a 
well designed computer system. After the modifica
tions were introduced, most over/underflows became 
invisible to users, provably exerting no adverse effect 
upon their computations, and the persistent over/ 
underflows were rendered relatively easy for each 
user to locate and cure as he pleased. I have the im
pression that over/underflow became far less of a 
nuisance on Toronto's IBM 7094, despite its normai* 

* The modifications included provision for certain kinds of 
Fortran calculations to be carried out efficiently and 
conveniently with magnitudes as extreme as 10.0*"'(±10**12), 
but these were rarely used. 



Invited Papers W. Kahan, A survey of error analysis 1225 

number range of 1 o- 38 to I o+38, than it is now on 
Berkeley's CDC 6400 with a far wider range of 
10-294 to 10+322. The reader may form his own im
pression by comparing what he must do on his com
puter with what we used to do on the 7094 to cope 
with over/underflow when solving quadratic equa
tions. 

Our object is to replace the phrase "except for 
over/underflow" above by this statement: 

Overflow is reported if and only if a result must 
overflow, and similarly for underflow, and over/ 
underflow in one result does not degrade the ac
curacy of the other. 
A program matching these specifications is surprising
ly useful. Quadratics with exorbitantly large or small 
coefficients arise, for example, when solving large 
dimensional determinantal equations by certain 
iterative methods, and the fact that those coefficients 
may easily be re-scaled to reasonable magnitudes is 
no excuse for not doing so in the program which 
solves the quadratic. Failure to re-scale the coefficients 
can lead to over/underflow during the computation of 
D in fig. 2, and hence give no solution or else a wrong 
one. Furthermore, occasions arise when one seeks a 
distinguished root of a quadratic whose coefficients 
depend upon a parameter in such a way that the un
wanted root tends to zero or infinity; this is why we 
do not want over/underflow in one root to contami
nate the other. 

Here is one of the algorithms that work. First dis
pose of the possibilities a= 0 or c = 0. Then choose h 
to be a power of the radix (2 on the 7094) such that 
neither a/h nor c/h over/underflows and yet 
l(a/h)(c/h)l lies relatively close to 1, say between¼ 
and 4. (The best choice for h is not worth discussing 
here.) We used to compute h in various ways, some
times by tricky machine-dependent integer-arithmetic 
manipulations of a and c, sometimes by logical bit
manipulations, but always by means available through 

our version of the Fortran compiler. Next compute 
a= a/h, c = c/h and b = b/h. If b or d ~ P ~ ac over
flows, suppress that overflow indication and produce 
r+ 'i' b/(½a) and r_ ec (½c)/b as roots of ax2 - 2bx 
+ c = 0. If b or E2 underflows, suppress that under
flow indication and replace b by zero and continue. 
Otherwise, compute the roots as usual using a, b, C 
in place of a, b, c. Remember that d must be com
puted with a double precision subtraction. Each root 
will be computed as a final quotient in which no 
over/underflow can occur unless it is very nearly un
avoidable and must be reported. 

The only loose end in the foregoing algorithm is 
how to choose h, which we shall leave loose with the 
observation that h can generally be constructed 
easily and quickly in Fortran and in machine 
language, but not so quickly in Algol. We must also 
suppress irrelevant over/underflow signals, and enable 
the relevant ones; here is where the advantages of the 
7094 system became apparent, because they involved 
few explicit tests and almost no loss of time. One 
complete program to solve a quadratic properly took 
less than 20% longer to execute than did a naive 
program based upon fig. 2. 

The algorithm is expensive to implement on a CDC 
6400 for several reasons. First, the machine gets con
fused when asked whether a number is zero or not 
(see fig. 9) because it sometimes tests only the first 
12 instead of the first 13 bits of a floating number 
(see CDC's 6400/6500/6600 Computer Systems 
Reference Manual, Pub. no. 60100000, rev. A (1969), 
pp. 3-18). Secondly, the machine sets underflowed 
numbers to zero without any warning indication; 
this causes problems like that in fig. l 0 where the 
value of Y differs from 1.0 by rather more than could 
be attributed to 11 rounding errors. Thirdly, many 
tests are required, one after each arithmetic opera
tion susceptible to overflow, in order to avoid being 
kicked off the machine for attempting to use arith-

PROGRAM NAUGHT <INPUT,OUTPUT,TTYOUT,TAPEl::TTYOUT> 
Z : 0.5**916 
ZZ : Z+Z 
IF( Z .NE. 0 0 0 AND0 2*100 0 0 EQ0 O •• AND. 

* Z/0.01 .EQ. O. > WRITECl,D z, 22 
I FORMAT(44H Z .NE. O. BUT Z*lOO. :: Z/0.01 : O. AND , / * * PRINTING YIELDS Z = *, IPEI2.4, * , Z+Z :: *, IPE12.4 ) 

STOP 
END 

BEGIN EXECUTION 
Z • NE, 0, BUT 
PRINTING YIELDS 

STOP NAUGHT 

NAUGHT 
Z*lOO. :: Z/0,01 :: 0, 
z :: o. 

Fig. 9. ls Z zero or naught? 

AND 
z+z :: 3.1315-294 
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PROGRAM WHY CINPUT,OUTPUT,TTYOUT,TAPEl:::TTYOUT) 
Z = 2.0**<2**10..: 48) 
C , I .O/Z 
A ::: C+c 
Er::: A*l0.0**9 
D : A+B 
X ::: <B+D) /A 

Y::: ( (A*X+BJ/CC*X+D) )/C (A+B/x)/(C+D/X) ) 
If( A.GT.a •• AND. B.Gt.o •• AND. C.Gr.o •• AND. 

* D.Gr.o •• AND. x.GT.O •• AND. Y .GT. 2.999 
* ) WRITE Cl,1) Y 

l FORMAT< 5X, *WHY DOES Y ::: *, F' 15. 11, * 1* 
STOP 
END 

BEGIN ~ECUTION WHY 
WHY DOES Y ::: 2.99999999875 1 

STOP WHY 

Fig. 10. Why is Y so far from 1.0? 

metically a previously overflowed result. The machine 
can also operate in a mode which allows continued 
operation upon "infinities" and "indefinites", but 
this liberal mode is rarely used and cannot be in
voked nor repealed from within a Fortran pro-
gram. The reason why the liberal mode is rarely used 
may be that any rules for manipulating the symbols 
=(infinity) and -& (indefinite) must be potentially 
misleading; the following example compares what 
should be expected with what the 6400 actually com
putes. 

Expected Observed 
Program values values 

X = 2.0•• 1069 2 1069 21069 

Y= 4.0•X 210n 

Z = Y-2.0•(X+X) 0 e 
T = (({Y-X)-X)-X)-X 0 or-6- 00 ! 
U = 1.0/T oo or-& O! 
V=X/Y ¼ or-& O! 

Finally, CDC's Fortran compilers have nothing 
equivalent to DSIC, and one must use DBLE ineffi
ciently instead. 

If numbers like 10300 were sinful and numbers 
like 10-3oo obviously negligible, the design of the 
6400 would make sense. But why draw the lines 
there instead of at 10150 and 10- 150? If over/under
flow is so obvious a mistake I why does it happen to 
experienced professionals like Fettis and Caslin [8]? 

Integer overflow reveals another notorious defect 
in most compiler designs,.as Korfhage [9] could 
testify. On the CDC 6400 the defect is enshrined in 
hardware which gives no indication of integer over
flow. In fig. II, obtained from our 6400, every arith
metic expression is computed correctly, but J is in
correctly compared with K because J-K overflows. 
Fig. 12 has two programs which differ only in that* 

DO2N= 1,L, I 

has been replaced by 

INCREM = I 

DO 2 N = I, L, INCREM. 

The mysterious diagnostic tells the programmer that 
he has abused the computer, but does not tell how. 
It turns out that a division by zero occurred in the 
first program's statement 2. All can be explained by 
the observation that integer arithmetic in CDC's 
Fortran is carried out sometimes modulo 217 -1, 

* The terminal symbols ",111 could be dele.ted without alter
ing the results. 

PROGRAM GOOF (lNPUT,"OUTPUT.i'TyOUT,TAPEl:TTYOUT) 
I : 2**-'10 
DO 1.1 -L :: 1, 18 . 

11 1: l+I 
J :: I + 3 
K, -I 
lFC J .GT. 0 .AND. K .LT. 0 .AND. J+K .EQ. 3 

* .AND. J .LT. K ) WRITE Cl,1) 
J FORMAT(* WHY IS O < (!+3) <-I< 0 ?*> 

STOP 
END 

BEGIN EXECUTION GOOF 
WHY IS O < CI+3) < •I < 0 ? 

STOP GOOF' 

Fig. 11. Integers out of order. 
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PROGRAM l'lJDDLE (INPUT, OUTPUT, TTYOUT, TAPEI:TTYOUT) 
C TO CCMPUTE THE INI-INITE SUM OF NICI+ N**3) FOR N: 11 2, 3, ••• 
C CORRECT TO _10 FIGURES, JUST ADD THE FIRST 300000 TERfrJS AND AN 
C EULER-MACLAURIN CORRECIION 

EPS = 0.1**10 
L = 3.0/SQRTCEPS) 
WRITE C I, l) L 
FORMATC3X, llH THE SUM OF 1 17, 24H TERMS NICI+ N**3) IS) 
SUM = O. 
DO 2 N : I, L, I 

EN = N 
2 SUM= SUM+ EN/U.O + EN**3) 

WRl1'E ( 1,3) SUM 
3 FORMAT C 13X, F 16. 12, /) 

SUM :: SUM + I .OIEN 
WRITE Cl,4) SUM 

4 FORMAT<3:X1 2IH THE INFINITE SUM IS I 3X,Fl6.12) 
STOP 
END 

BEGIN EXECUTION MUDDLE 
1HE SUM OF 300000 TERMS N/C I + N**3) IS 

USER CPU ARITH-ERROR 
1: DETECTED BY MTR , FL = 007455 

PROGRAM FIDDLE (INPUT, OUTPUT, TTYOUT, TAPEJ::TTYOUT) 
C TO COMPUTE THE INF'lNITE SUM OF N/Cl + N**3) FOR N = 11 2, 3, ••• 
C CMRECT TO 10 FIGURES, JUST ADD THE FIRST 300000 TERMS AND AN 
C EULER-MACLAURIN CORRECTION 

EPS = 0, 1**10 
L = 3.0iSQRTCEPS) 
WRITE CJ, I) L 
rORMATC3X, IIH THE SUM OF , 17, 24H TERMS N/Cl + N**3) IS ) 
SUM :: O, 
INCREM = I 
D02 N=I,L,INCREM 

EN = N 
2 SUM= SUM+ EN/CI.O + EN**3> 

WRITE Cl,3) SUM 
3 FORMAT< 13X, F 16. 12• /) 

SUM :: SUM + I ,·OIEN 
WRITE Cl,4) SUM 

4 FORMATC3X,2IH THE INFINITE SUM IS / 3X,Fl6.12) 
STOP 
ENO 

BEGIN ~ECUTION FIDDLE 
WE SUM OF 300000 TERMS N /( l + N**3) IS 

1.111640603830 

THE INFINITE SUM IS 
Jylll643937163 

STOP FIDDLE 
> 

Fig. 12. What did the first program DO wrong? 

sometimes modulo 248, and sometimes modulo 9. A HORROR STORY 
259 - 1, depending upon the whims of the compiler. 

Incidentally, although the series has been summed 
using 48 significant bit (about 14 decimal) arithmetic, 
the two 13-decimal numbers printed out have been 
contaminated by roundoff in their last 4 digits; the 
correct values are 1.1116 4060 4896 and 
1.1116 4393 8230 respectively. 

" ... lo mal fabbro biasima lo ferro ... " 
( ... the bad blacksmith blames the iron ... ) 

Convivio I xi 
Dante Alighieri 

1227 

I hope the reader will not think that I think com
puters are conspiring against me alone; that would be 
a paranoid delusion. 

Mr. Z. was despondent when I first saw him. A 
graduate student of aeronautical engineering, he was 
trying to augment boundary layer flow past wings in 
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a way which might enhance their lift at low speeds. If 
his idea worked, his reward would be a Ph.D. thesis 
and a job with a local firm designing STOL aircraft. 
He was testing his idea on our university's computer, 
then an IBM 7090, by solving numerically a compli
cated system of differential equations, finally pro
ducing a graph from which he could read Success or 
Failure. He had just read Failure. 

Fig. 13. Mr. Z.'s graphs: His the graph he Hoped to get, Sis 
the graph produced by Single-precision computation, Dis the 

graph produced by Double-precision computation. 

Fig. 13 is a simplified picture of his program's out
put. The close agreement between single-and double
precision results, and their disagreement with his ex
pectations, seemed to prove conclusively that he should 
look for a new thesis topic. 

At that time I was testing an intended replacement 
for IBM's single precision logarithm subroutine. Of 
course, I had proved mathematically that my new sub
routine was preferable to IBM's in every way, but a 
vestige of self-doubt induced me to re-run several 
users' programs with my logarithm substituted for 
IBM's. Mr. Z.'s program was one of those re-run, and 
one of very few whose results were altered appreciably 
by the substitution. His graph S moved to position H. 
I was alarmed because I had expected my improved 
subroutine to produce single-precision results closer 
to double-precision, not further away; and Mr. Z. was 
surprised because he had no explicit reference to 
logarithms in his Fortran program. We soon dis
covered where a logarithm lurked in his program; it 
was in a sub-routine which I have simplified and listed 
in fig. 14. 

Here is an outline of Mr. Z. 's error analysis of his 
program to compute F(X,G) = xG(X)/(X-1) for 
X> 0. He established first that G(X) was well-be
haved; 0 < G(X) ¾y'X and [dlogG(X)/dlogX[ ¾ 2. 
Next he checked that the computed value g(x) dif
fered from G(x) by at most an ulp or two: g(x) = 

ruNCTION F(X,G) 
C Given a function G(X) well-behaved for all X > 0, 
C this FUNCTION subroutine computes 
C F(X,G)"" xG(X)/(X-1) correctly to within a few 
C ulps, 

1 IF (X .LE. 0.0) Complain "F(X,G) undefined for X,;;;; 0" 
2 IF (X .. EQ. 1.0) F = EXP(G(X)) 
3 IF (X .NE. 1.0) F = X**(G(X)/(X-1.0)) 

RETURN 
END 

Fig. 14. Mr. Z.'s su-broutine. 

= (I :f-y)G(x) for some tiny relative error -y. Then he 
verified that defining 

F(I ,G) = Jim F(x,G) = exp (G(l)) 
x-1 

made F(X,G) continuous for all X > 0, and bounded 
(I <F¾exp (1)<2.72) and, most important, 
\dlogF(X,G(X))/d logX\ ¾ 3. Now he knew that 
F(X,G(X)) was a "well-conditioned" function of X in 
the sense that relatively small variations in the argu
ment X could not cause much larger relative varia
tions in F. Specifically, whenever the value x stored 
in the cell called X was a good approximation to the 
intended value X, then the value F(x,G(x)) would 
closely approximate F(X,G(X)). All that remained 
was fo show that roundoff during the computation of 
what was intended to be F(X,G(X)) would produce a 
computed value/relatively close to F(x,G(x)). 

He observed that writing (X-1.0) caused (1-o) 
(x-1) to be computed, with-a representing a rounding 
error smaller than I ulp of (x-1). Similarly, the ex
pression G(X)/(X-1.0) would introduce another 
rounding error 0 into the computed quotient, pro
ducing 

y = (1-o)g(x)/ {(l-o)(x-1)) 

= (1-o)(l+r)G(x)/ {(l-o)(x-1)} 

= (l+71)G(x)/(x-l), say, 

where rJ represents an accumulated error, due to round
off, of at most a few ulps. Now he made his first mis
take; he assumed that writing X**y in Fortran 
would produce a computed value (I +p )x Y in which p 
represents another error, due to roundoff, of at most 
a few ulps. Had that assumption been true, his con
clusion, that the computed value 
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f= (l+p)xY = (1+p)F(x,G(x)) 1+ri 

matched F(x,G(x)) and hence F(X,G(X)) to within a 
few ulps, would have been correct. His second mis-
take was to test his program on only 3 I values of X dis
tributed uniformly between X = 0.5 and X = 2.0 and 
on about as many values of X outside that interval, 
these tests could not reveal his first mistake. 

Why Was his assumption about X**Y wrong? It 
would have been correct for a log-log slide rule, but 
at that time our 7090 obtained X••Y by computing 
EXP (Y •ALOG(X)), and the logarithm program then 
(as on many other computers now) produced not logx 
but (I+)..) log {(I +t)x} with A and teach representing 
errors of about two ulps. The error twas introduced 
through the familiar formula 

logx=log((l+z)/(1-z))-½log2 with 

puled on the 7094 for x slightly less than 1, the hard
ware first discarded x's last (54th) bit and then did 
the subtraction. The resulting value f approximated 
not F, as desired, but F112 or F 2i3 or p3/4 or ... de
pending upon x's last few bits. Mr. Z. cured this prob
lem by substituting the expression ((X-0.5)-0.5) for 
(X-1.0) in his program, which is now machine-inde
pendent and runs correctly on any computer system 
with respectable exponential and logarithm sub
routines. 

Was Mr. Z. clever or just lucky? How often are 
engineers baffled by·subtly wrong computations, 
thwarted in otherwise exemplary endeavours, and 
unable to uncover what went wrong? And how often 
is an engineer who expresses doubts about the com
puting system he must use regarded as if he were 
Dante's bad blacksmith? 

z = (2x-y}.)/(2x+.,/I), 10. PAUSE FOR THOUGHT 

because the value stored for ../2 was rounded and 
also z was rounded. The end result was to compute 
f ~ pl +Mogx instead of F, and this result was very 
wrong whenever x differed from I by only a few 
ulps. 

My new logarithm subroutine* took care to keep 
t = 0, caused X••Y to be approximated by (1 +p )xY 
as expected, and allowed Mr. Z.'s program to give 
the results he desired in single-precision. But why 
were his double-precision results different? At first 
we thought the double-precision DLOG program con
tained a flaw too, but it turned out to be unexcep
tionable. Then IBM issued a revision to the double
precision package on the 7090 which made graph D 
go away; new graphs computed in both single- and 
double-precision confirmed Mr. Z.'s hopes and he was 
happy. For a while. 

A few months later the 7090 was replaced by a 
7094 with built-in double-precision hardware, and 
graph D came back. We soon discovered that the 
double-precision subtraction hardware on the 7094 
lacked a guard bit which the 7090's latest software 
had preserved. Consequently, when x - I was com-

* This program was distributed to other IBM 7090/7094 
users via the SHARE organization in June 1964; the rele
vant SDA numbers are 3190, 3191 and 3192. Logarithm 
and exponential subroutines of comparable quality, coded 
by Hirondo Kuki, are now part of·the Fortran.libraries, 
distributed with IBM 7094 and System/360 machines; see 
also Kuki and Ascoly [7] and references cited therein, and 
[20]. 

Mr. Z.'s program in fig. 14 has been exciticized on 
several grounds. It is alleged that, since X must be 
uncertain by an ulp or two, the difference (X-1.0) 
can contain no significant figures when X is very 
close to 1.0, and this is why the program deserves to 
faj]. Similarly, the expression (X. EQ. 1.0) is sinful. 
But such an argument has two flaws. 

First, there is little significance in the number of 
"correct" significant figures in a-·calculation's inter
mediate results. Matrix calculations frequently gen
erate intermediate results among which are numbers 
agreeing in not one figure with what would have been 
generated in the absence of roundoff, but the answer 
at the end is correct! Another example is provided by 
solving the differential equation 

ay - 2bj, + cy = 0, given y(0) = Yo and j,(O) = Yo , 

(Ji=dy/dt) in terms of the roots r ± of the quadratic 

ax2 - 2bx + c = 0 . 

If the roots are real and distinct the solution is 

( 
• sinh ut) y(t)= Yo coshut+(y 0-,y 0)-u- exput 

where u = (r + -r_)/2 and v = (r + +r _)/2; if the roots are 
coincident at r the solution is 
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if the roots r ± = v ± iw are complex 

y(t) = (Yo cos wt+(y 0-vy 0) si:wt) exp vt . 

For modest* values oft the solution y(t) is a well
behaved function of a, b and c even though the inter
mediate results, namely the roots r ±,maybe ex
tremely sensitive to small changes in those coeffi
cients, as we have seen. But the roots do not vary 
capriciously. If we were to alter arbitrarily those 
digits of the computed roots which differ from what 
would have been obtained in the absence of round-

Now we see the advantage in a subprogram which 
computes accurately the roots of a quadratic equation 
as given even when its coefficients are uncertain to an 
extent which may compromise half the figures in the 
roots. Besides shielding its user from unproductive 
thought, such a subprogram will preserve relationships 
implied by possible correlations among the errors in 
the coefficients; such a subprogram cannot be the 
weakest link in a chain of subprograms. 

off, as we could if we regarded those digits as "wrong", 
we would do as much damage to the value of y(t) 
computed from those altered roots as if instead we 

The second flaw in the allegation criticized above 
appears when the allegation is cited in support of 
certain hardware designs, like the CDC 6400's, which 
neglect to carry guard digits for addition and subtrac
tion. We have seen what happened to the expression 
(1.0-0.9999 9999); now look at figs. ! Sa and 1 Sb, 
which were produced by our 6400 using binary float
ing point arithmetic with "48 significant bits". As I 
runs from 1 to 100, something bizarre happens for 

had altered the same number of terminal digits in the 
coefficients; in other words, we could capriciously 
squander half the digits carried. If those "insignifi
cant" digits are carried in the usual way, the value of 
y(t) computed from them will be quite satisfactory. 

* This restriction is imposed because 

Jim y(t) 

may be a violently discontinuous function of a, b, c, Yo 
andj,o. 

2 <I< 48 and I= 97, despite the fact that arithmetic 
on the machine is provably monotonic. 

The problem revealed in figs. ! Sa and I Sb could 
be solved in any one of four ways. First, change the 
compiler to effect a floating point comparison 
(X .EQ. Y) by using only integer arithmetic manipula
tions; but this would occasionally malfunction when 
X and Y are very different (recall fig. 11) and would 

PROGRAM NAUGHTY CI NPUT ,OUTPUT, TTYOUT, TAPE J:TTYOUT) 
X = 0.5 
r = ex - o.5**4S> + x 
DO 2. I : 1, 100 

X : X*2.0 
y = X*F' 
IF"C X .EQ. Y .AND. ex-I.) .NE. CY-I~)) WRI'TE Cl,1) I 

I FORMATC* WHEN l:: *• 13, * , X .EQ. Y BUT X-1 .t,jE. Y-1 *) 
i CONTINUE 

STOP 
END 

BEGIN EXECUTION NAUGHTY 
WHEN I = 2 X ,EQ, y BUT X-1 .NE. Y-1 
WHEN l = 3 X .EQ. y BUT x-1 .NE. Y-1 
WHE·N [ = • ' X .EQ. y BUT X-1 • NE. y..; 1 
WHEN l : 5 X .EQ. y BUT x-1 .NE. Y-1 
WHEN l = 6 X .EQ. y BUT X-1 .NE. Y-1 
WHEN I = 7 X .EQ. y BUT X'I .NE. Y-1 
WHJc'' " X .EQ. y BUT .. v. I 
.. i11i'.N I = . ' X .EQ. y s11- x-1 .NE. ' WHEN I = 42 Q, , T x-1 .NE, y- I 
WHEN I = 43 X . BUT X-1 • NE. y- I 
WHEN I = .. X .EQ. y BUT x-1 • NE. Y· I 
WHEN I = 45 X .EQ. y BUT x-1 .NE. Y-1 
WHEN l = 46 

' X ,EQ, y BUT x-.1 .NE. y- I 
WHEN I = 47 ' X • EQ. y BUT X·l • NE. Y,. l 
WHEN l = 48 

' 
X .EQ. ,y BUT X-1 .NE. Y-1 

WHEN I = 97 , X .EQ. y BUT x-1 .NE. Y-1 
STOP NAUGHTY 
► 

Fig. lSa. How can/determine·whenX= YbutX-1 =I= Y - l? 
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PH oGnM, tlAU GH TY C 1 NPU T, OUTPUT, TTY OUT, TAPE I= TTyQUT) 
Y. :: 0 .5 
F: <X - 0,5**'i8l + X 
DO 2 I : I, 100 
X::: X*2.0 
y :: X*F' 
IF'< X ,LE, Y ,AND, <X-l,) ,G.T, (y-1.)) WF.ITE U,l) I 

l FO~'MATC* WHEN I = *, 13, * 1 X ,LE, Y BUT X-1 ,GT, Y-1 *) 
2 CONT HiUE 

STOP 
END 

EEGI N EXECUTION 
WHEN I 2 
WHEN I C 3 
WHEN I C 4 
tmEN I 5 
WHEN I C 6 
WHEN I 7 
WHEN l C C 
WHEt-J ,. 

..... Lq 41 
WHEN C 42 
\\iHEN C 43 
WHEN 44 
WP.EN C 45 
1mEr1 46 
WHEN C 47 
WHEM 4S 
WJ-!F:N ::: 97 , 

STOP UAUGHTY 

NAUGHTY 
X ,LE, y BUT x-1 .GT. Y-1 
X ,LE. y 6UT r.-t ,GT. Y- 1 
X ,LE, y 6UT x-· I ,CiT. y- l 
X ,LE, y 6UT Y.-1 ,GT, Y- 1 
X ,LE, y 8UT x-1 .GT. Y- 1 
X .LE, y HUT x-1 ,GT, Y- 1 
X ,LE, y CUT r.-1 ,GT, Y-1 
X ,LE, y BUT x-1 ,e:.T. 

.LE. y BUT X- I Y-1 
X y BUT ,GT, y- 1 
X ,LE, 1.-1 ,GT, Y- 1 
X ,LE, y 5UT x-1 .GT. Y- 1 
X ,LL y BUT X-l ,GT, Y-1 
X ,LE. y euT x-1 ,GT. Y- 1 
X ,LE, y BUT x-1 ,GT, Y- 1 
X ,LE, y &UT r-1 ,GT. Y- l 
X ,LE, y BUT r.-t ,GT. Y- 1 

Fig.15b.Howcan/determinewhenX< YbutX-1 > Y-1? 

occasionally allow division by zero in st'atement 3 of 
fig. 14. Second, change the compiler to perform addi
tions and subtractions properly; this would require 
five instructions* instead of the two now executed, at 
a cost of perhaps doubling their execution time. Third, 
change the hardware so that the pseudo-rounding RX 
instructions (which are rarely used now) will normalize 
before rounding, and then alter some software to allow 
advantage to be taken of this change; this could cost a 
few million dollars if done for all CDC 6000 series 
machines, but the problem would then be completely 
eliminated. 

The fourth possibility is to change the way we 
think about numbers. Instead of basing numerical 
analysis upon fewer than a dozen axioms, we could 

* Currently X1 = X2 - X3 is computed via the sequences 

EX! X2-X3 or 
NXl Xl 

which I would replace by 

FXl X2-X3 
NXl Xl 
DXO X2-X3 
NXO XO 
RX! Xl+XO 

RX! X2-X3 
NXl 'Xl 

adopt a new "number" system like that suggested by 
van Wijngaarden, with 32 axioms which, if not cate
gorical, appear to be at least consistent. But if the 
test of a scientific advance is the extent to which it 
permits us to know more while obliging us to remem-

1 

ber less, such a new number system is not an advance. 
Perhaps certain computer systems could be classi

fied as dangerously addictive hallucinatory drugs, and 
compulsorily labelled: 

"Warning. It Has Been Determined That This 
Computer Is Dangerous To Your Mental Health." 

If the reader runs programs on one of those com
puters he will not be thankful for the foregoing ex
pose. When one of his programs fails mysteriously be
cause of a misplaced comma in a FORMAT statement, 
and when he has failed to find that flaw or any oth~r 
he can imagine, he may turn to these pages to see 
whether one of the rare anomalies tevealed above has 
caused his trouble. How long will he spend on th~t 
wild goose chase? 
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11. MORE SURF KISES 

"Things are seldom what they seem, 
Skim milk masquerades as cream." 

H.M.S.Pinafore 
Gilbert and Sullivan 

Rounding error analysfs may be full of surprises, 
but it is void of major theorems. There seem to be 
deep reasons why this must be so, reasons which I 
propose to sketch now. 

Many an error analyst has tried and failed to prove 
theorems of the form: 

"To compute XXX correct to single-precision re
quires that YYY be computed using ZZZ-precision 
arithmetic." 
Perhaps the failure is inevitable, for there is some pos
sibility that machine-independent Fortran sub-
routines could be written to perform arbitrarily high 
precision floating point arithmetic without using any 
but REAL variables; see Dekker [IO]. We shall examine 
a special simple example of that notion. 

Let us try to evaluate SN = ,;,r X1 where N is very 
large (N> 106) and each X1 is computable to nearly 
full single-precision as a function of J and of s1_ 1. 

Such a problem arises in the course of solving ordinary 
differential equations by discrete methods. The pro
gram 

S =0. 
D09J= l,N 

9 s = s + X(J , ... ) 

actually computes 

sn = s7(1 +~i)xi with ltil,,; (I +e)"+l-i - 1 . 

Take e = 10-6 (as on, say, IBM System/360 machines) 
and n = N = 106 to see what goes wrong here; the loss 
of accl,lracy could be worse than in the ~cond program 
of fig. 12. A better program is obtained by prefacing 

DOUBLE PRECISION S 

to that above, thereby replacing e by roughly e2 and 
introducing little more uncertainty to sn than is in
herited from an uncertainty of a few ulps iri each 
xi= (1 +x)Xi when each lxil < lOe, say. But what if 
double-precision is unavailable (or if€ represents 
double-precision, and triple-precision is unavailable)? 
Can we still compute sn = S1(l+~i)xi in such a way 

that the quotient l~jl•I is bounded independently of 
i and n except for factors like (I +e2)"? 

The answer depends upon whether single-precision 
addition uses a guard digit or not. If it does, the fol
lowing annotated program works: 

9 

S = 0. 

C= 0. 

DO 9 J = 1,N 
Y=C+X(J, ... ) 

T= S+Y 
C = (S-T)+Y 

S=T 

So='= 0 

Co= 0 
For/ = 1,2, ... ,n in turn 

Yi ~(Xj+Ci-J)(l+oi) 
'i ~ (si- I +yi )(I +,-i) 
Ci ~ ((si-J -Si)(J+ai)+yi)(l +yi) 

SUM = S+C (sli,ghtly better than S) 
Sn+ Cn = L7(1 +~j)Xj 

Pro\dded l11il < e, [Ti[< e, [oil< e and i'Yil < e, it may 
be shown that 

I published this program (unannotated) in 1965 [11]. 
A similar program has been presented by Babuska 
[12], and a more complicated one by M¢ller [13] is 
further discussed by Knuth [14], pp. 201-4, from 
a different point of view. Similarly motivated algo
rithms continue to be developed; see Thompson [15]. 

When the program above was first published it was 
accompanied by a warning not to use it on machines 
that chopped or rounded before normalizing, as does 
our CDC 6400. The warning was issued with systems 
of differential equations in mind, but another poten
tial application denied to that program on our machine 
was discovered unwittingly by van Reeken [I 6], who 
wished to compute running averages 

AN"'SN/N 

=SN-I+ (XN-SN-1)/N 

from the last formula. He claimed that "addition 
using Kahan's trick will give an error-free answer" 
even on machines which truncate before normalizing. 
He was almost right; fig. 16 exhibits an extremely rare 
counter-example which he could not reasonably have 
been expected to uncover in his tests. 

There is a theorem by Viten'ko [I 7] which almost 
implies that our objective, to bound It/el indepen
dently of j and n except for terms O(ne2), is impos
sible on those machines which respond, as do those 
which chop first and normalize later, to the statement 
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PROGRAM BUNGLE (INPUT,OUTPUT,TIYOUT,TAPEl::TTyOUT) 
C THIS PROGRAM COMPUTES THE AVERAGE A OF 3000000 VALUES X(tD , 
C- EACH BETWEEN 0.5 AND 1.5 , IN Tl~O DJ_F'FERENT WAYS. ONE OF THOSE 
C WAYS USES, INSTEAD OF DOUBLE PRECISION, A TRJCK WHICH ALWAYS 
C WORKS ON SOME MACHINES AND ALMOST ALWAYS WORKS ON ALL OTHERS. 
C A RARE SET OF VALUES X(N-) FOR WHICH THE TRICK FAILS ON THE 
C CDC 6400 IS COMPUTED BY THIS PROGRAM. 

DOUBLE PRECISION S 
REAL N 
E ::: 0.5**48 
F::: 2.0H'. 

C THE FOREGOING CONSTANTS ARE CHARACTERISTIC OF' 
C THE CDC 64 00 

C ::: O.o 
Z ::: (I.0-F>+E 
N ::: Q.O 
s ::: o.o 
A ::: O.O 
DO 3 L::: l, 10 
DO 3 K ::: 1, 100000 
l)i) 3 J ::: l, 3 

N ::: N+l.0 
C COMPUTE X(N) 

X ::: Z 
JF( L .EQ. l .AND. K .EQ. I ) GO TO 2 
IF( J .EQ. 1) X::: t.O+FHN-J.O) 
IF< J .EQ. 2 > X::: 1.0-F*N 
IF( J .Lt. 3 ) GO TO 2 

X::: CI.O-R:NHE*N 
IFC.CCX-A)/N+C)+A .GT. A ) GO TO 2 
X ::: X+E 
GO TO I 

C NOW X IS DETERMINED. NEXT UPDATE THE AVERAGE A 
2 DA::: CX-A}/N + C 

T ::: A+DA 
C ::: CA-I> + DA 
A , T 
s =- s+x 

3 CONTINUi:: 
AV ::: S/N 
WRITECl,9) N, AV, A 

9 FORMAT( 2X,*N =*,F9.0,5X,*AV :::*,Fl9.15,5X,*A =*,Fl9.15 / * * NO. OF ITEMS*,8X,*TRUE AVERAGU, 13X,*COMPUTED AVERAGE*l 
STOP 

BEGIN 
N ' 
NO. 

STOP 
> 

END 

E<:ECUTION 
3000000. 
OF ITEMS 

BUNGLE 

BUNGLE 
AV ::: .999999998223636 A: .999999999999996 

TRUE AVERAGE COMPUTED AVERAGE 

Fig. 16. An egregious average. 

C = (S-T) + Y 

by computingb = (l+-y)c+ (l+&)dwith I-YI<;; e and 
181 <;; e. Viten'ko showed that the best that could be 
done when, say,N= 8 was to compute the expression 

with 

F=O 

1233 

IF(SJGN(l.,Y) .EQ. SIGN(l.,S)) F = (0.46•T-T) 
+T 

whlch, in general, would allow If/el to grow as fast as 
log2 N. But his hypotheses do not take account of all 
that is known about -y and 8. Consequently, the pro
gram annotated above may be made to work on all 
major North American computers with floating point 
hardware by replacing the statement 

C = ((S-F)-(T-cF))+ Y 

This is not the place to explain why the modified 
program works on all such machines, nor why :the 
magic number 0.46 was chosen. Rather, the reader 
should observe that programs may work, on some 
machines, far better than he can prove.-Next consider 
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a programmer faced with the task of producing a 
program which works well and can be proved to work 
well. He also faces a dilemma; should he try to prove 
that a simple program on hand works well, or should 
he wrHe another more complicated program more 
amenable to proof? On some machines the dilemma 
is acute. 

That tricky programs like those above contain sur
prises is not surprising, but sometimes surprises are 
well hidden. For instance, consider the solution of a 
cubic equation 

If its coefficients are in error by as much as one ulp 
its roots may be accurate to only ½-precision, as is 
exemplified by 

x3 - 3x2 + 3x - (1-e) = 0 

whose roots are the three values of 1 + , 1/3. Any 
algorithm for solving a cubic will encounter roundoff 
which can, in part at least, be regarded as perturbing 
the coefficients; see Wilkinson [18]. Al!)iough he 
definitely does not say so, reading his book might 
give the impression that triple-precision arithmetic will 
be needed to get the roots to single-precision. Of 
course the critical cubics, those with three nearly 
coincident roots, can be transformed, by a linear sub
stitution which moves the origin nearer to the roots, 
into a less delicate condition;but G.W.Stewart [19] 
shows that the usual way of effecting such a trans
formation does not avoid the damaging perturbations. 
Nevertheless, my 1968 notes [20] contain a different 
form of the transformation which avoids the worst 
of the perturbations; 

when 

Given single-precision coefficients ai and a suitable 
single-precision c, this transformation is to be carried 
out using dohble-precision arithmetic. The choice of 
c can be effected in an innocent machine-independent 
fashion. The final result is a program which accepts 

single-precision coefficients, uses double-precision 
arithmetic, and produces roots correct to nearly single
precision, as if triple-precision arithmetic had been 
used. The program works on all major North 
American machines; to prove that it works, one must 
acknowledge that catastropic cancellation can be a 
good thing. 

12. ESCAPE FROM ROUNDING ERROR ANALYSIS 

There are three ways to escape rounding error anal
ysis without abandoning computation. One is to use 
multi-precision arithmetic so precise that errors are 
"obviously" negligible if they occur at all. A second 
way is to use well implemented Interval Arithmetic. 
Since Moore [21], Hansen [22], Nickel [23], I [20] 
and others have written extensively about Interval 
Arithmetic, little is left to say about it here beyond 
this; no other development in computer systems 
would assist engineers and others like them to do 
numerical computations more safely then would 
the appearance of Interval Arithmetic as universally 
accessible in Fortran as are double-precision and 
corhplex arithmetic. For example, by using 4-signifi
cant decimal Interval Arithmetic we obtain almost 
effortlessly the estimates 

R+ E [.9987, 1.020] , R_ E [.9781, .9988] 

for the roots of fig. 3's quadratic provided those roots 
are real, and 

R, E [.9987, .9988] , R; E [O, 0.02105] 

for the roots Rr ± Ri if they are complex. More im
portant, if all we know about the coefficients is, say, 

A E [47.46, 47.56] 

CE [47.34,47.44] 

then the inferences 

R+ E [.9756, 1.071] 

R, E [.9966, 1.001] 

BE [47.40, 47.50] , 

R_E [.9315, 1.001] or 

R; E [0, 0.06990] 

(which are nearly unimprovable) come more economi
cally, by far, from a direct application of Interval 
Arithmetic than from any other scheme. The fact that 
Interval Arithmetic can be abused, and then will give 
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wretchedly pessimistic error bounds, is no excuse to 
deny its use to the computer using public. I suspect 
that Interval Arithmetic is still so little used mainly 
because deficiencies in some current floating point 
hardware designs metamorphose into embarrassing 
inefficiencies when Interval Arithmetic is imple
mented. Even so, Interval Arithmetic tends to be 
cheaper than the human labour it supplants. 

The third way to escape is to realize that there 
are other kinds of errors than rounding errors. Errors 
in data and errors in intentional approximations to 
mathematical relationships cannot be dispelled by the 
means described above, and are therefore the pre
ferred preoccupation of error analysts. I shall give two 
examples drawn from my own work. 

13. TRAJECTORY PROBLEMS 

"I shot.an arrow in the air, 
It fell to earth, I know not where." 

The Arrow and the Song 
Longfellow 

Consider a system of n ordinary differential equa
tions 

j, = f(y,t) + r(t), y(O) =Yo+ w0 

in which uncertainties are represented by n-vectors 
r(t) and w0 about which we know only bounds like 

n0 > llwoll and p(t) > llr(t)II for t > o . 

Our object is to compute a bound 

n(t) > lly(t)-z(t)II 

for the difference between the uncertain solution 
vector y(t) and the unperturbed solution z(t) of 

i = f(z.t), z(O) = Yo . 

The source of the uncertainty·r(t) is not important 
here. It could arise from the nume_rical method used 
to solve y(t)'s differential equation, with z(t) repre
senting what the numerical method produces (see 
N .F .Stewart [24] ). Alternatively, r(t) could repre
sent unknown but bounded perturbing forces acting 
upon a physical systemy(t) whose unperturbed mo-

lion would be z(t). Most likely both sources of error 
would contribute to r(t), as they would to w0. 

Over the past century several methods have been 
proposed for computing U(t); significant contribu
tions have been made recently by Moore [21] and 
Kruckeberg [25]. But all methods described so far 
share an outstanding defect; they tend to produce a 
function Q(t) which grows, as t ➔ =,exponentially 
faster than lly(t)-z(t)II can grow, even when the.dif
ferential equation is linear, and in most cases even 
when it is linear with constant coefficients chosen in 
an unlucky way (see L.W.Jackson [26, 27] ). There 
is one exception. 

In 19661 proposed [28] that ellipsoids be used 
to produce Q(t). The idea was to compute a positive 
definite n X n matrix A(t), the solution of an auxiliary 
system of differential equations solved simultaneously 
with z(t)'s equation, which would represent m ellip
soid A(t) as follows: 

xEA ifandonlyif x'A-lx<I. 

A(t)'s differential equation was to be so chosen that 
y(t) - z(t) E A(t) for all I> 0. The scheme will be de
scribed below simply for linear differential equations 
although it works on non-linear equations too, until 
A(t) becomes so large as to grow spuriously and 
unavoidably too fasL 

Let w(t) = y(t) - z(t), and assume 

w = Jw + v , w(O) = w0 

where J(t) is a known n X n matrix but no more is 
known about v(t) and w0 than two ellipsoids V(t) 
and Ao such that 

Wo EAo and v(t)EV(t) for t>O. 

In other words we assume positive definite matrices 
Ao and V(t) are given such that woAo1wo < I and 
v'v- 1v < I for all I;;, 0. For example, given p2 ;;, v'v 
for all t > 0 we should set V = p- 2. Now let W(t) 
denote the "reachable set" of all solutions w(I) ob
tained by letting w0 and v(t) range over the sets A0 
and V(t) respectively. In general W(t) is not an ellip
soid; we seek A(I):::, W(t) for all t;;, 0. 
THEOREM. If A(t) satisfies* 

A >JA +AJ' +-yA + Vh, A(O)>A 0 

* Writing "X ;-. Y" for symmetric matrices means that X - Y 
is positive semi-definite; x'(X-Y)x ;-. 0 for all x. 
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for any r(t)> 0 and for all t>O thenA(t) repre
sents an ellipsoid A(t) :J_ W(t). 

To apply this theorem we might replace its first 
two;, signs by= signs and solve the resulting differen
tial equation numerically for A(t) simultaneously 
with the calculation of, say, z(t), provided we knew 
how to choose r(t). There are many reasonable choices 
available. For example see the following. 
Corollary. If Vis constant and A(0) = A 0 = 0 and 
J(t) is bounded for all t;, 0 and A = JA + AJ' + rA 
+ V(r with r(t) = l/t then W(t) c: A(t) c: "1,,(t)W(t) 
where "1,,(t)/-,/i+tis bounded for all I;, 0. 

In other words, here is a case where the error 
bound cannot over-estimate the possible error by 
more than a bounded multiple of -,/i+t There are 
many other cases of considerable practical importance 
where r(t) can so be chosen that the error bound will 
never grow arbitrarily larger than the possible error. 
For example, ifw's differential equations are the 
variational equations for the equations of motion of 
a satellite in orbit about a lumpy central body whose 
gravitational field deviates slightly from the inverse
square law in an unknown but bounded way, or if 
the equations of motion concern a pendulum swing
ing in a draft of gas of unknown but small and 
bounded density and velocity, r(t) can easily so be 
chosen that the ellipsoid A(t) will grow at the same 
rate as the reachable set W(t) for all I;, 0 until A(t) 
becomes so large that nonlinearities in the equations 
of motion dominate its growth. Calculations, some 
performed with the aid of a particularly convenient 
program written by Gabel [29] to solve differential 
equations automatically on the 7094, have borne out 
these claims. Details must appear elsewhere. 

14. ILL-POSED PROBLEMS 

My object all sublime -
I shall achieve in time -
To let the punishment fit.the crime. 

Mikado 
W.S.Gilbert 

Among the most perplexing numerical computa
tions are those whose results, though intended to 
mimic an ostensibly well-behaved physical configura
tion, turn out ill-behaved. Are they ill-behaved merely 
because the numerical computation was performed 
ineptly? Or is the physical system not so well-behaved 
as was presumed? Or does its mathematical model 

contain a flaw, not a mistake, which condemns every 
straight-forward numerical method to confusion? This 
last possibility can arise in two ways. On the one 
hand, intermediate variables may have been intro
duced which are occasionally redundant, thereby al
lowing partly arbitrary and possibly unbounded 
numerical values to intrude enormous rounding 
errors into the computation. On the other hand, the 
physical system may obey precisely laws which can 
only be approximated numerically; the small errors so 
introduced may then correspond to physically im
possible perturbations with physically impossible con
sequences. 

To what extent can the foregoing three questions 
be resolved by numerical means al0ne without des
cending to numerological augury? We wish not to 
re-formulate a new mathematical model unless we 
have to, and then not until we know what is wrong 
with the old model. We hope to avoid the kind of 
deft and inspired analysis exemplified by, say, Dorr 
(30] and Babuska [31], since that may well lie 
beyond our talents. 

Error analysis offer~ a resolution based upon two 
notions. First, the uncertainty attributed to data is 
itself a datum. Secondly, when experimental obser
vations are subjected to computational processing, 
the program becomes a part of the experimental ap
paratus, and subject to the same scientific criteria 
concerning the reproducibility of meaningful results 
in the face of ostensibly negligible variations. These 
notions will be illustrated by application to a simple 
linear least squares problem. 

Given an m X n matrixFwith m ► n, and an m
vector g, we seek that n-vector x which minimizes 
llg-Fxll; when the minimizing xis not unique (i.e., 
when the columns of Fare linearly dependent) we 
further stipulate that, say, llxll should be minimized. 
The vector norm used here is llzll = .,/?z, and we 
shall use the natural matrix norm IIZII = maxzllZzll/llzll 
although any other orthogonally invariant matrix 
norm could be adapted to our purposes. The minimiz
ing vector x turns out to be Ft g where the pseudo
inverse Ft is uniquely defined formally by the familiar 
equations 

FFtF=F, ptppt =Fl , (FtF)' =FtF, 

(FFt)' =FFt. 

When Fhas full column-rank n, Ft = (F'Ft 1F'. 
The literature abounds with methods for comput

ing Ft and Ft g. Some of the best are explained by 
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Golub and his collaborators; see the several refer
ences. Certain cases when Fis of full rank but badly 
ill-conditioned (IIFtllllFII is huge) are discussed nicely 
by Gautschi [32,33} and by Wilson [34}. Another 
special case in which we seek to choose dg, subject to 
a given constraint "f ;;a, IIL.gll, to nearly minimize 
IIFt (g+t.g)II when Fis badly ill-conditioned is dis
cussed by Miller [35] and mentioned by Golub and 
Kahan [36]. But nobody has considered what to do 
when Fis uncertain, although this matter is touched 
obliquely by G.W.Stewart [24] and by Pereyra [37]. 

We shall consider the implications of uncertainty in 
Ffor the computation of Ft. Specifically, given a 
tolerance</>> 0 such that all F + t.F with lit.FIi < rj; 
must be regarded as indistinguishable for practical 
purposes, what should be done when (F+t.F)t is 
found to vary violently discontinuously as t.Franges 
over the allowed set? 

First some apparatus is needed. Let the n singular 
values of F be denoted in order by 

These may be computed at modest cost by methods 
described in Golub [38] and in Golub and Reinsch 
[39]. Note that the singular values of Ft are the re
ordered numbers¢}, where </>t = 1/</>, except Q"f = 0. 
According to Mirsky ([41], theorem 2) for 
k=l,2, ... ,n 

rj;k = min IIL.Fll over rank (F+t.F) < k. 

Consequently no singular value of F + t.F can differ 
from the correspondingly numbered singular value of 
F by more than lit.FIi; and just as ¢1 = IIFII so is 

II Ft II = I/min lit.FIi over rank (F+t.F) < rank (F). 

Finally, the following little known but easHy verified 
and.useful formula, 

Et - pt = -Ft (E-F)Et 

+ (!-Ft F)(E-F)'Et'Et + ptpt'(E-F)'(!-EEI), 

has as a corollary 

11£1 -FIii..: 11£-FII jllEllls - IIFIIJS 
- 11£11-IIFII 

< VSIIE-FII max (11£1 II, IIFt 11)2 . 

The foregoing apparatus is the justification for iiib , 
following assertions. 

The first step is to exhibit F = PAQ where P and Q 
are orthogonal matrices (P'P=Q'Q=QQ'=!) and 
A= diag(¢ 1,¢2, ... ,¢n); this can be done by methods 
mentioned above. Next compare the tolerance¢ with 
the singular values </>i. If</> <ii: 1'n then for all llt.FII < ¢ 

and 

thus, we have a bound -for the change in Ft caused 
when Fis changed by no more in norm than the 
tolerance rj;. 

The interesting case occurs when rj;k ► rj; > r/>k+l 
for some k < n; this means that among the matrices 
F + t.F with lit.FIi < rj; are some of rank k, k + I, ... 
and n. Every time F + t.F changes rank, (F+t.F)t 
jumps infinitely violently. Clearly the least squares 
problem is now ill-posed because a matrix F + t.F in
distinguishable from F has only k linearly independent 
columns. The last n - k rows of Q exhibit the inde
pendent linear combinations of the columns of F 
which nearly vanish. As F + t.F runs through matrices 
of minimal rank k with lit.FIi < </>, (F+t.F)I varies 
continuously and differs by no more than 
y5(¢+¢k+Jl/(r/Jk:--¢)2 in norm from a computable 
distinguished choice 

The corresponding :X = (F+AF)t g has the property 
that it, like (F+AF), is a continuous function of the 
data F and g for variations small compared with 
</>k - </>. Finally, llg-Fxll may be rather larger than 
minimal, but if so it cannot be reduced without re
placing x by a drastically larger vector x which must 
change violently when Fis changed negligibly. In 
other words, (F+3.F)t reveals something about the 
data F, g which is independent of allegedly negligible 
(smaller than¢) variations in the data. In this respect, 
an ill-posed problem has been replaced usefully by a 
well-posed one, and by numelical means alone. When 
neither condition¢ <ii; 1'n nor rj;k ► </> > </>k+l is satis
fied, i.e., when</> is not much smaller than the next 
larger singular value, the given least squares problem 
must be regarded as intrinsically ill-posed in a way 
that will not yield to numerical methods alone. 
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